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ABSTRACT
The paper presents a case study on customer behaviour forecast
within a parking products domain. In particular, authors compare
different LSTM-based DL networks with and without data prepro-
cessing to decide which of the selected architectures and hyper-
parameter combinations provide the least square error estimate.
Unfortunately, well-known forecast methods like regression and
ARIMA did not deliver the needs forecast reliability, which brought
the authors to the application of DL models. While the paper does
not offer novel DL models or architectures, it provides a convenient
application insight enabling a better understanding of the appli-
cation of the selected models. Data has been collected for several
months and offers a good study backbone.
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1 INTRODUCTION
For decades, consumption has been based on consumer choice the-
ory, which creates a fundamental of microeconomics and is related
to consumer preferences. Consequently, consumer behaviour stud-
ies emerged like a discipline intending to study the behaviour of
individuals and groups and organizations. For more than 70 years,
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consumer behavioural science has been developing in different di-
rections, becoming more inter- and cross-disciplinary by blending
up economics and phycology, sociology, marketing, and now over-
lapping with natural sciences like mathematics, computer science,
etc. An individual will consider all possible choices by rationally
evaluating benefits and costs and assigning weight to different at-
tributes depending on their importance. The individual then selects
the best possible choice based upon available information, costs,
benefits and the probability of possible risks. [1] [2] [3] This re-
search is based on a holistic approach to the study of consumer
behaviour, focusing more on the nature of consumption experience
than on purchasing [4] and the Engel Kollat Blackwell Model (EKB)
of Consumer Behaviour, which is one of most examined consumer
utility models.

EKB is based upon prior work in educational philosophy by John
Dewey (1910/1978) and proposes a sequential process of decision
making consisting of 1) problem recognition, 2) information search,
3) evaluation of alternatives, 4) purchase, and 5) post-purchase
evaluation [5] [6] . According to EKB, consumer behaviour is based
on events where information plays the dominant role in decision
making. To follow and verify the EKB main statements, within our
effort, we examined several data sets of the selected company of its
customer behaviour in a context of particular product use.

Customer behaviour forecasts and analysis are among the most
interesting business application prospectives, enabling building
marketing and product strategies. However, since, in most cases,
a particular customer’s behaviour is expressed as a sequence of
events – time series, it brings a certain complexity and uncertainty
into the analysis, with appropriate implications on the model of
the behaviour.

Time series in today’s data analytics appear in very different
contexts and applications, for instance, medical data analysis for
disease evolvement forecast [7] [8] [9], sensor data measurement
forecast to reduce sampling rate and, as a consequence, reduce
power consumption or other control actions [10] [11] [12], work-
load forecast for single and multi-server systems for proper load
balancing policies [13] [14] [15], financial market dynamics forecast
[16] [17] [18] [19].

In many cases, well-understood approaches like autoregressive
moving average (ARIMA) [20] or its extension for seasonal data
SARIMA [21] are applied [10] [14] [15], which sometimes are hy-
bridized with other methods like deep learning networks, providing
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Figure 1: Schema of a single-layer LSTM network

higher performance in terms of prediction precision and higher
resistance to outlier influence [16]. Deep learning is among the
most used in the context time series forecast – as the backbone
or supplementary method in different configurations. Due to the
application versatility and flexibility of the deep learning paradigm,
there are attempts to use even image processing methods for time
series forecast transforming time series plots into multi-channel in-
put images [18], enabling to capture patterns that are hard to model
numerically or analytically. In some cases, for better performance,
methods like LSTM (long short term memory) are combined with
other deep learning network architectures as stacked layers, like
autoencoders [19], enabling to capture of some bold features of the
time series. While attempts to compare deep learning methods with
other methods like ARIMA for a general case [22], each technique
still has its drawbacks and strengths, enabling many flexibilities
for different applications. However, it does not always provide a
positive contribution since it is unclear which method is better to
use. It is necessary to note that ARIMA did not provide the needed
accuracy on the training data set.

2 MOTIVATION AND GOAL
According to recent research reports, one of the most promising
and widely used approaches is to use deep learning networks (DLN)
and recurrent neural networks (RNN) in particular, which in the
case of LSTM (long short term memory) provides promising results
and applications potential [23]. According to comparative analysis
of different neural network architectures, including feed-forward
and recurrent architectures, under conditions of having enough
data for training, LSTM architecture provides higher accuracy and
higher robustness under very challenging forecast conditions [24]
[25]. In addition, LSTM allowed solving vanishing and exploding
gradient problems that are still issues in feed-forward recurrent
neural networks [26].

Having a time series Y consisting of time steps y(t), the problem
of forecasting n steps ahead (forecast horizon) of the current one
requires to find a predictor that accepts as an input of d last samples
or lags:

Input = {yt−d+1, yt−d+2, ·s,yt−1,yt } (1)

The output of the predictor is a vector of length n:

Output pred . = {ŷt+1, ŷt+2, ·s, ŷt+n } (2)

The output corresponds to actual observations of Y:

Output = {yt+1, yt+2, ·s,yt+n } (3)

The forecast accuracy depends on input length, and it must be
long enough. A feasible d is said to allow embedding the dataset
in nonlinear time series analysis, and the minimum d is called the
dataset embedding dimension. A good practice is selecting d at least
twice the length of n, enabling to model of even very complex time
series [24]. However, if the d is too large, the prediction accuracy
worsens, implying that the length is one of the main parameters to
be determined. The main advantage of the LSTMs over other types
of the RNNs is its essence allows them to explicitly take into account
the sequence of events (samples), manage error backflow using
dedicated so-called gates (input, output, and forget) and provide
enriched status representation by using two different internal states
– hidden and cell state [24] [27] [28].
Thereby instead of using regular feed-forward neurons, LSTM uses
LSTM cells (see Fig. 1). The cell state is responsible for maintaining
the needed information from the past inputs – long term memory,
while the hidden state combines the cell state, input and the pre-
vious hidden state. The gates control the amount of information
taken into account for the update of the cell state – input and forget
gates, and the amount of information passed to the output – the
output gate [24] [28].
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Figure 2: LSTM training with teacher forcing

Figure 3: LSTM training without teacher forcing

The gates control the amount of information taken into account for
updating the cell state – input and forget gates- and the amount of
data passed to the output gate [24] [28].

As with other problem domains, it is possible to use both training
methodswith teacher forcing [29] orwithout teacher forcing in time
series analysis. The teacher forcing has the advantage to provide
a ground truth of length n, which allows a direct error estimation
between output and ground truth (Fig. 2). In training, without
the teacher forcing, the output is fed back to the network as the
unknown input of the next step (Fig. 3)

Depending on the inference settings, it might be necessary to
predict a single future state and propagate the forecast like a sliding

average time window be feeding back the output as the unknown
inputs of future states. However, it is possible to predict a whole
vector of the future state of the length n.

In the case of a single future state prediction, the inference in-
troduces a difference between training and inference steps, which
leads to error accumulation. This is because during the training
with the teacher forcing predictions do not affect other future pre-
dictions – ground truth allows considering them. At the same time,
in inference with a single output step, the earlier forecast provides
a significant contribution to the error of the later ones [24] [30].
Therefore it is necessary to consider and align training and infer-
ence phases.
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Figure 4: Two-layer autoencoder network

Additional layers are used in highly challenging domains where
it is necessary to extract some complex or hidden behaviour of the
input sample like asset health monitoring of failure prognostics,
besides one or several LSTM layers [31]. To learn abstract unla-
beled features of a given time series, the input sample is passed to
the Restricted Boltzmann Machine (RBM) layer, which intensifies
potentially significant regions of the input before it is passed to
supervised LSTM layers [31] [32]. The output of the LSTM layers
(one or several) is fed in a fully connected feed-forward layer, which
enables to map, classify or do other final tasks before the output.
Instead of an unsupervised RBM layer, a supervised convolutional
neuron network (CNN) layer might be used to provide the power
to extract significant features from the raw input, which are passed
then to LSTM layers [33]. In the context of our study, only a one-
dimensional convolution layer is needed, which performs a feature
mapping applying the convolution operation:

o (t) = (y ∗ k) (t) =
∑
h

(
y(t−h) kh

)
(4)

where
y(t) - input vector of the time series, with time step t;
k – kernel function of a length h;
o(t) – the output or feature map;
While the CNN layer extracts low-level input features, LSTM layers
extract more complex ones [33]. Besides CNNs to extract relevant
features, auto-encoders (Fig. 4) are another option to boost feature
extraction [34] [35].

Autoencoder (AE) network maps inputs to their output, which
usually are of the same size, enabling learning effective coding of the
input data [36]. AE is a feed-forward network with fully connected
layers in its most straightforward implementation. Encoder layers
reduce the dimensionality of the input vector, producing as its
output the code. Thereby encoder enables to learning of valuable
properties of the input data. The decoder part transforms the code
into the output by adding dimensions. Thus, AE is trained to keep

useful features and omit the unnecessary ones. However, AE can
learn the input or minor features like noise [37]. To diminish the
mentioned risks of capable AE, a designer could change the hidden
layer and code size to be smaller than the input or output size (see
Fig. 4) – undercomplete AE, or use other properties like sparsity,
the smallness of the derivative of the representation and robustness
to missing values and noise [37]. Some recent research reports
combine CNNs and AEs to build convolutional autoencoders CAEs,
which Rumerhalt et al. [38] proposed. Later much larger attention
was pulled by Vincent et al., which showed CAE’s ability to cope
with the noisy data [39] [40]. The main difference between AE and
CAE is the convolutional function as a signal transfer method from
layer to layer, providing higher extraction effectiveness over the
regular feed-forward approach.

CAEs have another advantage over AE since they have a good
performance on complex time series like ECG data enabling them to
extract essential features effectively [41]. Despite extensive research
efforts provided by the scientific community, selecting particular
network architecture for the specific problem is difficult, depending
on seasonality, level of noise, length of the time series, and the
particular architecture of the model being used. Therefore our goal
is to provide an insight into a specific forecast problem through
applying different model architectures and different data set pro-
processing.

3 OUR APPROACH AND BENCHMARK
CRITERIA

Despite extensive research efforts provided by the scientific com-
munity, selecting particular network architecture for the specific
problem is a difficult task, which depends on seasonality, level of
noise, length of the time series and particular architecture of the
model being used. Therefore our goal is to provide an insight into
a specific problem of the forecast through applying different model
architectures and different data set preprocessing applied.
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Figure 5: Selected customer behaviour. X – parking sequence number, Y – Parking time in minutes

Figure 6: Smoothed data (orange) of one of the selected customers using moving average

3.1 The dataset
The initial data set consists of approximately 200K customer be-
haviour logs, representing parking time, i.e. daily customer be-
haviour and should reflect regularities if any. We intentionally
selected six customers, where three represent similar behaviour
while the remaining three represent a different one (see Fig. 5).
Each customer is marked with an anonymous identifier, and their
behaviour data is collected within the same season, making them
relatively comparable. We also used smoothed time series of the
same data for comparison reasons of different models (see Fig. 6).

We took into account different preferences of the customers in
terms of parking time interval and how often customers select a
particular parking time, which might be seen in the following value
distribution plots (See Fig. 7 and Fig. 8).

As shown in figure 5, figure 6, figures 7 and 8, the value and
frequency distribution are somewhat different, allowing for exam-
ining different forecast models for different behaviour. Following

the smoothed time series in Fig.6, one can notice that certain sea-
sonality is reflected in the time series, which provides a ground to
believe that effective methods on seasonal data might be practical
here.

We also tried to use downsampled datasets, but unfortunately,
the forecast models results were feeble and did not provide any
meaningful contribution to our study goals. The main reason was a
significant drop in quality of reflecting the actual behaviour of the
customers and loss of dataset length, which is important for proper
training of the model.

3.2 Used models
Our main intention was to compare different deep learning network
architectures that were proven effective and reported by other ref-
erenced studies. As a core architecture, we used LSTMs, which form
the backbone of the models. According to the references studies
[24] [26] [27], both single or multiple layer LSTMs are effective
predictors enabling to reveal of complex regularities.
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Figure 7: Customers of similar behaviour (frequency of parking time in minutes)

Figure 8: Customers of different behaviour (frequency of parking time in minutes)

Table 1: Configuration parameters

Parameter Parameter values and comments

Forecast horizon Three steps represent three coming days, enough to provide additional value for the customer through
tailored offers or discounts.

Input sample size Fourteen steps, which represent two whole weeks.
Hidden layer size 30 and 100 neurons for all architectures
Output Entire horizon (3 steps) or propagated using a single output for all architectures. The horizon value is

selected to provide ground for tailored product offers (discounts etc..). Therefore the horizon is relatively
short.

Loss function Mean Square Error (MSE) for all architectures
Optimizer ADAM [42] for all architectures
Learning ratio (LR) Set empirically to 0.0005, which provided the best results during the experiments. The experimental setup

was tested on values within the interval of [0.001; 0.0001]. The selected value provided an efficient balance
between training speed and forecast error.

Training data Random slices of input (14 steps) and output (3 steps) pairs were shuffled during the training. Each sample
represents a specific behaviour of a given customer for the last two weeks.

Epochs We used 3000 epochs, which was selected empirically following the loss dynamics.

To follow the trends of recent studies [39] [40] [41], we tested
the effects of additional layers of AE and CAE at the input stage of
the network. The additional configuration parameters include the
size of hidden layer 30 or 100 neurons and the way how the input
is produced: providing the output vector of the needed forecast

horizon at once or providing a single output and propagating it to
reach the required horizon by feeding the output back as a part
of the input of the next step. Summary of the architectures and
configuration parameters are listed below in Table 1
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Figure 9: Different architectures of input stages

As depicted in Fig.9, additional input stage layers were used only
in conjunction with a two-layer LSTM backbone. This is because
we noticed a significant drop in the forecast error when using a
two-layer LSTM backbone. We do not report CAE results for the
opposite reasons since the forecast errors of different parameter
configurations were significantly worse than other alternatives.
Therefore this particular architecture is not reported since they do
not provide a meaningful value for further study.

The hidden layer size was selected from a range of 30 – 300,
where we did not observe significant differences between 100 and
300. Therefore we settled on the two sizes to show the impact of
the parameter on the forecast error. Since our study does not intend
to provide the optimal set of parameters but tendencies instead,
the selected layer size values are suitable for further optimization
purposes if needed.

We selected the ADAM optimizer because, as experimentally
shown in [43], the ADAM optimizer not necessarily on all occasions
is better than other alternatives like Stochastic gradient descent or
Root mean square propagation [44] [45]. However, the method is
as good as the other alternatives under various parameter settings
[43].

For implementation purposes, we used Pytorch [45], which pro-
vided a relatively easy way to control the architecture on the one
hand and enough abstraction of training complexity on the other
hand.

3.3 Benchmark
We used randomly selected time slices of inputs (14 steps) and
outputs (3 steps) for model training purposes, which were shuffled
during the training. Due to differences in customer behaviour, each
model was trained separately on every customer’s data. Thereby it

was possible to follow towhat extent themodels find the regularities
of the customer behaviours.

As the main comparison criterion, we selected the mean square
error (MSE) between the forecast of the entire horizon and the
observed customer behaviour. The value of the MSE provides an
easy to interpret estimate.

However, since the models are tested and trained on several
customers’ mean of separate MSEs, their standard deviation was
monitored to see to what extent the model provides relatively sim-
ilar results for all selected customers. This estimate is indicative
and includes information on have general the models might be for
different customers.

4 RESULTS
The collected results are provided in tables II and III, where the best
results are bolded. We used a relatively long training time – 3000
epochs. We picked the best-found result, which provided a rather
good ground to conclude the performance of particular architec-
tures and parameter sets. In the case of goth data sets, raw and
smoothed slightly better results are for two-layer LSTM with hid-
den layer size 100, while in some cases, an AE-LSTM architecture
provides the best results, while in others is the next best archi-
tecture. During the experiments, a single layer LSTM has never
offered the best result and, in most cases, is by several orders of
magnitude behind the two-layer case. Another interesting finding
is full forecast horizon v.s. the propagated one, where significantly
better performs the propagated output architecture.

From the figure Fig. 10, it might be noticed that models on raw
data sets perform slightly better than on smoothed datasets. Stan-
dard deviation also drops accordingly, but that is related to the
drop of the absolute values. If the standard deviation relative to
the mean value is examined, which shows the relative amount of
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Figure 10: MSE plot of different models for raw and smoothed data

Figure 11: STD relative to MSE mean values

Table 2: Results Details on Smoothed Data Sets

Layers Single hidden layer Two hidden layers Two hidden layers - prop.
Output

Two hidden layers - AE
input

Cust. # H = 30 H = 100 H = 30 H = 100 H = 30 H = 100 H = 30 H = 100
44535 0.00106222 0.000168498 0.000000106 0.0000000645 0.000000029 0.000000017 0.0000000399 0.000000031
129768 0.00127532 0.00043749 0.000000927 0.0000004103 0.000000362 0.000000013 0.0000002706 0.000000144
106511 0.00051815 0.00063149 0.000001285 0.0001015138 0.000024514 0.000000015 0.0000021718 0.000001193
108906 0.00037099 0.000195994 0.000047179 0.0000000182 0.000000308 0.000002291 0.0000000819 0.000004047
318941 0.00014588 0.000018759 0.000005478 0.0000747771 0.000000018 0.000000098 0.0000033345 0.000001139
103470 0.00011918 0.000155712 0.000366080 0.0000687687 0.000001277 0.000001299 0.0000007273 0.000000132
mean 0.000581957 0.000267990 0.000070176 0.000040925 0.000004418 0.000000622 0.0000011043 0.000001114
std 0.000440513 0.000204396 0.000133370 0.000041985 0.000008997 0.000000878 0.0000012335 0.000001396

distribution, then a clear trend is not evident (see Fig. 11). Collected
particular accuracy on smoothed data, raw data and other statistics
are represented in tables Table 2 un Table 3

5 CONCLUSIONS AND FUTUREWORK
While the customer-wise MSE varies from model to model, the
overall trend is rather apparent and suggests that a model with a

single layer LSTM backbone provides a significantly lower forecast
precision in comparison with a two-layer LSTM backbone.

Our study shows that a propagated output outperforms an entire
horizon forecast approach, which we relate to day-by-day depen-
dencies of the customer behaviour, meaning that the particular days
parking needs are more related to previous day experience than on
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Table 3: Results Details on Raw Data Sets

Layers Single hidden layer Two hidden layers Two hidden layers - prop.
Output

Two hidden layers - AE
input

Cust.
#

H = 30 H = 100 H = 30 H = 100 H = 30 H = 100 H = 30 H = 100

44535 0.000000068 0.000002084 0.000001585 0.0000001196 0.0000006628 0.000000076 0.000000160 0.0000000660
129768 0.000985636 0.000016715 0.000003156 0.0000004011 0.0000002312 0.000000314 0.000000276 0.0000003865
106511 0.000799875 0.000143428 0.000006044 0.0001277570 0.0000000663 0.000000055 0.000001062 0.0000000610
108906 0.000041584 0.000015891 0.000031567 0.0000268392 0.0000015081 0.000000031 0.000002665 0.0000000545
318941 0.000067547 0.000032035 0.000001276 0.0000001183 0.0000132396 0.000000271 0.000008510 0.0000008256
103470 0.000016435 0.001324469 0.000033323 0.0000808191 0.0000033857 0.000000023 0.000001724 0.0000000032
mean 0.000318523 0.000255770 0.000012825 0.000039342 0.000003182 0.000000128 0.000002400 0.0000002328
std 0.000410102 0.000480250 0.000013968 0.000048797 0.000004632 0.000000118 0.000002863 0.0000002935

the entire last week. Unfortunately, this thesis is not directly sup-
ported by our study and, therefore, should be studied more closely
in future efforts.

Our study also provides evidence that more complicated archi-
tectures like CAE-LSTM or AE-LSTM do not add significant value
to MSE reduction for a particular task. However, due to the con-
siderable limitations of our study, we have to be careful not to
overgeneralize our results.

The most important caveat is our intentional distance from archi-
tecture optimization and hyperparameter tuning, favouring possible
alternatives and guiding potential developers instead of optimizing
one or a few viable options to get the highest possible output.

On average raw dataset provides somewhat better results over
the smoothed data set, which suggests that using the raw dataset
allows considering some internal causalities that are not obvious.

Having the results of the study, we could suggest the follow-
ing: appliers should use at least double layer LSTMS and run them
on raw data instead of heavily preprocessed with smoothing or
downsampling. If there is space for parameter and architecture
optimization, appliers should consider using more complex archi-
tectures with preprocessing stages to extract significant features
of the input datasets. We also suggest using hidden layers of con-
siderably large size instead of preserving smaller ones and losing
forecast precision.

The overall results provide enough evidence to conclude that
our initial goal of verifying EKB statements has proven true for
the selected product applying modern forecast methods of deep
learning, which corresponds to the current practice of behaviour
forecast problems.

ACKNOWLEDGMENTS
The research leading to these results has received funding from the
project "Competence Centre of Information and Communication
Technologies" of EU Structural funds, contract No. 1.2.1.1/18/A/003
signed between IT Competence Centre and Central Finance and
Contracting Agency, Research No. 1.3 “Research, development pro-
totyping of financial analysis tool based on document management
system”.

REFERENCES
[1] Bettman, J. R., Luce, M. F., & Payne, J. W. (1998). Constructive consumer choice

processes. Journal of Consumer Research, 25(3), 187-217.

[2] Monroe, K. R., & Maher, K. H. (1995). Psychology and rational actor theory.
Political Psychology, 16(1), 1-21.

[3] Holland, J. (2019). Navigating uncertainty: Tourists’ perceptions of risk in ocean
cruising [online]. Research Gate Web site [accessed 13 march 2021]. Available
at: https://www.researchgate.net/figure/The-Engel-Kollat-Blackwell-complete-
model-ofconsumer-decision-making-Engel-et-al-1968_fig1_339513025

[4] Abey F., 2021, Approaches to Studying Consumer Behaviour [online]. MBA
Knowledge Base [accessed 17 July, 2021]. Available at: https://www.mbaknol.
com/marketing-management/approaches-to-studying-consumer-behaviour

[5] Engel, J.F., Blackwell, R.D., & Miniard, P.W. (1995). Consumer Behaviour, 8th
edition. Fort Worth, TX: The Dryden Press Harcourt Brace College Publishers

[6] Ashman R., Solomon M. R., Wolny J., An old model for a new age: Consumer
decision making in participatory digital culture, 2015. Journal of Customer
Behaviour 14(2):127-146, DOI: 10.1362/147539215X14373846805743Available
from: https://www.researchgate.net/publication/282350425_An_old_model_for_
a_new_age_Consumer_decision_making_in_participatory_digital_cultureIn the
appendix section, three levels of Appendix headings are available.

[7] Y. Matsubara, Y. Sakurai, W. G. van Panhuis, and C. Faloutsos, "FUNNEL," in
Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, Aug. 2014, pp. 105–114, doi: 10.1145/2623330.2623624.

[8] E. Yang et al., "A Simulation-Based Study on the Comparison of Statistical and
Time Series Forecasting Methods for Early Detection of Infectious Disease Out-
breaks," Int. J. Environ. Res. Public Health, vol. 15, no. 5, p. 966, May 2018, doi:
10.3390/ijerph15050966.

[9] M. Maleki, M. R. Mahmoudi, D. Wraith, and K.-H. Pho, "Time series modelling
to forecast the confirmed and recovered cases of COVID-19," Travel Med. Infect.
Dis., vol. 37, p. 101742, Sep. 2020, doi: 10.1016/j.tmaid.2020.101742.

[10] S. Bhandari, N. Bergmann, R. Jurdak, and B. Kusy, "Time Series Data Analysis of
Wireless Sensor Network Measurements of Temperature," Sensors, vol. 17, no. 6,
p. 1221, May 2017, doi: 10.3390/s17061221.

[11] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, "Geoman: Multi-level attention
networks for geo-sensory time series prediction," IJCAI Int. Jt. Conf. Artif. Intell.,
vol. 2018-July, pp. 3428–3434, 2018, doi: 10.24963/ijcai.2018/476.

[12] S. Papadimitriou and P. Yu, "Optimal multi-scale patterns in time series
streams," Proc. ACM SIGMOD Int. Conf. Manag. Data, pp. 647–658, 2006, doi:
10.1145/1142473.1142545.

[13] L. Ruan, Y. Bai, S. Li, S. He, and L. Xiao, "Workload time series prediction in
storage systems: a deep learning based approach," Cluster Comput., 2021, doi:
10.1007/s10586-020-03214-y.

[14] J. Kumar and A. K. Singh, "Performance Assessment of Time Series Forecast-
ing Models for Cloud Datacenter Networks’ Workload Prediction,"Wirel. Pers.
Commun., vol. 116, no. 3, pp. 1949–1969, 2021, doi: 10.1007/s11277-020-07773-6.

[15] A. S. Higginson, M. Dediu, O. Arsene, N. W. Paton, and S. M. Embury, "Database
Workload Capacity Planning using Time Series Analysis and Machine Learning,"
in Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, Jun. 2020, pp. 769–783, doi: 10.1145/3318464.3386140.

[16] A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, and P. Kumam,
"Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting,"
IEEE Access, vol. 8, pp. 71326–71338, 2020, doi: 10.1109/ACCESS.2020.2985763.

[17] J. Cao, Z. Li, and J. Li, "Financial time series forecasting model based on CEEM-
DAN and LSTM," Phys. A Stat. Mech. its Appl., vol. 519, pp. 127–139, Apr. 2019,
doi: 10.1016/j.physa.2018.11.061.

[18] S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero, "Deep learning
and time series-to-image encoding for financial forecasting," IEEE/CAA J. Autom.

207

https://www.researchgate.net/figure/The-Engel-Kollat-Blackwell-complete-model-ofconsumer-decision-making-Engel-et-al-1968_fig1_339513025
https://www.researchgate.net/figure/The-Engel-Kollat-Blackwell-complete-model-ofconsumer-decision-making-Engel-et-al-1968_fig1_339513025
https://www.mbaknol.com/marketing-management/approaches-to-studying-consumer-behaviour
https://www.mbaknol.com/marketing-management/approaches-to-studying-consumer-behaviour
https://www.researchgate.net/publication/282350425_An_old_model_for_a_new_age_Consumer_decision_making_in_participatory_digital_cultureIn
https://www.researchgate.net/publication/282350425_An_old_model_for_a_new_age_Consumer_decision_making_in_participatory_digital_cultureIn


ICMLT 2022, March 11–13, 2022, Rome, Italy Agris Nikitenko et al.

Sin., vol. 7, no. 3, pp. 683–692, May 2020, doi: 10.1109/JAS.2020.1003132.
[19] W. Bao, J. Yue, and Y. Rao, "A deep learning framework for financial time series

using stacked autoencoders and long-short term memory," PLoS One, vol. 12, no.
7, p. e0180944, Jul. 2017, doi: 10.1371/journal.pone.0180944.

[20] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, "A Comparison of ARIMA
and LSTM in Forecasting Time Series," in 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), Dec. 2018, pp. 1394–1401, doi:
10.1109/ICMLA.2018.00227.

[21] M. H. Pesaran, “Time Series and Panel Data Econometrics,” Time Ser. Panel Data
Econom., 2016, doi: 10.1093/acprof:oso/9780198736912.001.0001.

[22] I. M. Chakravarti, G. E. P. Box, and G. M. Jenkins, "Time Series Analysis Fore-
casting and Control.," J. Am. Stat. Assoc., vol. 68, no. 342, p. 493, 1973, doi:
10.2307/2284112.

[23] R. DiPietro and G. D. Hager, "Deep learning: RNNs and LSTM," in Handbook of
Medical Image Computing and Computer Assisted Intervention, Elsevier, 2020, pp.
503–519.

[24] M. Sangiorgio and F. Dercole, "Robustness of LSTM neural networks for multi-
step forecasting of chaotic time series," Chaos, Solitons & Fractals, vol. 139, p.
110045, Oct. 2020, doi: 10.1016/j.chaos.2020.110045.

[25] M. F. Rabby, Y. Tu, M. I. Hossen, I. Lee, A. S. Maida, and X. Hei, “Stacked LSTM
based deep recurrent neural network with kalman smoothing for blood glucose
prediction,” BMCMed. Inform. Decis. Mak., vol. 21, no. 1, 2021, doi: 10.1186/s12911-
021-01462-5.

[26] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157–166,
Mar. 1994, doi: 10.1109/72.279181.

[27] O.M. Yamashita, J. R. Betoni, S. C. Guimarães, andM.M. Espinosa, “Deep Learning
(Adaptive Computation and Machine Learning series),” Sci. For. Sci., no. 84, p. 355,
2009.

[28] R. J. Williams and D. Zipser, “A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks,” Neural Comput., vol. 1, no. 2, pp. 270–280,
1989, doi: 10.1162/neco.1989.1.2.270.

[29] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for sequence
prediction with recurrent neural networks,” Adv. Neural Inf. Process. Syst., vol.
2015-January, pp. 1171–1179, 2015.

[30] A. Listou Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, and H. Zhang, “Re-
maining useful life predictions for turbofan engine degradation using semi-
supervised deep architecture,” Reliab. Eng. Syst. Saf., vol. 183, pp. 240–251, 2019,
doi: 10.1016/j.ress.2018.11.027.

[31] Y. Freund and D. Haussler, “Unsupervised learning of distributions on binary
vectors using two layer networks,” in NIPS’91: Proceedings of the 4th International

Conference on Neural Information Processing Systems, 1991, pp. 912–919.
[32] A. L. Ellefsen, S. Ushakov, V. Aesoy, and H. Zhang, “Validation of Data-Driven La-

beling Approaches Using a Novel Deep Network Structure for Remaining Useful
Life Predictions,” IEEE Access, vol. 7, pp. 71563–71575, 2019, doi: 10.1109/AC-
CESS.2019.2920297.

[33] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach. Learn., vol.
2, no. 1, pp. 1–27, 2009, doi: 10.1561/2200000006

[34] W. Wei, H. Wu, and H. Ma, “An autoencoder and LSTM-based traffic flow predic-
tion method,” Sensors (Switzerland), vol. 19, no. 13, 2019, doi: 10.3390/s19132946.

[35] M. A. Kramer, “Nonlinear principal component analysis using autoassocia-
tive neural networks,” AIChE J., vol. 37, no. 2, pp. 233–243, Feb. 1991, doi:
10.1002/aic.690370209.

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.
[37] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986, doi:
10.1038/323533a0.

[38] P.-A. M. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, “Stacked Denoising Au-
toencoders: Learning Useful Representations in a Deep Network with a Local
Denoising Criterion,” J. Mach. Learn. Res., vol. 11, pp. 3371–3408, 2010

[39] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-
encoders for hierarchical feature extraction,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2011, vol. 6791 LNCS, no. PART 1, pp. 52–59, doi: 10.1007/978-3-
642-21735-7_7.

[40] O. Yildirim, R. S. Tan, and U. R. Acharya, “An efficient compression of ECG signals
using deep convolutional autoencoders,” Cogn. Syst. Res., vol. 52, pp. 198–211,
Dec. 2018, doi: 10.1016/j.cogsys.2018.07.004.

[41] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int.
Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., 2015.

[42] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On Empirical
Comparisons of Optimizers for Deep Learning,” 2019, [Online]. Available: http:
//arxiv.org/abs/1910.05446.

[43] N. Ketkar, “Stochastic Gradient Descent,” in Deep Learning with Python, Berkeley,
CA: Apress, 2017, pp. 113–132.

[44] G. Hinton and T. Tieleman, “RMSPROP: Divide the Gradient by a
Running Average of its Recent Magnitude,” Coursera Neural Net-
works Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012, [Online]. Available:
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-
divide-the-gradient-by-a-running-average-of-its-recent-magnitude.

[45] A. Paszke et al., “PyTorch: An Imperative Style , High-Performance Deep Learning
Library,” Adv. Neural Inf. Process. Syst., no. NeurIPS, pp. 8024–8035, 2019.

208

http://arxiv.org/abs/1910.05446
http://arxiv.org/abs/1910.05446
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude

	Abstract
	1 INTRODUCTION
	2 MOTIVATION AND GOAL
	3 OUR APPROACH AND BENCHMARK CRITERIA
	3.1 The dataset
	3.2 Used models
	3.3 Benchmark

	4 RESULTS
	5 CONCLUSIONS AND FUTURE WORK
	Acknowledgments
	References

