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ABSTRACT
The paper reports an empirical study done to statistically validate
the preliminary findings obtained in previous research by the au-
thor on the small disjunct problem. Thus additional support to
the working hypothesis that cooperative evolution (co-evolution)
can be successfully applied in learning symbolic concepts and that
co-evolution when carefully exploited can produce more robust
classification rule (symbolic concepts) with higher statistical valid-
ity. In the paper we will compare the effect of applying a specific
co-evolutive learning strategy with the results obtained by running
a learning system without any coevolution. Thus we can measure
the add-on effect produced by the coevolutive strategy. As learning
systems we will use the system REGAL that combines distributed
learning and genetic algorithms to find symbolic classifiers. As a
future extension of this research, we note that the described co-
evolutive strategy can be applied to other learning methods.
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1 INTRODUCTION
Symbolic concept learning [1] consists in finding a symbolic de-
scription, usually expressed in propositional or first order logic,
that is able to correctly classify positive and negative instances of
a given concept. From the computational point of view, concept
learning consists in filtering large, potentially infinite, hypothesis
spaces containing candidate concept descriptions. Therefore being
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able to use efficient and effecting searching algorithms become a
must. Since several years, learning approaches based on Genetic
Algorithms [2, 3] proved their potentialities on a variety of concept
learning tasks.

Whereas one of the most efficient and well known method for
symbolic concept learning are decision trees [4]. Unfortunately,
decision trees suffer from the small disjunct problem. The small
disjunct problem consists in the fact that decision trees lose statis-
tical validity in the found concept description when the number
of conditions increases. This is due to the way the learning set is
partitioned during the decision tree construction thus reducing the
number of supporting examples while the decision tree’s depth
increases.

On the contrary, genetic algorithms applied to concept learning
can exploit the whole learning set to evaluate a concept description.
Thus avoiding the small disjunct problem. However, a drawback of
genetic algorithm is that they require significantly more time and
computational power to run compared to decision trees. This is due
to their need to evolve a set of candidate solutions time over time
(generations) and this multi-solution approach requires intrinsically
more time to be performed.

A general approach to deal with high computational cost is to
use distributed computation. In fact, genetic algorithms can be
easily parallelized and several populations can be made evolving in
parallel by using or not a coordination mechanism among them. It
is in the case of a coordination mechanism controlling the evolution
of several populations that we can talk about co-evolution strategies
[5–10].

Research on several forms of cooperative learning includes ap-
proaches like ensemble learning: boosting [11] and bagging [12].
These techniques combine a pool of classifiers in order to improve
their separate and overall classification performances. Generally
they exploit re-sampling or weighting of the learning instances in
order to acquire different classifiers to be combined, and they are
independent of the specific learning method used.

Also a combination of other artificial intelligent techniques,
such as software agents, with evolutionary computation could be a
promising testbed to expand this current work [13–18].

In the past, we investigated how the adoption of cooperative
learning into the GA-based system REGAL [8, 17, 19–22] could
produce a more efficient learning systems. We extend here our pre-
vious work on cooperative coevolution by expanding the performed
experiments in the REGAL system by running a full fledge 10 fold
cross validation and determing the confidence intervals for some
of the collected measures so that we can improve the statistical
validity of our findings. Therefore the novelty of this paper is in
the experimental section and the reported findings while the rest
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Figure 1: Bitstring and template.

of the paper is just a summary of the experimental environment,
made up of our REGAL system, and thus contains descriptions of
its inner working that have already being published in previous
works. We however believe that is necessary to report a summary
of some components of the REGAL system in this paper so that this
work becomes self contained.

The paper is then organized as follows. In Section 2 and 3, the
REGAL system and a cooperative learning strategy are described.
In Section 4, the experimental framework is analyzed. In Section
5, the results are reported. Finally, the conclusion section ends the
paper.

2 THE SYSTEM REGAL
We describe here in a synthetic format the REGAL [23] system in
order to provide a comprehensive description of the experimental
setting used in this work. The REGAL system learns relational
disjunctive concept descriptions in a restricted form of First Order
Logic by using cooperative evolution. In REGAL an individual is
a conjunctive formula (encoded as a fixed length bitstring) and a
subset of the individuals in the populations has to be determined to
form a disjunctive description for the target concept. For the scope
of this work, we concentrate on REGAL’s cooperative architecture
as a description of the system’s other components have already
been published.

REGAL’s architecture is a network of N processes GALearners,
coordinated by a Supervisor that imposes cooperation among the
evolving populations. Metaphorically speaking, each GALearner
realizes a niche, defined by a subset of the learning instances, where
some species lives. Each GALearnersn tries to find a description for
a subset of the learning instances LSn by evolving its population.
In addition, the GALearners may perform migration (exchange) of
individuals. The Supervisor coordinates the distributed learning
activity by periodically assigning different subsets of the learning
instances to the GALearners. The composition of these subsets de-
pends on the specific cooperative policy used. Therefore, and this is
the key point, a co-evolutive learning strategy can be implemented
in REGAL quite easily by changing over the course of time the
subset of learning instances assigned to each GALearners.

For the sake of completeness, we also show in fig. 1 how it is
possible to code a special kind of propositional rule (or a restricted
type of first order logic formula) in a bitstring. The bitstring allows
to code disjunctive formulas quite simply by selecting or deselecting
the disjunctive values that verify the predicates occurring in the
formula. In particular, substring in the bitstring are used to codify
set of values for each predicate or proposition and depending on the
1 or 0 values, the selected values are used to verify if the represented
disjunctive formula can be verified or not on the learning instances.
Conversely a given bitstring allows to select a set of instances from

the learning set that verify the represented disjunctive formulas.
Thus allowing to calculate the set of positive or negative instances
that verify the given formula.

3 THE CO-EVOLUTIVE STRATEGY DESCRIBE
THOSE STILL UNCOVERED

As said, REGAL’s results depend on the emergence of an effective
cooperative behavior among its learning processes. As described
in the previous section, in the system, cooperation is achieved by
periodically adjusting the learning sets assigned to each GALearner.
Thus, the cooperative learning strategy that determines the com-
position of these learning sets becomes the very responsible for
the learned concept description. As no a priori information is avail-
able on what is a successful assignment of learning instances, we
experimented in the course of the years with several cooperative
learning strategies based on different assumptions.

In this work, however, the focus is on a specific co-evolutive
learning strategy that we named Describe Those Still Uncovered.
This co-evolutive strategy is characterized by the fact that it forces
the learners in dealing as soon as possible with examples difficult
to cover. Essentially, as soon as a promising concept description
emerges, the instances not covered by it are included into all the
learning sets, whereas each covered instance is inserted into only
one learning set. This approach should reduce the probability that
"small disjuncts" appear. The detailed description of the strategy
follows.

CoopLSDTSU (Concept, E, C, w, LSn, N)
/* Concept is the current concept description */
/* E is the set of the available concept instances */
/* C is the set of the available non concept instances */
/* w is the class of the concept instances */
/* LSn is the set of niches’ definitions */
/* N is the number of available GALearners */

LS = E U C
NotCovered = E - Uj ∈ Concept PosCov(j, LS, w)

for n=1 to N
LSn = C U NotCovered
endfor

Assigned = empty_set
c-list = < sort j ∈ Concept by decreasing value of c( j, LS, w) >
n=1
while not empty(c-list) do
k = FirstElem(c-list)
c-list = c-list - k
LSn = LSn U e | e ∈ PosCov(j, LS, w) and e not Assigned)
Assigned = Assigned U LSn
n = (n + 1) mod N
endwhile

return(LSn )
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By observing the algorithm, one can note that the procedure
CoopLSDSTU includes the learning instances not covered by the
current concept description into each new niche definition. After-
wards, the CoopLSDSTU strategy orders the formulas in the current
concept description Concept according to their c-value. The c-value
aims to evaluate how well the formula covers the positive instances
and is obtained by multiplying the fitness function of the formulas
by the number of positive instances covered. We refer to our previ-
ous work for a discussion of the fitness function whose formulas
takes care of consistency and simplicity of the formula itself.

Then, the i-th GALearner get the task of learning a description
covering the instances not covered by the first i-1 formulas in c-
value list, plus the instances not covered by Concept.

According to this policy, the learning instances covered by Con-
cept are included into only one niche definition. Instead, those
instances not covered by any formula appear in all the niche defi-
nitions. As soon as an instance is covered, the number of niches,
containing it, drops to one. Considering the extensions of the found
concept description, this form of cooperation biases the learning
activity towards descriptions that do not cover the same instances,
i.e. they tend to have almost non overlapping extensions.

4 CHARACTERISTICS OF THE DATA
DOMAIN: MUSHROOMS

As applicative domain for our experimental evaluation, we selected
a well known concept learning dataset: the Mushrooms dataset
[24]. The Mushrooms problem consists in recognizing mushrooms
from the Agaricus and Lepiota families as Edible (the firsts) and
Poisonous (the seconds). The dataset contains 8124 instances, 4208
of edible mushrooms and 3916 of poisonous ones. Each instance
is described by a vector of 22 discrete attributes, each of which
can assume from 2 to more than 6 different values. By defining a
predicate for each <attribute, value> pair, the language template
for this application could be coded as a bitstring of 126 bits.

The key point in selecting this dataset is that this problem is
characterized by the absence in its hypothesis spaces of a purely
conjunctive concept description and by the existence in its hypoth-
esis spaces of at least a disjunctive concept description with perfect
classificationpower. The knowledge about this hypothesis space
comes from results appeared in the literature and experiments done
over the years by the author.

From previous experiments, we know that the Mushrooms ap-
plication admits as good description for the poisonous mushrooms
concept that requires 15 conditions to be tested.

In a previous works, we used as experimental data three ran-
domly selected sets of 4000 instances (2000 edible plus 2000 poi-
sonous) to be used as learning sets, while the remaining 4124 in-
stances have been used for testing.

We expand here the experimental activity, to improve the sta-
tistical confidence in our findings, by performing a 10 draws / 10
runs where for each of them 4000 instances (2000 edible plus 2000
poisonous) are to be used as learning set whereas the remaining
4124 instances are used as testsets. Note therefore that we decided
not to use a cross-validation approach because we wanted to main-
tain backward compatibility in the novel experimental data so that
the concept descriptions learned in new experiments and in old

experiments performed over the years can be compared. Using a
cross validation approach would made this comparison impossible
as the extensions of the formulas would significantly change in
sizes.

5 EMPIRICAL EVALUATION
As known in concept learning, the effectiveness of any concept
learning system is primarily evaluated on the basis of the estimate
of its average prediction error. However, in order to provide a
closer insight in a system behavior, additional measures may be
used, such as, for instance, measures accounting for the structure
of the acquired concept description. The comparison of REGAL’s
performances in terms of its average prediction error has already
been analyzed for instance in [8, 23, 25]. We are here interested in
the qualitative evaluation of how cooperation affects the structure
of the found concept descriptions. Consequently, we will study
REGAL’s behavior with and without a cooperative strategy at work
and considering the effect of migration.

Given all the previous considerations, setting up a suitable ex-
perimental context involves selecting the characteristics of concept
descriptions that should be measured. Of course as we want to
expand the experimental evaluation that we performed in the past
in order to increase its statistical validity, we are bound to use the
metrics and the frame of the experimental settings that we used in
our previous research.

We then remind that the metrics that we selected in previous
research and that we will keep here are: (a) the average prediction
error (ϵ) (b) the complexity (C) of a concept description defined
as the number of conditions to be tested in order to verify it; (c)
the number of conjuncts (NC) in the concept description; (d) the
maximum (MXC), average (AVC) and minimum (SMC) number of
positive examples covered by any conjunct in the concept descrip-
tion; (e) and the user waiting time (T), i.e. the cpu time of the slowest
learner to complete its task.

In order to be able to compare the learned concept descriptions
with respect to reasonable target ones, we chose an applicative
domain (the Mushrooms domain) whose best concept descriptions
are known thanks to the many experiments done by the research
community and the authors in the past. These target concept de-
scriptions are characterized by a perfect predictive power and by a
low complexity value.

5.1 The Past and now Standard Experimental
Setting

In this work, we used the usual parameter setting as reported in
Table 1. We remind that the same experimental setting has to be
used in order to be able to expand and thus compare past research
with the current one. In the table, a migration rate of 0.5 means that
half of one population migrates toward other GAs. The following
configurations, corresponding to the parameter settings appearing
in Table 1, have been considered:

• CONF1 (16 GAlearners and µ = 0.0) - A basic distributed
approach: 16 GA_Learners, each one evolving a population
of 100 individuals. No coevolution is used thus the learners
just evolve independently without any coordination. Also
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Table 1: REGAL’s configurations used in this work.

Parameter Value
Population size
Number of GA learners
Crossover probability pc
Mutation probability pm
Migration rate µ
Generation limit
Generation gap
Cooperation

1600
16
0.6
0.0001
0.0 or 0.5
200
0.9
None/DTSU

this means that every learner exploits the whole learning set
for all the duration of the run.

• CONF2 (16 GA learners and µ = 0.5) - As CONF1 plus migra-
tion of individuals among the GA_learners. Therefore in this
case the learners still use all the learning set during the run
without modification and the only difference from CONF1 is
that some individuals are echanged among learners.

In addition to CONF1 and CONF2, we add two configurations
where we add the co-evolutive strategy DTSU previously described.
Therefore in the latter two cases, the composition of the learning
sets used by the 16 learners will change during REGAL’s run ac-
cording to the algorithm of the cooperative strategy that takes into
account to so far found concept description.

In Table 2 and 3, the experimental results are reported. The
leftmost column of the table shows the configuration’s identifier.
The other columns of the table contains the parameters already
described plus the ’Cons & Compl’ field that summarizes whether
the learned concept description is complete and consistent on the
learning set. Finally, the rows, with the value "Target", report the
features of the target concept. For each configuration settings ten
runs have been performed.

The experimental findings can be summarized as follows: Table
2 and 3 show that without a co-evolutive strategy, REGAL can-
not learn a complete and consistent concept description. Yet the
largest conjunct covering 1946 positive instances can be learned
thus found under any experimental conditions. However, the small-
est conjunct of a perfect concept description cannot be found when
no coevolution is used.

Please note that when no co-evolution is used, REGAL finds a
smallest conjunct covering 1139 positive instance, however this two
conjuncts found are not covering, thus explaining, the whole set of
positive examples. Therefore the third small conjunct is actually
missing from the no-coevolution setup.

Proceeding, the coevolutive strategy DTSU always find a com-
plete and consistent concept descrip- tion thus solving the learning
problem of discriminating between poisonous and edible mush-
rooms. The found concept descriptions have all a perfect classifica-
tion errors on the test set. We also observe that DTSU finds 4 and
5 conjuncts as concept description and that the smallest conjunct
covers 317 instances. This is surprising. Especially considering that
according to past esperiments with evenmore computational power
and a variety of configuration settings, we thought that the largest
smallest conjunct would cover 197 instances. Consider in fact the

Table 2: REGAL learning the "Poisonous mushrooms" con-
cept. Data based on 10 runs.

CoopLS µ ND (avg) MXD (avg) SMD (best)
CONF1

1946 +/-0.0 1139
None 0.0 2 +/-0.0
DTSU 0.0 5 +/-0.0 1946 +/-0.0 329
CONF2

1946 +/-0.0 1161
None 0.5 2 +/-0.0
DTSU 0.5 4 +/-0.0 1946 +/-0.0 317
Target 3 1946 197

Table 3: REGAL learning the "Poisonous mushrooms" con-
cept. Data based on 10 runs.

CoopLS µ T e[%] Cons. and Comp.
CONF1

0.02 +/-0.01 No
None 0.0 76 +/-7
DTSU 0.0 73 +/-8 0.0 +/-0.0 Yes
CONF2

0.04 +/-0.01 No
None 0.5 97 +/-8
DTSU 0.5 99 +/-9 0.0 +/-0.0 Yes
Target - 0 Yes

Target line in the table that report the best concept description ever
found in the past by the author. So with these experimental settings
we have found an alternate form of target/best concept descriptions
for the Mushrooms dataset one that either contains 4 or 5 conjuncts
and whose smallest disjunct covers more than 300 instances.

The reader may ask why these two concept descriptions are
better than the ’Target’ one. Let us remember that the focus of
this research is to deal with the small disjunct problem that is the
fact that decision trees find concept description that lose statistical
validity while increasing the number of conditions to be tested. Or,
in other words, if the decision tree has a high depth value. This
result in the fact that conjuncts found by the decision trees tends to
be less predictive if they have more than few conditions to be tested.
Thus losing predictive power also on the training set. This is why
being able to deploy a learning system that is able to learn concept
description with large extension is important: their conjunct will
be more statistically supported by the learning set and thus have
more predictive power on the test set as well.

A final observation, the run experiments confirm that using
coevolution does not significantly increase the system running cost.
The reason is that the computational cost of adjusting the learning
set is minimal with respect to the computational cost of evolving a
population of candidate solutions.
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6 CONCLUSION
The paper reports an empirical study done to statistically validate
the preliminary findings obtained in previous research by the author
when tackling the small disjunct problem in symbolic machine
learning. In particular, decision trees are greatly affected by the
small disjunct problem that leads long concept descriptions, or
rules with many conditions, or deep decision trees (in decision tree
language), to lose statistical validity of the found rules.

In the paper, we show how coevolution can be used to both learn
symbolic rules in a relative fast way by using genetic algorithms
and how coevolution can be successful in dealing with the small
disjunct problem by performing niche differentiation in the learning
phase.

Our results add statistical validity to our past hypothesis about
the efficacy of coevolution: the experimental results here are aver-
aged over 10 runs for statistical validity. And special care has been
taken to maintain backward comparability with previous experi-
mental results.

As coevolution is independent of the specific learning algorithm
used, here we use genetic algorithms, as a future extension of this
paper, other learning methods could be also explored in their effi-
cacy when combined with coevolution.

Further works include the application of co-evolution to param-
eter optimization [26] and to financial domains [27].
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