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ABSTRACT

Sparse Distributed Memory (SDM) and Binary Distributed Repre-
sentations (BDR), as two phenomenological approaches to biolog-
ical memory modelling, have a lot of common features. The idea
of their integration in a hybrid semantic storage model with SDM
used as the low (brain cell) level cleaning memory for BDR used
as the high-level symbolic information coder seems natural. The
hybrid semantic storage must be able to memorize holistic data (like
the structures of interconnected and serialized key-value pairs) in
a neural network. It has been proposed several times since 1990th,
However, the earlier proposed models are not practical because of
insufficient scalability and/or low storage density. The gap between
SDM and BDR can be filled using the results of a 3™ theory dealing
with sparse signals: Compressive Sensing or Sampling (CS). Such a
hybrid semantic storage model is presented. We call it CS-SDM to
reflect using a new CS-based SDM design as the cleaning memory
for a Binary Sparse Distributed Representation (BSDR) of the holis-
tic data. CS-SDM has been implemented on GPU and demonstrated
much better capacity and denoising capabilities than classical SDM
designs.

CCS CONCEPTS

« Mathematics of computing; - Coding theory; - Information
systems; « Probabilistic retrieval models;

KEYWORDS

Sparse Distributed Memory, Compressive Sensing, Compressive
Sampling, Binary Sparse Distributed Representations, Vector Sym-
bolic Architecture, associative memory, neural networks, GPU

ACM Reference Format:

Ruslan Vdovychenko* and Vadim Tulchinsky. 2022. Sparse Distributed
Memory for Binary Sparse Distributed Representations. In 2022 7th In-
ternational Conference on Machine Learning Technologies (ICMLT) (ICMLT
2022), March 11-13, 2022, Rome, Italy. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3529399.3529441

1 INTRODUCTION

There are many types of memory known in nature for animals
and humans: motor, sensory, semantic short-term and long-term,
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immune, etc. None of them works similarly to the memory of elec-
tronic devices: new information does not overwrite old information,
damage to one or a small number of cells (e.g. brain neurons) does
not affect the functionality of the entire system, there is no clear sep-
aration of “addresses” and “data”. The phenomenological approach
to studying natural objects is based on building functional models
able to simulate the behaviour and features of the objects ignoring
their real construction. Among the phenomenological models of
natural memory, Sparse Distributed Memory (SDM) model pro-
posed by Pentty Kanerva [1-3] in 1986 is of special interest. Despite
the fact that Kanerva used non-biological tools (binary vectors,
counters, addresses), later research has shown the SDM structure
proximity to the biological memory mechanisms. It possesses many
features of natural memory: associativity, generalization ability,
sequence memorization, and even making mistakes. A few years
later, Lewis Jaeckel has published the hyperplane design of SDM
[4, 5]. Its technical advantages are less memory consumption and
faster reading/writing operations because of reducing the number
of comparisons. Jaeckel’s SDM was found more compliant with
the mammalian cerebellum functioning (according to the model
independently developed by David Marr in 1969 and James Albus
in 1975 [6]). Yet the original Kanerva’s design is more similar to
the immune memory operating (according to the model of Derek
Smith, Stephanie Forrest, and Alan Perelson, 1996 [7]).

Another direction of phenomenological research of memory is
focused on modelling the holistic information encoding in simple
neural structures. This research direction is usually associated with
the concept of Vector Symbolic Architecture (VSA) formed at the
turn of the 2000s [8]. The general requirements of VSA are very
similar: local error tolerance, the ability to express complex relation-
ships such as hierarchical, key-value type, symbolic sequences, etc.,
by simple means. The similarity of the requirements results in the
method similarity: both directions use distributed representations,
sparsity and long vectors. Essential VSA results for real vectors
were obtained by Fodor and Pylyshyn [9], Smolensky [10], Plate
[11]. For binary vectors, the results of Kanerva [12, 13], Sjodin [14],
Gayler [15], Rachkovskij [16, 17] and their colleagues had the most
significant impact. The term VSA itself was proposed in 2003 by
Gayler [18]. Sparse representations attract interest due to their com-
pliance with the nature of the activity of neurons [19]. Hereafter
sparse vectors are those where the number of non-zero components
is significantly less than the number of zeros. The binary vectors
of approximately equal probabilities of 0 and 1 component values
are called dense. Methods for transforming real vectors and hierar-
chical into binary sparse codevectors are well developed today for
Binary Sparse Distributed Representations (BSDR) [20].

Binary Distributed Representations of all types use so-called
cleaning memory to restore the original codevectors from their
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noisy instances obtained from the VSA component extraction op-
erations (unbinding, probing). Gunnar Sj6din has shown [21] that
SDM is not scalable if used as the cleaning memory for dense vec-
tors since it has a high sensitivity to errors in the address. With a
constant probability of a 0/1 bit of the address and constant load
(the number of recorded vectors per physical memory cell), the
signal-to-noise ratio tends to zero with the growth of the number of
physical cells. This is another reason for using BSDR in the context
of SDM cleaning memory. However, SDM is ill-suited for storing
sparse vectors. In this case, most address space is not used, physical
memory is used inefficiently, and the reading operation becomes
unreliable and complicated even for the known priory probabilities.

As aresult, VSA uses conventional computer memory instead of
SDM neural memory, and there is a lack of symbolic data represen-
tation mechanisms to develop SDM for memorizing semantics. The
main contribution of our CS-SDM is overcoming the listed short-
comings and filling the gap by applying the Compressive Sensing
(CS) results.

Compressive Sensing (or Compressive Sampling) is a theory
started in 2004-2006 by Emmanuel Candes and Terence Tao [22,
23]. Its idea is the ability to solve undetermined systems of linear
algebraic equations with normalized coefficients if looking for either
a solution of the known number of non-zero components s or the
most sparse solution. In other words, CS proposes conditions and
algorithms for the reconstruction of s-sparse codevectors of BSDR
from much shorter noisy dense vectors stored in SDM if the linear
transformation from the sparse codevectors to the stored dense
vectors is known and obey Restricted Isometry Property (RIP).

2 CS-SDM MODEL

2.1 Construction

Consider the following design of s-sparse binary codevector stor-
age CS-SDM. The storage consists of 3 units: encoder, memory
(modified SDM) and decoder. The encoder converts input s-sparse
codevectors conveniently for SDM dense form; the decoder converts
the read data back in the s-sparse form. Similar storage architectures
were proposed in the past (e.g. in [24]). The novelty of our approach
is the construction of the units that implement the integration of
the SDM memory and the CS decoder.

The encoder transforms M-dimensional sparse binary codevec-
tors into m-dimensional integer vectors: v = Ax. In our experi-
ments, weused m =k xs, ke {8, 12 }.

The dictionary A € {+1}"™*M js filled with pseudorandom
uniformly distributed values and stored in regular memory. This
matrix does not meet the condition of sample normalizing assumed
by CS. But it is convenient for obtaining low amplitude integer
values convenient for writing to the modified SDM. The required
normalizing is postponed to the reading step and built in the decoder.
Considering the normalization, the RIP property [24] is evident as
the dot product of any two different samples of A is a Bernoulli
distributed random variable with an expected value equal to 0; its
division by the number of terms is equal to zero. That said, the
samples are nearly orthogonal, which is an informal definition of
RIP. Thus, CS conditions for the s-sparse codevector reconstruction
are provided.
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The memory unit is a slightly modified Jeackel’s SDM. It includes
the following minor changes:

e SDM contains integer counters in physical cells instead of
conventional memory bits. When writing, SDM adds the
written binary components to the counters (with 0 prelimi-
nary replaced by —1) in each cell activated by the address a:
the cell set is A(a). Since the CS-SDM memory unit receives
integers instead of binary values, they are simply added to
the counters of the activated cells u™ without additional
transformation:

ul! ¢+ ) =ul t)+v;, ne€A(a@) andi={1...m} (1)

Each cell contains an additional (Oth) counter for further
normalization. It is incremented during each writing to the
cell:

ug(t+ ) =uy(t)+1, necA(@andi={1...m} (2

o The result of reading from the modified SDM is a real vector
instead of a binary one. The reading is also simplified: there
is no threshold. Just the normalized sum of all the activated
cells is computed and submitted to the decoder:

(3)

The activation mechanism of the modified SDM unit is the same
as of the conventional Jeackel’s SDM. Each cell n contains a mask
t" of K <« M check bit numbers 1 < t,’c’ < M. The activation
mechanism checks whether the address contains the values 1 in all
the K positions recorded in the cell mask and, if so, activates the
cell:

A(a) ={n|r=t,’cl and ar = 1Yk € {1,2,--- ,K}} 4)

Here can be a question why aren’t the addresses also compressed
like the data by Aa? If they were compressed, the generalization
property (the ability to correct minor errors) would be lost; even
a single bit change in a would result in very different Aa and ac-
tivation of very different cells. So the addresses remain sparse in
our construction. Besides, CS-SDM checks only the values 1 in
addresses as they are supposed to be sparse.

It should be noted that in a computer implementation, CS-SDM
may need longer counters than Kanerva or Jaeckel designs for the
same number of recorded vectors. But the number of counters per
cell is smaller: m instead of M.

Finally, the result read from the memory block is passed to the
decoder, which searches for an s-sparse solution of the underde-
termined system of linear equations by one of the CS algorithms.
In the following tests, we evaluated decoding by linear program-
ming [25] and CoSaMP [26]. The last is a greedy algorithm of the
Orthogonal Matching Pursuit [27] family specially adapted for CS
problems. Linear programming generally provides better solutions
but requires significantly more computational time, so it has not
been used for large tests. (Yet, we compared them in smaller tests.)

2.2 Testing and comparison

The associative memory mode was tested: writing and reading data
via the address equal to the value. Half of the test data was made
noisy: one 1 in the address was replaced by 0 when read. Clearing
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Figure 2: The percentage of correctly reconstructed vectors:

incomplete addresses is the main requirement for cleaning memory
from the BSDR perspective.

We selected Jaeckel and Kanerva designs for comparison with
CS-SDM; minor modifications were made in them too for better
fitting the sparse nature of the test data. In our Jaeckel design,
masks contain only the bit positions assuming activation if the
address contains 1 in all the positions. It is precisely like in CS-SDM.
For Kanerva’s design, activation is caused by a small Hamming
distance between the internal cell address and the submitted address.
To account for the sparseness, the internal cell addresses were
generated randomly, with exactly s 1 in each address.

2.3 Implementation

The described 3 SDM designs have been implemented on NVIDIA
CUDA, except for the CS-SDM decoder, which uses existing
CoSaMP implementation [28]. We also tested the LinProg proce-
dure from the SciPy Python library (for comparison) [29, 30]. The
test program source codes are open [31, 32].

3 EXPERIMENTS AND RESULTS
The experiments were run on NVIDIA GeForce RTX 2080Ti (Tur-
ing architecture, 11GB GDDR6 memory, 4352 CUDA kernels). We

generated three datasets that contain random sparse binary vectors
with the length M = L = 600 and sparsity s = {12, 16, 20}. The
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number of physical cells was selected so to fill the GPU memory.
For CS-SDM, it was determined by the length of the input vectors:
m = k * s and varied between 30 and 100 million. For the reference
designs, 15 million cells of M = 600 fitted in the memory.

The mask length K = 4 was used for both Jaeckel and CS-SDM
designs. The value was selected w.r.t. the average number of acti-
vated cells. For the Kanerva model, the activation threshold was
selected so that at least 4 features match is needed for a cell activa-
tion:d =2 %s—4.

Fig. 1-3 show that CS-SDM consistently provides almost 100%
error-free recovery. On the other hand, Kanerva and Jaeckel’s de-
signs show a much worse recovery of the previously recorded data.
The high frequency of their read errors can be partially explained
by the insufficient number of physical cells because of less effi-
cient memory use. However, the main reason seems to be the 0/1
probability asymmetry itself.

The experiments in Fig. 1-3 used a fast “greedy” CoSaMP al-
gorithm to solve the CS problem. Tables 1-2 show how much the
results could theoretically be improved with a more precise ¢ 1-
minimization algorithm of linear programming. Due to the much
longer computation time for LinProg, these experiments were per-
formed for a much smaller number of codevectors: a hundred thou-
sand. To make the difference more noticeable, we reduced the length

of the physical cells: k = {6, 8}.
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Figure 3: The percentage of correctly reconstructed vectors: exact address (left), address with single error (right), s=20

Table 1: Percentage of correctly reconstructed vectors for exact addresses

Number of features,k = 6 k=38

§ CoSaMP LinProg CoSaMP LinProg
12 71.491 % 99.834 % 99.654 % 99.918 %
16 87.940 % 100 % 99.984 % 100 %
20 96.007 % 100 % 99.998 % 100 %

Table 2: Percentage of correctly reconstructed vectors for addresses with single error (0 instead of 1)

Number of features,k = 6 k=38

§ CoSaMP LinProg CoSaMP LinProg
12 71.190 % 99.594 % 98.955 % 99.246 %
16 87.880 % 100 % 99.981 % 100 %
20 95.951 % 100 % 99.998 % 100 %

Tables 1-2 show the significant advantage of linear programming
in the data reconstruction quality for short vectors, i.e. for high
compression ratios m / M. However, with increased s and/or k when
the length of the physical cell increases and the compression ratio
decreases, the CoSaMP become as good as linear programming.

4 CONCLUSIONS

A new hybrid storage model CS-SDM based on integrating the
classic Sparse Distributed Memory in the Vector Symbolic Archi-
tecture is proposed. CS-SDM demonstrates a significant advantage
in the capacity and quality of cleaning memory for Binary Sparse
Distributed Representations compared to the early SDM designs.
The model efficiency is obtained due to the power of Compressive
Sensing. CS-SDM brings together neural networks and the holistic
symbolic representations of semantics.

From a conceptual human memory modelling perspective,
whether the proposed design is relevant to the biological reality
is essential. Both key elements — encoding via random matrix (in-
terneuronal connections) and decoding via minimization (greedy
algorithm) — seem primitive enough to be explorable in wildlife.
Another open question is whether it is possible (and by what means)
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to modify this model to reduce the dependence on the homogeneity
of the information stored in memory.

During the research, an open-source library [31, 32] of CS-SDM
and two classical designs were implemented for the NVIDIA CUDA
platform. The locality of data operations and homogeneity of SDM
algorithms (fine-grained parallelism) make them easy portable on
GPU and suitable for high-performance computing. GPU version
of CoSaMP decoder was not implemented yet but can be developed.
A complete GPU implementation not necessary for the study is
desirable for further applications.
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