
SYCLops: A SYCL Specific LLVM to MLIR Converter
Alexandre Singer

Huawei Canada Research Centre
Markham, Canada

alex.singer@huawei.com

Frank (Fang) Gao
Huawei Canada Research Centre

Markham, Canada
fang.gao1@huawei.com

Kai-Ting Amy Wang
Huawei Canada Research Centre

Markham, Canada
kai.ting.wang@huawei.com

ABSTRACT
There is a growing need for higher level abstractions for device
kernels in heterogeneous environments, and the multi-level nature
of the MLIR infrastructure perfectly addresses this requirement.
As SYCL begins to gain industry adoption for heterogeneous ap-
plications and MLIR continues to develop, we present SYCLops: a
converter capable of translating SYCL specific LLVM IR to MLIR.
This will allow for both target and application specific optimizations
within the same framework to exploit opportunities for improve-
ment present at different levels.

CCS CONCEPTS
• Software and its engineering→ Compilers.

KEYWORDS
SYCL, LLVM, MLIR, IR Converter, Heterogeneous Computing
ACM Reference Format:
Alexandre Singer, Frank (Fang) Gao, and Kai-TingAmyWang. 2022. SYCLops:
A SYCL Specific LLVM to MLIR Converter. In International Workshop on
OpenCL (IWOCL’22), May 10–12, 2022, Bristol, United Kingdom, United King-
dom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3529538.
3529992

1 INTRODUCTION
With the rapid growth of machine learning in recent years, the
demand for higher efficiency and performance, specifically for these
tasks, have given rise to a wave of domain-specific architectures [3,
12].

SYCL is a standard for single-source heterogeneous programming
for acceleration offload and has gained adoption in industry and
academia. Existing implementations of SYCL compilers are often
based on the LLVM Compiler Infrastructure project, of which the
popular Clang compiler is a part of; however, LLVM was built to
optimize for CPUs, often leaving the device kernel, the code to run
on the target accelerator, suboptimal.

In order to generate more performant code for accelerators, we
introduce SYCLops, a converter that can raise the device code from
LLVM IR to frameworks expressing higher levels of abstraction
(such asMLIR), alongwith the information that the SYCL abstraction
encapsulated.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9658-5/22/05. . . $15.00
https://doi.org/10.1145/3529538.3529992

This work will build on top of Intel’s open source oneAPI Data
Parallel C++ (DPC++) compiler based on LLVM, which implements
the compiler and runtime support for SYCL [4].

2 BACKGROUND
2.1 SYCL
SYCL is an abstraction layer uponC++ for constructing programs for
heterogeneous systems [1]. It provides an interface for simplifying
the management of memory, parallelism, and synchronization of
host and device code.

oneAPI ’s SYCL implementation uses a single-source multiple
compiler-passes (SMCP) design [4], in which device and host code
can be compiled and optimized separately. We will be taking ad-
vantage of this design to enable SYCLops only on the device code
to generate kernels targeting accelerator hardware, be it General-
Purpose Graphics Processing Units, Field Programmable Gate Arrays,
or others.

2.2 LLVM
Under the LLVM project, C++ (and SYCL by extension) source code
is parsed by Clang, and emitted into LLVM intermediate represen-
tation (IR). This is to facilitate the use of a common optimization
infrastructure for different programming languages and targets.
The IR is then optimized through a series of passes before being
lowered through a target specific backend to generate the corre-
sponding binary. Before this lowering, however, SYCLops can take
the LLVM IR and convert it to MLIR for additional optimizations.

2.3 MLIR
MLIR is an open framework for compiler design [14] and a part
of the popular LLVM compiler project [13]. It uses static-single-
assignment form for its IR, and is designed to be able to mix and
match multiple different levels of abstraction at the same time,
allowing for a wider range of optimizations. For this very reason, we
have chosen MLIR as one of our target backends: to combine high
level abstractions offered by SYCLwith target-specific optimizations
necessary for high performance applications.

Special MLIR types of note are the memref and index types:

• The memref type encapsulates the shape of amulti-dimensional
array in memory. For example, memref<2x?xf32> can be
seen as a pointer to a 2D array whose first dimension is 2,
second dimension is dynamic, and each element is a single
precision floating point.

• The index type is MLIR’s way of expressing an integer
whose width is local to the target machine. The index type
is used extensively in the Affine and SCF dialects (see below).

https://doi.org/10.1145/3529538.3529992
https://doi.org/10.1145/3529538.3529992
https://doi.org/10.1145/3529538.3529992
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3529538.3529992&domain=pdf&date_stamp=2022-05-10

IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom Alexandre Singer, Frank (Fang) Gao, and Kai-Ting Amy Wang

Dialects are a grouping of Operations in MLIR that are related to
a level of abstraction. There are a few important dialects of note
for this project, including the Affine, SCF, and Arithmetic dialects.

Affine Dialect. The Affine dialect provides a powerful abstrac-
tion for affine analysis and operations. It contains the necessary
information to perform polyhedral analysis and transformation on
complex loop structures, and will be one of the main target dialects
for SYCLops.

Important Affine Operations of note are:
• affine.load
• affine.store
• affine.for
• affine.if

SCF Dialect. As powerful as the Affine dialect may be, it is
limited to affine program structures. To represent non-affine control
flow, SYCLops will fall back to target the Static Control Flow (SCF)
dialect.

Arithmetic Dialect. Almost all arithmetic instructions within
LLVM IR have their counterparts in the Arithmetic dialect. As such,
these operations will be generated accordingly.

3 DESIGN PRINCIPLES
To make for a robust and functional converter, SYCLops adheres to
the following design principles.

3.1 Extensibility
In order to accommodate for other projects, SYCLops was designed
to be extensible to other backends. For example, as opposed to only
MLIR, SYCLops should also be able to generate hybrid script that
can be used to target AKG (based on TVM); as described byW. Feng,
et al [11].

To achieve this, SYCLops will require two modules: a base mod-
ule, which will be shared between each backend, to handle the
interpretation of the incoming LLVM IR and a backend-specific sub
module that will translate the interpreted LLVM IR to the target
IR. Regardless of the backend, SYCLops needs to understand the
SYCL constructs being passed into it, as well as the control flow of
the incoming IR; the backend module can retrieve this information
from the base module and use it to generate the corresponding
IR. Ideally, the backend-specific side of the code generation should
never have to decipher any SYCL constructs.

3.2 Preserves Program Structure
The main goal of SYCLops is to convert the input LLVM IR to the
target IR. It should not attempt to optimize the code as this may
compromise program structure or function.

For targets likeMLIR, instead of performing optimizations within
SYCLops, it would be more efficient to generate sub-optimal MLIR
code and then write MLIR passes to optimize it for a given hard-
ware within the MLIR compiler. This would give the compiler more
control over how the code is lowered and what optimizations occur.
This is important because different hardware require different opti-
mizations to be optimal; for example, an optimization for a CPU
may be sub-optimal or even illegal for an accelerator.

For these reasons, it is best to generate the IR as close to the
input LLVM IR as possible.

3.3 Block and CFG Separation
More often than not, the LLVM IR will not lower one-to-one to the
target IR. There are instructions and control flow present in LLVM
IR that cannot be expressed the same way.

Assuming the target IR is of a higher level of abstraction as
compared to LLVM IR, the representation of control flow may be
completely different. This is because LLVM IR does not contain
dedicated instructions for Loops or If Statements. Instead it uses Basic
Blocks, collections of LLVM instructions, linked through branch
instructions. Conversely, backends such as MLIR have dedicated
operations for these instructions abstracted into the Affine and SCF
dialects [2, 8].

However, ignoring the control flow instructions, Basic Blocks
themselves should be target-independent. Thus the blocks of the
target IR should be generated independent of the control flow.

3.4 Appropriate Error Handling
The error handling of SYCLops should be strict. At no point should
it generate invalid code. If SYCLops runs into a situation that it
cannot handle, e.g. a control flow that cannot be represented in the
target IR, it should throw an error to the user explaining the error
and its cause.

The point of this design principle is to simplify the debugging
and maintenance of SYCLops to ensure stability and longevity.

4 CONVERTER DESIGN
Figure 1 shows an overview of the SYCLops converter.

Figure 1: SYCLops design overview.

4.1 Preprocessing
The Preprocessing stage transforms the input LLVM IR, making
it easier to parse. This greatly simplifies SYCLops, such that the
code being converted will always be in an expected form. After this
stage, SYCLops will not attempt to transform input IR. This avoids
unintended changes in structure during the conversion process.

SYCLops: A SYCL Specific LLVM to MLIR Converter IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom

SYCLops uses LLVM passes to transform the IR. Aligning with
the Program Structure Preservation design principle, these prepro-
cessing passes will not change the function of the input LLVM
IR. The Preprocessing stage uses two types of passes: Conversion
Simplification Passes and Control Flow Simplification Passes.

The Conversion Simplification Passes are preprocessing passes
designed to prepare the LLVM IR for instruction generation; where
the LLVM Instructions will be converted to the target IR. These
passes simplify the Block Generation stage of SYCLops by removing
specific corner cases.

One of the many Conversion Simplification Passes is the Sim-
plify Select Logic Pass which, as seen in Figure 2, turns Boolean
select instructions into AND/OR instructions when possible. These
AND/OR instructions are easier to work with and prevents corner
cases when working with Boolean conditions.

%AND = select i1 %A, i1 %B, i1 false

%OR = select i1 %A, i1 true , i1 %B

(a) Boolean select instructions

%AND = and i1 %A, %B

%OR = or i1 %A, %B

(b) Resulting AND and OR instructions

Figure 2: The Simplify Select Logic Pass.

The Control Flow Simplification Passes are preprocessing passes
chosen to simplify the control flow of the incoming LLVM IR. These
passes simplify the CFG Generation stage of SYCLops by making
the Control Flow Graph easier to work with.

The two main passes of interest here are the Loop Simplify Pass
and the LCSSA Pass [6]. The Loop Simplify Passwill convert all loops
into Loop Simplified Form which will ensure that all loops have: a
preheader, a single backedge, and dedicated exits [5]; and the LCSSA
Pass was used to simplify the conversion of ϕ node instructions.

4.2 IR Analysis
After the Preprocessing stage, the IR is analyzed and twomain pieces
of information are gathered from the incoming IR: the shape of the
incoming SYCL argument pointers and the control flow.

There are two types of pointers that SYCLops expects as argu-
ments to the kernel: SYCL Uniform Shared Memory (USM) pointers
and SYCL Buffer accessors. The shape information of these pointers
are gathered into a specialized Shape class that stores general infor-
mation about the pointer. The Shape class will store the rank, the
size of each dimension, the element type, and the address space of
each pointer.

oneAPI’s USM pointers are bare pointers that can be casted to
arrays of fixed length in the LLVM IR, as shown in Figure 3a, so
the shape information is easily decoded. As shown in Figure 3b, the
shape of oneAPI’s SYCL Buffers are represented dynamically using
SYCL Ranges in the LLVM IR. These SYCL Ranges may represent
static shapes; however they are defined on the host side. So, to
SYCLops, which only operates on the device side, SYCL Buffers
always appear to have dynamic shape. Consequently, the size of

each dimension in the Shape class must be stored as pointers to
the SYCL Ranges which are also stored as Shapes. The Shape infor-
mation will be used to either create static memrefs (in the case of
USM) or dynamic memrefs (in the case of Buffers).

After the Shape information, the components of the LLVM loops
are gathered using the information provided by the LLVM Loop
Analysis Pass [6]. Dominator Tree Analysis is then used to provide
information for generating a Control Flow Graph (CFG) of the given
IR [6]. This graph will be used in the CFG Reconstruction stage to
reconstruct the control flow in the target backend.

If SYCLops struggles to analyze the CFG of the incoming IR,
it will crash according to the Appropriate Error Handling design
principle. The control flow that SYCLops struggles with is detailed
in section 6: Future Work.

4.3 Block Generation
As explained in the Block and CFG Separation design principle, the
conversion of the kernel code is separated into a Block Generation
stage and a CFG Reconstruction stage. This design principle sim-
plifies the conversion process by only generating operations into
blocks in the Block Generation stage, and the CFG Reconstruction
stage links these blocks together.

Following the Extensibility design principle, the previous two
stages have been target-independent; thus, they would be found
in the base module of SYCLops. However, since this stage is target-
specific, the Block Generation will be found in the sub module.

The incoming LLVM IR is made up of Basic Blocks linked to-
gether by branch instructions that form connections between Basic
Blocks. For each Basic Block, SYCLops will convert all store instruc-
tions into affine.store operations. Just before generating each
store, however, it must generate the operands of the store op. This
happens recursively for the operands until it hits the base case of
either a constant or an argument; in which case, the constant or
argument will be generated. This recursive approach was done to
avoid generating redundant operations.

While iterating over the Basic Blocks, any loop latch blocks or
if headers blocks are collected. After generating all of the blocks,
SYCLops will then generate the affine.for and affine.if op-
erations for the control flow based on the loop latches and the if
header blocks it found. However, as explained in the Background
section, the Affine dialect cannot support all possible For and If con-
trol flows. In these cases, scf.for and scf.if ops are generated
instead.

%"array" = Type { [16 x [32 x float]] }

define spir_kernel void @ker (%" array" addrspace (1)* %ptr)

{ ... }

(a) A SYCL USM pointer cast to a 16x32xf32 array in LLVM IR

%"range" = Type { [2 x i64] }

define spir_kernel void @ker(float addrspace (1)* %ptr ,

%"range" %shape)

{ ... }

(b) A 2D f32 SYCL Buffer in LLVM IR

Figure 3: SYCL pointer arguments.

IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom Alexandre Singer, Frank (Fang) Gao, and Kai-Ting Amy Wang

deviceQueue.submit ([&](handler &h) {

for (int i = 0; i < 32; i++) {

OUT[i] = A[i] + B[i];

}

});

(a) SYCL kernel (b) LLVM blocks (c) Block generation

affine.for %i = 0 to 32 {

%0 = affine.load %A[%i]

%1 = affine.load %B[%i]

%2 = addf %0, %1 : f32

affine.store %2, %OUT[%i]

}

(d) CFG reconstruction

Figure 4: SYCLops converting a SYCL kernel (a) to MLIR (d).

Since MLIR does not contain dedicated operations for ϕ nodes,
special consideration needed to be taken when converting these
instructions to MLIR. ϕ nodes in LLVM are equivalent to MLIR
block arguments [7] and are used for values that change based on
the block the execution came from; however, in the Affine dialect,
one does not have direct access to the block arguments. This is
because the block arguments for ops such as the affine.for op
and the affine.if op are used for special purposes. So the ϕ nodes
must be analyzed to translate them properly to MLIR.

ϕ nodes, when converting to MLIR, can be one of three cases:

(1) Induction variables, used by For ops.
(2) Iteration Arguments, used to initialize and update a value

within For ops.
(3) Escaping Scalars, MLIR’s version of LCSSA ϕ nodes [7], used

to get values from outside of a region.

Pattern matching is used to distinguish which case a given ϕ
node belongs to and return an appropriate value as an operand. For
case 1, the induction variable of the For op, once it is generated,
will be returned. For case 2, the ϕ node will be used to generate the
Iteration Argument and this argument will be returned. For case 3,
the ϕ node will be used to generate the yield values for a For/If op
and the result of the For/If op will be returned.

After this stage, all LLVM instructions that needed to be con-
verted have been generated into their corresponding MLIR blocks
and all ops used for control flow have been generated. Thus, with
the exception of the Function operation which will be generated in
the Finalization stage, the following stages will not generate any
more operations.

4.4 CFG Reconstruction
Now that the operations for the function have been generated. The
blocks will need to be linked together according to the Control
Flow Graph (CFG) of the incoming LLVM IR.

The Dominator Tree from the IR Analysis is traversed recursively
and precedence of control flow operations is determined based on
nodal analysis. In MLIR, blocks cannot be expressed in the same
way as LLVM IR, where Basic Blocks are chained together; thus
MLIR blocks will need to be merged wherever necessary.

4.5 Finalization
At this point, all of the operations that represent the function are
in one block. The Finalization stage will take this block and insert
it into a function. For MLIR, this would simply create an std.func
op and merge all operations into its body block.

The arguments to this function will likely not match the argu-
ments of the original kernel; especially for targeting MLIR since not
all arguments will have been used and all pointer arguments will
have been converted into memrefs. However, the user may want to
lower the MLIR back to LLVM IR and the generated kernel would
have to link to the original kernel. Thus, SYCLops will also generate
an LLVM function called the Trampoline Function.

The Finalization stage will replace the contents of the original
LLVM function with instructions that interface to the generated
kernel. It does this by creating a call instruction to the kernel and
adding instructions that will load and cast the incoming arguments
into the types that the kernel expects. This is done so that when the
generated MLIR kernel is lowered back to LLVM, it can be linked
and inlined back into the original function. As shown in Figure 5,
special consideration is taken with respect to memref arguments.

func @mlir_kernel (%arg0 : memref <16 x32xf32 , 1>)

{ ... }

(a) A kernel in MLIR that takes a single, static memref argument

define spir_kernel void @ker(

%"array" addrspace (1)* %ptr) {

%ptr.cast = bitcast %"array" addrspace (1)* %ptr

to float addrspace (1)*

call void @mlir_kernel(float addrspace (1)* %ptr.cast ,

float addrspace (1)* %ptr.cast ,

0, 16, 32, 32, 1)

ret void

}

(b) The generated trampoline function call

Figure 5: SYCLops trampoline function generation.

4.6 Summary
Figure 4 shows an example that summarizes the conversion from
SYCL C++ (4a) to MLIR (4d) of an element-wise addition kernel.

The converter preprocesses and analyses the LLVM IR generated
from the SYCL source file shown in Figure 4a. Each Basic Block of
the LLVM IR, Figure 4b, is parsed and used to generate the MLIR
blocks shown in Figure 4c. These blocks are then linked together
according to the Control Flow Graph to produce the kernel shown
in Figure 4d. Finally, the block is inserted into an MLIR std.func
and a trampoline call is generated that will call the kernel once it is
lowered back into LLVM IR.

SYCLops: A SYCL Specific LLVM to MLIR Converter IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom

Figure 6: 2D-Relu with varying shapes.

5 EVALUATION
We demonstrate SYCLops at work inside Huawei’s SYCL com-
piler with performance data gathered by offloading tasks to the
AICORE device. The measurements are performed on an Ascend
910 server [3]. We demonstrate performance tooling using the CCE
plugin interface support [11].

5.1 Software Stack Overhead
To perform our expirements, SYCL device queues were used, which
may have overhead affecting our results. We quantify the overhead
associated with the queue submit() and wait() abstractions by
measuring the elapsed time (i.e. end-start) surrounding the Relu
kernel shown in Figure 7. Relu, aka the rectifier, is a common neural
network activation function used in machine learning applications;
we use it in our expirements as it is easily tiled and vectorized to
many different shapes.

While measuring time using rdtsc or reading the cntvct regis-
ter may be more accurate, we use our own timer implementation
which utilizes std::chrono::high_resolution_clock for porta-
bility reasons. We also measure the elapsed time surrounding a
direct function call to Relu. The code is compiled at -O2 -fsycl
and run on host. We apply loops around the submit() and wait()
calls to gain coarser time measurements and to achieve a stable
i-cache behaviour.

Overall, the time needed to execute Relu with the queuing ab-
straction is roughly two times that of a direct function call. However,
the absolute overhead remains less than a millisecond. If the work-
load to be offloaded to a device is sufficiently coarse grained, the
abstraction overhead is considered negligible.

5.2 Kernel Scalability Analysis
To demonstrate the scalability benefits of entering MLIR, we per-
form experiments using the 2D-Relu kernel shown in Figure 7. Our
current compiler does not yet support auto-parallelizing and hence
only a single AICORE is utilized.

For each testcase, the methodology is as follows: We conduct
3 warm-up runs before taking 10 execution time measurements,
where the top and bottom times are evicted; for a total of 8 runs. We
then compute the average execution time and standard deviation
of these 8 runs.

/* 2D Relu with shape NxM */

void relu(_Array *IN_acc , _Array *OUT_acc) {

for (int i = 0; i < N; i++) {

for (int j = 0; j < M; j++) {

float input = (* IN_acc)[i][j];

(* OUT_acc)[i][j] = input < 0.f ? 0.f : input;

}

}

}

int main () {

....

const property_list &PropList =

{sycl:: property ::queue:: enable_profiling ()};

queue deviceQueue(default_selector {}, PropList);

....

/* take start time */

deviceQueue.submit ([&](handler &cgh) {

auto kern = [=]() { relu(IN_acc , OUT_acc); };

cgh.single_task <class relu >(kern);

});

deviceQueue.wait ();

/* take end time */

....

}

Figure 7: 2D Relu kernel in SYCL.

We normalize all execution times against the execution time for
the shape pair 17x(512,511). As shown in Figure 6, we conduct
runs for pairs of shapes. That is, the amount of computation be-
tween shape pair 17x512 and 17x511 are similar. However, for the
second shape in the pair, the total collapsed loop trip count is not
divisible by 16 and thus triggers the compiler to generate code for
handling the leftover elements during vectorization.

Despite the first shape of each pair always performs more work,
the left, blue, bars are consistently shorter than the right, orange,
bars except in the cases of 17x(1024,1023) and 136x(2048x2047).
This suggests computing the leftover elements using the scalar unit
incurs some overhead.

Another interesting observation is that while each shape pair
doubles in total size comparing to the previous shape pair, the
normalized execution times do not double each time. In fact, the
normalized execution time drops significantly going from shape pair

IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom Alexandre Singer, Frank (Fang) Gao, and Kai-Ting Amy Wang

68x(2048,2047) to 136x(2048,2047). This is due to the fact that
at a certain threshold, that lies between these two shape pairs, the
double buffering optimization activates. With double buffering, the
DMA transfer can be effectively overlapped with the computations,
achieving good reduction in execution time.

One last observation is that, as the data ingest volume increases
towards larger shape pairs, variability increases. While we chose to
place the data on unified shared memory (i.e. with malloc_share),
we suspect the large data volumes trigger complex interactions
between the underlying device memory and the OS virtual mem-
ory system. Since large volumes likely span multiple pages, TLB
management overhead may play into effect.

5.3 MLIR Optimization Study
To study the effectiveness of MLIR’s Affine transformations, such
as Affine Loop Fusion and Affine Super Vectorize, we use the 4D-
Sigmoid kernel shown in Appendix A with a single task offload to
the AICORE. Following a similar performancemethodology, we plot
speedups against scalar code performance with both loop fusion
and vectorization disabled; this will represent the kernel without
any MLIR transformations applied to it, as if it was not converted
to MLIR.

The sigmoid kernel is comprised of element-wise exponential,
reciprocal, negation and addition operations. The two affine.for
loop nests are fusible without violating any dependency constraints.
As shown in Figure 8, fusion provides a speedup of 1.05x in the case
of scalar code performance. This small speedup likely comes from
the slight increase in the instruction level parallelism within the
fused loop nest and the elimination of the intermediate store and
load operations to the temporary buffer. Since buffers are allocated
in the fast on-chip cache, and there is no traffic to the global memory
between the two loop nests in this case, fusion thus does not harvest
the benefit of cache locality.

Vectorization, on the other hand, provides a much more defined
speedup. It is clearly a key optimization; however, the end-to-end
time is dominated by the DMA operations needed to move input
and output data between the global memory and the on-chip cache.
As such, reducing the computation time via vectorization, however
effective, only renders 1.43x and 1.47x speedups. A kernel with
higher compute intensity (i.e. a high compute to data consumption
ratio) can be used for future studies to better illustrate the benefit
of vectorization.

Figure 8: 4D-Sigmoid with fusion and vectorization.

5.4 Converter Functionality Demonstration
Appendix B shows a Kmeans kernel containing imperfect loop nests,
Iteration Arguments, escaping scalars, and conditional branching
being converted to MLIR using SYCLops. This shows that SYCLops
is capable of generating interesting machine learning kernels.

6 FUTUREWORK
The decision to convert SYCL device code from LLVM IR, generated
by oneAPI, to MLIR’s Affine, SCF, and Arithmetic dialects brings
with it limitations that have not yet been addressed. Currently, the
SYCLops converter cannot handle complex control flow or many
built-in SYCL functions, and we have left these as part of the future
work.

6.1 Complex Control Flow
Due to the nature of oneAPI and how it compiles SYCL C++ to
LLVM, a complex CFG may arise. Using the transformations and
analyses described in the Preprocessing section, SYCLops is able
to handle basic control flow; however, if the control flow becomes
sufficiently complex, SYCLops will struggle to detect the control
flow and would be unable to express it within MLIR. In practice we
have found the following control flow to be too complex for the
current SYCLops converter:

(1) Loops with multiple induction variables or update logic that
cannot be expressed using a "step" value; for example, a loop
with update logic i *= 2.

(2) Kernels with exits that cannot be simplified to a single return
or branches that create flow that cannot be expressed as
simple For or If operations.

The complex loops described above (1) cannot be expressed
as Affine or SCF For operations, however they can be expressed
as scf.while operations. More logic will have to be put into the
Preprocessing and Block Generation stages to convert these types of
loops.

The kernels with complex conditional branching (2) are too
complicated to be expressed in the SCF dialect and instead would
need to be expressed in MLIR’s Control Flow (CF) dialect. More
logic will need to be added to the CFG Reconstruction stage to insert
cf.br and cf.cond_br operations into the kernel.

6.2 Built-In SYCL Functions
As described in §4.19 of the 2020 SYCL specification [1], built-in
functions are provided for algorithms, math, and more. In the LLVM
IR generated by oneAPI, these built-in functions appear as external
functions. SYCLops will try to use the names of these functions
to map them to an associated MLIR op. Many of these functions
can be expressed in MLIR through its different dialects, such as
the Math dialect; however not all SYCL built-in functions have an
associated operation in MLIR yet.

In order to support all SYCL built-in functions, there are three
promising solutions:

(1) MLIR’s dialects could be extended to include all possible
built-in functions. This would require adding lowering logic
for all of these new ops.

SYCLops: A SYCL Specific LLVM to MLIR Converter IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom

(2) SYCLops could convert the functions directly into their basic
math operations. For example, the built-in math function
"hypot" has no equivalent in MLIR yet; however, since hy-
pot is

√
x2 + y2, and all of these operations exist in MLIR,

SYCLops could lower hypot directly into these more basic
operations.

(3) A SYCL dialect could be created in MLIR. This dialect would
contain all of the different functions and types described
in the SYCL specifications, including the built-in ops. This
dialect would then handle how best to lower to standard
MLIR.

We believe solution 3 is the best option. Solution 1 would require
many changes to the standard MLIR dialects, in which we cannot
guarantee parity between these MLIR dialects and the SYCL speci-
fication. Solution 2 could also work, however it puts a lot of strain
on SYCLops; it would make more sense to use MLIR’s conversion
infrastructure to handle these built-in functions. A SYCL dialect
would be the best of both of these solutions, simplifying the work
required of SYCLops and leveraging the conversion passes present
in MLIR. Other teams could also help contribute and maintain this
new dialect, keeping it up to date with the SYCL specification.

7 RELATEDWORK
Polygeist [15] is a solution proposed by Moses et al detailing a
method to take affine C code and lower it to MLIR directly from the
Clang AST. It enters MLIR through the SCF and Standard dialects
before raising the SCF dialect to the Affine dialect when possible.

Progressive Raising [10] is a technique proposed by Chelini et
al that explains that C/C++ code can be lowered to MLIR using the
MLIR Extraction Tool. This code enters MLIR in the Affine dialect
and can then be progressively transformed and raised into the
Linalg dialect.

The CIL Project implemented the CIL dialect [16], which is
designed to map C/C++ code directly from Clang.

All of these previous works are designed to lower general C/C++
to MLIR, independent of host or device code; hence why SYCLops
exists. SYCLops works with SYCL to lower LLVM IR device code
directly to the Affine dialect, while host code remains in LLVM IR.

8 CONCLUSION
We present SYCLops, a converter capable of taking device kernels,
written in SYCL, compiled to LLVM IR, and translating them into
MLIR. This allows the compiler to take advantage of the flexibil-
ity offered by MLIR, before being lowered back into LLVM. We
demonstrated the scalability of SYCLops by analyzing a 2D Relu
kernel for varying shapes, the benefits of the MLIR optimizations
by comparing various Affine transforms on a 4D Sigmoid kernel,
and the functionality of SYCLops using Kmeans as an example.

ACKNOWLEDGMENTS
Thank you to Jiashu Wang, Xun Deng, and ZiChun Ye for their
IR to IR converter [17] which was the precursor to SYCLops. Also
thank you to Rasool Maghareh and Wilson Feng for their work on
the CCE plugin interface for SYCL profiling.

REFERENCES
[1] 2020. Khronos SYCLWorking Group: SYCL Specification - Generic heterogeneous

computing for modern C++. https://www.khronos.org/registry/SYCL/specs/sycl-
2020-provisional.pdf. Revision Date: June 30, 2020.

[2] 2022. ’affine’ Dialect. https://mlir.llvm.org/docs/Dialects/Affine/.
[3] 2022. Huawei Ascend 910. https://www.hisilicon.com/en/products/Ascend/

Ascend-910. Revision Date: 2022.
[4] 2022. Intel oneAPI DPC++/C++ Compiler. https://www.intel.com/content/www/

us/en/developer/tools/oneapi/dpc-compiler.html. Accessed: March 31, 2022.
[5] 2022. LLVM Loop Terminology (and Canonical Forms). https://llvm.org/docs/

LoopTerminology.html. Revision Date: February 22, 2022.
[6] 2022. LLVM’s Analysis and Transform Passes. https://llvm.org/docs/Passes.html.

Revision Date: February 22, 2022.
[7] 2022. MLIR Rationale. https://mlir.llvm.org/docs/Rationale/Rationale/.
[8] 2022. ’scf’ Dialect. https://mlir.llvm.org/docs/Dialects/SCFDialect/.
[9] 2022. sycl-bench. https://github.com/bcosenza/sycl-bench.
[10] Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen, Nicolas Vasi-

lache, Tobias Grosser, and Henk Corporaal. 2021. Progressive Raising in Multi-
level IR. In 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 15–26. https://doi.org/10.1109/CGO51591.2021.9370332

[11] Wilson Feng, Rasool Maghareh, and Kai-Ting AmyWang. 2021. Extending DPC++
with Support for Huawei Ascend AI Chipset. In InternationalWorkshop on OpenCL
(Munich, Germany) (IWOCL’21). Association for Computing Machinery, New
York, NY, USA, Article 13, 4 pages. https://doi.org/10.1145/3456669.3456684

[12] John L. Hennessy and David A. Patterson. 2019. A New Golden Age for Computer
Architecture. Commun. ACM 62, 2 (jan 2019), 48–60. https://doi.org/10.1145/
3282307

[13] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. San Jose, CA, USA, 75–88.

[14] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 2–14. https://doi.org/10.1109/CGO51591.2021.9370308

[15] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. 2021.
Polygeist: Affine C in MLIR (IMPACT 2021). 12 pages. https://acohen.gitlabpages.
inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf

[16] Prashantha NR, Vinay Madhusudan, Ranjith Kumar, and Srihari. 2020. 2020 LLVM
Developers’ Meeting: "Common MLIR Dialect for C/C++ and Fortran". Youtube.
https://www.youtube.com/watch?v=3gcw-8C9UbA

[17] Jiashu Wang, Xun Deng, Kai-Ting Amy Wang, and ZiChun Ye. 2021. Adapt-
ing SYCL’s SIMT Programming Paradigm for Accelerators via Program Re-
construction. In 50th International Conference on Parallel Processing Workshop
(ICPP Workshops ’21) (Lemont, IL, USA) (ICPP Workshops ’21). Association
for Computing Machinery, New York, NY, USA, Article 22, 6 pages. https:
//doi.org/10.1145/3458744.3473354

https://www.khronos.org/registry/SYCL/specs/sycl-2020-provisional.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020-provisional.pdf
https://mlir.llvm.org/docs/Dialects/Affine/
https://www.hisilicon.com/en/products/Ascend/Ascend-910
https://www.hisilicon.com/en/products/Ascend/Ascend-910
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/Passes.html
https://mlir.llvm.org/docs/Rationale/Rationale/
https://mlir.llvm.org/docs/Dialects/SCFDialect/
https://github.com/bcosenza/sycl-bench
https://doi.org/10.1109/CGO51591.2021.9370332
https://doi.org/10.1145/3456669.3456684
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1109/CGO51591.2021.9370308
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf
https://www.youtube.com/watch?v=3gcw-8C9UbA
https://doi.org/10.1145/3458744.3473354
https://doi.org/10.1145/3458744.3473354

IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom Alexandre Singer, Frank (Fang) Gao, and Kai-Ting Amy Wang

A AFFINE TRANSFORMATION EXAMPLES
Figure 10 shows a Sigmoid kernel, generated from a SYCL source
file using SYCLops. Using the mlir-opt tool, the Affine Loop Fusion
pass is used to fuse the two loops together and the Affine Super
Vectorize is used to vectorize the memory accesses.

B CONVERSION EXAMPLES
Figure 9 shows a SYCL Kmeans kernel, adapted from sycl-bench [9],
being converted to the Affine dialect using the SYCLops converter.

deviceQueue.submit ([&](handler &cgh) {

auto kern = [=](id <1> idx) {

size_t gid = idx [0];

if (gid < PROBLEM_SIZE) {

int index = 0;

float min_dist = FLT_MAX;

for (size_t i = 0; i < NCLUSTERS; i++) {

float dist = 0;

for (size_t l = 0; l < NFEATURES; l++) {

dist += ((* features_acc)[l * PROBLEM_SIZE + gid] -

(* clusters_acc)[i * NFEATURES + l]) *

((* features_acc)[l * PROBLEM_SIZE + gid] -

(* clusters_acc)[i * NFEATURES + l]);

}

if (dist < min_dist) {

min_dist = dist;

index = gid;

}

}

(* membership_acc)[gid] = index;

}

};

cgh.parallel_for <class kmeans >(range(PROBLEM_SIZE), kern);

});

(a) SYCL source code snippet
#set = affine_set <()[s0] : (-s0 + 3071 >= 0)>

module attributes {llvm.data_layout = "",

llvm.target_triple = "spir64 -unknown -unknown "} {

func @mlir_kmeans (%arg0: memref <3xi64 , 1>, %arg1: memref <6144xf32 , 1>,

%arg2: memref <9216xf32 , 1>, %arg3: memref <3072xi32 , 1>) {

%c0_i32 = arith.constant 0 : i32

%cst = arith.constant 0.000000e+00 : f32

%cst_0 = arith.constant 5.000000e+05 : f32

%0 = affine.load %arg0 [0] : memref <3xi64 , 1>

%1 = arith.index_cast %0 : i64 to index

affine.if #set()[%1] {

%2 = arith.trunci %0 : i64 to i32

%3:2 = affine.for %arg4 = 0 to 3 iter_args (%arg5 = %cst_0 ,

%arg6 = %c0_i32) -> (f32 , i32){

%4 = affine.for %arg7 = 0 to 2 iter_args (%arg8 = %cst) -> (f32) {

%8 = affine.load %arg1[%arg7 * 3072 + symbol (%1)]:memref <6144xf32 , 1>

%9 = affine.load %arg2[%arg4 * 2 + %arg7] : memref <9216xf32 , 1>

%10 = arith.subf %8, %9 : f32

%11 = arith.mulf %10, %10 : f32

%12 = arith.addf %arg8 , %11 : f32

affine.yield %12 : f32

}

%5 = arith.cmpf olt , %4, %arg5 : f32

%6 = select %5, %4, %arg5 : f32

%7 = select %5, %2, %arg6 : i32

affine.yield %6, %7 : f32 , i32

}

affine.store %3#1, %arg3[symbol (%1)] : memref <3072xi32 , 1>

}

return

}

}

(b) SYCLops output

Figure 9: Kmeans kernel.

$ mlir -opt sigmoid.mlir

func @sigmoid (%arg0: memref <8 x8x16x32xf32 ,1>, %arg1: memref <8 x8x16x32xf32 ,1>) {

%cst = arith.constant 1.000000e+00 : f32

%cst_0 = arith.constant 0.000000e+00 : f32

%0 = memref.alloca () : memref <8 x8x16x32xf32 , 1>

affine.for %arg2 = 0 to 8 {

affine.for %arg3 = 0 to 8 {

affine.for %arg4 = 0 to 16 {

affine.for %arg5 = 0 to 32 {

%1 = affine.load %arg0[%arg2 , %arg3 , %arg4 , %arg5]

: memref <8 x8x16x32xf32 , 1>

%2 = arith.subf %cst_0 , %1 : f32

%3 = math.exp %2 : f32

affine.store %3, %0[%arg2 , %arg3 , %arg4 , %arg5]

: memref <8 x8x16x32xf32 , 1>

}

}

}

}

affine.for %arg2 = 0 to 8 {

affine.for %arg3 = 0 to 8 {

affine.for %arg4 = 0 to 16 {

affine.for %arg5 = 0 to 32 {

%1 = affine.load %0[%arg2 , %arg3 , %arg4 , %arg5]

: memref <8 x8x16x32xf32 , 1>

%2 = arith.addf %1, %cst : f32

%3 = arith.divf %cst , %2 : f32

affine.store %3, %arg1[%arg2 , %arg3 , %arg4 , %arg5]

: memref <8 x8x16x32xf32 , 1>

}

}

}

}

return

}

$ mlir -opt sigmoid.mlir -affine -loop -fusion -affine -scalrep

func @sigmoid (%arg0: memref <8 x8x16x32xf32 ,1>, %arg1: memref <8 x8x16x32xf32 ,1>) {

%cst = arith.constant 1.000000e+00 : f32

%cst_0 = arith.constant 0.000000e+00 : f32

%0 = memref.alloca () : memref <8 x8x16x32xf32 , 1>

affine.for %arg2 = 0 to 8 {

affine.for %arg3 = 0 to 8 {

affine.for %arg4 = 0 to 16 {

affine.for %arg5 = 0 to 32 {

%1 = affine.load %arg0[%arg2 , %arg3 , %arg4 , %arg5]

: memref <8 x8x16x32xf32 , 1>

%2 = arith.subf %cst_0 , %1 : f32

%3 = math.exp %2 : f32

%4 = arith.addf %3, %cst : f32

%5 = arith.divf %cst , %4 : f32

affine.store %5, %arg1[%arg2 , %arg3 , %arg4 , %arg5]

: memref <8 x8x16x32xf32 , 1>

}

}

}

}

return

}

$ mlir -opt sigmoid.mlir -affine -loop -fusion -affine -scalrep \

-affine -super -vectorize="virtual -vector -size =8,16,32" \

-affine -loop -normalize

func @sigmoid (%arg0: memref <8 x8x16x32xf32 ,1>, %arg1: memref <8 x8x16x32xf32 ,1>) {

%c0 = arith.constant 0 : index

%c0_0 = arith.constant 0 : index

%c0_1 = arith.constant 0 : index

%cst = arith.constant 1.000000e+00 : f32

%cst_2 = arith.constant 0.000000e+00 : f32

%0 = memref.alloca () : memref <8 x8x16x32xf32 , 1>

affine.for %arg2 = 0 to 8 {

%cst_3 = arith.constant dense <1.000000e+00> : vector <8x16x32xf32 >

%cst_4 = arith.constant dense <0.000000e+00> : vector <8x16x32xf32 >

%cst_5 = arith.constant 0.000000e+00 : f32

%1 = vector.transfer_read %arg0[%arg2 , %c0, %c0_0 , %c0_1], %cst_5

: memref <8 x8x16x32xf32 , 1>, vector <8x16x32xf32 >

%2 = arith.subf %cst_4 , %1 : vector <8x16x32xf32 >

%3 = math.exp %2 : vector <8x16x32xf32 >

%4 = arith.addf %3, %cst_3 : vector <8x16x32xf32 >

%5 = arith.divf %cst_3 , %4 : vector <8x16x32xf32 >

vector.transfer_write %5, %arg1[%arg2 , %c0, %c0_0 , %c0_1]

: vector <8x16x32xf32 >, memref <8 x8x16x32xf32 , 1>

}

return

}

Figure 10: Affine transformations on a Sigmoid kernel.

	Abstract
	1 Introduction
	2 Background
	2.1 SYCL
	2.2 LLVM
	2.3 MLIR

	3 Design Principles
	3.1 Extensibility
	3.2 Preserves Program Structure
	3.3 Block and CFG Separation
	3.4 Appropriate Error Handling

	4 Converter Design
	4.1 Preprocessing
	4.2 IR Analysis
	4.3 Block Generation
	4.4 CFG Reconstruction
	4.5 Finalization
	4.6 Summary

	5 Evaluation
	5.1 Software Stack Overhead
	5.2 Kernel Scalability Analysis
	5.3 MLIR Optimization Study
	5.4 Converter Functionality Demonstration

	6 Future Work
	6.1 Complex Control Flow
	6.2 Built-In SYCL Functions

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Affine Transformation Examples
	B Conversion Examples

