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Despite their success, deep networks are used as black-box models with outputs that are not easily
explainable during the learning and the prediction phases. This lack of interpretability is significantly
limiting the adoption of such models in domains where decisions are critical such as the medical
and legal fields. Recently, researchers have been interested in developing methods that help explain
individual decisions and decipher the hidden representations of machine learning models in general and
deep networks specifically. While there has been a recent explosion of work on Explainable Artificial
Intelligence (ExAI) on deep models that operate on imagery and tabular data, textual datasets present
new challenges to the ExAI community. Such challenges can be attributed to the lack of input structure
in textual data, the use of word embeddings that add to the opacity of the models and the difficulty of
the visualization of the inner workings of deep models when they are trained on textual data.
Lately, methods have been developed to address the aforementioned challenges and present satisfac-

tory explanations on Natural Language Processing (NLP) models. However, such methods are yet to be
studied in a comprehensive framework where common challenges are properly stated and rigorous
evaluation practices and metrics are proposed.
Motivated to democratize ExAI methods in the NLP field, we present in this work a survey that studies

model-agnostic as well asmodel-specific explainability methods on NLP models. Such methods can either
develop inherently interpretable NLP models or operate on pre-trained models in a post-hoc manner. We
make this distinction and we further decompose the methods into three categories according to what
they explain: (1) word embeddings (input-level), (2) inner workings of NLPmodels (processing-level) and
(3) models’ decisions (output-level). We also detail the different evaluation approaches interpretability
methods in the NLP field. Finally, we present a case-study on the well-known neural machine translation
in an appendix and we propose promising future research directions for ExAI in the NLP field.

Authors’ address: Julia El Zini, jwe04@aub.edu.lb; Mariette Awad, mariette.awad@aub.edu.lb, Department of
Electrical and Computer Engineering, American University of Beirut., P.O. Box 11-0236, Riad El Solh, Beirut,
Lebanon, 1107-2020.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2022.

ar
X

iv
:2

21
0.

06
92

9v
1 

 [
cs

.C
L

] 
 1

3 
O

ct
 2

02
2

https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 • Julia El Zini and Mariette Awad

CCS Concepts: •Computingmethodologies→Natural language processing;Machine learning;
Artificial intelligence; •Machine learning → Neural machine translation.

Additional Key Words and Phrases: ExAI, NLP, Language Models, Transformers, Neural Machine
Translation, Transparent Embedding Models, Explaining Decisions

ACM Reference Format:
Julia El Zini and Mariette Awad. 2022. On the Explainability of Natural Language Processing Deep
Models. 1, 1 (October 2022), 37 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Ever since their introduction, deep learning (DL) models are revolutionizing several NLP
applications ranging from machine translation [8, 113, 119] to text summarization [107] and
question answering [25, 121, 122]. AI-powered systems that mainly use DL models are reaching
highly accurate predictions that surpass human performances in some cases [100]. However,
due to their non-linear multilayered structure, deep networks are often seen as black-box
models that achieve high performances; but in an opaquemanner. Researchers and practitioners
often question how credible these predictions are if the reasoning behind them is a highly non-
linear enigma that cannot be easily deciphered. This black-box nature of DL models gives rise
to several criticisms of their non-transparent predictions. Transparency and interpretability
are thus needed to establish user trust when black-box DL achieves a performance comparable
to that of the human. Besides, weak DL models entail interpretability to investigate failure
cases and direct the researchers in the proper paths [27]. The need for interpretability is even
more pronounced when DL models beat human performance where explanations can serve as
a machine teaching framework for the human to make better decisions. For instance, if the
decision-making system of Alpha Go [100] that beat the world champion in the Go game was
transparent, some creative moves can be taught to humans to help them learn the game or
even extend their mental capabilities.
Transparency is not only needed on the prediction level; some situations require DL models

that achieve explainability during the learning phases. For instance, DL models which learn
from curated datasets might engender bias that is not easy to detect requiring a higher ex-
plainability level [71]. Interpretability of the hidden representations of these networks and the
understanding of the predictions of the whole category would suggest whether some protected
attributes are affecting the predictions in a biased manner.
Recently, the ExAI field has attracted researchers to develop explainability methods for black-

box deep networks [63, 88, 98] in general. While some of these methods can be directly applied
to NLP models [6, 63, 88], others are specific to imagery datasets or Convolutional Neural
Networks (CNNs) that are not very suitable for neural machine understanding tasks [21, 30, 66,
98]. It is worth mentioning that explainability and interpretability are used interchangeably in
this work. For definitions and terminologies, readers are referred to [68].
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datasets or Convolutional Neural Networks (CNNs) that are not very suitable for neural
machine understanding tasks [21, 30, 66, 98]. We focus our survey on the interpretability of
language models or deep networks that operate on textual data. We make the distinction
between the methods that develop inherently interpretable models and those that operate in
a post-hoc manner. We also make the distinction between model-specific and model-agnostic
methods and the level at which each method operates: input- (or embedding), processing- and
prediction-level. Throughout this work, we use the terms explainability and interpretability
interchangeably. For more details on definitions and terminologies, we refer readers to [68].
We make the distinction between the methods that develop inherently interpretable models
and those that operate in a post-hoc manner. We also make the distinction between model-
specific and model-agnostic methods and the level at which each method operates: input- (or
embedding), processing- and prediction-level.
Although interpretability is a relatively new research track in AI, different surveys have

been compiled to highlight specific interpretability aspects [28, 37, 70, 74, 85]. Recently, [22]
addressed interpretability of NLP models in their survey while focusing on explaining model’s
decision. Unlike [22], this work is not only limited to ExAI methods on the decision level.
Our work here contributes to the community the first survey on the (1) interpretability of
word embeddings models which constitute a crucial part of NLP, (2) the inner representations
of NLP networks, and (3) the transformer models which presented a great debate on the
interpretability of their attention mechanisms. In addition to that, we survey existing work on
the explainability of individual model decisions with insights about research challenges and
opportunities in that field. We also highlight different empirical setups, metrics, and datasets
that NLP researchers rely on to evaluate their ExAI methods.
The rest of this paper is organized as follows: Section 2 presents the challenges that general

ExAI methods face with textual datasets or NLP models and Section 3 presents the related
surveys to ExAI. Then, Section 4 presents the terminology used in this paper with respect to the
three proposed dimensions. The rest of the sections are focused on the interpretability of NLP
models on three levels: the input, the processing, and the output. Section 5 surveys existingwork
on the interpretability of word embeddings serving as inputs to NLP models, Section 6 and 7
present the interpretability methods applied to the inner representations of Recurrent Neural
Networks (RNNs) and transformers, with their debatable attention mechanisms, respectively
during the processing phase and Section 8 focuses on the explanations of individual predictions
or outputs. Finally, we end with some concluding remarks and future directions in Sections 10
and 9 while presenting a case study on neural machine translation in an appendix.

2 CHALLENGES IN EXAI ON NLP MODELS
In the traditional learning framework, textual datasets present many challenges such as
polysemy, sarcasm, slang, cultural effect and ambiguity. Explainability methods proliferate
these challenges. In what follows, we identify some text-specific challenges that hamper the
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application of general ExAI methods into NLP models. Those challenges motivate the necessity
of addressing ExAI in NLP independently from other ExAI techniques.
First, some of the explainability methods provide their explanations in terms of specific

input features, such as pixels. These features are not as straightforward in textual datasets. The
majority of NLP models operate on embeddings that are opaque representations, as opposed to
pixels or numerical values. Providing explanations in terms of specific embedding dimensions
will not have a practical implication for the explanations. Additionally, the inner workings
of deep networks trained on text cannot be easily visualized as opposed to visual networks.
Further processing on the inner encodings is required to dissect the learned knowledge.
When a model’s decision is explained by the words that contributed to the prediction, further

refinement is needed. For instance, explaining decisions in terms of the input features can be
easily formulated when the input is numerical or imagery where decisions can be reflected
by clear features or pixels. This task becomes challenging with text where the syntactic
and semantic features cannot be easily dissected in the input to interdependently serve as
explanations. After all, a word is a fusion of syntax, semantics, and previous context. When
providing the explanation as a set of words, one can thus inquire if the explanation model is
attending to the part-of-speech tag, the entity, the meaning, or the accumulated context.
Long-term dependencies, on the other hand, add to the challenges of ExAI methods for

NLP models. Namely, textual explanations might not always be a set of consecutive words
but words with longer dependencies as opposed to neighboring pixels in images. Finally,
multi-lingual support for deep models language models specifically introduces new challenges
to explainability where the encoded language semantics and context need further deciphering.

3 RELATED SURVEYS
Given the infancy of the ExAI field, especially in the context of NLP models, there is a handful
of surveys that describe its terminology, taxonomy, different methods, and evaluation frame-
works. Doshi et al. introduce the taxonomy of ExAI in [28] while setting the common ground
for rigorous evaluation of interpretability of machine learning models through application-
grounded, human-grounded, and functionally-grounded settings. Montavon et al. [70] focus on
activation maximization techniques, sensitivity analysis, Taylor decomposition, and relevance
propagation. Their work is specific to post-hoc interpretability methods and does not discuss
inherently transparent models. A subset of the interpretability methods is also surveyed in
[85], where a comprehensive study is presented covering activation maximization, network in-
version, deconvolutional neural networks, and network dissection based visualization applied
on imagery datasets. Similarly, Guidotti et al. [39] focus on decision rules, features importance,
saliency masks, sensitivity analysis, partial dependence plot, prototype selection, and neurons
activation methods while mainly studying image and tabular datasets.
In [37], a brief survey that discusses linear proxy models, decision trees, automatic rules, and

saliencymaps, is presented. This survey studies a few approaches that are inherently explainable
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Fig. 1. Summary of surveys on ExAI aggregated by year, citation number, evaluation and type of
considered data. The thickness of the bar reflects the scope of the presented work categorized into two
groups: broad and narrow. The thick bars represent broad scopes and the thin bars the narrower ones .

such as attention networks, and disentangled representations that are designed to generate
explanations. Later, Nguyen et al. [74] discuss how the activation maximization approaches
evolved. Their survey is limited to imagery datasets and is very specific to optimization
techniques in activation maximization. The survey of [110] is also specific to explainability
methods in the medical field, which implies signals and imagery datasets. Very recently, [23]
introduce the opportunities and challenges of ExAI while discussing the limitations of certain
methods and [84] present ExAI methods applied to reinforcement learning settings.
The majority of the surveys in the literature are either brief [29, 37] or are focused on imagery

datasets [23, 74, 85]. It is not until late 2020 that a survey on ExAI integrated with NLP models
has been introduced in [22]. In this survey, Danilevsky et al. categorized the explanation types
and methods while focusing on visualizing techniques and presenting some gaps and research
direction in the ExAI-NLP area. A few months later, a survey on explanation-based human
debugging of NLP models[56] has been released. The survey targets explanatory debugging
and human-in-the-loop debugging systems.
While both papers, [22] and [56], targeted a similar framework; there are clear differences

between the scopes, depth, and breadth. Our work is the first to survey existing work on the
explainability of word embeddings and the attention mechanism. Moreover, [22] focuses on
the interpretability methods that explain individual predictions and [56] focuses on interactive
human-in-the-loop learning whereas our work is broader. We instead report on literature
that interprets the knowledge encoded by language models. Finally, [22] claimed that only
four papers are found in the literature targeting global explanations which are defined as the
study of the predictive process independently of any particular input. While we acknowledge
the difficulty of finding such papers due to proper tagging with ExAI keywords, we dedicate
three sections (5, 6 and 7) to survey over 50 papers, that are missed by [22] and we highlight
attempts to understand how NLP models process inputs and the information they encode.
Figure 1 visualizes existing surveys since 2017 and highlights the broadness of their scope,

the data types that they study, their impact on the ExAI community (reflected by their citation
number), and whether evaluation methods are included.

4 TERMINOLOGY
In this survey, we study interpretability methods on NLPmodels over the the how, thewhat, and
the which dimensions. Our first dimension is specific to how the models are being explained, i.e.
by design or in a post-hoc manner. The former methods develop models from scratch, such that
they are inherently interpretable while the latter methods explain pretrained black-box models.
Although interpretable models are inherently transparent, they require modifying the model’s
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Fig. 2. The dimensions studied in this work within terminology used in the ExAI framework and a
visual comparison to the work of [22]. Missing arrows between consecutive dimensions reflect the
infeasibility of the integration of the proposed dimensions.

architecture and retraining huge models. A recent study [96], outlines the difference between
both frameworks and highlights the areas where developing explainability methods for black-
box models should be avoided in high-stake decision-making environments. In the second
dimension, we categorize the interpretability attempts into three categories according to what
they explain. The first category interprets the word embeddings which is on the input level
of most of the deep NLP networks. The second category interprets the inner representations
of RNNs and transformers which is on the processing level of the DL. Finally, the third
category interprets individual model decisions with respect to specific input features or neuron
activations that are on the output level of the networks. The third dimension addresses the
question of which models are being interpreted by making the distinction between explanation
methods that aremodel-agnostic, i.e. can operate on anymachine learningmodel, and those that
are model-specific, i.e. tailored for specific architectures. Figure 2 highlights the contributions
of this paper in terms of these three dimensions within the terminology used in the ExAI
framework and highlights the difference between our work and [22].

5 INTERPRETING WORD EMBEDDINGS
In this section, we discuss the explainability of word embeddings which constitute the input
to the majority of NLP models. Word embedding models are the result of various optimization
methods and deep structures that represent words as low-dimensional dense continuous
vectors [67, 79]. Although effective at encoding semantic and syntactic information, those
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vectors are notoriously hard to interpret. Additionally, they show little resemblance to the
theories of lexical semantics, which are based on familiar, discrete classes and relations.
Interpretability of word embeddings is not only essential for developing transparent models

but it is desirable for lexicon induction, efficiency, and fairness [31]. For instance, if inter-
pretable, semantically or syntactically similar words can be easily extracted in lexicon induction.
Additionally, the evaluation embeddings would be transparent by examining the information
encoded by the individual vectors. Interpretability has also a computational advantage on
many classification tasks where irrelevant dimensions can be disregarded. Finally, fairness can
be ensured by removing dimensions encoding protected attributes such as gender or race [12].
Recently, different approaches have been suggested to improve the interpretability of word

embeddings. Such methods, discussed next, either rely on visualization [65], impose sparsity
[34, 73, 105] and dimension-specific constraints [128], use rotation techniques [32, 76, 95] or
incorporate external knowledge [33, 49] and contextual information [80, 81, 108] to derive
more interpretable embeddings. Other approaches rely on neighborhood analysis to quantify
interpretable characteristics of a given embedding model[92]. Such analysis allows to dissect
the information that a given word embedding encodes and to explain the correlation between
the embedding model on different tasks. All these approaches are model-specific and the
distinction between post-hoc and inherent interpretability is later highlighted in Table 2.

5.1 Sparsification of Embedding Spaces
Dense word embeddings cannot solely provide meaningful representations. For instance, in
dense word embeddings, the representation of a word𝑤 is a dense vector of small positive or
negative values spreading several hundred dimensions. Those dimensions are also active (i.e.
having non-zero values) for words of different types and domains. Consequently, an active
dimension in a dense word embedding model cannot imply a specific semantic or syntactic
form. Sparsifying word embedding models can thus map dimensions to meaning or syntax
making embeddings more explainable. To illustrate this concept, we visualize in Figure 3,
5 words for 5 randomly chosen dimensions from a dense (SVD300) and sparse (NNSE1000)
embedding models as derived by [73]. We observe that the words in each dimension are more
semantically coherent for the sparse embedding model and thereby more interpretable.
Murphy et al. [73] used a matrix factorization algorithm, Non-Negative Sparse Encoding

(NNSE), to derive the first distributional model that satisfies sparsity, effectiveness and in-
terpretability. The authors decompose the input representation 𝑿 ∈ R𝑚×𝑛 into two matrices,
𝑨 ∈ R𝑚×𝑘 and 𝑫 ∈ R𝑘×𝑛 subject to sparsity and non-negativity constraints. Their problem is
to find 𝑨,𝑫 that minimize

∑𝑚
𝑖=1 | |𝑿𝑖,: −𝑨𝑖,: ×𝑫 | |2 + _ | |𝑨𝑖,: | |1, subject to 𝑨𝑖, 𝑗 ≥ 0 and 𝑫𝑖,:𝑫T

𝑖,: ≤ 1.
The optimization in the NNSE method requires heavy memory usage and cannot effectively

deal with streaming text data. Consequently, an online approach to deriving an interpretable
word embedding model (OIWE) is proposed in [64]. OIWE uses projected gradient descent to
apply non-negative constraints on non-negative methods such as Skip-Gram. An unconstrained
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Fig. 3. Sets of 5 words for 5 randomly chosen dimensions from a dense (SVD300) and sparse (NNSE1000)
embdding model as in [73]. Better semantic coherence is observed in the sparse NNSE1000 model.

optimization problem is later proposed in [34] to transform any distributed representation
into sparse or binary vectors. Using sparse coding, each input vector 𝑿𝑖 is represented as a
sparse linear combination of basis vectors. Using online adaptive gradient descent, longer and
sparser vectors are derived as more interpretable “overcomplete” representations.
Later, in [104], the authors employed de-noising 𝑘-sparse auto-encoder to obtain an inter-

pretable transformation of input embeddings, SParse Interpretable Neural Embeddings (SPINE).
Input embeddings are projected into a new space ∈ R𝑚×𝑣 where embeddings are both sparse
and non-negative. De-noising 𝑘-sparse auto-encoder is used to train the model by minimizing
the combination of the reconstruction loss, the average sparsity loss, and the partial sparsity
loss over the data set while capturing the sparsity constraints.
Deriving the embedding models, discussed so far, relies on optimization methods that mainly

operate in 𝜖-accurate regimes. Operating in a post-hoc manner might cause an accumulation
of inaccuracies. Some methods introduce sparsity as a post-processing step. For instance, Sun
et al. [105] directly apply the sparsity constraint while computing the word embeddings of
Word2Vec. This is achieved by introducing the l1 regularizer and employing regularized dual
averaging to produce sparse representations. Additionally, Panigrahi et al. [75] developed an
unsupervised method to generate Word2Sense where each dimension encodes a fine-grained
sense. Word2Sense embeddings are probability distributions over senses where the probabilities
of each word and sense are estimated and the Jensen Shannon divergence [35] is then used to
compute word similarities to eliminate redundant senses.

5.2 Rotation of Embedding Spaces
From a linear algebra perspective, having a transparent basis, every embedding vector can
be explained as a combination of understandable concepts. To identify these interpretable
dimensions (i.e. basis), word spaces can be rotated while preserving the encoded information.
Rothe et al. [95] formulated this rotation as a decomposition of an embedding space into two

components: an interpretable orthogonal subspace and a “remainder” subspace. The resulting
sub-spaces and their orthogonal complements form the basis for an embedding calculus that
supports certain operations. The goal becomes to find an orthogonal matrix that transforms
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the embedding space into an interpretable one with fewer dimensions. Different lexicons such
as opinion, POS, and emotion are used to train the transformation matrix to minimize the
distance between lexicon pairs and words with identical labels. Consequently, the authors
extended the “king - man + woman=queen” analogy into operations like “-1× hate = love”.
In [76], interpretability is induced by factor rotation that reforms the word embedding

matrix to have a simple structure by a linear transformation. The rotation encourages each
row and column (word vector and dimension, respectively) to have a few large values. More
specifically, the rotation is a post-processing step that computes a rotated matrix minimizing
the rotation criterion. The latter was introduced in [20] by forcing a low complexity on the
rows and the columns of the rotated matrix and is minimized using the gradient projection
algorithm. This approach can be seen as a combination of sparsification and rotation where
embedding models are rotated while encouraging low complexities in the values. Likewise, [32]
computes orthogonal transformations by randomly sampling word vectors and their target
before deriving the orthogonal Procrustes closed-form solution.
The approaches discussed above enhance the explainability of existing model embeddings.

However, the derived explanations are simple linear algebraic analogies, i.e. at the level of
simple grammatical relations such as negation, grammatical gender, and prefix derivation. In [1],
the explainability of embeddings was addressed from a different angle. Instead of making the
embedding models more explainable, Allen et al. [1] targeted well-known linear relationships
and derived their probabilistically-grounded interpretations. Specifically, the authors aim at
explaining why the embeddings often satisfy𝑤𝑏∗ = 𝑤𝑎 ∗ −𝑤𝑎 +𝑤𝑏 when word embeddings
are trained using only word co-occurrence. This is achieved by first defining paraphrasing
as “an equivalence drawn between words and word sets by reference to the distributions
they induce over words around them”. Then, the authors show that paraphrasing determines
linear relationships hold whenever the embeddings factorize point-wise mutual information.
Finally, the linear relationship follows when analogies between words are interpreted as word
transformations sharing the parameters. The mathematical definitions and proofs provided in
the paper establish the first rigorous explanation of the embeddings’ linear relationships.

5.3 Integrating External Knowledge
The previous twomethods discussed the interpretability of word embeddings without the incor-
poration of external knowledge. However, existing lexicons and ontologies help in building em-
beddings spaces that can, by construction, reflect the semantic and syntactic relationships and
that are thus more interpretable. For instance, Faruqui et al. [33] enhance the interpretability of
embeddings by fine-tuning the embedding model using relational information from semantic
lexicons. This is achieved by proposing a graph-based learning framework, “retrofitting”, for
incorporating lexical relational resources. Given an un-directed graph Ω = (𝑉 , 𝐸) of semantic
relationships and a word embedding model �̂� = (𝑞1, . . . , 𝑞𝑛), the goal is to learn a refined
embedding model, 𝑸 = (𝑞1, . . . , 𝑞𝑛), such that its column vectors (word embeddings) are close
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in distance to their counterparts in �̂� and to their adjacents under Ω. The optimization problem
is thus to minimize

∑𝑛
𝑖=1

[
𝛼𝑖 | |𝑞𝑖 −𝑞𝑖 | |2 +

∑
(𝑖, 𝑗)∈𝐸 𝛽𝑖 𝑗 | |𝑞𝑖 −𝑞 𝑗 | |2

]
The embeddings are first trained

independently of the semantic lexicons and then through “retrofitting”. 𝑸 is computed by
solving a system of linear equations using an efficient iterative updating method.
In some particular domains, knowledge graphs go beyond syntax and semantics and develop

knowledge basis on higher-level categorical and scientific relations. The medical domain is a
perfect illustration where [49], for instance, incorporates the rich categorical and taxonomic
knowledge in the biomedical domain to leverage the interpretability of medical embeddings.
The authors learn a transformation matrix that transforms the word embeddings to a new
interpretable space according to the biomedical taxonomy while retaining its expressive
features. Similarly, Pelevina et al. [77] utilize an ego-network to transform word embeddings
into sense vectors. The authors define an ego-network as a set single nodes, ego, along with
the nodes they are connected to, alter. After learning word embeddings and building a graph
of nearest neighbors based on vector similarities, word senses are induced by clustering the
ego-network. Such word senses can be effectively used in word sense disambiguation.
Although based on a sound mathematical formulation, the previously discussed approaches

do not explicitly show the practicality of the derived explainable embeddings in tasks such as
de-biasing the embedding models. Instead, [128] addressed the gender-neutral word embed-
dings problem and aimed at eliminating gender influence while preserving essential gender
information in specific dimensions. This was done by categorizing all the words into male-
definition, female-definition, and gender-neutral according to WordNet definitions. Then,
embeddings were learned by minimizing using stochastic gradient descent a combination of (1)
the word proximities (2) the negative distance between words in the female and male-definition
seed words, and (3) the difference between female words and their male counterpart.

5.4 Contextualized Embeddings
The word embeddings that we discussed so far are functions where every word, regardless of
whether it has more than one meaning, has a unique embedding vector. Peters et al. [81], pro-
posed an embedding model, where words are represented by contextualized vectors that model
the syntactic and semantic characteristics of a word as well as disambiguation across linguistic
contexts, i.e., in the case of polysemy. Disambiguation is possible due to the formulation of the
word representation as a function of the entire sentence in pre-trained bidirectional language
models. While such models are discussed in Section 7, we focus here on the explainability of
their embedding layer rather than the full model.
The work of [80] empirically “dissects” the contextualized embeddings by evaluating their

performance in a suite of four NLP tasks. The authors investigate the intrinsic properties of
contextual vectors that are independent of the NLP model and architecture details by studying
how semantic and syntactic information is modeled throughout the network’s depth. The
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results show that morphology is encoded in the word embedding layer, the local syntax in the
early contextual layers, and semantic information in the deeper layers.
Tenney et al. [109] studied the way sentence structure is modeled across a range of syntactic,

semantic, local, and long-range phenomena in contextualized embeddings. Through edge
probing, the authors showed that such embeddings outperform their non-contextualized
counterparts on syntactic tasks and not on semantic tasks, which shows that they are better
at encoding syntax than higher-level semantics. Moreover, contextualized representations
are able to encode long-term linguistic information which helps disambiguate longer-range
syntactic dependencies relations and structures. Contextualized embeddings are also studied
within the gender bias framework in [127]. The analysis showed that some training data
contains significantly more male than female entities which gets reflected in embeddings that
systematically encode gender information in an unequal manner.

5.5 Evaluating Embeddings Interpretability
The research work described above attempts at improving the interpretability of word embed-
dings. The question that can be immediately asked targets the evaluation of the interpretability
of the obtained embedding spaces. While a common rigorous evaluation method, that is based
on well-designed bench-marking datasets, is yet to be developed, researchers are currently
utilizing a set of interesting experiments summarized in this section.
The interpretability of the sparsification methods is commonly evaluated through word in-

trusion which seeks to quantify how coherent the dimensions of a learned word representation
are. The experiment goes as follows: from the learned representation, a dimension 𝑖 is chosen
and the vocabulary words are then ranked according to the variance of their values. The four
highest-ranked words are then chosen across each dimension and a word from the bottom
half of the list is then added as an “intruder” that human judges are asked to identify. The
precision of the human judges across different state-of-the-art sparse embeddings is reported
in Table 1. In [105], the word intrusion task is extended and a new evaluation metric that
does not require any human assessment. Given that the intruder word should be different
from the top four words while those latter words should be similar, the ratio of the distance
between the intruder word and top words to the distance between the top words is thus used
as a quantitative metric. The higher the ratio is, the more interpretable the embedding state is.

NNSE [73] SPOWV [34] SPINE [104] Word2Sense [75]
92.33 41.75 74.83 75.3

Table 1. Precision on the word intrusion task on the state-of-the-art sparse embedding spaces

Additionally, Rothe et al. [95] used the cosine similarity to decide whether two words are
synonyms or antonyms which reflects the level of interpretability of word connotations. The
cosine similarity between embeddings was also used in polarity spectrum creation where the
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main task is to predict the spectrum of a word in a certain query. The morphological analogy
was also used to test how well these embeddings can encode the POS tags in the computed
subspaces. These experiments test the quality of a subspace rather than its interpretability.
The work in [33] evaluates the interpretability of embeddings as their ability in capturing se-

mantic and syntactic aspects. Such tasks include the word similarity and the synonym-selection
tests which are aligned with [95] discussed above. The syntactic relations test evaluates how
well the embeddings can encode relations of the form “a is to b as c is to d”. Sentiment analysis
tests the knowledge encoded in these representations. While these tests better target the
interpretability of the representations in terms of their semantic and syntactic relations, they
do not explicitly reflect the interpretability of certain dimensions.
Peters et al. [81] dissect the word representations in bi-directional models and evaluate their

interpretability in terms of the quality of the interpretation on tasks such as semantic role
labeling, and constituency parsing, and named entity recognition. Later, this set of experiments
is extended in [80] to include question answering, sentiment analysis, and textual entailment.

5.6 Discussion
The evaluation methods discussed above mainly reflect the quality of embeddings rather than
their interpretability. For instance, evaluating the embeddings on a POS tagging task shows
how well they encode some syntax properties without reflecting the exact dimension, or the set
of dimensions, where such properties are encoded. In other words, the majority of experiments
report an overall performance on some NLP tasks without addressing the alignment between
a dimension and a particular context or syntactic aspect.
Some interesting experiments are reported in [34, 73, 75, 104]. Murphy et al. [73] qualita-

tively assess the interpretability of dimensions of the NNSE embeddings by investigating the
dominating dimensions in the NNSE representations. Similarly, Faruqui et al. [34] consider
the dimension interpretability and qualitatively assessed whether the top-ranking words for a
particular dimension display semantic or syntactic groupings. [104] extend this experiment
to SPINE and qualitatively compare the interpretability of SPINE to that of SPOW with two
baseline embedding models, word2vec and Glove. The authors examine the top participating di-
mensions for some sampled words and study the top words from the participating dimensions.
Similar experiments are conducted by [75] in word2sense.
These experiments are paving the way towards a rigorous evaluation of embeddings’ ex-

plainability but are still lacking the commonality and objectivity aspects. Finally, the majority
of these methods operate on embedding models and are thus model-specific. However, some
of the obtained models are inherently interpretable; whereas others need further processing.
Table 2 summarizes the discussed methods within the dimensions discussed in this work while
highlighting their reliance on common evaluation schemes and whether they need existing
embedding spaces. Figure 4 reflects the interest in the interpretability of word embeddings
by showing the number of papers we surveyed within each category since 2012. One can see
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that the sparsification of embeddings was one of the earliest methods in the field. After the
success of bidirectional transformer models in 2017, contextualized embeddings are attracting
researchers to study their interpretability. Interest in other methods seems to be consistent
and a general interest in the interpretability of word embeddings seems to be increasing.

Method Needs Existing Common Posthoc / References
Embedding? Evaluation Inherently

Sparsification Inherently [34, 64, 73] [104]
x Inherently [75, 105]

Rotation x Inherently [1, 32, 76, 95]
Integrating External Knowledge x Inherently [33, 49, 77, 128]
Contextualized Embeddings x Post-hoc [80, 109, 127]

Inherently [81]
Table 2. Summary of existing work on the interpretability of word embeddings

Fig. 4. Number of the surveyed papers in each method reflecting the interest since 2012.

6 WHAT DO RNNS LEARN?
After discussing the interpretability on the input level, we focus next on the processing
level. Hence, we dissect the inner representations of RNNs. These methods either implement
inherently interpretable RNN architectures or try to interpret existing RNN architectures in a
post-hoc manner. Both approaches however operate in a model-specific way.

6.1 Post-hoc Interpretation
Most of the post-hoc interpretation methods try to dissect hidden knowledge in trained deep
networks from syntax and semantic lens. One such lens is compositionality, defined in [57], as
a way to understand how such networks build sentence semantics from individual words. The
authors develop strategies based on heatmap and t-sne visualization by plotting unit values to
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visualize negation, intensification, and concessive clauses. Similar to [51], but using the unit’s
salience, the authors are able to compute the amount that each input contributes to the seman-
tics of a sentence. These strategies show that Long Short-Term Memory Networks (LSTMs)
are able to perform well due to their ability to maintain a sharp focus on essential keywords.
Moreover, sentiment analysis tasks are sensitive to some dimensions in an embedding. More
importantly, neural models in NLP are able to learn the properties of local compositionality in
a subtle way while respecting asymmetry as in negation.
Focusing on syntax, Blevins et al. [11] develop a set of experiments that investigate how the

internal representations in deep RNNs capture soft, hierarchical syntactic information without
explicit supervision. First, the authors extract word-level representations produced by layers
of the RNN trained on tasks such as dependency parsing, machine translation, and language
modeling. A classifier is then trained to predict the POS tag and the parent, grand-parent,
and great-grandparent constituent labels of that word. Another classifier is trained to check
whether a dependency arc exists between two words. The evaluation of these classifiers shows
that the representations learned by RNNs encode syntax beyond the explicit information
encountered during training. The results demonstrate that the word representations produced
in RNNs at different depths are highly correlated with syntactic features. In particular, deeper
layers are shown to capture higher-level syntax notions.
These findings agreewith [111], where recurrent architectures are compared to non-recurrent

ones for their ability to model hierarchical syntax. Experiments on subject-verb agreement
and logical inference show that recurrent architectures, LSTM specifically, are notably more
robust and present better generalization guarantees when longer sequences are encountered.
The same quest is applied to LSTMs in [60] to study how syntactic structures are encoded.
Through number agreement in English subject-verb dependencies experiments, the authors
show that LSTMs are able to capture a considerable amount of grammatical structures, but more
expressive architectures may be required to reduce errors in particularly complex sentences.
Number agreement is also studied later by [40] by including nonsensical sentences where
RNNs cannot rely on semantic or lexical cues and by comparing to human intuition to show
that long-distance agreements are reliably encoded in an RNN. In [53], the role of context
in LSTMs is analyzed through ablation studies by shuffling, replacing, and dropping prior
context words. LSTMs were found to be able to use about 200 tokens of context on average.
However, LSTMs struggle to distinguish between nearby context from distant history. More
interestingly, the model pays attention to the order of words only in the recently-processed
sentence. LSTMs’ predictions have been empirically explored in [52] along with the LSTMs’
learned representations. Specifically, long-range dependencies are investigated in character-
level language to seek cells that identify high-level patterns such as line lengths, brackets,
and quotes. Karpathy et al. [52] study 𝑛-gram model to conclude that LSTMs’ performance
improves on characters that require long-range reasoning.
The discussed approaches address particular semantic and syntactic structures and study

where and how these structures are encoded. Nonetheless, these approaches do not study how
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the input is processed through these inner encodings. Very recently, Hou et al. [45] suggested
a novel interpretation framework inspired by computation theory. The authors are the first to
draw the analogy between Finite State Automata (FSA) and an interpretable inner mechanism
for sequential data processing. In their work, FSAs are learned from trained RNN models
to achieve better interpretability of the latter. When inputting several sequences to an RNN
model, the hidden state points are gathered, and similar ones are clustered. The FSA states are
the clusters, and the transitions between the states arise when one item of the input sequence
is processed. Aside from the novel connection with FSA, an interesting advantage of [45] is its
ability to provide global explanations in classification tasks.

6.2 Inherently Interpretable Models
Inherently interpretable RNNs are trained in an explainable way by adding transparency
constraints [118] and exploring tree and graph-like structures [59, 106]. In [118], the authors
develop an inherently interpretable RNN, SISTA-RNN, based on the sequential iterative soft-
thresholding algorithm and the idea of deep unfolding [43]. By allowing the RNN parameters
to be seen as the parameters of a probabilistic model, the weights and outputs can retain their
meaning. Traditionally, given input-output training pairs (𝒙𝑖,𝒚𝑖)𝑖=1,...,𝑁 and model parameters
𝜽 , RNNs learn 𝜽 according to the following optimization problem: min

𝜽

∑
𝑖 𝑓 (𝒚𝑖, �̂�𝑖) subject

to �̂�𝑖 = 𝑔\ (𝒙𝑖), 𝑖 = 1, . . . , 𝑁 , where 𝑓 is the loss function and 𝑔 is the conventional black-box
RNN. By changing the optimization constraint to �̂�𝑖 = ℎ\ (𝒙𝑖), 𝑖 = 1, . . . , 𝑁 and ℎ𝜽 (𝒙𝑖) =

argmin
𝑧

P\ (𝒛, 𝒙𝑖) with ℎ attempting to solve an optimization problem P𝜽 that corresponds to a

principled probabilistic model, the parameters 𝜽 become interpretable. SISTA-RNN is proved
to achieve a higher performance on a sequential compressive sensing task.
Tai et al. [106] improved the semantic representation of LSTMs by building a semantic tree

on semantic topologies. Tree-LSTMs are similar to the traditional LSTM units but differ in
the gating vector and memory cell update that are dependent on the state of the children
(tree notion). A forget gate per child allows Tree-LSTM to select the information in each child.
Later, Liang et al. [59] learn interpretable representation following a wise graph construction
paradigm. Their structure-evolving LSTM first considers each data element as a separate node
in a graph. Then, nodes with high compatibility are recursively merged to form richer and
more interpretable encodings. Similarly, graph LSTMs [78] are formulated to incorporate
linguistic analysis. This approach is shown to encode richer linguistic knowledge improving
the performance of relation extraction [41, 78, 126, 129]. Although both LSTMs outperformed
existing systems, their evaluation remains under-investigated. For instance, [106] evaluate
their LSTMs on sentiment analysis and semantic relatedness tasks. Moreover, the effectiveness
of structure-evolving LSTMs is mainly evaluated on a non-NLP-related image segmentation
task without thorough testing on other modalities.
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Neural module networks jointly train deep “modules” for visual question answering offer-
ing visual explanations for an answer [4, 46]. While such networks are not fully within a
textual modality, i.e. they accept the question as text and an image as a reference, we briefly
discuss them in this survey for completeness purposes. Neural module networks learn to parse
questions as executable modules to understand well synthetic visual QA domains [42]. The
questions are analyzed in a semantic parser before determining the basic computational units
that contribute to the answer [4]. Andreas et al. [3] learn the parameters for these modules
jointly via reinforcement learning on (world, question, answer) triples. Gupta et al. [42] extend
this approach and introduce modules that reason over a paragraph of text through symbolic
reasoning over numbers and dates. Furthermore, an unsupervised auxiliary loss is suggested
to extract arguments explaining specific events in the text.

6.3 Discussion
Table 3 summarizes the aforementioned approaches while highlighting their interpretability
and evaluation methods. While [57] is inspired by a non-text-specific interpretability approach,
the rest of the methods are designed to suit NLP models. One can clearly see that a common
evaluation is not established yet, some methods can be subjective [40] while others rely on
human-annotated data [11, 106]. Such annotations are not directly related to explainability;
they however reflect some semantic or syntactic aspects such as subject-verb agreement or
POS tags that. Although a good performance can imply that the specific semantic or syntactic
aspect is indeed encoded in the model, it cannot directly imply explainability. Localization of
the encoded aspect in the model as well as input analysis in terms of these aspects are further
needed to achieve pure model transparency.

7 WHAT DO TRANSFORMERS LEARN?
After discussing the interpretability of general RNNs, we consider the popular transformer
models [114]. Such models are based on attention mechanisms to handle ordered sequences
of data. Transformers follow the encoder-decoder structure using stacked multi-head self-
attention and fully connected layers. Bidirectional Encoder Representations from Transformers
(BERT) [25] and GPT-2 [86], have been trained on huge text corpora and are currently used
as state-of-the-art NLP models after fine-tuning on specific tasks. Different approaches have
been studied to understand the inner dynamics of transformer models and to visualize the
attention weights in order to better understand how they process input and why they do it so
well. All the discussed approaches are model-specific and operate in a post-hoc manner.

7.1 Visualization of Transformers
The Explainability of transformers has been extensively addressed from a visualization per-
spective by developing tools that allow the user to interact with such models to understand
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Reference Inherently/
Post-hoc

Model Method Evaluation Method

[52] (2015) Post-hoc LSTM Identification of high-level
patterns

Reasoning on𝑛−grammod-
els, Subject-verb agreement

[57] (2016) Post-hoc LSTM Heatmap T-SNE visualization
[60] (2016) Post-hoc LSTM Probing Subject-verb agreement

and logical inference
[11] (2018) Post-hoc RNN Correspondence between net-

work depth and syntactic
depth

POS tag and dependency
classification

[40] (2018) Post-hoc RNN Comparison to human intu-
ition

Subject-verb agreement

[53] (2018) Post-hoc LSTM Ablation Context localization
[53] (2018) Post-hoc LSTM Ablation Context localization
[106] (2015) Inherently LSTM Integration of semantic

topologies
Sentiment analysis and re-
lation classification

[118] (2016) Inherently RNN Sequential iterative soft-
thresholding algorithm and
deep unfolding

Sequential compressive
sensing task

[59] (2017) Inherently LSTM Integration of knowledge
graphs

Semantic object parsing

[4] (2016) Inherently Module
Networks

Reinforcement Learning Visual question answering

[46] (2017) Inherently Module
Networks

Joint learning Visual question answering

[42] (2019) Inherently Module
Networks

Unsupervised auxiliary loss Reasoning over text

[41, 78, 126,
129] (2017-
2020)

Inherently LSTM Encoding of richer linguistic
knowledge

Relation Extraction

Table 3. Summary of interpretability attempts at understanding the inner representations of RNNs

their inner mechanisms. For instance, the work of [54] presents an interactive tool to visu-
alize attention and provides an interface to dynamically adjust the search tree and attention
weights. Similarly, in [62], the authors proposed a flexible visualization library to visually
analyze models for natural language inference and machine comprehension that relies on
a perturbation-driven exploration strategy. Also, in [101], SEQ2SEQ-VIS, visual analytics is
presented for sequence-to-sequence model debugging by visualizing the five stages of a seq2seq
model: encoder, decoder, attention, prediction, and beam search. SEQ2SEQ-VIS also describes
the knowledge that the model has learned by relying on transitions of latent states and their
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related neighbors. Finally, SEQ2SEQ-VIS provides an interactive method to manipulate the
model internally and observe the impact on the output.
ExBERT [44] is another interactive visualization tool that uses linguistic annotations, mask-

ing, and nearest neighbor search to provide insights into contextual representations learned in
transformer models in three main components: (1) the attention, (2) the corpus and (3) the
summary view. Similarly, Vig [115] presents a tool to visualize BERT and GPT-2 models at
three different granularity levels: the attention-head level, the model level, and the neuron
level. Table 4 summarizes these methods and the specific models they are applied on.

Reference Method Model
[54] (2017) Visualization of attention weights Neural machine translation models
[62] (2018) Perturbation-driven Natural language inference and ma-

chine comprehension models
[101] (2018) Visualization of encoder, decoder, atten-

tion, prediction, and beam search
Sequence-to-sequence models

[44] (2019) Linguistic annotations, masking, and near-
est neighbor search

BERT

[115] (2019) Visualization on the level of attention-
head, model, neuron

BERT and GPT-2

Table 4. Summary of transformer visualization methods

7.2 Is the Attention Mechanism Inherently Interpretable?
Controversy has accompanied attention mechanisms since their introduction. While some at-
tention weights can provide reliable explanations [72]; some researchers showed that attention
distributions are not easily interpretable and require further processing [13, 47].
In an attempt to investigate these controversies, Vashishth et al. [112] manually analyzed

attention mechanisms on several NLP tasks. The experiments showed that attention weights
are interpretable indeed and are correlated with feature importance measures capturing several
linguistic notions. Similar findings were obtained by [72] on medical tasks where attention
weights were efficient in the selection of most relevant segments in a medical document.
These methods, however, are specific to particular domains and linguistic notions and

might not be easily extendable to higher-level knowledge structures. Hence, a parallel line of
work attempted at proving that “attention is not explanation” by considering more general
correlations experiments. For instance, [47] show that there is no frequent correlation between
the attention weights and feature importance methods. Moreover, the authors identify attention
distributions that yield equivalent predictions through correlation computation.
Prior to these researches, [91] focused on the reasoning capabilities of transformers by

considering the recognizing textual entailment task. For this purpose, the attention patterns
are visualized on hand-picked validation samples. Word-by-word attention is shown to resolve
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synonym relationships, match multi-word expressions to single words, and ignore irrelevant
parts. Moreover, when a deeper semantics level or common-sense knowledge connects two
sentences, attention seems to be capable of capturing the semantics. However, when two
sentences are not related, attention seems to be dominated by the last output vector.
The authors in [116] study the interaction between the syntax and the attention weights

in GPT-2 [86]. The authors investigate the alignment between syntactic dependency and
attention weights. The authors aggregate over the corpus the percentage of total attention of a
given head that attends to tokens belonging to the given POS tag with syntactic features. The
same aggregation method is used to test the alignment between attention and dependency by
computing the proportion of attention between tokens that are components of dependency
relations. To explore how long- and short-distance relations are captured, the number of tokens
spanned by each head is computed, then attention dispersion is computed based on entropy.
The heatmap shows that most POS tags are disproportionately targeted by one or more heads.
Attention heads that focus on one POS tags vary according to layer depths: determiners are
targeted in the early layers, while proper nouns are targeted in deeper layers. Additionally,
the alignment between attention and dependency relations is strongest in the middle layers.
Heads in the early layers tend to focus on position rather than content, whereas attention
heads in deeper layers target specific constructs. Finally, deeper layers capture longer-distance
relationships. A moderate correlation is found between the distance and entropy of attention
and the attention distance is negatively correlated with dependency alignment.
A common limitation of the discussed approaches is the lack of a unified definition of the

explainability of attention. Formal explainability definition in NLP, or the lack thereof, is
addressed in [13], where identifiability of the attention weights is defined as their ability to
be uniquely identified from the attention head’s output. The study of identifiability is done
on attention weights and token contextualized embeddings and the aggregation of context
into hidden tokens. Input tokens are shown to retain their identity whereas the information
identity gradually decreases with depth. Pruthi et al. [83] manipulate the attention weights to
whitewash problematic tokens in explanations that affect the model fairness or accountability.
This is achieved by diminishing the weight assigned to these impermissible tokens.
Table 5 summarizes the controversy around the attention weights while highlighting the

methods and the findings of each work. In summary, attention weights are more inherently
interpretable than the parameters of general deep networks. However, some aspects of inter-
pretability need further processing and investigation of the attention weights.

7.3 Interpretability of BERT
Bidirectional training is introduced in BERT [25] revolutionizing the training of language
models. This section discusses the interpretability methods that study the why and the how
such training works so well. Such dissection aids in understanding BERT [48, 108], its weights
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Reference Method Interpretable? Finding
[72] (2018) Selection of most relevant

segments
Ability of attention mechanism to iden-
tify meaningful explanations

[112] (2019) Analysis of weights on text
classification and text gener-
ation tasks

High correlation between attention
weights and feature importance of lin-
guistic features

[91] (2015) Weights visualization on rec-
ognizing textual entailement

X Dominance of the last output vector
over attention in some cases

[27] (2017) Layer-wise relevance propa-
gation (LRP) [6]

X Importance of LRP to further interpret
the attention weights and the internal
workings of transformers

[116] (2019) Alignment between syntac-
tic dependency and attention
through visualization and ag-
gregation

X (1) Disproportionality between heads
targeting POS, (2) Capturing of longer-
distance relationships by deeper layers
and (3) Moderate correlation between
distance and entropy of attention

[47] (2019) Correlation and counterfactu-
als

X No frequent correlation between atten-
tion weights and gradient-based mea-
sures of feature importance

[13] (2019) Aggregation of context into
hidden tokens

X Preservation of the token identifiability
throughout the model and decrease of
information identifiability with depth

[83] (2020) Diminishing attention
weights of impermissible
tokens

X Attention-based explanations can be
deceived especially within the fairness
context

Table 5. Summary of the literature discussing if the attention weights are inherently interpretable.

[19, 87] and limitations [93]. More interestingly, it improves the performance of query retrieving
by automatically discovering better prompts to use to retrieve and combine more accurate
answers as in [50]. The approaches discussed next describe the inner workings of BERT models,
their attention weights, and methods used to dissect their inner knowledge.
The work of [87] can be considered as a general evaluation scheme for BERT attention

weights. The authors proposed several methods to analyze the linguistic information in BERT.
First, heatmaps of attention weights are explored to find linguistic patterns. Second, a maximum
spanning tree is constructed for each sentence to check if the syntactic dependencies between
tokens have been learned by the network. Sequence labeling tasks are also used to measure how
important the learned features are for different tasks. Finally, the encoder weights of a high-
resource language pair are used to initialize a low-resource language pair in order to assess
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the generality of the learned features. These methods lead to insightful conclusions. Attention
is shown to follow four different patterns: paying attention to the word itself, to the adjacent
words, and to the end of the sentence. Early layers tend to focus on short dependencies while
higher ones focus on long dependencies. As expected, training on larger datasets can induce
better syntactic relationships, and syntactic dependencies get to be significantly encoded in at
least one attention head in each layer of the model. Moreover, early layers encode syntactic
information, whereas semantic information is encoded in the upper layers, and starting from
the third layer, information about the input length starts to vanish.
A study more focused on the attention heads is presented in [19]. By means of aggregation,

most of the heads are found to put little attention on the current token, whereas there is
a considerable amount of heads that heavily attend to adjacent tokens, especially in the
early layers. Moreover, the authors speculate that, when the head’s attention function is not
applicable, the head attends to the end of the sentence token. Thus, gradient-based measures
of feature importance are applied to show that attending to some end-of-sentence token
does not have a substantial impact on BERT’s output. In order to study whether attention
heads span a few words or attend broadly over many words, the average entropy of each
head’s attention distribution is computed. The results show that in the early layers, attention
heads have widespread attention. To study the alignment between syntactic dependencies and
attention weights, attention maps are extracted from BERT. Evaluation of the direction and
the prediction of the head shows that certain attention heads specialize in certain dependency
relationships. Finally, the coreference resolution test, where the antecedent selection accuracy
is computed, shows that BERT heads achieve reasonable co-reference resolution performance.
While [19] and [87] are focused on the attention heads and weights, Tenney et al. [108]

develop a layer-based approach to interpret the encoded knowledge in BERT’s layers. Tenney et
al. study the traditional NLP steps that BERT follows to investigate where linguistic information
is formed. The authors employ probing techniques to understand the interactions within BERT
better and to study at which layers the BERT network can resolve syntactic and semantic
structures. It is worth mentioning that the edge probing technique, introduced in [108], aims
at quantifying the degree to which linguistic structures can be extracted from a pre-trained
encoder. Two metrics are defined: a scalar mixing weight and a cumulative scoring. The former
specifies the most relevant combination of layers when a probing classifier is tested on BERT,
whereas the latter quantifies the score improvement on a probing task when a particular layer
is considered. The results show that the traditional NLP steps are implicitly followed in order
by the network: POS tags are processed earliest, then constituents, dependencies, semantic
roles, and coreference are processed in the deep layers. In accordance with previous work,
basic syntactic information is encoded in the early network layers, while higher-level semantic
information appears in deeper layers. Moreover, syntactic information is more localizable in a
few layers, whereas semantic information is generally spread across the network.
Jawhar et al. [48] address the same question as [108] and attempt at unpacking the elements

of language structure learned by the layers of BERT. The authors also use probing techniques
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to show phrasal representation in the lower layers of BERT is responsible for phrase-level
information while richer hierarchy can be found in intermediate layers with surface features
at the bottom, syntactic features in the middle, and semantic features at the top. Finally, the
deepest layers encode long-distance dependency such as subject-verb agreement. Jawhar et al.
[48] also show that similar to tree-like structures, the linguistic information is encoded in a
classical compositional way.
BERT’s ability to encode factual knowledge is studied by [82, 90] through linguistic tasks

such as facts about entities, common sense, and general question answering. BERT is shown
to encode relational knowledge without any fine-tuning and without access to structured
data like other NLP methods. This suggests that language models trained on huge corpora
can serve as an alternative to traditional knowledge bases [82]. Roberts et al. [90] consider
finetuning language models (such as BERT) to study their ability to encode and retrieve
knowledge through natural language queries. The authors found that language models are
able to perform well on factual tasks but are expensive to train and more opaque than shallow
methods. Moreover, they don’t provide any guarantees that knowledge can be updated or
removed over the course of training.
Readers are referred to [93] where Rogers et al. survey existing work that dissects how and

where BERT encodes semantic, syntactic, and word knowledge. The dissection is done via
self-attention heads and throughout BERT layers. Moreover, [93] surveys modifications to
BERT’s training objectives and architecture, describe the over-parameterization issue in BERT
training, and report some of the compression approaches and future research directions.

7.4 Discussion
Due to their reliance on the attention mechanism, the interpretation of transformers is less
challenging than RNNs. In view of the way they are designed, attention weights are relatively
more interpretable than the conventional deep networks weights. This design made the evalu-
ation of transformers’ inner workings more feasible by visualizing their weights and hidden
representations [54, 101, 115]. The controversy that accompanied the attention mechanisms
trying to address the extent to which the attention weights are explainable can lead to the
following conclusion. Relative to general deep networks weights, attention weights can be
thought of as more interpretable. However, solely, their ability to provide full transparency
or meaningful explanations is questionable. Further processing is needed to achieve proper
transparency of transformer models especially for long-distance temporal relations. More
specifically, when the task in hand is not a simple classification but a more complex task
such as translation, question answering and natural language inference, attention weights
might not offer the desired interpretability [27, 47]. Mohankumar et al. [69] argue that when
the attention distribution is computed on input representations that are very similar to each
other, they cannot provide very meaningful explanations. For this purpose, the authors of
[69] diversify the hidden representations over which the distribution are computed for more
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faithful explanations. Moreover, attention weights become less interpretable in deep layers
[13, 116]. Hence, if the explanation at deeper layers requires further processing especially that
output vectors might dominate the attention weights as in [91].
Moreover, similar to RNNs (Section 6), the evaluation of interpretability methods on trans-

formers is achieved by designing methods that test specific semantic or syntactic aspect
through alignment [116], correlations [47] and general explainability methods such as LRP [6]
and weight visualization [91]. The first building block in the common explainability framework
of transformers is presented in [13]. However, their definition and metric need to be extended
to involve other syntactic and semantic explainability aspects discussed in this section. Finally,
developing only post-hoc interpretation methods on transformers can be explained by the
fact that such models are already famous and retraining them is very computationally heavy.
Training BERT model on huge corpora, for instance, requires the same energy that five cars
consume on average during their lifetime according to [102].

8 EXPLAINING MODEL’S DECISIONS
While the previous section opens the deep black-boxmodels to understand their representations,
this section focuses on highlighting the evidence supporting their decisions. We categorize
these approaches into post-hoc and inherently interpretations.

8.1 Post-hoc Interpretation
These methods, consider a pre-trained model and analyze how such a model process a textual
input before producing a decision. When the model is black-box the interpretability method is
model-agnostic. If some assumptions are made on the architecture, the method ismodel-specific.

8.1.1 Model-agnostic Explanations. Given a black-box model 𝑓 : 𝑋 ↦→ 𝑌 and an input 𝑥 , the
goal of model-agnostic interpretation methods is to explain the individual prediction 𝑓 (𝑥). The
majority of these methods rely on perturbing 𝑥 according to some distribution 𝐷𝑥 .
In [88], Ribeiro et al. present LIME, one of the first state-of-the-art explainability algorithms,

that approximates any classifier or regressor locally with an interpretable model. LIME presents
the interpretation 𝑔 for the user in terms of comprehensible explanations such as bag-of-words.
Formally, LIME minimizes L(𝑓 , 𝑔, 𝜋) +Ω(𝑔), where L(𝑓 , 𝑔, 𝜋), a measure of how unfaithful the
explanation𝑔 is to the original model 𝑓 with the unfaithfulness is computed in a locality defined
by a proximity measure 𝜋 and Ω(𝑔), the complexity of the explanation 𝑔. The explanation
is created by approximating 𝑓 locally by an interpretable one. L(𝑓 , 𝑔, 𝜋) is approximated by
sampling around an input 𝑥 according to 𝜋𝑥 , performing perturbations on the input then
explaining linearly, respecting thus local faithfulness.
Later in 2018, Ribeiro et al. [89] argue that the coverage of the explanations generated by

LIME is not clear. For instance “not”, “good” could be an explanation of negative sentiment and
“not”, “bad” could be that of a positive one. Thus, the generated explanation does not clearly
state when the word “not” has a positive/negative influence on the sentiment. Ribeiro et al.
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[89] define “anchors” as if-then rules to generate model agnostic-explanations. A perturbation
is applied by replacing “absent” tokens with random words having the same POS tag drawn
according to an embedding similarity-based probability distribution. Experiments on visual
question answering, and textual and image classification show that the anchors model enhances
the precision of explanations with less effort to understand and apply.
A landmark in the timeline of the ExAI method is achieved when Lundberg and Lee theoret-

ically showed that many interpretability methods and metrics can be unified in one approach
that exploits game theoretical concepts in [63]. Inspired by the Shapley value of game theory,
SHAP values are proposed as a measure of the feature importance for a model’s prediction.
SHAP is proved to be a unified measure that different methods such as LIME [88], Deep LIFT
[99] and layer-wise relevance propagation [6] tried to approximate in the literature. Later, Chen
et al. [16] extend SHAP and proposed the L-Shapley and C-Shapley measure by exploiting the
underlying graph structure to reduce the number of model evaluations. In [2], explanations of
black-box models are formulated as groups of input-output tokens causally related. Explana-
tions are generated by querying with perturbed inputs and solving a partitioning problem to
select the relevant components. Variational auto-encoders are used to derive meaningful input
perturbations.
We draw the reader’s attention to the fact that the approaches discussed above [2, 63, 88, 89]

are not exclusive to textual data. While other similar explainability methods exist [7, 63, 103],
they are not validated on NLP tasks, thus beyond the scope of this work.

8.1.2 Model-specific Explanations. Instead of considering black-box models, Kádár et al. [51]
interpret specific recurrent architectures in RNNmodels by quantifying the contribution of each
input to the encoding of a GRU architecture. Their omission score is computed by measuring
the salience of each word 𝑠𝑖 in a sentence 𝑠1:𝑛 by observing how much the representation
of the sentence when omitting the word 𝑠𝑖 would deviate. The results show the sensitivity
to the information structure of a sentence and selective attention to lexical, semantic, and
grammatical relations. Similarly, Arras et al. [5] adapt the Layer-wise Relevance Propagation
(LPR) method of [6] to explain the predictions of accumulators and gated interactions in the
LSTM architecture in particular.
[51] and [5] exploit general ExAI methods, such as perturbation and layer propagation, to

explain NLP models. Although such methods do not require human annotation or intervention,
they might be computationally expensive. Prior to that, researchers developed methods that
imitate the thinking process of human beings by relying on human annotations to derive
explanations. Those attempts are grouped under the “rationalization” framework that aims at
explaining why a specific instance belongs to a category by extracting a “rationale” along with
the network annotation. According to [55], a “rationale” can be defined as “sub-sets of the
words from the input text that satisfy two key properties. First, the selected words represent
short and coherent pieces of text (e.g., phrases) and, second, the selected words must alone
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suffice for prediction as a substitute of the original text.” Rationales are proved to help to learn
domain-invariant representations that can induce machine attention [9].
In [124], rationale-annotated data is exploited to aid learning by providing the learning

algorithm (Support Vector Machines, SVMs, in this case) with hints as to which features of
the input the algorithm should attend. Later, Zhang et al. [125], extended the idea to CNNs
by incorporating rationales for text classification in a Rationale-Augmented CNN (RA-CNN).
RA-CNN computes a document-level vector representation by summing over its constituent
sentence vectors weighted by the likelihood that the sentence is a rationale in support of
the most likely class. Adversarial learning is utilized in [123] to improve the performance
of rationale extraction so as not to leave any useful information out of the selection. The
outcome is also incorporated in [123] into the selection process to improve the predictive
accuracy through more comprehensive rationale extraction. Differentiable binary variables
are introduced in [10] to further improve the rationale extraction by augmenting the objective
with re-parameterized gradient estimates. Game-theoretic concepts are incorporated in [14] to
derive a rationalization criterion that approximates finding causal features without highlighting
spurious correlations between inputs and outputs.
A common benchmark to evaluate the rationalization attempts is presented in the ERASER

framework of [26]. Other approaches include, but are not limited to, contrastive textual
explanations [94], representation erasure [58] and information theoretical measures [15].

8.2 Inherently Interpretable Models
While the previous interpretability methods work on pre-trainedmodels, themethods discussed
in this section develop models that can classify textual data while explaining their particular
decisions. In other words, for a textual input 𝑥 the models discussed next can output a decision
(class) 𝑦 and an explanation 𝐸 formulated differently in each reference. Using the terminology
of this work, we further cluster these methods in model-agnostic and model-specific groups.

8.2.1 Model-agnostic Explanations. As an extension to the previously discussed “rationaliza-
tion” attempts [124, 125], Lei et al. [55] propose an automated approach to extract rationales
from the text as subsets of the text words that are coherent and short but lead to the same
predictions. For this purpose, the authors train a generator and encoder that learn the classi-
fication as well as the explanation. While the former specifies a distribution over subsets of
words as candidate rationales, and the latter processes them for prediction. This is achieved by
(1) forcing the produced rationale, 𝑧 (set of words) to be sufficient as a replacement for the
input text 𝑥 in predicting the output 𝑦, i.e. | |enc(𝑧, 𝑥) − 𝑦 | | small (2) while maintaining short,
i.e. small | |𝑧 | |, and coherent rationales. Coherency is satisfied by encouraging words to form
meaningful phrases (consecutive words) rather than sets of isolated words. Hence, the sum
of |𝑧𝑡 − 𝑧𝑡−1 | is minimized. Then, doubly stochastic gradient descent is used to minimize the
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following objective over training instances of the form (𝑥,𝑦):∑︁
(𝑥,𝑦)
E𝑧≈gen(𝑥)

[
| |enc(𝑧, 𝑥) − 𝑦 | |22 + _1 | |𝑧 | | + _2

∑︁
𝑡

|𝑧𝑡 − 𝑧𝑡−1 |
]

(1)

8.2.2 Model-specific Explanations. Liu et al. [61] consider local explanations for particular
inputs but present a generative explanation framework that learns to generate fine-grained
explanations inherently, while making classification decisions in a model-agnostic manner. The
prediction component is composed of a (1) text encoder that takes the input text sequence 𝑆 and
encodes it in a representation vector 𝑣𝑒 and (2) a category predictor 𝑃 that outputs the category
corresponding to 𝑣𝑒 along with its probability distribution. The explanation component consists
of an explanation generator that takes 𝑣𝑒 and generates fine-grained explanations 𝑒𝑐 , as a set
of words that explain the model’s decision. Fine-grained explanations can be thought of as
attribute-specific rationales. In other words, in sentiment analysis applications, if a product
has three attributes: quality, practicality, and price, the review ”the product has good quality
with a low price”, can be explained by “low” as a fine-grained explanation for the price and
“high” as a fine-grained explanation for the quality. In [61], those explanations 𝑒𝑐 are provided
in two datasets collected by the authors of the work.
Training consists of minimizing a combination of two-loss factors: the classification loss and

the explanation loss. To avoid cases where the generative explanations are independent of the
predicted overall decision, the authors define an explanation factor that helps build stronger
correlations between the explanations and the predictions. More specifically, a classifier 𝐶
is trained to predict the category from the explanations and not the original input text. 𝐶 is
then used to provide more robust guidance for the text encoder to leverage the generation
process by generating a more informative representation vector 𝑣𝑒 . Experiments show that the
explanation factor enhances the performance of the base predictor model.
Reasoning over Knowledge Graph [97] presents a promising way to explain NLP systems

in a structured way in the form of < 𝑠𝑜𝑢𝑟𝑐𝑒_𝑒𝑛𝑡𝑖𝑡𝑦, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑒𝑛𝑡𝑖𝑡𝑦 > [117]. Graph
reasoning has been addressed as a variational inference problem [17], random-walk search
[36] and a Markov Decision Processes [24, 120]. Recently, knowledge graph reasoning has
attracted researchers in the NLP and ExAI communities. Readers are referred to [18] where its
basic concept, definitions, and methods are surveyed.

8.3 Discussion
To the best of our knowledge, inherently interpretable models for explaining individual de-
cisions of NLP models are restricted to the work of [55, 61]. This can be explained by the
fact that current language models require large computational costs in terms of time and
computational resources. Modifying the architecture to an explainable one and retraining the
current high-performance models will be expensive.
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On the evaluation level, since model-agnostic approaches were not specific to textual data,
their evaluation was general and not specific to NLP cases. For instance, LIME’s evaluation
for textual data was done qualitatively by getting insights on a model trained to differentiate
“Christianity” from “Atheism” on a subset of the 20 newsgroup dataset [88]. On the other
hand, SHAP [63] is not explicitly tested on NLP tasks and [89]’s anchors were tested on
tabular datasets. Although a common evaluation framework is not followed with the model-
specific approaches, textual data is used to evaluate the described explainability methods. This
evaluation is inspired by sensitivity analysis where the sentence representation is monitored
to evaluate how much deviation is observed when the words outputted by the explainability
method are omitted [5, 51]. Regarding the inherently interpretable models, one can clearly see
that both methods [55, 61] rely on the encoder-decoder design to generate explanations. [55]
evaluate their approach on multi-aspect sentiment analysis and compare their explanations to
manually annotated test cases. Although [61] have similar motivation, they do not compare
to [55]. The authors report instead a BLEU score for their generated explanations. They also
report the performance of a classifier on the fine-grained explanation instead of the initial
input and employ a human evaluation framework.

9 DISCUSSION AND FUTURE DIRECTIONS
To better understand the interest in ExAI in NLP, we consider the titles of the papers that
we reference in this work and we visualize word frequencies in Figure 5. One can see that
deep networks, representation or embedding methods and attention models are very frequent
in our referenced work. The importance of visualizations or visual clarification techniques
in explaining deep models can be also inferred from the frequencies. The figure also hints
at the fact that ExAI in NLP in the referenced work is mostly focused on understanding the
inner workings of the underlying models rather than understanding a particular output of
classification. Additionally, to reflect the interest in ExAI in general within the machine learning
community, we show the top 7 conferences and journals referenced in this work in Figure 6.
The lack of journals that study or survey ExAI methods in general, and in NLP, in particular,
is reflected in the figure. Researchers are publishing their ExAI methods and discoveries in
general AI conferences or conferences that focus on linguistics and natural language.
Furthermore, Figure 7 shows how the research interest in some ExAI categories is progress-

ing since 2012. For instance, The interpretability of word embeddings has attracted researchers
since 2015, when the concern about bias in the machine learning model has emerged after
Google Photos application tagged a black woman as Gorilla [38]. The introduction of transform-
ers in 2017 has also encouraged researchers to study the magic behind their state-of-the-art
performance on different NLP tasks. Moreover, the unprecedented breakthroughs in NMT in
2016 [119] encouraged research work on ExAI applied to NMT models afterward.
Although recent years are witnessing significant growth in ExAI methods applied to NLP

models, these methods are not fulfilling their potential yet. For instance, the evaluation of
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Fig. 5. Most frequent terms used in the titles of the publications referenced in this work

Fig. 6. Top 7 conferences and journals referenced in this work

Fig. 7. Timeline for ExAI in NLP

ExAI methods is lacking a unique testing framework where metrics and datasets are well-
designed. In the assessment of ExAI’s current methods, different NLP tasks such as POS
tagging, word intrusion, and correlation experiments are explored. However, these tasks are
paper-specific and they are not used to compare different methods. This brings to the front
the need for a common evaluation framework where human-labeled datasets are well defined
and NLP tasks are described within the syntactic or semantic aspect that they aim to explain.
Additionally, an area that is yet to be explored by researchers is the quantitative assessment
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of the interpretability of the embedding spaces and the effectiveness of each dimension in
semantically and syntactically encoding a particular concept.
Moreover, the majority of the work studied in this survey post-process NLPmodels to explain

their decisions and inner workings. Inherently interpretable NLP models are under-examined
due to the fact that retraining a model after modifying its architecture is very expensive and
might not achieve the same performance. Exploring explainable designs for NLP models can
thus be one of the main subjects for future work. Another direction for future work is the
level at which explanations for language models are provided. So far, the explanations are
provided as either the contribution of individual words to the decision or the layer/neuron at
which syntax or semantics are encoded. However, text analysis is a multi-step process: after
extracting information from textual unstructured data, analysis is applied to the extracted
information to reach knowledge. Wisdom and logic come at the highest level of semantics.
Thus, explanations provided on the individual input words will be ignoring the hierarchy of
the text understanding process which will affect their efficacy.

10 CONCLUSION
This work presents the first comprehensive survey on explainability methods in the NLP field
that combines ExAI methods on the input-, processing- and output levels. According to the
assumptions made on explained models, we make the distinction between model-agnostic and
model-specific methods. We further distinguish between explanation in a post-hoc manner and
explanation that results in inherently interpretable models.
We present different attempts to interpret word embedding models that are recently serving

as inputs to almost every NLP network. Some of those methods rely on altering the embedding
space by imposing a sparsity constraint or applying a rotation transformation while others
integrate external knowledge bases and ontologies or rely on bidirectional language models to
derive contextualized embeddings. Moreover, we survey existing work on the interpretation
of hidden representations of NLP models, general RNNs, and transformers in terms of human-
understandable concepts. We discuss the debate over the interpretability of attention weights
and we derive the following conclusion: attention weights are relatively more inherently
interpretable than traditional models’ parameters but further analysis is required for complete
transparency in attention-based models. Additionally, we present the research work that
explains a particular model decision inspired by general ExAI methods or designed specifically
for NLP models. We also discuss different visualization platforms that present user-friendly
explainability schemes based on perturbations and attention weights.
Figure 8 summarizes the work done on the interpretability of word embeddings, inner

workings of RNNs and transformers, the model’s decision, and the different visualization
methods while highlighting the interconnections between the different methods.
To date, there is no common evaluation ground for explainability methods on NLP models.

In this work, we shed the light on different empirical setups, datasets, and metrics that can be
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Fig. 8. References for Sections 5, 6, 7 visualized over similarity of scopes.

designed to assess the performance of ExAI in NLP. These setups are aggregated according to
what the corresponding ExAI method is addressing: embeddings, inner workings, or model’s
decisions. We further examine these evaluation methods to discriminate between evaluations
that explicitly assess the interpretability and those that are of qualitative nature or need further
analysis to extract insights useful from an explainability perspective. Finally, we discuss the
limitations of existing ExAI methods while highlighting research areas that can possibly be
the focus of researchers in their future exploration.
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