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Control Systems, particularly closed-loop control systems (CLCS), are frequently used in production
machines, vehicles, and robots nowadays. CLCS are needed to actively align actual values of a
process to a given reference or set values in real-time with a very high precession. Yet, artificial
intelligence (AI) is not used to model, design, optimize, and tune CLCS. This paper will highlight
potential AI-empowered and -based control system designs and designing procedures, gathering
new opportunities and research direction in the field of control system engineering. Therefore,
this paper illustrates which building blocks within the standard block diagram of CLCS can be
replaced by AI, i.e., artificial neuronal networks (ANN). Having processes with real-time contains
and functional safety in mind, it is discussed if AI-based controller blocks can cope with these
demands. By concluding the paper, the pros and cons of AI-empowered as well as -based CLCS
designs are discussed, and possible research directions for introducing AI in the domain of control
system engineering are given.

CCS Concepts: • Computing methodologies → Computational control theory; Artificial intelligence;
• Information systems → Process control systems.

Additional Key Words and Phrases: Closed-Loop Control Systems, Adaptive Control Systems,
Artificial Intelligent, Artificial Neuronal Networks, Real-Time, Functional Safety

1 INTRODUCTION
In an ideal world, the controller of CLCS sets the control variables of processes or systems
so that the system response perfectly matches the exact reference value. The intended
process response is strictly adhered to the reference value—at every time, no matter how
high the disturbance on the process is. However, real-world processes and systems such
as mechatronical acutuators within vehicles, bio-chemical processes within reactors, and
temperature regulation systems within buildings can not be controlled without any over as
well as under shootings, settling times, and oscillations. Thus, every technology bringing
real-world controllers closer to the theoretical ideal controllers is welcome. Admittedly, even
with nowadays computational power, the general procedure of designing control systems
[6, 26] has not changed within the last four decades.

Introducing AI in the domain of closed-loop and feedback control systems, hereinafter
referred to as CLCS, will improve the entire CLCS and the controller behavior, especially for
multivariable and nonlinear processes. Further AI might be capable of predicting possible
disturbances even before they affect the process. It is conceivable that AI will replace the
conventional controller block entirely and directly interpret the sensor values as process
feedback. As a result, the CLCS block diagrams and the controller design procedure will
adopt, enabling AI within control system engineering.

In the remainder of this paper, the state of the art concerning CLCS and physics-informed
AI are summarized in Section 2. Discussing new AI-empowered and -based block diagrams
for CLCS, Section 3 will introduce new blocks and new design patterns in detail. Focusing
on functional safety, the most critical property of CLCS for specific processes, Section 4 will
show that AI-based CLCS and safety will go together. By concluding this paper, Section
5 the pros and cons of AI-empowered as well as -based CLCS designs are discussed and
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possible research directions for the usage of AI within CLCS are highlighted. In this paper,
for simplification, the term process stands for both: the controlled process and the controlled
systems. Whereas the term system expresses the entire open- or closed-loop system, hereafter.

2 STATE OF THE ART
AI and especially ANN have not yet made significant inroads into the field of control systems,
including both open- as well as closed-loop systems. Figure 1 prove this assessment by
comparing the different curve gradients of the publication count with the keyword Neural
Network in contrast to the publication count with the keyword combination Closed-Loop
Control Systems and Neural Network. Some reasons for the, so far, non-existing combination
of control system engineering and AI can be the following:

∙ the complexity of the phase space described by the differential equations,
∙ the unpredictability of the disturbances on the process to be controlled, as well as
∙ the tradition in control system engineering, which is characterized by describing the

process in its entirety in physical models.
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Fig. 1. Count of publication with the keywords: Closed-Loop Control Systems, Artificial Neuronal
Network, Artificial Intelligence and the keyword combinations: Closed-Loop Control Systems & Neuronal
Network, Closed-Loop Control Systems & Artificial Intelligent; calculated from the Elservier Scopus
bibliographic database [8].
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2.1 Classical Closed Loop Control Systems
In CLCS, the most common controller used is the proportional– integral–derivative (PID)
controller. This high usage is because most engineers understand how to vary the three
parameters [3], based on the past (I), present (P), and future (D) control error [1] for
achieving the intended CLCS behavior. However, PID controllers do not work well for
nonlinear processes as well as for processes with small dead-times [3]. Further, depending on
its parameter, PID controllers are prone to over- and undershot or reach the set-point very
slow [28]. As countermeasures, the parameter turning strategies [28] have been optimized,
and the single PID controller design has been decomposition more complex designs such as
PID-P, PI-PD, and PI-D controller [3].

Nonlinear processes with uncertainties distributed non-periodic values are still hard to
control [1]. Processes with multivariable responses and reference are also unfeasible to control
by conventional CLCS design.

2.2 AI-Based Closed Loop Control Systems
The gap between the non-existing AI and control system engineering combination was
recently recognized, so the first scientific papers appeared. For example, Rackauckas et al.
[21] were recently able to present a general approach using ANN to approximate differential
equations, even finding missing terms. The developed methodology of universal differential
equations discovery can approximate the differential equations of a specific process based on
its recorded data.

For combining AI and CLCS, differentiable programming languages like Julia [4] are
needed to solve the differential equations and train the ANN within the same software code.
The benefit of Julia as a programming language is shown inter alia by Rackauckas et al. [20].
The concept of physics-informed neural networks [22] is based on the same conceptual idea
but uses different programming languages to bring differential equations and ANN together.
Still to be mentioned are the two more review papers on nonlinear [23] and dynamic [5]
differential equations and ANN, respectively. In engineering applications, the gap between
control engineering and AI currently continues to exist.

2.3 Procedure of the Control System Design
Starting at the turn of the millennium, an increasing amount of computer-aided applied
control designing software solutions like Simulink (MATLAB) [29], Xcos (Scilab) [9], and
control (Octave) [19] occurs and manifests the currently used best practices in the procedure
of the controller design. As illustrated in Figure 2, 14 steps are common to get from the
process needed to control to the final control system design [26]. Note, in Figure 2 an
additional 15. step is added due to personal experience.

3 AI EMPOWERMENT FOR CLOSED-LOOP CONTROL SYSTEMS
Considering the control system design procedure and the CLCS block diagram, AI can
be applied in different design steps and blocks. Thus, this Section will first introduce AI
for studying, modeling, and scaling the real-world process which needs to be controlled.
Thereafter the benefits of AI-based controller tuning and entirely AI-based controller are
discussed. Finally, the resulting changes in the control system design procedure, raised by
the introduction of AI in control system engineering, are recapitulated.

3



controller

static parameters
𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷, . . .

process

disturbances
𝐷𝑡

sensor

response
𝑋𝑡

reference
𝑊𝑡

control variables
𝑋1𝑡, 𝑋2𝑡, 𝑋3𝑡, . . .

–

I) study the process
II) model the process in the most simplified way

III) scale the variables and analyze their dependencies

IV) decide which variables
are to be controlled

V) decide on the actuators

V) decide on the measurementsV) decide on the sensors

VII) decide on the type of the controller
IX) design the controller and its parameter

VIII) decide on the control objectives

VI) select the control configuration
X) analyze the resulting controlled system

XI) simulate the controlled system
XII) repeat from step II) if needed

XIII) select the hardware for the controller
XIV) validate the controlled system in application
XV) repeat from step II) or IX) if needed

Fig. 2. The process of control system design, first 14 steps of Skogestad and Postlethwaite [26] in
accordance visualized with the corresponding blocks of the CLCS block diagram.
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(a) hand-crafted physical process model
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–
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data

(b) AI generated empirical process model

Fig. 3. CLCS block diagrams, (a) with a hand-crafted physical process model and (b) with a empirical
process model, e.g. trained by an ANN on recorded data; both process models meet the needs during
controller design procedure.

3.1 AI-based Process Modeling
By starting any control system design, the physical model of the process is studied, modeled,
scaled, and evaluated. These four steps are repeated until the design model fits the real-
world process, which needs to be controlled by the control system. Regarding to the
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statement by Hornik et al. [11], that "standard multilayer feedforward networks are capable
of approximating any measurable function to any desired degree of accuracy, in a very
specific and satisfying sense", it seems to be obvious to replace the physical model with an
empirical model. As illustrated in Figure 3 (b), an ANN is trained on recorded data of the
process. Thus, the trained ANN as functions approximator is an empirical model of the
process model. Its level of detail depends on the training data, but the needs during the
controller design are met with sufficient training data. Note, in control system engineering,
all data and datasets are time series; thus, sampling frequencies during data recording need
to be treated during learning.

The level of detail of the AI-generated empirical process model corresponds with the
amount, the variance, and the biases of the recorded training data. This means, in case the
recorded data cover every assumed process variance without any biases, the realistic process
model can be automated generated.

Since it is challenging to collect data from the process in border and extreme cases, a
mixture of both an empirical and a physical process model is needed. Physics-informed
neural networks [22] as well as neural operator [15] and their combinations [16] are promising
approaches for combining these both models. Here, a physical model definition of the process
covers the border and extreme cases, while the training data is considered for the general
cases during the model training.

3.2 AI-empowered and -based Parameter Tuning
To define the optional parameter set, e.g., for PID controllers, Ziegler-Nichols tuning, Cohen-
Coon tuning, Kappa-Tau tuning, heuristic tuning, and other methods are used nowadays.
These methodologies lead to parameter sets, which are then commonly fine-tuned by hand,
resulting in static hand-crafted control parameter, as seen in Figure 4 (a).

Next to the established tuning approaches, ANN can optimize the parameter for typical
process cases based on recorded data. Illustrated in Figure 4 (b), the parameter for the
controller are trained as static parameter sets so that these AI-tuned parameters can be
evaluated before deploying the CLCS, ensuring that the parameter set coves the extreme
cases. The advantage of AI-based, i.e., data-driven parameter tuning, is that the probability
distribution of process states and the probability distribution of disturbance will be considered
during training. Because, unlike the dataset for the AI-based process modeling, the data set
used for parameter tuning should represent the real-world process cases. Thus the data set
for parameter tuning might be strongly biased with recurrent process states.

Based on the recorded process data, an ANN can be trained for proving a dynamic set
of parameter to the controller, visualized in Figure 4 (c). In this setting, the ANN might
internally predict the disturbance for generating the best parameter set online. Increasing
this internal representation of the current process state and the current disturbance within
the ANN, the ANN needs to get sensor input directly. This sensor input can originate from
the sensor, used for the feedback of the CLCS, but other additional sensors can be considered
as well. With multiple sensors, the prediction of process disturbances can be optimized by
training the ANN. Thus, the ANN can dynamically estimate the optimal parameter set and
update in the controller. Online parameter tuning in non-convex optimization cases becomes
for particular controllers, like the PID controller, mathematically an NP-hard problem [27].
Introducing AI, in the form of ANN might deal with the issue of NP-hard calculations [18]
during runtime.
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(c) online and adaptive AI-based parameter set

Fig. 4. Parameter tuning for CLCS, (a) fine tuned parameters by experts, (b) and (c) process data
driven tuned adaptive parameters.

In contrast to expert rule tables for dynamical parameter tuning [17], the online estimation
of controller parameters by an ANN leads to an enormous space of possible CLCS characteris-
tics. All possible system behaviors resulting from the enormous working space of CLCS with
online AI-based parameter tuning can not be simulated or tested in entirety. Consequently,
AI-based dynamically online change of controller parameter sets is not recommended yet for
time- and safety-critical processes.

3.3 AI-based Controller
Going even a step further, the entire controller, i.e., even nested [31], and cascaded [12, 14]
controller setting, can be replaced by AI-based controller. As shown in the block diagram
of Figure 5 (a), a trained AI-based controller, most likely in the form of an ANN-based
controller, directly sets the control variables based on the given reference value and the sensor
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(a) AI-based controller
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(b) cascaded setup with static parameter sets
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(c) simplification due to AI-based controller

Fig. 5. AI-based controller: (a), e.g., an ANN replaces the controller design; (b) and (c) cascaded
controller set up where an AI-bases controller like in (c) simplifies the CLCS design.

input. Even multiple reference values, as well as sensor inputs, are directly coupled to the
AI-based controller. The challenging part of CLCS design with an AI-based controller is now
the training of AI. Therefore, real-world data with the typical process variance are needed
and an unbiased data set, covering all variance without bias. Conserving the characteristic
of both time-series data sets during learning is challenging; a possible solution is to train on
both datasets simultaneously [10, 32].

In contrast, to the complex and time-expensive training of an AI-based controller, the
inference times, i.e., the execution times, of trained ANN are magnitudes faster. On GPU
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and particular FPGA, the inference times of deep ANN are below 10𝑚𝑠 [7, 13] and fit many
processes in control. The inference times of lightweight ANNs with less than four million
parameter are usual below 3.9𝑚𝑠 [13]. AI-based controllers can no longer be evaluated
entirely from an evaluation and testing perspective. Even by systemically evaluating the
system behavior in predefined input-values spaces, poles and extra can remain unnoticed.

AI process

disturbances
𝐷𝑡

sensor

response
𝑋𝑡

reference
𝑊𝑡

control variables
𝑋1𝑡, 𝑋2𝑡, 𝑋3𝑡, . . .

I) record data set of process and create process
model, empirically, by AI

II) decide which variables
are to be controlled

III) decide on the actuators

III) decide on the measurementsIII) decide on the sensors

V) train AI on control objective

IV) decide on the control objectives

V) simulate the controlled system
VI) repeat from step I) if needed

VII) select the hardware for the controller

VIII) validate the controlled system in application
IX) repeat from step I) or V) if needed

Fig. 6. The process of AI-empowered and -based control system design, 9 steps in accordance with
the corresponding block of the block diagram. Blue steps identical to the steps of Skogestad and
Postlethwaite [26] – red steps are altered.

3.4 Procedure of the AI-empowered and -based Control System Design
Once AI can be used for and in CLCS design, the number of steps in its design will be
reduced to nine steps. As shown in Figure 6, the three steps needed for describing the
physical process model are condensed to a single one—recording the data set and create the
empirical model automatically by the use of AI. By using an AI controller, the decision and
analysis on the controller type of as well as on the control configuration become obsolete.
However, similar to the tuning of the controller, the training of the AI regarding the reference
values is needed.

4 SAFETY FOR AI-EMPOWERED AND -BASED CLOSED-LOOP CONTROL
SYSTEMS

AI and functional safety are nowadays mainly discussed in the context of obstacle detection
for self-driving vehicles [2, 30, 33], because high accurate obstacle detection on camera,
LiDar, and radar data can only be achieved by AI algorithm. The safety dilemma of AI
remains unsolved until explainable AI is detailed delved.

Since explainable AI, i.e., explainable deep ANN, does not exist yet [24], AI-based controller
seems no option for controlling processes. Enabling the benefits of AI-based controllers
and countering the risks of CLCS impossible to evaluate and test, two possible designs are
depicted in Figure 7. To guarantee functional safety, one strategy is to provide a fall-back
path in combination with a safety switch, disabling the AI-based controller depending on,
e.g., thresholds. The block diagram of Figure 7 (a) illustrates this design. Theoretically,
implementing a fall-back path using a conventional controller seems to be trivial. Indeed, the
non-trivial part is the parameterization of the switch deciding whether to pass the AI-based
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(a) AI-based controller with a conventional fall-back path

controller

static parameters
𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷, . . .

fine tune
control variable
in predefined
boundaries

process

disturbances
𝐷𝑡

sensor

response
𝑋𝑡

reference
𝑊𝑡

AI

control variables
𝑋1𝑡, 𝑋2𝑡, 𝑋3𝑡, . . .

–

+
+

recorded process
data

prediction

(b) AI-based controller with a limited impact on the control values

Fig. 7. Controlling safety critical processes by AI-based controller without the need of explainable AI.

controller’s or the fall-back controller’s control variables. Further, to improve functional
safety, the number of trainable weights needs to be reduced, so that works [25] on tailoring
ANN needs to be considered.

Avoiding a head cut between possible unsafe AI-based controllers and a conventional ones,
a second strategy is realized in Figure 7 (b). Here, a conventional controller provides the
control values. The AI-based controller fine-tunes these values in predefined boundaries–
usually by symmetrical boundaries by plus-minus a defined offset for each control value. Due
to the predefined maximum influence of the AI-based controller on the control values, this
CLCS design can be evaluated and tested to fulfill the functional safety requirements.

5 CONCLUSION
AI in the field of control system engineering will be exploited for creating empirical process
models by ANN. AI-based process modeling from recorded process data will reduce modeling
time drastically and allow the conventional without any drawback. However, recorded process
data are needed to cover the variances without biases. Thus a research focus must be on
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how these data can be recorded systematically, e.g., by stimulating a mechatronic actuator
in a particular manner.

The AI-empowered static parameter set tuning will also be a pretty promising attempt for
using the benefits of AI shortly. Nevertheless, due to its safety constraints, online AI-based
changes of the controller parameters are not beneficial for most processes yet. The same
lack in functional safety have entirely AI-based controllers. However, giving these kinds of
controllers a defined impact on the control values of the process, as shown in Figure 7 (b), is
a good starting point for studying the pros and cons of AI-based controllers within deployed
CLCS.

Finally, AI in the control system domain offers the kind of momentum for new control
systems design, reflecting decades of knowledge and combining these with the process
information in the form of recorded data. AI will not replace the experiences needed for
control system engineering but will increase the importance of systematic recording process
data.
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