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ABSTRACT
The microservices architectural style offers many advantages such
as scalability, reusability and ease of maintainability. As such mi-
croservices has become a common architectural choice when devel-
oping new applications. Hence, to benefit from these advantages,
monolithic applications need to be redesigned in order to migrate to
a microservice based architecture. Due to the inherent complexity
and high costs related to this process, it is crucial to automate this
task. In this paper, we propose a method that can identify potential
microservices from a given monolithic application. Our method
takes as input the source code of the source application in order
to measure the similarities and dependencies between all of the
classes in the system using their interactions and the domain termi-
nology employed within the code. These similarity values are then
used with a variant of a density-based clustering algorithm to gen-
erate a hierarchical structure of the recommended microservices
while identifying potential outlier classes. We provide an empirical
evaluation of our approach through different experimental settings
including a comparison with existing human-designed microser-
vices and a comparison with 5 baselines. The results show that our
method succeeds in generating microservices that are overall more
cohesive and that have fewer interactions in-between them with
up to 0.9 of precision score when compared to human-designed
microservices.
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1 INTRODUCTION
The microservices architecture is a set of finely grained and light-
weight components that each define a specific business need and
that interact with each other through a RESTful API [2, 23, 24]. It
offers multiple advantages such as scalability, independent devel-
opment, reusability, maintainability and compatibility with cloud
technologies [28, 31]. Due to these benefits, many software compa-
nies have been migrating their legacy monolithic applications into
microservices based software such Netflix, eBay, Amazon, IBM, etc.
However, this process has proven to be difficult and costly [11].

As the demand for scalable, available and interoperable software
has increased, the monolithic architectural style was not enough
to answer the needs of modern applications [5, 26, 29–31]. Hence,
the microservices architectural design has become a commonly
preferred solution when developing new software applications [18]
.

One of the major challenges encountered in this endeavor is
identifying how to split the components of the monolithic applica-
tion. These components are more often than not highly cohesive
and tightly coupled due to the nature of this architectural design.
Another challenge lies within the subjectivity of the process which
relies heavily on the opinions of the software experts handling
this task. For applications with older frameworks or programming
languages, developers that are familiar with the code base are hard
to retain due to turnover which adds further to the difficulty of this
task [3, 9, 12, 21, 25].

For these reasons, prior research has attempted to develop au-
tomated tools for extracting a microservices architecture from a
monolithic application [1, 7, 15, 16, 18]. Specifically, the main focus
of the problem is identifying the different components that can
constitute separate microservices. As such, this problem is handled
as a clustering problem where the objective is extracting different
clusters (i.e., microservices) from the sample elements (the appli-
cation’s components) . The existing approaches can be split into
two categories based on whether they use static [1, 16, 18] or dy-
namic [7, 13, 14] analysis of the legacy applications. Most of these
solutions utilize clustering-based algorithms or evolutionary algo-
rithms. However, these tools often require the number of candidate
microservices as input which is on its own a difficult task that
requires the calibration of expert developers.

In this paper, we propose a novel microservices extraction ap-
proach that utilizes aHierarchical DBSCAN algorithm [20, 22] based
on the static analysis of the legacy applications. More specifically,
we combine structural and semantic similarity analysis between
classes from the source code and then apply the Hierarchical DB-
SCAN algorithm in order to obtain a set of candidate microservices.
The main advantage of using a density-based clustering algorithm
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is its ability to identify outliers which represent in this case classes
that should be removed or refactored in the microservices architec-
ture. Moreover, the Hierarchical DBSCAN not only provides the
extracted microservices, but generates as well a hierarchical view
of these microservices which would facilitate their customization
and understanding their functional role.

In order to evaluate our approach, we compared the extracted
microservices with microservices designed by human developers
and reviewed how similar they are for 3 projects. The median pre-
cision score for each project surpassed 0.65 and had a maximum
value above 0.9 in 2 of them. We compared as well the quality of the
extracted microservices with those generated by other state-of-the-
art approaches using 4 different metrics and 4 projects of varying
complexity. Our solution achieved the best overall Structural Mod-
ularity scores for 3 projects and the best Inter-Call Percentage and
Interface Number scores for all projects.

The main contributions of this paper are as follows:
(1) The formulation of microservices extraction as hierarchi-

cal clustering combining structural and semantic analysis.
Our solution provides a hierarchical view of the potential
microservices and detects possible outliers.

(2) Introducing novel metrics that enable the comparison of
different microservices decompositions.

(3) An Empirical evaluation on our approach’s ability to ex-
tract microservices and a comparison with state-of-the-art
solutions.

The paper is organized as follows. We present the work related to
this research in section 2. Then, we present our proposed solution
in section 3. In section 4, we showcase the empirical evaluation
of our approach. Afterwards, we discuss the results this work in
section 5. Finally, we conclude the paper in section 6 and we outline
our future work.

2 RELATEDWORK
Most solutions in the literature that tackle problems similar to
microservices extraction can be split into two distinct steps.

The first step revolves around the type of input that is fed to the
solution and how it is processed. For example, the method proposed
by MSExtractor[18], bunch[16] and [1] take in as input the source
code of the monolithic application on which they apply different
static analysis techniques. More specifically, both MSExtractor and
bunch build call graphs that encode the interactions between the
classes in these systems. The method mentioned in [1] converts
the source code into a set of Abstract Syntax Trees which are fed
to a code embeddings model [4]. The intuition behind the use of
static analysis and more specifically the source code structure is
that structurally similar classes or functions should be grouped
together.

Other solutions such as Mono2Micro[14], FoSCI[13] and CO-
GCN[7] are based on the analysis of the use cases and execution
traces of the monolithic systems. These solutions aim to group
together classes or functions that interact together at runtime for
each business need provided with the input. Mono2Micro measures
similarity metrics between the classes based on the execution traces.
CO-GCN utilizes the execution traces to build matrices as features
for its inference architecture. These methods of analysis are not

mutually exclusive as they can be combined for better results. For
example, MSExtractor analyzes the domain terms included in the
classes in addition to the structural analysis with the assumption
that each microservices should contain classes with similar domain
concepts. Another example is CO-GCN which, in addition to using
execution traces, uses the source code of the input application in
order to build its model’s architecture.

On the other hand, there are solutions that use different inputs
such as MEM[15] which analyzes the git commit history of the
monolithic applications. This solution constructs a graph from the
git history that encodes the similarity between the classes.

The second step of each solution takes in as input the data pro-
cessed in the previous step and applies on it an algorithm in order
to generate the decompositions. Most solutions use clustering algo-
rithms like in [1] which uses the vectors obtained from the code
embeddings as input to an Affinity propagation [10] clustering al-
gorithm. Mono2Micro[14] uses the similarity metrics it measured
with an agglomerative single-linkage clustering algorithm [27].
MEM[15] introduces its own clustering algorithm based on the
graph it generated.

Some solutions propose search algorithms in order to achieve
their task. MSExtractor[18] uses the non-dominated sorting genetic
algorithm (NSGA-II) [6] while FoSCI[13] uses both NSGA-II and
hierarchical clustering on the execution traces. Bunch[16] on the
other hand uses a different approach which applies a hill-climbing
algorithm.

3 PROPOSED APPROACH
In this section, we detail our proposed approach for extracting
candidate microservices from a given monolithic application.

3.1 Problem Formulation
The objective of our approach is to identify a set of microservices
when a given a legacymonolithic application which is characterized
by the set of its classes. We assume that each class can only be
contained within one microservice. As such, we formulate our
problem as a clustering task where the microservices correspond
to clusters and the classes define the samples.

The input of the solution is the legacy application which is
defined as a set of classes 𝐶 = {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑁 } where N is the
number of classes in the system. The output of the solution is𝑀 =

{𝑚1,𝑚2,𝑚3, . . .𝑚𝐾 } where K is the number of the microservices
selected by the solution. The output can be represented as a vector
𝑋 = [𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑁 ] of size N and where 𝑥𝑖 = j means that class
𝑐𝑖 is contained in microservice𝑚 𝑗 .

We also define outlier classes which are too dissimilar from
other classes and hence, do not belong to any specific cluster. conse-
quently, we define 𝑥𝑖 = −1 which means that class 𝑐𝑖 is an outlier.

Figure 1 showcases a simple example of a monolithic application
that consists of 5 classes. The second part of the Figure represents
a potential decomposition which contains two microservices and
an outlier class. In this case, the vector X is represented as 𝑋 =

[0, 1, 1, 0,−1].
In order to apply the clustering algorithms, we need to define a

distance function between each class 𝑐𝑖 and 𝑐 𝑗 . In the next subsec-
tion, we detail this distance function.
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Figure 1: An example showcasing a potential decomposition for an application of 5 classes.

3.2 Representation of the Monolithic
Application

As mentioned in the previous section, most of the state-of-the-
art solutions [1, 16, 18] rely on the static analysis of the source
code of the monolithic application in order to extract meaningful
patterns. In our approach, we utilize a static analysis of the source
code in order to extract the relations and dependencies between
the different classes. We define two distinct types of similarities
between classes as follows:

Structural Similarity (𝑆𝑖𝑚𝑠𝑡𝑟 ): This metric is based on the
shared number of method calls between 2 classes. It encodes the
dependency between them and as such evaluates the similarity
from a functional point of view [18, 19]. The objective of grouping
together classes based on this similarity is to obtain microservices
that are cohesive from the implementation perspective. For two
given classes 𝑐𝑖 and 𝑐 𝑗 , the structural similarity is defined as follows:

𝑆𝑖𝑚𝑠𝑡𝑟 (𝑐𝑖 , 𝑐 𝑗 ) =



1
2

(
𝑐𝑎𝑙𝑙𝑠 (𝑐𝑖 ,𝑐 𝑗 )
𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐 𝑗 ) + 𝑐𝑎𝑙𝑙𝑠 (𝑐 𝑗 ,𝑐𝑖 )

𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐𝑖 )

)
𝑖 𝑓 𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐𝑖 ) ≠ 0 𝑎𝑛𝑑 𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐 𝑗 ) ≠ 0

𝑐𝑎𝑙𝑙𝑠 (𝑐𝑖 ,𝑐 𝑗 )
𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐 𝑗 ) 𝑖 𝑓 𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐𝑖 ) = 0 𝑎𝑛𝑑 𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐 𝑗 ) ≠ 0
𝑐𝑎𝑙𝑙𝑠 (𝑐 𝑗 ,𝑐𝑖 )
𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐𝑖 ) 𝑖 𝑓 𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐𝑖 ) ≠ 0 𝑎𝑛𝑑 𝑐𝑎𝑙𝑙𝑠𝑖𝑛 (𝑐 𝑗 ) = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

where 𝑐𝑎𝑙𝑙𝑠 (𝑐𝑖 , 𝑐 𝑗 ) represents the number of times a method of the
class 𝑐𝑖 has called a method from the class 𝑐 𝑗 . On the other hand,
𝑐𝑎𝑙𝑙𝑖𝑛 (𝑐𝑖 ) is the number of calls incoming to 𝑐𝑖 .

The values of 𝑆𝑖𝑚𝑠𝑡𝑟 (𝑐𝑖 , 𝑐 𝑗 ) are in the range [0,1] where 1 indi-
cates classes 𝑐𝑖 and 𝑐 𝑗 are very similar and used exclusively together
and 0 indicates that they are completely independent.

Semantic Similarity (𝑆𝑖𝑚𝑠𝑒𝑚): This metric utilizes natural lan-
guage processing in order to measure how related are the domain
semantics of the two given classes [18, 19]. Given that a microser-
vice should provide a specific function and/or a single domain use
case, we need to identify classes that serve similar domain use
cases. Assuming the monolithic projects were coded using standard
business practices where class, method and variable names reflect
business concepts and comments describe their function, analyzing
the terminology used within these components can be a powerful
tool for extracting the domain significance of each class.

Hence, each class is defined by the set words in its comments, pa-
rameter names, field names, method name and variable names. Each
word is preprocessed includig splitting using CamelCase, filtering
out stop words, and stemming. In the CamelCase splitting phase,
we take as input the method, variable and member names and split
them into different words assuming that the CamelCase naming
convention is used. For example, the word CamelCase would be-
come a list: [camel, case]. Next, we filter out stopwords. Finally,
we apply stemming which removes parts of the words in order to
remove the impact of conjugation. For example, the words ’stem-
ming’ and ’stemmed’ would become ’stemm’. The final result is a
vector of size 𝑛𝑉 where 𝑛𝑉 is the number of words in the domain

vocabulary extracted from the monolithic application. This vector
is measured using a TF-IDF (Term Frequency-Inverse Document
Frequency) model [17]. The Semantic Similarity metric is defined
as the cosine similarity between two classes:

𝑆𝑖𝑚𝑠𝑒𝑚 (𝑐𝑖 , 𝑐 𝑗 ) =
®𝑐𝑖 · ®𝑐 𝑗

∥ ®𝑐𝑖 ∥


 ®𝑐 𝑗 

 (2)

where ®𝑐𝑖 and ®𝑐 𝑗 are the TF-IDF vectors of class 𝑐𝑖 and class 𝑐 𝑗 and
∥ ®𝑐𝑖 ∥ is the Euclidian norm of vector ®𝑐𝑖 .

The values of 𝑆𝑖𝑚𝑠𝑒𝑚 range between 0 and 1 where the value 1
signifies that both classes use the exact same vocabulary.

Class Similarity (𝐶𝑆): The previous similaritymetrics represent
different aspects of the relations between classes. These two metrics
do not necessarily correlate and as such using only a single one of
them does not guarantee satisfying the other. For these reasons, we
use the Class Similarity metric [18] which represents a weighted
sum between the Structural similarity and Semantic similarity of
two given classes:

𝐶𝑆 (𝑐𝑖 , 𝑐 𝑗 ) = 𝛼 𝑆𝑖𝑚𝑠𝑡𝑟 (𝑐𝑖 , 𝑐 𝑗 ) + 𝛽 𝑆𝑖𝑚𝑠𝑒𝑚 (𝑐𝑖 , 𝑐 𝑗 ) (3)

where 𝛼 ∈ [0, 1], 𝛼 + 𝛽 = 1 and 𝐶𝑆 ∈ [0, 1]

3.3 Clustering Algorithms
Given the Class Similarity metric, we can apply a clustering algo-
rithm to extract the microservices. More specifically, we utilize the
DBSCAN algorithm [8].

DBSCAN is a density based clustering algorithm where the aim
is to group together points that are densely packed in the search
space and identify noisy points which do not fit into any clusters
using two main concepts which are the neighborhood distance and
the minimum number of points in a neighborhood [8].

The advantage of using DBSCAN in this case is that defining the
number of target microservices is no longer a requirement since
the algorithm identifies on its own the existing clusters. The second
advantage is the minimum number of sample hyper-parameter
which enables the addition of minimum number of classes per
microservice constraint. This constraint helps with preventing the
extraction of extremely small microservices which usually do not
have a practical significance. However, this parameter does not
help with dealing with extremely large microservices. The final
advantage of applying this algorithm is the detection of noisy points
which we consider as outlier classes. They are classes that are
not similar enough to a minimum number of classes in original
application and as such cannot be included in any of the extracted
microservices.

However, DBSCAN is still constrained by another hyper-parameter
which is the neighborhood distance 𝜖 . The resulted number of ex-
tracted microservices, the number of outlier classes and the size of
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clusters are heavily dependent on this hyper-parameter. For this rea-
son, we used in our solution the variant of the DBSCAN algorithm
defined in [22] which was called 𝜖-DBSCAN.

The first step in this algorithm is to cluster the input data using
DBSCANwith an 𝜖 value equal to 0. This generates the initial cluster
which contains identical points for a given metric. Afterwards we
increment 𝜖 with a certain value that is defined within the input.
We apply DBSCAN once more but with the new 𝜖 value which
generates a new layer of clusters that contain within them the
previous clusters as well as potentially new points. We continue
this step until 𝜖 is equal to MaxEpsilon which is defined by the user.

Although 𝜖-DBSCANhas theMapEpsilon hyper-parameterwhich
influences the final layer of the extracted microservices, the main
advantage of this algorithm is the hierarchical nature of its results.
The output of 𝜖-DBSCAN is a set of ordered layers that correspond
each to the microservices extraction at an epsilon step. This output
can be used to visualize the evolution of microservices and their
classes at each step and allows for the differentiation between very
similar classes and those at the edges of the microservices. For a
domain expert, this can be a powerful tool to discover outlier classes
as well and the optimal point to define the extracted microservices.

Figure 2 summarizes the process executed in order to extract
the microservices using our approach. Through this Figure, we
can see that as we take the source code of input, two tasks start
in parallel. In the first task, we use the Abstract Syntax Trees to
build the call graph that encodes the interactions between the
classes. Afterwards, we generate the Structural similarity matrix.
The second task extracts the comments, method, parameter and
variable names within the classes, applies the Natural Language
pre-processing like CamelCase splitting, stop-word removal and
stemming and generates the TF-IDF vectors. These vectors are
used to measure the semantic similarity matrix. By combining
the output of both of these tasks, we generate the class similarity
matrix and start the extraction task with 𝜖-DBSCAN. The output
of this phase is a set of decompositions that reflect the output
of DBSCAN at each epsilon step. The final layer represents the
extracted microservices while the rest can be used for in-depth
analysis and manual customization of the microservices.

4 EVALUATION
In this section, we evaluate the effectiveness of our approach in
extracting the proper microservices. We first describe the research
questions we are seeking to investigate. Thereafter, we showcase
and discuss the experimental results.

4.1 Research Questions
We designed our experimental study to answer the following re-
search questions (RQs):

• Q1: How well do the extracted microservices compare to
those that were manually identified by software engineers.

• Q2: What is the impact of various experimental settings on
the extracted microservices quality?

• Q3: How does our solution perform when compared with
state-of-the-art microservices extraction baselines?

Table 1: Metadata of the Microservice-based projects.

Project Version SLOC # of classes # of microservices
Spring PetClinic 2.3.6 1,889 43 7
Microservices Event Sourcing 2.8.0 4,597 121 12
Kanban Board 0.1.0 4,380 118 21

4.2 Evaluation and results for RQ1
4.2.1 Evaluation protocol. To answer RQ1, we selected 3 Open-
Source microservices-based Java projects with different degrees of
complexity, namely Spring PetClinic1,Microservices Event Sourcing2

andKanban Board demo3. The details of these projects can be viewed
in the Table 1.

To evaluate our approach, we need to define measures that can
compare two given sets of classes that represent the set of extracted
microservices and the ground truth microservices. It is worth not-
ing that the encoding of the clusters for any given decomposition
solution can be different. Let’s take the application shown in Figure
1 as an example. Let’s suppose that the original set of microser-
vices was 𝑋𝑡 = [0, 0, 1, 1, 2]. If we get a decomposition denoted by
𝑋1 = [1, 1, 2, 2, 0], we will have two vectors that are different but
encode the same decomposition. This issue becomes more com-
plicated if the vectors have different microservices (for example
𝑋2 = [0, 1, 1, 1, 2]). In such a case, it is even more ambiguous which
microservices correspond to each other.

To overcome this challenge, we first need to identify the corre-
sponding ground truth microservice for each extracted microser-
vice. As such, we define the corresponding microservice as the
microservice that has the largest number of common classes with
the extracted microservice. We introduce the function 4 that given
an extracted microservice𝑚𝑖 and a different set of microservices M
(set of ground truth microservices),𝐶𝑜𝑟𝑟 (𝑚𝑖 , 𝑀) selects the ground
truth microservice with the largest number of common classes with
the extracted microservice.

𝐶𝑜𝑟𝑟 (𝑚𝑖 , 𝑀) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑚 𝑗 ∈𝑀

(
��𝑚𝑖 ∩𝑚 𝑗

��
|𝑚𝑖 |

) (4)

We then can calculate the precision metric, defined in equation
5, which is the mean of the percentage of the correctly identified
classes out of the total number of identified classes for each ex-
tracted microservice.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

|𝑀 | ×
∑︁

∀𝑚𝑖 ∈𝑀

|𝑚𝑖 ∩𝐶𝑜𝑟𝑟 (𝑚𝑖 , 𝑀𝑡 ) |
|𝑚𝑖 |

(5)

where M is the set of the extracted microservices,𝑀𝑡 is the set of
the original or ground truth microservices and 𝐶𝑜𝑟𝑟 (𝑚𝑖 , 𝑀𝑡 ) is the
microservice from𝑀𝑡 that corresponds to the extracted𝑚𝑖 .

We also calculate as well the Success Rate (SR) that measures
the percentage of successfully retrieved microservices based on the
precision metric:

𝑆𝑅 =
1

|𝑀 | ×
∑︁

∀𝑚𝑖 ∈𝑀
𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝑚𝑖 ,𝐶𝑜𝑟𝑟 (𝑚𝑖 , 𝑀𝑡 )) (6)

1https://github.com/spring-petclinic/spring-petclinic-microservices
2https://github.com/chaokunyang/microservices-event-sourcing
3https://github.com/eventuate-examples/es-kanban-board
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Figure 2: A summary of the steps taken to extract the microservices.

where𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 is defined as:

𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝑚1,𝑚2) =
{
1 if |𝑚1∩𝑚2 |

|𝑚1 | ⩾ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 otherwise
(7)

where 𝑚1 and 𝑚2 are two sets of classes and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ [0, 1].
So for a given 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑘

10 we calculate the 𝑆𝑅@𝑘 of the corre-
sponding k value.

For each of these test projects, we regrouped all of their Java
classes together in order to simulate a Monolithic architecture. This
version served as input for our solution while its original version
was considered as the true decomposition with which we compare
our results. For each of the mentioned projects, we generated mul-
tiple microservices decompositions with varying hyper-parameter
values. Afterwards we calculate the metrics precision, SR@5, SR@7
and SR@9 based on these decompositions and the corresponding
true decomposition.

4.2.2 Results. The Figure 3 showcases the results in the form of
boxplots for each project and each metric. We can observe that the
median precision for each project is within the range [0.6,0.7]. More
specifically, both Kanban Board demo and Microservices Event
Sourcing achieved precision values higher than 0.5 for all decompo-
sitions except for a single outlier. On the other hand, there’s a large
variability in the precision values obtained for Spring Petclinic.
This difference shows that as the number of classes increases, the
stability of the results improves. As for the success rate, we can
observe that as we increase the threshold, the median and mini-
mum scores achieved for each project drop but we can as well see
that for Kanban Board demo and Microservices Event Sourcing, the
values have less variance. Additionally, there is not a significant
difference between the scores for SR@7 and SR@9. These results
suggest that for most decompositions, a high percentage of their
microservices achieve a precision score higher than 0.5 and that a
significant number among them have a high precision score that
exceeds 0.9. We can see as well the same pattern of the variance of
the results decreasing when the size of the project increases.

The microservices extracted for the project Microservices Event
Sourcing seem to have overall lower scores than the other projects.
The most likely explanation, however, stems from the fact that this
projects does not use a single natural language for its domain terms
unlike the other projects which utilize only the English language.
This serves as an additional roadblock for this project. Nonetheless,
the results achieved are comparable to the others and the precision
values are in the same range as the others.

As an example, we focus on a decomposition of the project Spring
PetClinic which is an online platform that provides veterinary
services that was implemented with a microservices architecture
in mind. Given the size of the project, the Figure 4 shows a subset
of the microservices obtained from one of the decompositions. In
this Figure, the ellipses represent the names of some of the original
microservices while the large white rectangles represent the new
microservices. Within them, we find the classes which are colored
based on their original microservices.

The original microservice mostly implement domain specific con-
cepts like customers, visits and Veterinaries. Other microservices
like ApiGateway, DiscoveryServer, ConfigServer and AdminServer
implement technical requirements for the used platform. More
specifically, the ApiGateway microservice includes a large range
of utility classes as well as data classes that have to mirror their
counterparts in the other microservices. For this reason, we can
observe some classes like Visits which are included twice.

We can see that the microservice𝑚2 contains 6 classes that were
originally in the Vets service and that represent utility classes re-
lated to the Veterinary domain concept which shows an example
of semantically similar classes being grouped together. A second
example for such a case is the microservice𝑚3 which contains 4
classes, 3 of which were originally within the Customers microser-
vice and that represent the Owner concept. We can see as well
that the 4th class in this case represents as well the Owner con-
cept despite being from a different microservice originally. The
microservice𝑚4 shows an example of two classes from different
microservices but that mirror the same class being grouped together.
In this case, they are the Visits domain object class from the visits
microservice and the Visits DTO from ApiGateway. Finally, we
can observe that the largest microservice𝑚1 is grouping multiple
classes that represent two major domain concepts: Pet and Visit.
Most of the classes in relation to the visits concept in the Visits
microservice and the ApiGateway microservice were included in
𝑚1. Similarly, most of the concepts in relation to the Pet service
in the customers microservice and the ApiGateway microservice
were included as well.

Through this example, we can observe the hierarchical structure
of the microservices. the microservice𝑚1 contains in fact 3 poten-
tial microservices which are𝑚1.1,𝑚1.2 and𝑚1.3. In this example,
our proposed approach extracted initially these 3 microservices
with highly similar classes. Since the similarity values in-between
these microservices are within the thresholds defined in the input,
they were grouped together in a larger microservice that satisfies
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Figure 3: Boxplots showcasing the comparison between the generated decompositions and their corresponding true microser-
vices.

the conditions defined at the start of the process. We can observe
another hierarchy within the microservice𝑚2. In this case,𝑚2.1

and𝑚2.2 both contain classes that were originally from the Vets
service.

The results obtained show that the extracted microservices achieve
a median precision score around 0.65 with a maximum value sur-
passing 0.9 for some projects. Although the extracted microservices
are not identical to the original microservices, we observed that
they include nonetheless most of the classes from the human-built
microservices. Additionally, the hierarchical structure of the results
helps the developer with identifying alternative decompositions.

4.3 Evaluation and results for RQ2
4.3.1 Evaluation protocol. In the previous question, we observed
that for certain projects, the used hyper-parameters can have a large
impact on the quality of the result. For example, for Spring Petclinic,
there was a large variance in the evaluation metrics. This research
question focuses on analyzing the impact of the hyper-parameters
of our proposed method on the quality of the final result. In order
to address this question, we experiment with varying the values of
the hyper-parameters MaxEpsilon, 𝛼 and MinSamples.

• MaxEpsilon refers to the maximum value of the 𝜖 hyper-
parameter that is fed to the DBSCAN algorithm during the
𝜖-DBSCAN algorithm. Its values range from 0 to 1 in this case
which correspond to the minimum and maximum possible
distance between two classes for the metric CS defined in
equation 3.

• alpha 𝛼 , on the other hand, refers to the weight associated
with the similarity value 𝑆𝑖𝑚𝑠𝑡𝑟 when calculating CS in the
formula 3. 𝛼 values range from 0 to 1 where 0 indicates
complete reliance on the 𝑆𝑖𝑚𝑠𝑡𝑟 metric which means the
extraction is exclusively based on the structural similarity
of the classes. On the other hand, 𝛼 = 1 corresponds to an
extraction process based on the semantic domain similarity
between the classes so 𝐶𝑆 = 𝑆𝑖𝑚𝑠𝑒𝑚 .

• MinSamples is the minimum number of possible classes
that can exist within a microservice. It is a hyper-parameter
of theDBSCAN algorithm and in consequence the 𝜖-DBSCAN
algorithm.

For each hyper-parameter, we used the following process: First,
we define the range of possible values and the iteration step. Then,
we fix the rest of the hyper-parameters. Afterwards, we run our

approach for each possible value and we record the extracted mi-
croservices. Next, we evaluate the obtained results using different
metrics. Finally, we plot the metric values at each step. The fol-
lowing analysis is focused on the Monolithic project JPetStore as
it serves as a standard benchmark for this problem and an ideal
example to study. Details regarding this project can be viewed in
the Table 2.

In order to analyze different aspects of the obtained decomposi-
tions without the need for the ground truth microservices, we use
the following metric:

• StructuralModularity (SM): [13] is a metric that combines
the measures for the cohesion in each microservice and the
coupling between differentmicroservices in order to evaluate
the structural quality of the obtained microservices. It is
defined as follows:

𝑆𝑀 =
1

𝐾

𝐾∑︁
𝑖=1

𝜇𝑖

𝑚2
𝑖

− 1

(𝐾 (𝐾 − 1))/2

𝐾∑︁
𝑖≠𝑗

𝜎𝑖, 𝑗

2𝑚𝑖𝑚 𝑗
(8)

Where K is the number of the extracted microservices, 𝜇𝑖 is
the number of unique calls between the classes in microser-
vice i,𝑚𝑖 is number of classes in microservice i and 𝜎𝑖, 𝑗 is
the number of unique calls between classes of microservice
i and classes of microservice j.
Higher values of SM reflect higher cohesiveness and lower
coupling so better structural quality.

• Interface Number (IFN):[18] is a metric for measuring the
number of interfaces within a list of extracted microservices.
It is defined as:

𝐼𝐹𝑁 =
1

𝐾

𝐾∑︁
𝑖=1

|𝐼𝑖 | (9)

Where K is the number of the extracted microservices, 𝐼𝑖 is
the set of interface classes within microservice i. An interface
class in this case is a class that has been called by a class in
an external microservice.
Lower values of IFN indicate a better result.

• Non-Extreme Distribution (NED):[14] One of the most
notable problems encountered in microservice extraction
is the Boulder and Grain problem where solutions tend to
output microservices that are extremely large (Boulders) or
extremely small (Grain). This metric enables the detection
and evaluation of such cases. It is defined as:

𝑁𝐸𝐷 = 1 − |{𝑚𝑖 ; 5 < |𝑚𝑖 | < 20, 𝑖 ∈ [1, 𝐾]}|
𝐾

(10)
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Figure 4: A subset of the microservices obtained from a decomposition of the project Spring PetClinic.

Where K is the number of the extracted microservices and
|𝑚𝑖 | is the size of microservice𝑚𝑖 .
Lower values of NED indicate lower number of extreme
microservices which corresponds to better results.

• Inter Call Percentage (ICP):[14] is measured in the litera-
ture as the percentage of runtime calls between twomicroser-
vices. In this case, we are measuring ICP as the percentage of
static calls between two microservices. The objective of this
metric is still the same which is evaluating the dependencies
between the microservices or in other terms the coupling. It
is defined as follows:

𝐼𝐶𝑃 =

∑𝐾
𝑖=1, 𝑗=1,𝑖≠𝑗 𝑖𝑐𝑝 (𝑀𝑖 , 𝑀𝑗 )∑𝐾
𝑖=1, 𝑗=1 𝑖𝑐𝑝 (𝑀𝑖 , 𝑀𝑗 )

(11)

Where K is the number of microservices, 𝑀𝑖 is the set of
classes in microservice i and 𝑖𝑐𝑝 (𝑀𝑖 , 𝑀𝑗 ) is defined as:

𝑖𝑐𝑝 (𝑀𝑖 , 𝑀𝑗 ) =
∑︁
𝑐𝑘 ∈𝑀𝑖

∑︁
𝑐𝑙 ∈𝑀𝑗

(𝑙𝑜𝑔(𝑐𝑎𝑙𝑙𝑠 (𝑐𝑘 , 𝑐𝑙 )) + 1) (12)

where 𝑐𝑎𝑙𝑙𝑠 (𝑐𝑘 , 𝑐𝑙 ) is the number of calls from class 𝑐𝑘 to
class 𝑐𝑙 .
Lower numbers of ICP indicate less interactions between the
different microservices which represents a better result.

4.3.2 Results. The following subsection showcases the results when
individually varying each hyper-parameter:

MaxEpsilon: We varied the MaxEpsilon values from 0 to 1 with
a step equal to 0.05 . We fixed alpha to 0.5 and MinSamples to 2.
The Figure 5 shows the results obtained for the project JPetStore.
We can observe that for MaxEpsilon values below 0.5, all of the
classes have been classified as outliers. On the other hand, we can
see that as we increase MaxEpsilon, the SM value, which is plotted
in blue, starts off by slightly increasing and then rapidly decreasing
starting from the value 0.8 where we can observe a large spike in the
values of IFN and ICP. The plots for these couple of metrics, which
correspond respectively to the green and orange plots, share the
same shape where they start out with low values, rapidly increase
between 0.7 and 0.8 and finally decrease back to almost 0. As for
NED, which is represented in red, starts with high values for the
range of MaxEpsilon in [0.5, 0.6]. Then, it drops to 0.5 and starts
increasing slowly back to 1 when MaxEpsilon ranges between 0.65

and 0.85. Finally, the NED values stay constant for the rest of the
range of MaxEpsilon values.

Observing these metrics together, we can infer the explanation
behind these plot shapes and select the ideal MaxEpsilon value for
this project. MaxEpsilon is the hyper-parameter that controls how
similar are the classes that we are grouping together to form the
microservices. In other terms, ranging its values from 0 to 1 is akin
to loosening the condition for grouping the classes.

So, not having any microservices for MaxEpsilon values between
0 and 0.5 shows that the condition is too strict in that case and the
algorithm is unable to find any classes that satisfy it. As we continue
to increase MaxEpsilon, the algorithm starts gradually grouping
together some classes that satisfy the corresponding condition
which explains the observation in the range [0.5, 0.6] where NED
and SM are high due to having small but coherent microservices.
For the values 0.65 and 0.7, we can observe higher SM values, lower
NED values and low ICP and IFN values due to having larger but
more balanced microservice and that still contain coherent classes.
As for the values 0.75 and 0.8, the sharp increase in NED, ICP and
IFN values and the sharp decrease of SM values suggest that the
condition is now loose enough that outlier classes are added to
the microservices which results in increased inter-microservices
interactions and less coherent microservices. As for the rest of the
values, the high NED value and the low values for the rest of the
metrics suggest that the condition is too loose and the microservices
have been grouped together which is to be expected for extreme
MaxEpsilon values.

From this Figure, it is clear that the best MaxEpsilon values
for the project JPetStore would be 0.65 or 0.7 where the trade-off
between the metrics would be at its best. For the rest of the projects,
we can observe a similar pattern as the one we described.

alpha𝛼 : For this experiment, we fixedMaxEpsilon to 0.7 based in
the previous results and MinSamples to 2. We varied alpha from 0 to
1. Figure 6 shows the results obtained for the project JPetStore. We
can observe that overall, SM and IFN values seem to be increasing
when we increase alpha. On the other hand, ICP shows only a
couple of spikes for alpha equal to 0.6 and 0.65. As for NED, its
values stay equal to 1 for all alpha values except for the range [0.45,
0.55] where it drops to 0.25 and 0.45.

In this case, varying alpha from 0 to 1 is equivalent to relying less
and less on the structural similarity and increasing the impact of
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Figure 5: Evaluation metrics for different MaxEpsilon values when extracting microservices from the project JPetStore

Figure 6: Evaluation metrics for different alpha values when extracting microservices from the project JPetStore

the semantic similarity between the classes. This can explain why
ICP and IFN values are higher for high alpha values as relying more
on the structural similarity will lead to the algorithm prioritizing
grouping together classes that are more similar structurally and
hence that communicate with each other which in turn lowers these
metrics.

From this Figure, we can conclude that the best values for alpha
should be in the range [0.45, 0.55] where we balance the impact
of both similarity values. This was the case as well for the other
projects where this range represented the base trade-off point be-
tween the different metrics.

MinSamples: In this case, we fixed MaxEpsilon to 0.7 and alpha
to 0.5 and we varied the MinSample hyper-parameter in the range
[1, 4]. The Figure 7 shows the results for the project JPetStore.

We see that ICP, IFN and NED decrease as we increase MinSam-
ple and that SM peaks at the value 2 and decreases afterwards. We
observed similar results for the rest of the projects which suggests
that the best value for this hyper-parameter is 2.

The optimal values for MaxEpsilon are in the range [0.65, 0.75]. For
the hyper-parameter 𝛼 , they are in the range [0.45, 0.55]. Finally,
for MinSample, the optimal value is 2.

4.4 Evaluation and results for RQ3
4.4.1 Evaluation protocol. For this research question, we com-
pared our solution with 5 baselines that tackle similar problems but
with different methods which are Bunch[16], CoGCN[7], FoSCI[13],
MEM[15] and Mono2Micro[14]. For each of these baselines as well
as our solution, we measured the quality of the obtained microser-
vices using the 4 metrics SM, IFN, ICP and NED.

Project Version SLOC # of classes
JPetStore 1.0 3,341 73
DayTrader 1.4 18.224 118
Plants 1.0 7,347 40
AcmeAir 1.2 8,899 86

Table 2: Metadata of the Monolithic projects.

In order to compare these State-of-the-art solutions, 4 Open-
sourcemonolithic Java projects were used as subjects for testing and
evaluating the performance of our approach which are JPetStore4,
DayTrader5, Plants6 and AcmeAir7. The Table 2 lists these projects
as well as their metadata.

However, since each solution has at least one hyper-parameter
that can significantly impact the quality of the final result, we ex-
tracted different microservices decompositions from each solution
based on different values of their corresponding hyper-parameters.
For example, Mono2Micro takes as input the number of target mi-
croservices, so we generated a different decomposition for each
value of this hyper-parameter in [3,5,7,9,11] for the project JPet-
Store. As for our solution, given the results we observed in the
previous section, we decided to fix alpha to 0.5 and MinSample to 2
since these hyper-parameters show less variability between projects
when fixed in this range but we varied the values of MaxEpsilon
between 0.5 and 0.9 with a 0.05 step.

4https://github.com/KimJongSung/jPetStore
5https://github.com/WASdev/sample.daytrader7
6https://github.com/WASdev/sample.mono-to-ms.pbw-monolith
7https://github.com/acmeair/acmeair
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Figure 7: Evaluation metrics for different MinSamples values when extracting microservices from the project JPetStore

Figure 8: Boxplot representation for the results of each project/baseline/metric combination

4.4.2 Results. The Figure 8 shows the boxplot results for each
project and metric combination.

Looking at the metric SM in the first column, we can see that
our method outperforms the other baselines for all projects expect
DayTrader where we can see that our results always have the
highest mean and the highest maximum with one exception being
Bunch having a higher maximum for the project AcmeAir. As for
DayTrader, our solution outperforms Bunch and has comparable
median values to Fosci and MEM.

As for the metrics ICP and IFN which are respectively repre-
sented in the second and third columns, we can observe that our
solution consistently achieves better results than the other base-
lines with only one exception where for the project JPetStore we

can see one outlier that has higher IFN score than the others. We
can see as well that for most cases, the variance of these metrics for
our solution is small which suggests that our method often results
in decoupled microservices.

Finally, for the metric NED, our solution seems to outperform
MEM and Mono2Micro for the project JPetStore. In the case of Day-
Trader, it outperforms MEM again and achieves comparable results
to most of the rest with the exception of Mono2Micro. For Plant, we
can observe a large variance in the results obtained which suggests
that choosing the right MaxEpsilon value for this project can have
a large impact on the final decomposition. In the previous research
question, we recommend the optimal values for this parameter.
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However, the role of the human experts remains crucial to vali-
date and calibrate the extracted microservices, thus the hierarchical
structure of the extracted microservices will be very helpful in this
process. Overall, for this metric, we can see that Bunch achieves
better NED scores than the rest.

The comparison results show that our solution achieves noticeably
better results than the the baseline approaches for the metrics SM,
IFN and ICP, but at the cost of higher NED values.

5 THREATS TO VALIDITY
The major threat to the validity of our experiments is related the
external validity. Our empirical evaluation was based on a total
of 7 open source projects with different architectures and sources.
To better generalize the results of our approach, a larger number
of projects should have been considered. To mitigate this issue,
we selected projects with varying scales and from diverse origins.
Future replications of our approach on other monolithic systems
are needed. The second threat to validity lies within the qualitative
evaluation. An alternative solution to evaluate the quality of the
extracted microservices would be to involve experienced software
engineers who are familiar with microservices-based software sys-
tems and the microservices extraction task to inspect the results
and give their feedback. We are thus planning to further evaluate
our approach with developers in an industrial setting as part of our
future work.

As for internal threats to validity, it concerns factors that could
influence our observations. The comparison of our solution with
the different baselines was based on the results that were generated
using specific hyper-parameters which could be an important inter-
nal threat to validity. In order to mitigate this issue, we based the
results on multiple runs while varying hyper-parameter values for
every solution. In a situation without any constraints, a better alter-
native would be to optimize the hyper-parameters for each solution
and experimental setup. The used performance metrics represent a
threat to validity. To mitigate this issue, we employed four different
metrics that reflect different aspects such as the cohesion within
the microservices, the interactions between the microservices and
their granularity. Other metrics can also be considered such as the
number of microservices per decomposition, number of classes per
microservice and the domain modularity.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed a hierarchical clustering based approach
to decompose a given monolithic application into a set of microser-
vices. The presented approach groups together semantically and
structurally similar classes using a modified density-based cluster-
ing algorithm and provides as a result a hierarchical structure of
the potential microservices as well as outlier classes. We evaluated
our approach using different performance metrics and compared
it to multiple baselines. The experimental results show that our
method achieved better cohesion within the microservices and less
interactions between the microservices.

In the future, we plan on developing more fine-grained metrics
for evaluating the extracted microservices and comparing them
with existing decompositions. We plan as well on investigating the

impact of separating utility classes from domain classes and review-
ing methods on how to automatically identify them. In addition,
we are interested in experimenting with different similarity metrics
as well as different types of interactions between classes other than
direct method calls.
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