
Conversational DevBots for Secure Programming: An Empirical
Study on SKF Chatbot

Catherine Tony, Mohana Balasubramanian, Nicolás E. Díaz Ferreyra, and Riccardo Scandariato
Hamburg University of Technology

Hamburg, Germany
{catherine.tony,mohana.balasubramanian,nicolas.diaz-ferreyra,riccardo.scandariato}@tuhh.de

ABSTRACT
Conversational agents or chatbots are widely investigated and used
across different fields including healthcare, education, and market-
ing. Still, the development of chatbots for assisting secure coding
practices is in its infancy. In this paper, we present the results of
an empirical study on SKF chatbot, a software-development bot
(DevBot) designed to answer queries about software security. To
the best of our knowledge, SKF chatbot is one of the very few of
its kind, thus a representative instance of conversational DevBots
aiding secure software development. In this study, we collect and
analyse empirical evidence on the effectiveness of SKF chatbot,
while assessing the needs and expectations of its users (i.e., soft-
ware developers). Furthermore, we explore the factors that may
hinder the elaboration of more sophisticated conversational secu-
rity DevBots and identify features for improving the efficiency of
state-of-the-art solutions. All in all, our findings provide valuable
insights pointing towards the design of more context-aware and
personalized conversational DevBots for security engineering.

CCS CONCEPTS
•Human-centered computing→User studies; • Security and
privacy→ Usability in security and privacy.
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1 INTRODUCTION
Every year hundreds of organizations and companies around the
world are negatively affected by severe data breaches and cyber
attacks. To a large extent, this is due to a lack of adequate security
measures and controls within information systems. Still, secure
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coding practices in software projects are far from being the norm as
developers often lack of proper training, and security is more of an
afterthought than an actual priority [16]. In turn, a large number of
threats and vulnerabilities emerge as a result of unsavvy decisions
and poor security design practices [14].

Recent advances in Artificial Intelligence (AI) in general and ma-
chine learning in particular have fostered the emergence of chatbots
assisting people’s decisions in different fronts and domains (e.g.,
healthcare, education, and marketing) [2]. Certainly, the software
industry has not been the exception to chatbot applications, where
conversational agents have also being proposed to support core
software engineering tasks (e.g., testing and requirements analysis)
[17]. Moreover, such ‘DevBots’ are slowly becoming popular as well
in the field of cyber-security, helping developers to spot security
flaws in their code.

Several DevBots have been proposedwithin the current literature
to help in the identification of security flaws during development
[10, 12, 17]. These solutions often employ static or dynamic code
analysis features for spotting and warning developers about se-
curity vulnerabilities. Still, most of these tools do not yet provide
conversational support to help fixing nor mitigating the bugs they
identify [13]. Hence, there is a call for more supportive DevBot
solutions that could provide instructional content on how to im-
prove the security of software projects through adequate coding
practices.

In this work, we aim to delve into the extent to which current
conversational DevBot applications assist the development of se-
cure software systems. For this, we conducted an empirical study
on SKF chatbot (SKF stands for Security Knowledge Framework),
a conversational agent designed to address developers’ security-
related questions. Particularly, we aimed at evaluating the extent
to which the assistance of SKF chatbot is deemed adequate and
useful by its users. To gain insights on these performance aspects
we ran a study with 15 participants in which they had to use SKF
for removing code vulnerabilities. Overall, the research questions
(RQs) addressed in this work are the following:

RQ1: How effective are conversational DevBots for secure
programming?To answer this RQwe analysed the extent towhich
the DevBot helped participants to remove security vulnerabilities.
That is, whether it led to full, partial, or no vulnerability fixes, and
compared it against the outcome when no DevBot support was
provided.

RQ2: How useful are conversational DevBots for secure
programming? In this case we developed a questionnaire for cap-
turing the extent to which participants understood the nature of
the vulnerabilities they had to fix, and whether they managed to
find the right fix for such vulnerabilities. We also assessed whether

ar
X

iv
:2

20
5.

06
20

0v
1 

 [
cs

.H
C

] 
 1

2 
M

ay
 2

02
2

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


EASE 2022, June 13–15, 2022, Gothenburg, Sweden Tony et al.

the DevBot managed to answer all of their questions along with
the perceived usefulness of the tool.

RQ3: Do developers prefer to use a conversational DevBot
when conducting security-related tasks? To answer this RQ
we included some questionnaire items assessing developers’ inten-
tions towards a DevBot-aided approach over other problem-solving
strategies (e.g., a manual online search).

RQ4: What features do developers expect from a conver-
sational DevBot for secure programming? This RQ aims to
identify features that could improve the effectiveness of current
conversational security DevBots. For this we included some open-
ended questions by the end of our study to elicit the functionalities
of an “ideal” chatbot solution.

Our findings suggest that there is still room for improvement in
security DevBots, specially when it comes to creating an extensive
knowledge base containing reliable information about (i) security
vulnerabilities, (ii) fixes, (iii) correct security API usages, and (iv)
correct code integration rules. Furthermore, there is a need for more
context-aware solutions capable to (i) provide feedback aligned
with the individual characteristics of software projects, and (ii) give
personalized assistance and support to the end users.

The remaining of this paper is organizes as follows: Section 2
gives a brief overview of the existing conversational and security
DevBots as well as some background on SKF chatbot, Section 3
describes our researchmethodology, the results and their discussion
is done in Sections 4 and 5 respectively. We finally conclude the
paper and discuss future research directions in Section 6.

2 BACKGROUND AND RELATEDWORK
In this section we give an overview of the current state-of-the-art
in DevBots development. We also introduce the theoretical founda-
tions for our study, namely SKF chatbot and its main characteristics.

2.1 Conversational and Security DevBots
In the recent years, bots and their applications have caught the atten-
tion of researchers across different software-related disciplines [17].
Specially, there is an increasing interest towards conversational
solutions capable of interacting via natural language commands.
MSRBot [1] for instance is a conversational DevBot supporting
tasks related to the mining of software repositories that can ad-
dress project-specific questions like “who modified <file_name>?” or
“what commits were submitted on <date>?”. APIBot [19] is another
conversational agent capable of answering questions about the ad-
equate usage of APIs, thus releasing developers from the burden of
scrutinizing multiple pages of API documentation. DevBots incor-
porating voice-recognition features can also be found within the
current literature. Such is the case of Devy [3], a voice-activated
assistant helping software practitioners to perform high-level work-
flow tasks (e.g., submitting code changes for review). Still, research
on voice-controlled DevBots is at a very early stage when compared
to chat-based support [17].

Security engineering has not been the exception to DevBots and
its applications. Particularly, bug identification, automated testing,
and code repair are some of the tasks supported by current security
DevBots [17]. For instance, Wyrich and Bogner [21] proposed a
refactoringDevBot capable of spotting code smells and fixing simple

warnings. Besides, the bot can also send refactored changes to the
developers in the form of pull requests. SAW-BOT [18] is another
bot helping developers addressing warnings in their code. Like [21],
SAW-BOT generates fixes that are later suggested to developers via
pull requests. Other security DevBots like Repairnator [20] have
been shaped to support code repair tasks and tomonitor test failures
in continuous integration. Bots detecting risky commits in open-
source projects are also matter of ongoing research efforts [17].

2.2 SKF Chatbot
Unlike in other software engineering domains, conversational Dev-
Bots seem to be underrepresented in the security field. Overall,
very few chat-based solutions can be spotted within the current
literature, SKF chatbot1 being one among the most salient ones.
SKF was developed as part of OWASP’s Secure Knowledge Frame-
work project2 to enable quick access to information on security
vulnerabilities. It contains a knowledge base of common security
weaknesses and vulnerabilities along with a set of code examples.
Basically SKF can react to 3 type of inquiries on a particular vul-
nerability, namely (i) description, (ii) solution, and (iii) code snippet.
While the first two provide detailed information in natural language
about the vulnerability and its prospective solution, the third one
corresponds to a code example either in Django, Java, PHP, Flask
or Ruby.

SKF chatbot executes three main steps when answering users’
queries: (i) intent classification, (ii) entity recognition, and (iii)
response generation. In the first step, SKF seeks to understand
whether the goal of the user is to get a description, a solution, or
a code snippet. For this, it uses a Multinomial Naive Bayes (MNB)
classifier to predict the question’s intent. Next, it tries to identify
the vulnerability for which the user is requesting information. This
is done through a keyword-extraction algorithm named Rapid Au-
tomatic Keyword Extraction (RAKE), which is domain-independent
and helps separating keywords from other words in the question.
Finally, SKF generates a response by querying its knowledge base
with the intent and the entities extracted from the user’s question.
Figure 1 illustrates the output generated for “What is XSS?”.

Figure 1: Terminal version of SKF chatbot

3 RESEARCH METHODOLOGY
Despite being one of the few (for not saying the only) security
DevBots with conversational features, SKF’s usability has not been
yet thoroughly investigated to the best of our knowledge. Hence,
we conducted and empirical study to analyse its performance, effi-
ciency, and overall user acceptance. In the following subsections
we describe the proposed experimental setting along with the in-
struments used for SKF’s assessment.
1https://github.com/Priya997/SKF-Chatbot
2https://www.securityknowledgeframework.org/
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3.1 Experimental Setup
We conducted the evaluation of SKF chatbot using a Java web
application containing 2 code-level security vulnerabilities allowing
Cross-Site Scripting (XSS) and SQL Injection (SQLI) attacks. While
the former consists of placing of malicious SQL code inside webpage
inputs, the latter occurs when malicious code is sent through a web
application (usually as browser-side scripts). The participants were
given the source code of this web application in which the locations
of the vulnerabilities were marked in comments. They were asked
to fix the specified vulnerable area of the code with and without
SKF’s help. For this, we created 4 groups, each receiving the tasks
and the DevBot support in a different order to reduce the presence
of biases in our analysis (Figure 2). For instance, participants in
Group A had to fix the XSS vulnerability first and then the one
corresponding to SQLI. In this case, the support of SKF chatbot
was given for the resolution of the second task (i.e., SQLI), whereas
for the first one (i.e., XSS) they were only allowed to use Internet
search.

Figure 2: Workflow of the empirical study

3.2 Survey Instruments
We created 3 survey forms for the experiment containing yes/no,
multiple choice, and open-ended questions. Survey 1 was given
to the participants after completing the first assignment, whereas
Survey 2 and 3 after the second task. Particularly, Surveys 1 and 2
were tailored according to (i) the task the participant had to solve,
and (ii) whether she received support of SKF chatbot for its res-
olution or not. For instance, participants in Group A were asked
about the use of online sources for fixing the XSS vulnerability in
Survey 1, while in Survey 2 they provided feedback on the use of
the conversational DevBot (e.g., their perceived usefulness). Survey
3 remained the same for every group and was given to the partici-
pants at the very end of the experiment. Particularly, it contained
questions eliciting participants’ overall acceptance of the DevBot
when solving security vulnerabilities (e.g., if they preferred the
DevBot’s assistance over a self-conducted Internet search). This
third form also included open-ended questions aiming to collect

user input that could help shaping additional features for the De-
vBot. All survey forms and task descriptions were compiled into a
supplementary file available inside a public repository3.

4 RESULTS
We recruited 15 participants for our experiment (Groups A, B, and
C of 4 participants each, and Group D with 3), most of them master
students at *Anonymized Institution*. In a preliminary assessment,
participants’ reported having low to medium knowledge on soft-
ware security, while their general programming skills averaged
in medium to high range which made them suitable candidates
for evaluating the performance of SKF chatbot. In the following
subsections we report our findings in terms of Effectiveness, Q&A
Coverage, and Perceived Usefulness.

4.1 Effectiveness
To determine the DevBot’s effectiveness, we analysed the number of
vulnerabilities successfully fixed by the participants. We considered
a vulnerability as “fixed” when the correct patch is applied along
with the necessary libraries for executing it. When such libraries
are not included, the vulnerability is considered as “partially fixed”.
A vulnerability is “not fixed” either when no patch is applied or
when the wrong solution is implemented.

Based on this criterion, we observed that for both vulnerabilities
(i.e., XSS and SQLI) the number of full fixes was higher when no
DevBot support was provided (Figure 3). Particularly, 7 out of 15
participants managed to fully solve the given task by conducting an
Internet search, but only 3 arrived to the right fix when receiving
DevBot support.

When it comes to partial fixes, our results are mixed. As shown
in Figure 3-left, there were more participants arriving to a partial
solution of the XSS vulnerability with the help of SKF chatbot
(4) than using Internet search (1). Conversely, more participants
arrived to a partial fix of the SQLI vulnerability without any DevBot
support. Particularly, 2 participants arrived to a partial fix with the
help of SKF chatbot, whereas 3 did it only by the means of Internet
searches (Figure 3-right). The number of unfixed vulnerabilities
was for both tasks lower or equal when participants applied a self-
conducted Internet search than a DevBot-assisted one.

4.2 Q&A Coverage
Another aspect relevant to the DevBot’s performance is the amount
of questions it manages to answer. Hence, we asked participants
whether SKF chatbot responded to all of their questions to under-
stand to which extent it helped in the resolution of the tasks. All
in all, 10 out of 15 participants mentioned that SKF chatbot an-
swered all of their questions, while 3 said it only answered them
partially. The remaining 2 participants reported not receiving any
useful information from the DevBot for addressing the security
vulnerabilities.

To further assess SKF’s Q&A coverage, we asked participants
whether they used other resources (e.g., Internet search) in addition
to the DevBot for fixing the vulnerabilities. From 15 participants, 9
reported having used additional resources to complete the given
3Repository link: https://collaborating.tuhh.de/e-22/public/skf-chatbot-empirical-
study.

https://collaborating.tuhh.de/e-22/public/skf-chatbot-empirical-study
https://collaborating.tuhh.de/e-22/public/skf-chatbot-empirical-study
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Figure 3: Participant’s performance when fixing the XSS (left) and the SQLI vulnerabilities (right).

task, whereas 6 mentioned that they did not. Among the 9 partici-
pants who used extra resources, 5 of them had reported that the
DevBot did answer all of their questions.

4.3 Perceived Usefulness
There are two main steps when removing a vulnerability from a
software application, namely (i) understanding the nature of the
vulnerability, and (ii) finding the correct fix for such a vulnerability.
In order to analyse how well SKF chatbot supports this process, we
asked participants whether they would prefer a DevBot over an
Internet search on each of these stages or not.

As shown in Figure 4, 12 out of 15 participants reported that using
SKF chatbot helped them to better understand the vulnerability
than simply searching for it on the Internet. On the other hand,
opinions were more polarized when it comes to finding the right
fix. Particularly, 7 out of 15 respondents said they rather look for
the correct fix themselves using the Internet, while 8 opted for a
DevBot-supported search. Interestingly, only 3 out of 15 participants
managed to find full fixes (i.e., either XSS or SQLI) with the help of
SKF chatbot. However, if we consider the the total number of full
and partial fixes with DevBot support we obtain 9 out of 15, which
is closer to the fixing preferences reported by the participants.

Figure 4: Participants’ preferences regarding understanding
and removing security vulnerabilities.

Last but not least, we asked a subgroup of participants (8) if
they would use a conversational DevBot for addressing security

vulnerabilities in the future. The available options were yes, no and
maybe. Overall, there was only one participant who was willing to
receive DevBot support for applying future security fixes, whereas
5 said they might and 2 that they wont.

5 DISCUSSION
In this section we discuss the results presented in Section 4 to
elaborate on the RQs of our study. This includes aspects related
to the performance of SKF chatbot as well as envisaged features
for improving chat-based security DevBots. The limitations of our
experimental approach are also addressed by the end of this section.

5.1 Performance (RQ1, RQ2, and RQ3)
In terms of effectiveness (RQ1), self-conducted Internet searches
seem to outperform the DevBot when it comes to full fixes (i.e.,
7/15 against 3/15). Moreover, if we consider full and partial fixes
as a whole, the SKF chatbot is still outperformed by the use of
the Internet (9/15 against 11/15). After further inspecting the par-
ticipants’ answers and having a follow-up interview with some
of them, we identified some drawbacks in the current DevBot ap-
proach. Particularly, participants mentioned that SKF chatbot only
reacts to specific input, and performs poorly when asked follow-up
questions. Such was the case of Participant 12 (P12) who said:

P12: to me the bot was not really useful, because I asked
different questions and got always the same answer

Moreover, one participant mentioned it did not provide any
information on the external libraries necessary to implement the
prescribed fixes. This last point is manifested in the larger number
of partial fixes compared to full fixes. Despite of this limitation,
some participants considered the DevBot as a good starting point
when solving security vulnerabilities. For instance, P4 reported:

P4: For someone who was a beginner at such tasks, I
needed more examples with explanation. But it was a
good point to start. From the points given by the chatbot
I understood what exactly I need to search.

When it comes to usefulness (RQ2), most of the participants
agreed that SKF chatbot helped them to understand the nature of the
vulnerabilities better than the sources they found on the Internet
(Section 4.3). In part, this could be because the DevBot reduces the
time developers spend retrieving information as it provides a full
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description of security vulnerabilities, suitable mitigation actions,
and code examples. Moreover, unlike code snippets that can be
found on the Internet, the ones provided by the chatbot are seen as
trustworthy and hence free of additional security vulnerabilities:

P9: I was looking into other resources to look for specific
Java code examples, i.e. API calls. So for me, it was
accompanying material, as the chatbot helped me to
nail down the problem itself and give me trustworthy
information.

As mentioned in Section 4.2, 10 out of 15 participants said that
the DevBot answered all their questions. However, some limitations
in the Natural Language Processing (NLP) features of the bot were
spotted by some of them:

P9: My question had to match the given question exactly.
I ended up with asking for very broad topics and then
selecting from the given list of options to find exactly
what I was looking for.

This issue may be associated with the fact that SKF chatbot uses a
multinomial naive Bayes algorithm to predict the intent behind the
queries. Nowadays there are much more sophisticated and versatile
NLP frameworks that can be used for this purpose, and hence to
improve the conversational capabilities of security DevBots. For
instance, BERT [6] is a novel language representation model which
has shown promising results in question-answering and language
interface applications. Another suitable approach is the so called
Generative Pre-trained Transformer - 3 (GPT-3) [4] which uses
deep learning to produce human-like text. Such NLP frameworks
combined with a larger knowledge base can help shaping more
advanced and efficient conversational security DevBots.

As shown in Section 4.3, 6 out of 8 participants were inclined
towards a DevBot-aided approach for addressing future security
vulnerabilities. Such intentions (RQ3) can be associated with the
clarity with which information is presented by the DevBot along
with its reliability, accessibility, and promptness:

P11: The answers (of the DevBot) matched precisely the
given problems. In addition the answers were correct,
while answers on the Internet are sometimes incoherent
and misleading. In a way the Chatbot was a trusted
resource, but for explicit code examples I would never-
theless search the internet.

Nonetheless, the DevBot adoption can be hindered due to con-
versational limitations (as mentioned earlier) and an unpleasant
user interface (P11). Even though participants did not make explicit
reference to a lack of adaptability to project-specific scenarios, it
can also lessen the DevBot’s usability to a large extent.

5.2 Envisaged Features (RQ4)
Participants also gave their feedback about which additional func-
tionalities (RQ4) would be beneficial for a conversational DevBot
addressing security flaws in software projects. Besides from im-
provements in the UI and conversational features of the bot, they
suggested adding security indicators to the prescribed solutions:

P8: Maybe give recommendations like: this solution
helps in 90% of all cases.

P11: Maybe giving it some code lines and an estimation

of how secure it is? Perhaps even suggesting possible
vulnerabilities.

Sorting and displaying the DevBots’ prescriptive solutions ac-
cording to their security level could improve their navigability,
and hence ease their selection. Thereby, developers would become
aware of the drawbacks/limitations a particular solution may en-
tail (if any). Supporting examples in other programming languages
such as Django and Ruby was another feature pointed by one of
the participants (P14). A greater support for integrating solutions
into specific code projects was also highlighted as a missing func-
tionality of the DevBot (P12).

Because of our experimental approach, participants did not need
to spot the vulnerabilities themselves inside the provided code
snippets. Instead, vulnerabilities were given as input so they could
conduct the fixes in a controlled experimental fashion. Nevertheless,
supporting the detection and identification of security vulnerabili-
ties in software projects should be a key feature of DevBot solutions.
Moreover, according to Erlenhov et al. [7], an “ideal DevBot” is de-
fined as:

... an artificial software developer which is autonomous,
adaptive, and has technical as well as social competence.

Hence, conversational security DevBots should also be capable
of mimicking the social and technical skills of software developers
to create a smooth interaction with their users.

In a nutshell, our findings suggest that conversational DevBots
for software security should incorporate the following envisaged
features to their design:

(1) Strong integration with the development environment.
(2) Automatic code analysis.
(3) Automatic vulnerability detection.
(4) Enhanced natural language interaction.
(5) Context-aware recommendations.
(6) Automatic code repair.
Many of these features require extensive research efforts and in-

terdisciplinarywork. Current advances inmachine learning, human-
computer interaction, and natural language processing can certainly
support this quest. Still, a stronger synergy across these disciplines
will be necessary to successfully integrate their individual findings
into the design of conversational DevBots for security engineering.

5.3 Limitations
Although this study has yielded interesting results, there are certain
limitations that should be acknowledged. First of all, the size of
the sample is relatively small (15) and hence the results may not
be generalizable to a larger population. We could also not thor-
oughly investigate the existence of potential relations between
the variables involved in the study (e.g: knowledge level of the
users) and the perceived usefulness due to the small sample. More-
over, the study subjects were mostly students (with programming
experience) which could also hinder the validity of our findings.
Nevertheless, the use of students as participants remains a valid
and effective approach for recreating real software engineering
settings in laboratory contexts [8]. Therefore, we have analysed
and interpreted the results of our study taking into consideration
the limitations given by the sample composition and size.
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Another limitation point is related to the survey instruments
employed throughout the study. Particularly, some of the questions
included in the survey forms may not fully capture the aspects they
intended to. For instance, capturing participants’ perceived useful-
ness may require scales containing several survey items. Hence, the
outcome of this study should be seen as a first attempt in assessing
the performance of conversational security DevBots, and not as
ultimate conclusions. In the future we plan to extend our analysis
by the means of validated scales and constructs like Technology
Acceptance Model [5], in order to improve the value of our results.

6 CONCLUSIONS AND FUTUREWORK
Supporting developers in their programming practices is of utmost
importance for the generation of secure software solutions. Recent
advances in AI have contributed to the emergence of DevBots aiding
security-related tasks. Still, conversational approaches are in their
infancy and thus demand further research and scientific insights.
In this work, we have shed some light on the limitations and chal-
lenges in the development of conversational DevBots for security
engineering. Overall, our findings suggest that these technologies
are seen as a reliable source of security knowledge. However, they
should incorporate features such as context-aware recommenda-
tions and automatic code analysis to increase their levels of user
acceptance. Particularly, users would largely benefit from a conver-
sational DevBot capable of providing context-specific answers and
code examples that can be easily integrated into existing software
projects.

A security DevBot of such characteristics would require an ex-
tensive Knowledge Base (KB) comprising data on software security
vulnerabilities, mitigation methods, code examples, and library de-
pendencies, among others. Nonetheless, curating such a KB by hand
can be a tedious task to carry out. Moreover, technical solutions
leveraging manually-curated KBs (e.g., CogniCryptGen [11]) cover
just a small number of security use cases. Alternatively, it could be
feasible to elaborate richer KBs by leveraging data from open-source
projects available online. GitHub Copilot [15] is a commercial tool
that employs this approach. However, a recent study shows that
40% of the code generated by GitHub Copilot may contain security
vulnerabilities [15]. In the future, we will investigate alternative
strategies for constructing KBs suitable for conversational security
DevBots, and thereby overcome some of the limitations and chal-
lenges presented in this paper. Recently, Fischer et al. [9] released
a large dataset consisting of security labelled data-code examples
extracted from Stack Overflow4. In future publications we will as-
sess whether such a dataset can be leveraged for expanding the
knowledge of security DevBot solutions.
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