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ABSTRACT
Wildfires have increased in extent and severity, and are posing a
growing threat to people’s well-being and the environment. Pre-
scribed burns (burning on purpose parts of the landscape) are one
of the key mitigation strategies available to reduce the potential
damage of wildfires. However, where to conduct prescribed burns
has long been a problem for domain experts. With the advancement
of forest science, weather science, and computational modeling,
there produced powerful fire simulators that can help inform how
wildfires will start and grow. In this paper, we model the problem
of selecting where to perform a set of prescribed burns across a
large landscape into a multi-objective optimization problem. We
build a surrogate objective function from simulation data and solve
the multi-objective optimization problem with genetic algorithms.
We name our solution as Spatial Multi-Objective for Prescribed
Burn (SMO-PB). We also investigate three variants of the approach
that further consider spatial fairness. With a case study of Dogrib,
Canada, we show that our formulations can successfully provide so-
lutions capable of real world deployment, and showed how fairness
can be reached without diminishing the performance a lot.
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1 INTRODUCTION
Although technology has greatly improved in recent years, wildfire
is a consistent threat to the environment and the quality of people’s
lives. In the last two years, in California alone, there were about
7 million acres burned because of wildfire, with tens of thousands
of infrastructures destroyed and dozens of lives lost [23]. Wildfires
can be caused by lightning, volcanic activity, spark, or human care-
lessness, so it is really hard to stop wildfire from happening. Even
worse, research also indicates that the probability of these fires has
increased in recent years due to the effects of climate change on
temperature, precipitation levels, and soil moisture [27, 32].

Taking actions to mitigate the wildfire risk ahead of time is one
of the key tasks for fire and forest agencies to do. Specifically, fuel
management is a commonly accepted way to reduce the intensity
and severity of wildfires. There are multiple targeted fuel treatment
activities. For example, prescribed burns, thinning, and mechanical
treatments are popular and accepted by both researchers and do-
main experts. In this work, we mainly consider prescribed burn as
the way to mitigate wildfire risks.

A prescribed burn is a planned burn by the fire department as a
controlled application of fire in order to greatly reduce fire hazards.
While prescribed burning is one of the most important tools used
to manage fire today, there are still several factors, such as the
location of the prescribed burn, that can affect the effectiveness of
a prescribed burn plan. Landscape-level siting for prescribed burns
is traditionally planned by domain experts such as site managers
and local fire departments with the main goal of reducing future
wildfire impacts (e.g., area burned, CO2 produced, infrastructure
damaged). The total number of possible prescribed burn configu-
rations can be exponentially large with respect to the number of
candidate locations. Although the prescribed burn plan does not
need to be planned quickly, and only needs to be planned once
every several months, the large decision space combined with a
complex combination of objectives, makes prescribed burn land-
scape optimization a tough task, as the planner needs to take into
account various metrics at the same time. Currently, prescribed
burns are normally planned by giving an independent score for each
unit and choosing the best few units as a solution. The score itself
is very often set by human experts based on domain knowledge,
rather than data-driven. An additional challenge is posed by the
fact that the simulation for wildfire is relatively slow, and can take
up to minutes to run a group of simulations that is representative
enough for one specific prescribed burn plan. So it is impossible
to use simulators during the optimization process, which makes
enumeration over solutions for an optimal plan impossible.
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In this paper, we propose a data-driven simulation-optimization
approach for the landscape optimization for prescribed burns, aim-
ing to better consider the different objectives simultaneously. For
the simulation data for wildfires without any prescribed burns, we
first build a spread-tree-based surrogate function to quickly esti-
mate the benefit we can get from a specific prescribed burn plan
without running the simulation, and use mathematical program-
ming to formulate the problem into a multi-objective knapsack
problem. We name our solution as Spatial Multi-Objective for Pre-
scribed Burn (SMO-PB). To make our solution more acceptable
to stakeholders and residents of the affected areas, we integrate
considerations of how the benefits (i.e., reduced wildfire hazards)
are spatially distributed. We give three formulation variants that
introduce the potential fairness concerns for field deployment. The
workflow is shown in Figure 1. We use a case study of Dogrib, a
79,611 ha large surface in the Rocky Mountains, Canada to show
that our algorithm can generate the Pareto frontier efficiently, and
show how the fairness-aware formulations do not compromise
overall wildfire hazard reduction. We also use an ablation study to
give some insights on how to better the formulation results with
more, though possibly inexact, given candidates.

Our main contributions are: 1) We formulate the landscape opti-
mization for prescribed burn planning into a four-stage problem.
Previous work normally disregarded one or two of these stages.
2) We provide a general group of multi-objective optimization for-
mulations for landscape optimization. 3) We introduce the fairness
concerns into the prescribed burn problem. 4) We use a case study
of Dogrib to show that our workflow can generally work well both
from the computational and the solution quality perspective.

2 RELATEDWORK
Wildfire has long been a focus for fire and forest researchers, and
there are several wildfire simulators built to make the decision-
making more accurate and easier. For example, FARSITE [12] was
one of the most used simulators, because of its powerful simulation
and long-term collaboration with fire researchers. QUICFIRE [20]
was created in recent years to model 3D time-resolved fire behavior.
Cell2Fire [24] is created for modeling the exact spread tree of the
wildfire in a calculation-efficient way.

In this paper, we are focusing on landscape-level optimization for
prescribed burns in wildfire mitigation, where a limited subset of
prescribed burn areas is selected from a larger set of candidates to
optimize their joint complementary effect on reducing the wildfire
hazards across the landscape. There were a few works specifically
on planning prescribed burns. Hanselka et al. [15] summarized the
principles for designing a prescribed burn plan for domain experts’
management. Cowell et al. [6] proposed a score-based ranking sys-
tem for prescribed burn planning. Kim et al.[17] evaluated a set
of different fuel management settings in certain patterns (i.e., dis-
persed, clumped, regular, and random patterns), and with a case
study in Oregon, they concluded that the proposed method can only
marginally alter the size and severity of future wildfires under tight
budgetary conditions. Others [5, 13] instead studied the benefit of
placing a series of parallel strips-like fuel treatments, and letting the
fire propagate perpendicularly to their placement. Russo et al.[28]
studied the placement of firebreaks to control fire spread. Pais et al.

[25] proposed a useful surrogate function for potential savings de-
rived from wildfire simulation data and advocated its general usage
in optimization for fuel treatment. We use the surrogate function
of [25] as the basis for the optimization objectives in this paper,
but for the optimization part, Pais and colleagues only considered
a connected area for protection, while we are considering general
combinations of candidate prescribed burn areas, and only a single
objective, while we are considering multiple objectives.

Matsypura et al. [22] studied prescribed burn placement by
network-based optimization on an abstraction graph, and used
a case study of Hawkesbury to validate their solution quality. How-
ever, the scalability of their algorithm is only assessed on graphs
with hundreds of nodes, which is far from the real-world need. The
work by Alcasena et al. [2] is probably the closest research paper to
this paper, in which they also formulate the problem into a multi-
objective optimization. Their solution is a weight-sampling-based
method to give a production possibility frontier (PPF), while our
solution is to directly solve the multi-objective optimization. Fur-
thermore, we also consider how fairness concerns in this problem
can be solved.

Multi-objective optimization is a well studied topic in operations
research and among optimization researchers because of its poten-
tial applications, e.g., dial a ride problem (DARP) [14] among many
others. In this research, evolutionary multi-objective optimization
(EMO) methodologies have amply shown their niche in finding
a set of well-converged and diversified non-dominated solutions
since the beginning of the 1990s. Non-dominated Sorting Genetic
Algorithm (NSGA)-II [9] is one of the most popular algorithms used
in this domain, because of the good solution quality and the early
time it is proposed. Later on, researchers improved the NSGA-II
to NSGA-III, making it one of the state-of-the-art approaches [8].
Several extensions for NSGA-II are proposed, and many of them
are also applicable to NSGA-III, resulting in a group of variants of
NSGA-III (e.g., U-NSGA-III [31], R-NSGA-III [29]). Other lines of
work in multi-objective optimization mostly include variants of the
multi-objective evolutionary algorithm (MOEA): MOEA/D[34] and
AGE-MOEA[26], and some other algorithms that do not have as
many variants like SPEA2 (Strength Pareto Evolutionary Algorithm-
2) [36] and Two-Archive Evolutionary Algorithm for Constrained
Multiobjective Optimization (C-TAEA) [19]. The initial formula-
tion in this paper is a 0-1 multi-objective knapsack problem [21].
Besides the above approaches for the general problem, past works
[4, 10, 18, 30] have proposed a few exact solution methods that
can be efficient in some special cases. Recently, Zhou et al. [35]
also proposed the use of reinforcement learning for multi-objective
optimization. In this paper, we use NSGA-III, U-NSGA-III, C-TAEA
because of their wide applicability and good public availability.

In this paper, we also introduce fairness to the landscape opti-
mization problem for prescribed burn planning. Fairness considers
giving similar outcomes to different groups, as defined by some rel-
evant features. This is an important concept studied for a long time,
but recently there have been considerable efforts to incorporate
it into computational models. [33] started to address fairness by
quantifying the variance of the result methods get. [16] summarized
some of the properties a fairness metric usually needs to satisfy, and
then proposed a new division-based index for fairness. [1, 11] also
studied fair resource allocations in infrastructure in bike-sharing
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Figure 1: The workflow of our landscape optimization solution for prescribed burn in wildfire mitigation planning.

Figure 2: The satellite image of Dogrib, Canada.

and community evacuation planning and gave different solutions
for their application domain. [3] studied fair resource allocation,
used a welfare-based dominance constraint, and used a case study
of workload allocation to show that such a problem can be solved
efficiently. The fairness concern in our problem can also be seen
as a fair resource allocation problem, however, we used a different
definition and solution because our goal is different.

3 PRELIMINARY
3.1 Landscape Optimization for Prescribed

Burns
Prescribed burning is a commonly used technique to help reduce
the potential threat of wildfires. Unlike real-time firefighting, pre-
scribed burns are done before any wildfire starts, and are under the
control of a local fire department. It is useful for clearing downed
trees, preventing tree diseases, and most importantly, reducing fu-
ture wildfire hazards. Because this is done after careful planning
and condition controls, the fire experts can accurately control and
predict in which specific area they can do a prescribed burn. How-
ever, because of the large resource requirement for every prescribed
burn with careful condition control, local fire managers cannot do
many prescribed burns, and choosing from the large candidate set
of where exactly they should do prescribed burns is a key challenge
for them. At the same time, prescribed burns across a landscape
have complementary and compounding effects on the wildfire haz-
ard, and hence should be planned jointly as a configuration of burns
instead of planned independently.

Specifically, for a landscape area A, we are given a list of objec-
tive functions F = { f1, f2, f3, · · · , fM } for our wildfire protection,
where M is the number of objectives. Each of these objectives is
a function that takes as input a prescribed burn configuration x ,
and fm (x) represents some real-world metric for wildfire hazard
reduction due to applying plan x that is well accepted in the wild-
fire domain, for example, expected reduction in the infrastructure
destroyed, the CO2 emissions, or the damage to local ecosystems
by wildfires. In addition to measuring the overall wildfire hazard
reduction fm (x) in the landscape A after the prescribed burn plan
x is applied, we also have access to fm (a,x) which specifies the
same wildfire hazard metric under plan x but for a specific loca-
tion/subarea a ∈ A. We also have a set of K different candidate pre-
scribed burn locations X = {X1,X2,X3, · · · ,XK } given by domain
experts considering the real deployment needs like the distance to
local fire departments, the slope, etc. Our task is to determine which
subset x ⊂ X one should choose so that the objectives F (x) we get
for this prescribed burn configuration are optimized. For notation
simplicity, x is encoded in a Boolean vector form such that xk = 1
means the k-th element in X is selected for the plan, and 0 other-
wise. Because of the limited resources in the real world, we are also
given L different groups of weightsWK×L corresponding to a group
of limited total budgets B = (b1,b2, · · · ,bL) for prescribed burns.
The limited resources can be the number of burns, the money for
prescribed burns, the time effort for prescribed burns, etc. This is a
constrained multi-objective optimization, and we want to calculate
the Pareto frontier solutions with respect to the objectives.

Note that we require the prescribed burn candidates to be given
by experts because in real world deployment, the size of each pre-
scribed burn should be limited. Since we do not limit the number
of candidates here, we assume the candidates can contain whatever
the domain experts think can be a reasonable unit in a specific
plan, and do not consider the case that the given candidate set is
incomplete.

3.2 Surrogate Objective Function
The most accurate way to compute the wildfire hazards in a land-
scape and their reduction under a proposed prescribed burns plan
is to use a wildfire simulator. Wildfire simulations are computed by
treating the landscape as a regular grid of cells, sampling weather
conditions and ignition points, and simulating the fire spread from
cell to cell. For a given simulation s , we obtain the wildfire impact
or damage on each cell i for each objective metricm, denoted by
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(a) An example of fire propagation tree generated by the simu-
lator.

(b) The DPV heatmap for unit node value of the Dogrib area gen-
erated from simulation data used in this paper.

Figure 3: We get the propagation tree data like figure (a) from the simulator, to calculate the surrogate function for further
optimization usage, shown in figure (b). Note that (b) is not the result directly generated from (a), but the average result of 100
propagation trees like (a).

NV s
m (i). A representative set of simulations give an estimate of the

expected wildfire impacts.
During the optimization, the objective functions would take

a long time for wildfire simulators to run before the final result
can be given. For example, the Cell2Fire simulator takes at least
one second to run one simulated wildfire, which is unacceptable
for any optimization algorithm since most of them will run this
objective function calculation tens of thousands of times during
the optimization. Thus, computing the objectives under a proposed
plan through simulation is not reasonable during our optimization.
In this paper, we use a modified version of downstream protection
value [25] to calculate a surrogate function.

Downstream protection value (DPV) [25] is a recently proposed
metric that measures and ranks the impact of treating a unit cell
of the landscape by estimating what is burned downstream from
it, starting from a burning cell, in a representative sample of wild-
fires. During the simulation, the fire spread process is recorded
between the cells and results in a directed graph of burning cells
with nodes representing cells, as illustrated in Figure 3a. Then, a
directed shortest-path-tree is generated based on the directed graph.
The DPV value of a cell/node i captures the prevented wildfire im-
pacts if the cell i was not allowed to burn or spread wildfires (e.g.
due to a prescribed burn), and is calculated as the average value
over all simulations of the sum of all the node values (NV) of all
the children of the cell i on the shortest path tree in each wildfire
simulation s:

DPVm (i) =
1

nsims

nsims∑
s=1

∑
j ∈Subtrees (i)

NV s
m (j) (1)

where NV s
m (i) is the node value of node i under them-th objective

in the s-th simulation, Subtrees (i) is the set of cells/nodes in the fire-
spread subtree of node i in the s-th simulation, and nsims denotes
the total number of simulations.

With the DPV approximation, we can think of the objective
functions for each prescribed burn plan x as:

∀m ∈ {1, 2, · · · ,M}, fm (x) =
K∑
k=1

DPVm (k) ∗ xk (2)

to overlaps of the mitigation benefits of individual prescribed burns
xk . The precise encoding is presented in the next section.

This surrogate function relies on an assumption that the wildfire
in the simulation can only spread through exactly what is on the
provided fire spread tree, but not any other edge. This is clearly not
true in the real world and can lead to a gap between the estimated
wildfire hazard reduction value and the actual benefit, but still, this
is so far one of the most accurate surrogate functions that can be
computed efficiently. Generally, using surrogate functions requires
a re-run on the simulator after the whole optimization process to
get the real benefit.

4 MATHEMATICAL MODEL
4.1 Spatial Multi-Objective Optimization for

Prescribed Burns
We start with giving our basic multi-objective optimization formu-
lation:

max
x

F (x) = (f1(x), f2(x), f3(x), · · · , fM (x))

s .t .Wx ≤ B

∀k,xk ∈ {0, 1}
(3)

where we aim to maximize the M metrics of wildfire impact re-
ductions, subject to L resource constraints, under binary decision
variables for each prescribed burn candidate xk .

For a special case withM = 1, the problem turns into a standard
integer programming, or more specifically, a knapsack problem.
One possible solution is to use dynamic programming. However,
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the knapsack problem is also NP-hard, and cannot be efficiently
solved in real world-scale large problems.

In the general case, our problem is naturally a multi-objective
combinatorial optimization problem, also known as the multi-
objective subset selection problem, and more specifically, a 0-1
multi-objective knapsack problem [21]. We call this formulation
Spatial Multi-Objective Optimization for Prescribed Burns (SMO-PB).

Next, we provide the exact mathematical formulation that cap-
tures the DPV objectives in wildfire mitigation:

max
x,z

f1(z) =
1

nsims

|A |∑
i=1

nsim∑
s=1

NV s
1 (i) ∗ zi,s

f2(z) =
1

nsims

|A |∑
i=1

nsim∑
s=1

NV s
2 (i) ∗ zi,s

· · ·

fM (z) =
1

nsims

|A |∑
i=1

nsim∑
s=1

NV s
M (i) ∗ zi,s

s .t .Wx ≤ B

∀i, s, zi,s ≤
∑

k ∈Parents (i)∩X

xk

∀i, s, zi,s ∈ [0, 1]
∀k,xk ∈ {0, 1}

(4)

where zi,s is a group of auxiliary variables that encodes whether
a cell i will be burned in simulation s after applying the correspond-
ing prescribed burn plan x , and Parents (i) gives a set of the parents
of cell/node i on the spread tree generated by simulation s .

The biggest limitation of this formulation is that we need a
simulator that can provide the propagation tree for the simulations.
Even when the fire spread information is not available, usually any
wildfire simulator will at the minimum provide for each simulation
the cell of the ignition point and fire impacts in each cell captured by
the node values NV s

m (i). In that case, our formulation still applies
but Parents (i) is only the cell of the ignition point of fire simulation
s .

4.2 Fair Spatial Multi-Objective Optimization
for Prescribed Burns

Fairness considers giving similar outcomes to different groups, as
defined by some relevant features. In the context of our application
in wildfire hazard mitigation, we found that it is quite common to
have a plan in which selected burns are very close to each other,
because typically the high threat areas are in a cluster. This makes
the final benefit each cell received from the prescribed burn not
evenly distributed. In reality, other parts of the park also have to
suffer the smoke and other potential damage during the prescribed
burn without receiving benefits. From the perspective of fire man-
agers, they want to make most people get a benefit by making the
benefit distributed more evenly, and hopefully more residents in
the potential prescribed burn area are more willing to support the
prescribed burns.

We formulate this fairness concern into the optimization itself,
such that in addition to the overall benefits (total wildfire impacts’

reduction across the landscape) we also measure the distribution
of these mitigation benefits to each cell / subarea of the landscape.
For clarity, we will call the current objectives we get directly from
the simulations the "main objectives". We proposed three extended
formulations that try to find a solution that does not reduce much
the main objectives, while also providing a more fair solution in
terms of the distribution of the mitigation benefits.

4.2.1 Spatial Area Fairness. Given cell i and plan x , we define
fm (i,x) as the reduction in wildfire impactm in cell i under plan x .
Based on the variables in the formulation in Eq.4, one can compute
fm (i,x) as 1

nsims

∑nsim
s=1 NV s

m (i) ∗ zi,s using the auxiliary variables
z.

We define the fairness metrics in terms of the lowest quantile
of the benefits to individual cells under the prescribed burn plan.
For a length l sequence, the lowest quantile is the value v such that
exactly l

4 elements of the sequence have a value less than v . In this
way, instead of optimizing for the worst-off cell which usually will
have 0 benefits for a plan x , we focus look at the 25%-th cell:

em (x) =
1
zm

lowest_quantilei ∈A fm (i,x) (5)

where em is the fairness metric corresponding to main objective
m, and zm is a normalizing parameter to make the fairness metric
value always between 0 and 1. We pre-compute zm before the multi-
objective optimization, by optimizing a single objective without
considering other objectives:

zm ≜ max
x

fm (x)

s .t .Wx ≤ B

∀k,xk ∈ {0, 1}
(6)

Hence, we haveM main objectives, nowwe have an additionalM
fairness objectives E = {e1, e2, · · · , eM } with Z = (z1, z2, · · · , zM ).

4.2.2 Spatial Multi-Objective Optimization for Prescribed Burns
with Fairness (SMO-PB-F). We first directly introduce the fairness
functions as another group of objective functions with the original
objective functions into formulation Eq. 3:

max
x

F (x) = (f1(x), f2(x), f3(x), · · · , fM (x))

E(x) = (e1(x), e2(x), · · ·, eM (x))
s .t .Wx ≤ B

∀k,xk ∈ {0, 1}

(7)

This formulation results in a solution with (2M)-Dimensional
Pareto frontier. Domain experts and site managers can choose one
of the Pareto-front solutions to deploy. We call this formulation
Spatial Multi-Objective Optimization for Prescribed Burns with
Fairness (SMO-PB-F).

4.2.3 Spatial Multi-Objective Optimization for Prescribed Burns
with Sum Fairness (SMO-PB-SF). Above, SMO-PB-F is a formulation
that keeps the greatest flexibility in selecting a solution. However,
for current multi-objective optimization algorithms, the scalability
is negatively impacted by the growth in the number of objectives.
In addition to being slow, since the number of objective functions
is doubled it will also require a lot of human post-processing in
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selecting a plan from the Pareto front. Instead of addingM fairness
objectives, we can use the sum for the fairness metrics and add
exactly one objective function into Eq. 3:

max
x

F (x) = (f1(x), f2(x), f3(x), · · · , fM (x))

e1(x) + e2(x) + · · · + eM (x)
s .t .Wx ≤ B

∀k,xk ∈ {0, 1}

(8)

This formulation can help in the context of scalability for the
formulation and can give a solution that considers fairness in all
objectives given that em (x) are normalized. Also, this formulation
can be easily extended to a weighted sum version instead of uniform
sum with the help of domain experts. We call this formulation
Spatial Multi-Objective Optimization for Prescribed Burns with
Sum Fairness (SMO-PB-SF).

4.2.4 Spatial Multi-Objective Optimization for Prescribed Burns
with Bounded Fairness (SMO-PB-BF). Often in research related to
fairness, one adds fairness constraints instead of adding objectives
because most problems are solved as a single-objective problem and
avoid considering a Pareto frontier. So instead of adding objectives
to the Eq. 3 formulation, we alternatively addm constraints:

max
x

F (x) = (f1(x), f2(x), f3(x), · · · , fM (x))

s .t .Wx ≤ B

∀m ∈ {1, 2, · · ·,M}, em(x) ≥ ϵm

∀i,xi ∈ {0, 1}

(9)

where ϵ = (ϵ1, ϵ2, ϵ3, · · · , ϵM ) is another hyperparameter class
that defines a lower bound threshold on the quantile cell benefit.
The larger the number, the more fair the solution will be.

This formulation is reasonable because it maintains exactly the
same amount of objective functions as SMO-PB. This is beneficial
in terms of runtime as well as visualization of the Pareto front. Fur-
thermore, reducing the number of objectives naturally reduces the
potential number of points on the Pareto fronts, and thus reduces
the need for human experts to choose solutions among a large set.
We call this formulation Spatial Multi-Objective Optimization for
Prescribed Burns with Bounded Fairness (SMO-PB-BF).

Note that after adding the fairness concerns, the three variants
we get are no longer a simple linear multi-objective optimization or
a multi-objective knapsack problem, which makes the formulation
much harder to solve; however, the current solver for the multi-
objective optimization is good enough to solve these problems.

5 EXPERIMENT
5.1 Experiment Setting
We have tested our formulations in a real world-based dataset in
Dogrib, Canada. We split the area into cells of 100m × 100m, and
provide the features of these cells to the simulator for wildfire
simulation. We used the Cell2Fire simulator [24] to simulate the
fire 100 times with different ignition points over the whole area
according to the average ignition probability of 10 different kinds
of weather. The simulator is chosen because it is one of the very
few simulators that provide detailed propagation graphs from the

Table 1: The runtime results of our formulations, with 500
candidates and 500 generations.

Runtimes(s) SMO-PB SMO-PB-F SMO-PB-SF SMO-PB-BF
NSGA-II 80.88 596.97 542.20 536.44
NSGA-III 90.93 664.24 657.62 655.63
U-NSGA-III 77.23 537.52 537.64 534.98
C-TAEA 87.65 712.86 673.76 650.14
PPF 17855.33 - - -

simulation, which enable the calculation of the DPV values. Specif-
ically in this paper, we choose to optimize number of cells burned
(N_cells), the forest burned (Forest), and the sum of the degree of
curing of the cells burned (Curing). We also optimize their corre-
sponding fairness metrics E, to optimize area fairness (E(N_cells)),
forest fairness (E(Forest)), and curing fairness (E(Curing)). The for-
est burned per cell is an integer from 0 to 110, and the degree of
curing per cell is an integer from 0 to 70, assigned by the wildfire
simulator. 1 For candidate prescribed burn areas, we randomly se-
lect some cells within the cells that are burned in at least one of
the simulations. For simplicity, we only consider the case that there
is one budget limit and each candidate burn area has a uniform
weight, i.e., L = 1,∀k ∈ {1, 2, · · · ,K},w1,k = 1. We choose a bud-
get of B = 30. Without further specificity, for SMO-PB-BF we set
∀m, ϵm = 5 × 10−3.

For the multi-objective optimization, we used the popular NSGA
family algorithms: NSGA-II [9], NSGA-III [8], U-USGA-III [29], and
C-TAEA [19]. We also compared our results with the PPF method
used in [2]. For the reference direction needed in these genetic
algorithms, Das-Dennis method [7] is used to sample 100 direction
vectors. Note that all of these algorithms are sub-optimal algorithms,
so we compare their results with similar runtime limits. We let all
NSGA-group algorithms run for 500 generations, and C-TAEA for
1000 simulations since C-TAEA is twice as fast in every generation
(as shown in Table 1). All experiments are tested on a Google Co-
lab server with 13GB memory, and numbers are averaged from 3
different seeds.

5.2 Optimization Results
We show the convergence plot of different algorithms and different
formulations in Fig. 4. We can see that 500 generations are enough
for most scenarios to converge. As such, in later experiments with-
out further specificity, the results are from 500 generations.

Table 1 shows the runtime of different algorithms and formula-
tions. As expected, the fastest formulation is the SMO-PB, and we
can see that other formulations are much slower than the original
one. In Table. 2, we show the hypervolume results of different algo-
rithms and different formulations. Although PPF performs slightly
better in hypervolume than other algorithms in the SMO-PB formu-
lation, it needs to enumerate different weight combinations between
objectives taking several orders of magnitudes longer time, and is
even intractable in our other formulations requiring more than 3
objectives. Among the other algorithms, we observe that for most of
the settings different algorithms can achieve similar hypervolume
1The data was downloaded together with the open sourced simulator:
https://github.com/cell2fire/Cell2Fire.

434



Landscape Optimization for Prescribed Burns in Wildfire Mitigation Planning COMPASS ’22, June 29-July 1, 2022, Seattle, WA, USA

(a) Convergence for SMO-PB optimized by different algorithms.
(b) Convergence plot for different formulations optimized by
NSGA-III.

Figure 4: Convergence in hypervolume across different algorithms and different formulations. The hypervolume is calculated
based on the three main objectives.

results for each of the formulations, and specifically, NSGA-III is
the one that performs the best most of the time. So we chose to use
NSGA-III to report further in-depth results.

In Table. 3, we show all of the results of NSGA-III with different
formulations. We show the hypervolume with 3 different settings:

• 3 main objectives, namely number of cells burned
• 3 fairness objectives, i.e., e1(x), e2(x), e3(x)
• All 6 objectives with both the main objectives and the fair-
ness objectives.

We can see that although the runtime for the SMO-PB formula-
tion is much smaller than other formulations that have considered
fairness, the hypervolume in terms of fairness objectives of the
SMO-PB formulation is much smaller compared to other formula-
tions. From this point of view, spending a reasonably longer runtime
and finding a better solution that does not lose much on the original
three objectives, and with much better fairness, is quite reachable.
SMO-PB-BF gets the best fairness result when only considering the
fairness objectives and the fewest number of points on the Pareto
Fronts, because it has a strict constraint to ensure fairness, and
loses a lot in the hypervolume of the 3 main objectives. So whether
using the SMO-PB-BF model or using other fairness-concerned
models should decide based on how many solutions a domain ex-
pert wants to choose from. In Fig. 5a, we show the 3-D plot of the
corresponding Pareto fronts.

In Fig. 5b we show the 3-D projection of the Pareto frontier of
the first two main objectives and the fairness objective for forest
E(Forest), from different formulations (for one specific random seed).
We can see that the whole Pareto frontier surface of the SMO-PB
formulation is in the bottom half of all of the multi-objective space.

We randomly chose one plan from the Pareto front of each for-
mulation. In Fig. 6, we show the benefit each cell gets from the plan
as heatmaps. We see that although most solutions give benefit to
the same area, the result from SMO-PB gives more extreme values
while other formulations give more average values to everyone.
Only SMO-PB-F and SMO-PB-BF have the biggest motivation to
spend less in those better-rewarding areas, and protect those areas

that are normally not covered (e.g., the middle part of SMO-PB-F,
the lower left area of SMO-PB-BF). In Fig. 7, we show the actual
plan in the corresponding area. While many candidates overlapped
in different solutions, we can see that all of the candidates in the
corners are only covered by the fairness-aware formulations. These
distribution figures support our assumption that considering fair-
ness can benefit more people.

Although SMO-PB-F takes the longest to run, it does not outper-
form the result of SMO-PB-SF, which means that simply using a
sum for fairness objectives can be good in both runtime and solu-
tion quality. Therefore, we believe that for real world deployment
where we have more objectives to consider than the two objectives
considered in this section, SMO-PB-SF and SMO-PB-BF will be a
better choice.

Figure 8 and Table 4 shows how our formulations perform with
different numbers of candidate prescribed burn areas. We can see
that with the increase in number, our solution quality also gets
better. This is because our formulation does not generate other
plans that are not in the candidates; therefore the more candidates,
the more likely that the optimal plan is included in the candidate
set. This means that for domain experts, it will be good if they can
provide a large group of candidates even if they do not have such
large budget.

5.3 Final Evaluation with Simulator
At last, we evaluated our selected prescribed burn plan by re-
running the simulations. First, we mark the fuel in the selected
prescribed burn cells as 0, so they can no longer burn or spread
fire further, and re-run the simulation to recompute the average
wildfire impact metrics. With the same ignition points, we compare
the average wildfire impacts without and with prescribed burns in
Figure 9, and observe that the wildfire impact reductions are around
150 cells, 2000 forests, and 4000 for the degree of curing. Although
these wildfire reduction values are different from the values from
the surrogate function shown in Figure 5a, our solution does show
success in reducing the wildfire impacts in all three objectives.
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Table 2: The HYPERVOLUME results of different algorithms with different formulations for Dogrib, with 500 candidates. The
hypervolume reported corresponds to the objective each formulation is optimizing.

SMO-PB (×1010) SMO-PB-F (×0.1) SMO-PB-SF (×107) SMO-PB-BF (×1010)
NSGA-II 5.36 ± 0.01 9.56 ± 0.11 1.67 ± 0.00 5.33 ± 0.00
NSGA-III 5.32 ± 0.02 9.46 ± 0.01 1.68 ± 0.03 5.34 ± 0.01
U-NSGA-III 5.32 ± 0.03 9.44 ± 0.01 1.67 ± 0.00 5.32 ± 0.00
C-TAEA 5.34 ± 0.03 8.94 ± 0.18 1.47 ± 0.05 5.31 ± 0.01
PPF 5.38 ± 0.00 - - -

Table 3: The results of NSGA-III with different formulations, reporting the number of Pareto front solutions (# Plans) for each
formulation, and hypervolume with respect to the 3 main objectives only, the 3 fairness objectives only, and all 6 objectives
(Dogrib with 500 candidates). SMO-PB-F and SMO-PB-SF result in as good hypervolume in the 3 main objectives as SMO-PB,
while significantly improving the hypervolume in the 3 fairness objectives.

# Plans HPV(3 Main) (×1010) HPV(3 Fairness) (×10−11) HPV(3 Main + 3 Fairness) (×0.1)
SMO-PB 21 ± 4 5.32 ± 0.02 1.24 ± 0.00 6.52 ± 0.02
SMO-PB-F 124 ± 31 5.31 ± 0.00 1.86 ± 0.00 9.46 ± 0.01
SMO-PB-SF 74 ± 6 5.30 ± 0.00 1.87 ± 0.04 9.53 ± 0.18
SMO-PB-BF 19 ± 4 2.82 ± 0.00 1.90 ± 0.31 4.85 ± 0.48

(a) The Pareto frontier of the formulations projected to the three
main objectives.

(b) The Pareto front of the formulations projected to the ’Area of
cells’, ’Forest burned’ and ’Forest Fairness’ objectives. We have
specifically connected all points generated by SMO-PB as a sur-
face.

Figure 5: The Pareto frontier of the formulations. The larger the value, the better the solution. Results for a single random
seed.

(a) SMO-PB (b) SMO-PB-F (c) SMO-PB-SF (d) SMO-PB-BF

Figure 6: The benefit heatmap of different formulation, corresponding to the points shown in Fig. 7.
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(a) SMO-PB (b) SMO-PB-F (c) SMO-PB-SF (d) SMO-PB-BF

Figure 7: One typical landscape prescribed burn plan from different formulations. The specific plan is randomly chosen from
the Pareto frontier. Every algorithm has the same budget of 30. Most chosen units are shared in different formulations, but
those candidates closer to the corner are only covered by the three variants with fairness concerns.

Table 4: The 3 main objectives hypervolume (HPV) results for NSGA-III with different number of candidates and different
formulations. The bigger the number, the better the solution.

# Candidates SMO-PB (×1010) SMO-PB-F (×1010) SMO-PB-SF (×1010) SMO-PB-BF (×1010)
200 1.43 ± 0.01 1.42 ± 0.01 1.42 ± 0.02 0.79 ± 0.03
500 5.32 ± 0.02 5.31 ± 0.00 5.30 ± 0.00 2.82 ± 0.00
800 8.75 ± 0.02 8.48 ± 0.23 8.66 ± 0.05 4.43 ± 0.17

Figure 8: The Pareto frontier of ablation study with
NSGA-III on different numbers of candidates. The larger
the value, the better the solution.

Figure 9: The average damage received the prescribed
burn plan gives, calculated by re-running the simulator
and calculating the weighted sum of burned cells. The
smaller the number, the better the result.

6 CONCLUSION
In this work, we apply multi-objective optimization to solve the
landscape-level prescribed burn planning for wildfire mitigation.
We first give the general SMO-PB formulation, and then provide
three formulation variants that introduce fairness into the problem
to make the solutions provide a more spatially balanced distribution
of prescribed burn benefits.We use a case study of Dogrib to validate
that our formulations can yield a satisfying solution for a real world
deployment, and show how introducing fairness can benefit more
people without harming the overall benefit.
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