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Abstract 

NVIDIA's Multi-Instance GPU (MIG) feature allows users to par­
tition a GPU' s compute and memory into independent hardware 
instances. MIG guarantees full isolation among co-executing ker­
nels on the device, which boosts security and prevents performance 
interference-related degradation. Despite the benefits of isolation, 
however, certain workloads do not necessarily need such guaran­
tees, and in fact enforcing such isolation can negatively impact the 
throughput of a group of processes. In this work we aim to relax 
the isolation property for certain types of jobs, and to show how 
this can dramatically boost throughput across a mixed workload 
consisting of jobs that demand isolation and others that do not. The 
number of MIG partitions is hardware-limited but configurable, and 
state-of-the-art workload managers cannot safely take advantage 
of unused and wasted resources inside a given partition. We show 
how a compiler and runtime system working in tandem can be 
used to pack jobs into partitions when isolation is not necessary. 
Using this technique we improve overall utilization of the device 
while still reaping the benefits of MIG's isolation properties. Our 
experimental results on NVIDIA A30s with a throughput-oriented 
workload show an average of 1.45x throughput improvement and 
2.93x increase in GPU memory utilization over the Slurm workload 
manager. The presented framework is fully automatic and requires 
no changes to user code. Based on these results, we believe our 
scheme is a practical and strong advancement over state-of-the-art 
techniques currently employed for MIG. 

CCS Concepts: • Software and its engineering - Runtime 

environments; Software performance; Scheduling; Massively 

parallel systems; Compilers. 
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1 Introduction 

General-purpose graphics processing units (GPGPUs) have be­
come a mainstay in modern computing infrastructure. In high­
performance computing (HPC) environments they continue to be 
a necessary platform for tasks like molecular simulations, and in 
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cloud environments, they have recently become pivotal in churning 
through machine learning workloads. 

Despite their efficiency on parallel tasks, GPUs are costly and 
underutilized. GPUs cost roughly 2x to 5x more than a comparable 
high-end CPU. Similarly, GPU-enabled virtual machines in data 
centers cost up to 1 Ox that of regular VMs. In addition to the high 
cost, GPUs are underutilized in many scenarios [5, 10, 13]. 

Substantial research has attempted to improve the above (e.g. [3, 
5, 12]). NVIDIA has also introduced features into its GPU hardware­
software stack to address cost and utilization issues, including 
Hyper-Q and its Multi-Process Service (MPS) [6]. MPS allows ker­
nels from independent processes to run simultaneously on the 
device. Though effective for applications where the kernels' re­
source requirements and interactions are carefully tuned (e.g. for 
MPI applications), it offers no resource guarantees and in the worst 
case can lead to out-of-memory (QOM) errors. Recently, a fully au­
tomated, safe solution to schedule independent processes to boost 
throughput and utilization leveraging MPS was proposed in [2]. 

NVIDIA's new Multi-Instance GPU (MIG) [7] feature is a hardware­
level partitioning option that is present on GPUs based on its latest 
Ampere micro-architecture, such as A30 and AlO0. These GPUs are 
intended for data center workloads. Because each MIG partition 
(also called an "instance") has its own dedicated compute, mem­
ory, and memory bandwidth resources, users can run multiple jobs 
in parallel with guaranteed quality of service (QoS) and fault and 
security related isolation. 

MIG supports several predefined options for slicing the compute 
and memory resources of the device. An AlO0 with 40GB of memory 
can be subdivided into 5GB, 10GB, or 20GB partitions. Besides all 
40GB, other sizes are not permitted. The compute resources can 
be divided into 7 slices. They cannot be combined in arbitrary 
ways, though. For example, 7 partitions of 1/7 are permitted; a 
2/7 + 2/7 + 3/7 partitioning is permitted; but a 3/7 + 3/7 + 1/7 
partitioning is not permitted. Thus, the options for partitioning with 
MIG are not endless, but in practice they provide a much-needed 
hardware-level partitioning option for industrial-scale workloads 
that have a fault/security isolation need in a co-execution multi­
tenant environment such as a data-center. 

Though MIG solves the problem of isolation, it does not solve 
(nor propose to solve) the problem of how to efficiently place jobs 
on the device. This responsibility falls to the scheduler or work­
load manager. Slurm [14] is a state-of-the-art workload manager 
that has already integrated MIG support into its command-line 
options and configuration files and is one of the most widely used 
schedulers across many execution environments. To Slurm, the 
MIG hardware instances simply appear as additional GPUs in a 
multi-GPU deployment. Users pass the memory requirements of 
their kernels to Slurm via command line, and this allows Slurm to 
assign a user job to a partition with sufficient memory. 

We contend that there are at least two shortcomings of Slurm's 
approach for future MIG-enabled workloads: first, Slurm reserves a 
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partition for the entire process' lifetime; and second, Slurm reserves 

a partition that is able to hold the process' maximum kernel size. 

These limitations result in GPU underutilization in the schedules 

generated by Slurm, as well as sub-optimality in terms of a sched­

ule's objective function such as throughput or the job turnaround 

time of a batch. In contrast, we will present a framework that (1) 

only reserves resources on a partition for the duration of a ker­

nel and not the full process, (2) reserves the best-fit partition on a 

kernel-by-kernel basis, and (3) is able to deal with mixes that have 

two kinds of jobs: those that demand isolation and those that do not 

- packing the latter to boost utilization and throughput both. Given

the fact that clouds are expected to handle mixed use cases in the

near future, we find these observations to be true of forthcoming

workloads. For example, there is growing support for HPC work­

loads in the cloud [9], and public-facing clouds for Google, Oracle,

and Amazon all have solutions to address this use case [1, 4, 8].

Contributions: We attempt to address the above scheduling 

problem by taking advantage of both the MIG and MPS features 

available on the latest GPUs. We are interested in improved through­

put and utilization in GPUs, and we assume some level of mixed 

use-case workload (where some jobs may need isolation guaran­

tees and others may not). This work is an extension of [2]. The 

distinguishing factors of this new work are those directly related 

to MIG. In particular, we make the following new contributions: 

1. We develop a novel workload manager for NVIDIA's MIG

feature that combines compiler-based instrumentation with

a runtime system that leverages MPS. We thus support mixed

jobs with isolation requirements as well as jobs that can share

a GPU instance.

2. We implement our scheme on two different systems with

NVIDIA Ampere devices (a 4xA30 system and a lxAl00

system), showing that such a framework is indeed portable

and applicable to the latest GPU hardware.

3. We show how relaxing the isolation property for jobs run­

ning on MIG-enabled devices can improve throughput, job

turnaround time, and memory utilization, without heavily

affecting kernel execution times.

2 Framework 

We present a paired compiler-runtime framework called CASE that 

improves scheduling decisions on MIG-enabled devices. The com­

piler component is implemented as an LL VM pass. It performs 

analysis on applications' CUDA kernel launch code and inserts 

probes to broadcast the resource requirements of these kernels. Cur­

rently CASE captures two resources: global memory and number 

of warps. When analysis fails to determine exact resource require­

ments, the compiler inserts code to determine the requirements 

lazily at runtime before the probe executes. The runtime component 

is implemented as a library (for probe communication) and work­

load manager (for assigning kernels to MIG hardware instances). 

2.1 Compiler component 

We leverage the compiler component from our previously men­

tioned work ([2], which provides details). It is not our focus here, 

but for the sake of clarity, we summarize its main parts. 

CASE's LLVM compiler pass performs static analysis to create 

GPU tasks. We define a GPU task as the set of CUDA operations 

formed by a kernel launch and the transitive closure of all GPU 

Chris Porter, Chao Chen, and Santosh Pande 

operations affected by its parameters. (i.e. any group of kernels 

and their related operations). The compiler pass then instruments 

all GPU tasks with probes at their start and end. More specifically, 

the pass determines the latest dominating point in the control flow 

graph (CFG) and the earliest post-dominating point in the CFG of 

each GPU task via static analysis, and these serve as a task's start 

and end boundaries, respectively. The probes convey each task's

resource requirements to the CASE runtime. Due to static analysis' 

limitations, however, the pass may fail to discover the exact opera­

tions that contribute to the resource requirements for a GPU task.

This can happen, for example, when performing def-use analysis 

interprocedurally, where cudaMalloc calls might be located. The 

compiler pass handles these cases using lazy requirement resolu­

tion: CUDA API calls within a GPU task are replaced with wrappers 

built into the CASE runtime. These are then lazily invoked, and 

the GPU task's resource requirements are evaluated at runtime to 

handle such cases. 

2.2 Runtime component 

The runtime component is two-fold: There is a library that serves 

as the interface between CASE-enabled applications (which com­

municate via the instrumented probes discussed above) and the 

workload manager; and there is the workload manager itself that 

handles incoming jobs and launches them on the system, and which 

is the key contribution of this work. The API for the runtime library 

consists of init/destroy and begin/end calls. Just before a GPU task

starts, its probe invokes case_task_begin with the task ID and 

resource requirements as arguments. The runtime library relays 

this to the workload manager via shared memory. A task completes 

when a probe invokes case_ task_end. 

The workload manager is responsible for assigning incoming 

jobs to MIG instances. It maintains two separate queues for iso­

lated and non-isolated jobs. CASE gives preference to isolated jobs, 

though this is not a requirement. Intuitively, because isolated jobs 

cannot be mixed with other jobs and require a dedicated device, 

they should be prioritized. If they are not, they may starve due to 

non-isolated jobs occupying all available partitions (whereas the 

possibility of finding a partition for scheduling a non-isolated job 

is high). A job mix typically has a ratio of jobs which need isolation 

and which do not. This ratio critically affects, along with the par­

tition sizes possible on a given GPU device, the overall utilization 

and throughput achieved by our scheme. We analyze these factors 

in our evaluation section. 

The pseudocode for launching a batch is shown in Algorithm 

1. The jobs to be scheduled are passed to the routine, and the

routine returns after all jobs complete. There are three steps to the

algorithm. First, CASE attempts to launch jobs from the isolated jobs

queue (lines 5-20). Second, it attempts to launch jobs from the non­

isolated queue (lines 21-30). Third, CASE must wait, because the 

devices at that point are either saturated; the workers are maxed; or 

the queues are depleted (lines 31-33). When a job completes, CASE 

wakes and checks for an end condition to the batch (lines 34-41). As 

mentioned, the isolated jobs receive preference and are scheduled

first in the loop. If a GPU exists that can satisfy its constraints, it

is placed on the GPU, and the GPU is marked as isolated. Only

when a GPU has not been selected by any of the isolated jobs will

non-isolated jobs have a chance to run on the GPUs.

Notice that the isolated jobs must carry their memory footprint 

requirement in order to pre-select a device that matches their needs 
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Algorithm 1 CASE's pseudocode for launching a batch of jobs. 

1: function LAUNCH_BATcHUobs) 

2: NumWorkers t- O

3: NumCompleted t- O

4: while True do 

5: // 1) Launch isolated jobs 

6: for Jin jobs.Isolated do 

7: if NumWorkers == MaxWorkers then 

8: break 
end if 9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

for Gin GPUs do 

if J.f ootprint == G.TotalMem then 

if !G.Haslsolated]ob then 

LAUNCHJOBU, G) 

G.Haslsolatedjob t- True 

].GPU t- G

NumWorkers + + 

end if 

end if 

end for 

20: end for 

21: // 2) Launch non-isolated jobs 

22: while NumWorkers < MaxWorkers do 

23: if ]obs.Nonlsolated.EMPTY() then 
24: break 
25: end if 

26: ]obs.Nonlsolated.PoP() 
21, J t- Jobs.Nonlsolated.PoP() 

28: LAUNCHJOBU, -1) 

29: NumWorkers + + 

30: end while 

31: // 3) Devices are saturated, workers are maxed 

32: // or queues are depleted. Wait. 

33: J t- WAIT(Timeout) 
34: if J then 

35: ].GPU.Haslsolated]ob t- False 

36: NumWorkers - -

37: NumCompleted + + 

38: end if 

39: if NumCompleted == BatchSize then 
40: break 
41: end if 

42: end while 

43: end function 

(line 11). This is the same as common workload managers today 

that need some basic information about a job in order to select an 

appropriate device. In contrast, the non-isolated jobs have been 

instrumented with dynamic probes that share their kernel require­

ments with CASE on-the-fly. Thus, they do not need to carry their 

requirement in a configuration file or as arguments to the workload 

manager, which is how Slurm operates. Similarly, they do not need 

to pre-select a device when launching (contrast line 13 with 28, 

where the GPU selection is deferred for the non-isolated job). This 

alleviates some of the burden on users. CASE can launch multiple 

non-isolated jobs in a batch without regard to GPU availability, so 

long as there are workers available. 
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Algorithm 2 CASE's pseudocode for handling probes. 

1: function HANDLE_PROBE(Task) 

2, T argetG t- None 

3: MinWarps t- oo

4: for Gin GPUs do 

5: if G.Haslsolatedjob then 

6: continue 

7: end if 

8: if Task.MemReq < G.FreeMem then 

9: if G.InUseWarps < Min Warps then 

10: MinWarps t- G.InUseWarps 

11, TargetG t- G 
12: end if 
13: end if 
14: end for 

15: if TargetG then 

16: TargetG.ADD(Task) 
17: end if 

18: return T argetG 

19: end function 

The logic for how CASE assigns non-isolated jobs' GPU tasks 

to GPUs is given in Algorithm 2. When an application's probe 

fires at runtime, it calls the case_task_begin function mentioned 

previously. This notifies CASE's workload manager that a task is 

awaiting placement on a GPU, and triggers handle_probe. The goal 

of this algorithm is to select the GPU that satisfies the following 

properties: It must not have any isolated jobs running on it, and 

it must have enough memory available for the task. If at least one 

GPU is available, the task is placed on the GPU with the minimal 

number of active warps. 

The algorithm guarantees that GPUs with isolated jobs never add 

non-isolated jobs that were launched in parallel. It also guarantees 

that non-isolated jobs, which have no knowledge of each other and 

their resources requirements, never overflow the memory of their 

target device. Finally, it is fast, relying on a simple (but important) 

check to estimate the GPU with the minimal compute load. The 

algorithm caters to throughput. We leave additional scheduling 

objectives as future work (e.g. for latency-critical scheduling, an 

algorithm may need to incorporate history or modify placement 

based on SLAs). A job may still be held back from executing on a 

device if there are no GPUs available. This can happen if all GPUs 

are filled with isolated jobs or if there is no GPU with enough 

memory to satisfy the request. In the evaluation we show how this 

ultimately affects the job turnaround times of the jobs. 

3 Evaluation 

We perform experiments on two separate hardware systems. Both 

are 128-core, 250GB RAM machines using AMD EPYC 7502 proces­

sors, CUDA vl 1.5 and driver v495.29.05, and Ubuntu 20.04 LTS. One 

has 4xA30s (24GB each); each A30 is partitioned into 6 identical 

slices (1 compute + 6GB memory). The other system has lxAlO0-

PCIE (40GB); it is partitioned into 5 slices (2 with 2 compute, 10GB 

and 3 with 1 compute, 5GB). We use LLVM 9.0.0, and all neural 

networks are written with PyTorch (torch==l.10.0+cul 13, torchvi­

sion==0.ll.l+cu113). We perform comparisons with Slurm, which 

is the default workload manager installed on the systems. 
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Our evaluation seeks to answer the following questions: (1) How 

effective is CASE and its packing technique for non-isolated jobs 

at improving throughput and job turnaround time for GPU-bound 

jobs? (2) What is the negative impact of CASE on individual ker­

nel execution times due to co-execution within the same MIG in­

stances? (3) How well does CASE scale to multiple GPUs and gen­

eralize to heterogeneous MIG partitions? 

3.1 Benchmarks, workloads, and workers 

We assume two job types: isolated and non-isolated. Our isolated 

jobs represent modern, cloud-based NN training tasks. Our non­

isolated jobs are representative of modern HPC workloads. 

The isolated jobs are training tasks for classification and ob­

ject detection on the following networks: generative adversarial 

networks (GAN), convolutional neural networks (CNN), recurrent 

neural networks (RNN), and residual neural networks (ResNet). 

Our training data on A30s is MNIST for GAN, CNN, and RNN; 

CIFAR-10 for ResNet. On AlO0s, we also require 5-l0GB memory 

footprints, so we use fruits-360 (from Kaggle) on a fully pre-trained 

ResNet-152 model; and we use the VOC dataset on a pre-trained 

(on ImageNet) VGG-16 model for object detection. Though NN 

training could conceivably benefit from additional compute (even 

after satisfying memory), both Slurm and CASE run them on iso­

lated partitions, so neither has an advantage. For the non-isolated 

jobs, we choose CUDA benchmarks from Rodinia v3.1. The do­

mains of these traditional HPC tasks include molecular dynamics, 

bioinformatics, and image processing. We choose benchmarks and 

arguments that have sufficiently large memory footprints in order 

to represent modern workloads. We identify 7 benchmarks from 

the suite that can generate 1-lOGB footprints: backprop, bfs, sradvl, 

sradv2, dwt2d, needle, lavaMD. 

We construct workloads based on predetermined ratios of iso­

lated to non-isolated jobs. We use ratios of 1:0, 4:1, 2:1, 1:1, 1:2, 1:4, 

and 0:1. Table 1 shows the batch size used on each system. Each 

experimental run is for a single batch on the respective system. The 

jobs themselves are randomly selected from the pool of benchmarks 

previously mentioned. For example, to create a 2:1, 128-job batch 

for GPU configuration C (4xA30s), we randomly select 2 isolated 

jobs for every randomly selected non-isolated job. 

The number of workers (CPU processes) for Slurm cannot exceed 

the number of GPUs available. Thus, for both the A30 and AlO0 

experiments, Slurm's worker count is equal to the number of MIG 

instances. For CASE, this heuristic can be tuned in future work, but 

we select it based on the number of CPU cores, system RAM, and 

sizes of the MIG instances. CASE assigns 4 workers per lg.6gb (A30) 

and lg.Sgb (AlO0) instance, and it assigns 8 workers per 2g.10gb 

(AlO0) instance. CASE can do this because the probes guarantee 

that non-isolated jobs will block until their GPU requests can be 

satisfied (see Section 2.2). 

3.2 A30 experiments 

Our first set of experiments is with 4xA30s. Table 1 shows the 

configurations and batch sizes used for these experiments (systems 

A, B, and C). The jobs in each batch are selected randomly from the 

4 isolated jobs (gan, cnn, rnn, resnet) (each with memory footprints 

of ~2GB), and from the 7 Rodinia benchmarks (each with 1-6GB 

memory footprints). 

Figure 1 shows the throughput improvement and job turnaround 

speedup. As expected, when the ratio is 1:0 (all isolated jobs), 
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Table 1. GPU configurations and their corresponding batch sizes. 

ID GPU configuration Batch size 

A lxA30 32 

B 2xA30 64 

C 4xA30 128 

D lxAlO0 32 

Slurm and CASE have identical behavior, because there are no 

non-isolated jobs that CASE can more densely pack into a given 

partition. When the ratio is 0:1 (all non-isolated jobs), and we ex­

pect (and observe) CASE to have better opportunities for packing. 

Broadly, the trend from a 1 :0 to a 0: 1 ratio should be an improvement 

in performance under CASE. Across these three GPU configura­

tions (i.e. on lxA30, 2xA30s, and 4xA30s), the results bear this out, 

both in terms of throughput and job turnaround speedup. The av­

erage throughput increase over all mixed workloads (i.e. excluding 

the 1:0 and 0:1 workloads) is 1.45x, and the average job turnaround 

speedup is 1.39x. 

Because the non-isolated jobs in this experiment have a 1-6GB 

footprint, opportunities for packing are limited. We run a second set 

of experiments that is nearly identical, but where the non-isolated 

jobs' memory footprint is now from 300MB-6GB. Figure 2 presents 

the results. The expectation is that, though the jobs may be unreal­

istically small, the presence of more non-isolated jobs that take less 

than half of the available MIG instance's memory should allow for 

more packing and performance benefit. The average throughput 

increase over all mixed workloads (i.e. excluding the 1:0 and 0:1 

workloads) is 1.53x, and the average job turnaround speedup is 

1.48x. This is a modest improvement over the first set of results. 

Next, we capture memory utilization across the GPUs. Figure 4 

displays the memory utilization over time for the 1:4, 128-job batch 

on 4xA30s. The memory utilization for CASE is much higher than 

Slurm. CASE takes advantage of the unused memory in the MIG 

instances by assigning them to non-isolated jobs. As the workload 

ends, there are fewer packing opportunities, so the utilization re­

duces. This result also helps to show that the improvement when 

using CASE is not necessarily from more workers on the CPU. CASE 

has a direct effect on the GPU's memory utilization. On a workload­

by-workload comparison, the memory utilization improvement of 

CASE over Slurm is 2.93x higher on average. 

To measure the framework's overhead, we capture probe and 

workload manager overhead. We find they are on the order of lO0us 

and lO0ms, respectively. Probe overhead would remain the same 

when scaling up MIG partitions; it would increase by a constant 

when scaling up multiple nodes. Scheduler overhead increases 

quadratically (num_GPUs * numjobs) which may lead to future 

work if partition counts increase dramatically or CASE is applied 

to a clustered environment. 

Lastly, from our first experiment, we capture the kernel slow­

downs for batches with the most non-isolated jobs (1:4 and 0:1 

ratios) (i.e. where we expect CASE's packing to be densest). Our 

purpose is to check how much the kernels are slowing down due to 

CASE's packing. Table 2 presents the results as a percentage. In the 

case of workload 1:4-A, there is a slight speedup, which we accept 

as noise (<2% faster). In fact, all kernel slowdowns appear to be 

tolerable (under 10%), and the average is 2.2%. 
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Figure 1. Performance on A30 workloads for CASE (normalized to Slurm) using non-isolated jobs with 1-6GB memory footprint. 
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Figure 2. Performance on A30 workloads for CASE (normalized to Slurm) using non-isolated jobs with 300MB-6GB memory footprint. 
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Figure 3. Performance on AlO0 workloads for CASE (normalized to Slurm). 

Table 2. Kernel slowdowns (%) for workloads with the highest 

ratios of non-isolated jobs across the A30 configurations. 

I 1:4-A I 0:1-A 1:4-8

1 -1.1 1 1.5 5.7 

0:1-B 1:4-C 

0.7 0.4 

0:1-C I Avg I 
0.1 1 2.2 1 

3.3 AlOO experiments 

We run a final experiment on an AlO0 to test how CASE performs on 

a system with heterogeneous partitioning (Figure 3). In a real-world 

setting, a system administrator or person with a similar role would 

likely provision the MIG instances to match, as best as possible, the 

expected mix of jobs (and their resource requirements). Using the 

workload characteristics that are proclaimed by each job in terms of 

peak memory utilization, we determine that the expected workload 

will require roughly 2/5 MIG instances with up to 10GB of memory, 
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- Slurm - CASE 

100 

Time 

Figure 4. Memory utilization over time (128-job batch on 4xA30s). 

and 3/5 with up to 5GB. Then we create randomized workloads 

that are close to the expectation. Specifically, 2/5 of our isolated 

job pool has a 5-lOGB footprint, and 7 /15 of our non-isolated job 

pool has a 5-l0GB footprint. In real world scenarios, we expect 

such requirements to come through GPU SLA agreements which 

announce the peak needs of each job to ensure it gets a big enough 

partition so as not to cause out of memory runtime error. 

As before, the 1 :0 batch has only isolated jobs, so we expect (and 

observe) Slurm and CASE to perform identically. As the ratio of 

non-isolated jobs increases, we expect to see the same trend that 

we saw in all of the A30 experiments, namely an overall increase in 

throughput improvement and job turnaround speedup. Though we 

observe this in these experiments, the result is slightly different. The 

average throughput increase over all mixed workloads (excluding 

the 1:0 and 0:1 workloads) is l.15x, and the average job turnaround 

speedup is 2.31x. The throughput improvement is less than before, 

suggesting CASE has less edge in terms of scheduling on the het­

erogeneous system. This is due to the fact that AlO0 is already 

sensitized and provisioned as per the peak memory requirements 

and ratios in the job mix. Thus the partitioning is done efficiently 

to support such needs and thus the baseline improves. In contrast, 

however, the job turnaround speedup is markedly better than in the 

A30 experiments. Upon closer examination, though the proportion 

of isolated and non-isolated jobs with memory footprints > 5GB is 

~2/5 (matching with the 2/5 2g.10gb provisioning), the execution

time of these larger jobs is significantly longer than the smaller 

jobs. This difference in runtime effectively increases the proportion 

of those large jobs, which keeps the 10GB MIG slices saturated 

while the 5GB remain idle at the tail end of the experiments. CASE 

succeeds at improving the job turnaround times on the 5GB slices 

when possible, but like Slurm, it is mostly bottlenecked by the lim­

ited number of 10GB slices. This result suggests that on-the-fly 

re-provisioning, which MIG supports, could have been useful. Up­

coming works such as [11] are looking at this problem, and though 

it is not our focus here, this could be an interesting area to pursue. 

4 Conclusion 

In this work, we show an extension of CASE towards MIG, an 

isolation feature present on modem GPUs. The new workload 

scheduler deals with a mix of isolated and non-isolated jobs that 

would represent current and future workloads in data-centers. We 

show that CASE outperforms Slurm, the current state-of-the-art 
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scheduler in terms of providing better throughput and utilization. 

We also show how performance is affected due to the different ratios 

of isolated to non-isolated jobs in the mixes. In conclusion, CASE 

could provide a practical solution in data-center environments due 

to its superior performance and automation. 
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