
Compiler-Assisted Scheduling for Multi-Instance GPUs

Chris Porter

Georgia Institute of Technology
Atlanta, GA, USA

porter@gatech.edu

Chao Chen

Amazon Web Services
Santa Clara, CA, USA

chachenz@amazon.com

Santosh Pande

Georgia Institute of Technology
Atlanta, GA, USA

santosh.pande@cc.gatech.edu

Abstract

NVIDIA's Multi-Instance GPU (MIG) feature allows users to par
tition a GPU' s compute and memory into independent hardware
instances. MIG guarantees full isolation among co-executing ker
nels on the device, which boosts security and prevents performance
interference-related degradation. Despite the benefits of isolation,
however, certain workloads do not necessarily need such guaran
tees, and in fact enforcing such isolation can negatively impact the
throughput of a group of processes. In this work we aim to relax
the isolation property for certain types of jobs, and to show how
this can dramatically boost throughput across a mixed workload
consisting of jobs that demand isolation and others that do not. The
number of MIG partitions is hardware-limited but configurable, and
state-of-the-art workload managers cannot safely take advantage
of unused and wasted resources inside a given partition. We show
how a compiler and runtime system working in tandem can be
used to pack jobs into partitions when isolation is not necessary.
Using this technique we improve overall utilization of the device
while still reaping the benefits of MIG's isolation properties. Our
experimental results on NVIDIA A30s with a throughput-oriented
workload show an average of 1.45x throughput improvement and
2.93x increase in GPU memory utilization over the Slurm workload
manager. The presented framework is fully automatic and requires
no changes to user code. Based on these results, we believe our
scheme is a practical and strong advancement over state-of-the-art
techniques currently employed for MIG.

CCS Concepts: • Software and its engineering - Runtime

environments; Software performance; Scheduling; Massively

parallel systems; Compilers.

Keywords: GPU, Scheduling, Compiler, High-performance com
puting

ACM Reference Format:

Chris Porter, Chao Chen, and Santosh Pantle. 2022. Compiler-Assisted Sched

uling for Multi-Instance GPUs. In The 14th Workshop on General Purpose

Processing Using GPU (GPGPU'22), April 3, 2022, Seoul, Republic of Korea.

ACM, New York, NY, USA, 6 pages. https:/ /doi.org/10.1145/3530390.3532734

1 Introduction

General-purpose graphics processing units (GPGPUs) have be
come a mainstay in modern computing infrastructure. In high
performance computing (HPC) environments they continue to be
a necessary platform for tasks like molecular simulations, and in

GPGPU'22, April 3, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9348-5/22/04.
https:/ /doi.org/10.1145/3530390.3532734

cloud environments, they have recently become pivotal in churning
through machine learning workloads.

Despite their efficiency on parallel tasks, GPUs are costly and
underutilized. GPUs cost roughly 2x to 5x more than a comparable
high-end CPU. Similarly, GPU-enabled virtual machines in data
centers cost up to 1 Ox that of regular VMs. In addition to the high
cost, GPUs are underutilized in many scenarios [5, 10, 13].

Substantial research has attempted to improve the above (e.g. [3,
5, 12]). NVIDIA has also introduced features into its GPU hardware
software stack to address cost and utilization issues, including
Hyper-Q and its Multi-Process Service (MPS) [6]. MPS allows ker
nels from independent processes to run simultaneously on the
device. Though effective for applications where the kernels' re
source requirements and interactions are carefully tuned (e.g. for
MPI applications), it offers no resource guarantees and in the worst
case can lead to out-of-memory (QOM) errors. Recently, a fully au
tomated, safe solution to schedule independent processes to boost
throughput and utilization leveraging MPS was proposed in [2].

NVIDIA's new Multi-Instance GPU (MIG) [7] feature is a hardware
level partitioning option that is present on GPUs based on its latest
Ampere micro-architecture, such as A30 and AlO0. These GPUs are
intended for data center workloads. Because each MIG partition
(also called an "instance") has its own dedicated compute, mem
ory, and memory bandwidth resources, users can run multiple jobs
in parallel with guaranteed quality of service (QoS) and fault and
security related isolation.

MIG supports several predefined options for slicing the compute
and memory resources of the device. An AlO0 with 40GB of memory
can be subdivided into 5GB, 10GB, or 20GB partitions. Besides all
40GB, other sizes are not permitted. The compute resources can
be divided into 7 slices. They cannot be combined in arbitrary
ways, though. For example, 7 partitions of 1/7 are permitted; a
2/7 + 2/7 + 3/7 partitioning is permitted; but a 3/7 + 3/7 + 1/7
partitioning is not permitted. Thus, the options for partitioning with
MIG are not endless, but in practice they provide a much-needed
hardware-level partitioning option for industrial-scale workloads
that have a fault/security isolation need in a co-execution multi
tenant environment such as a data-center.

Though MIG solves the problem of isolation, it does not solve
(nor propose to solve) the problem of how to efficiently place jobs
on the device. This responsibility falls to the scheduler or work
load manager. Slurm [14] is a state-of-the-art workload manager
that has already integrated MIG support into its command-line
options and configuration files and is one of the most widely used
schedulers across many execution environments. To Slurm, the
MIG hardware instances simply appear as additional GPUs in a
multi-GPU deployment. Users pass the memory requirements of
their kernels to Slurm via command line, and this allows Slurm to
assign a user job to a partition with sufficient memory.

We contend that there are at least two shortcomings of Slurm's
approach for future MIG-enabled workloads: first, Slurm reserves a

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3530390.3532734&domain=pdf&date_stamp=2022-05-18

GPGPU'22, April 3, 2022, Seoul, Republic of Korea

partition for the entire process' lifetime; and second, Slurm reserves

a partition that is able to hold the process' maximum kernel size.

These limitations result in GPU underutilization in the schedules

generated by Slurm, as well as sub-optimality in terms of a sched

ule's objective function such as throughput or the job turnaround

time of a batch. In contrast, we will present a framework that (1)

only reserves resources on a partition for the duration of a ker

nel and not the full process, (2) reserves the best-fit partition on a

kernel-by-kernel basis, and (3) is able to deal with mixes that have

two kinds of jobs: those that demand isolation and those that do not

- packing the latter to boost utilization and throughput both. Given

the fact that clouds are expected to handle mixed use cases in the

near future, we find these observations to be true of forthcoming

workloads. For example, there is growing support for HPC work

loads in the cloud [9], and public-facing clouds for Google, Oracle,

and Amazon all have solutions to address this use case [1, 4, 8].

Contributions: We attempt to address the above scheduling

problem by taking advantage of both the MIG and MPS features

available on the latest GPUs. We are interested in improved through

put and utilization in GPUs, and we assume some level of mixed

use-case workload (where some jobs may need isolation guaran

tees and others may not). This work is an extension of [2]. The

distinguishing factors of this new work are those directly related

to MIG. In particular, we make the following new contributions:

1. We develop a novel workload manager for NVIDIA's MIG

feature that combines compiler-based instrumentation with

a runtime system that leverages MPS. We thus support mixed

jobs with isolation requirements as well as jobs that can share

a GPU instance.

2. We implement our scheme on two different systems with

NVIDIA Ampere devices (a 4xA30 system and a lxAl00

system), showing that such a framework is indeed portable

and applicable to the latest GPU hardware.

3. We show how relaxing the isolation property for jobs run

ning on MIG-enabled devices can improve throughput, job

turnaround time, and memory utilization, without heavily

affecting kernel execution times.

2 Framework

We present a paired compiler-runtime framework called CASE that

improves scheduling decisions on MIG-enabled devices. The com

piler component is implemented as an LL VM pass. It performs

analysis on applications' CUDA kernel launch code and inserts

probes to broadcast the resource requirements of these kernels. Cur

rently CASE captures two resources: global memory and number

of warps. When analysis fails to determine exact resource require

ments, the compiler inserts code to determine the requirements

lazily at runtime before the probe executes. The runtime component

is implemented as a library (for probe communication) and work

load manager (for assigning kernels to MIG hardware instances).

2.1 Compiler component

We leverage the compiler component from our previously men

tioned work ([2], which provides details). It is not our focus here,

but for the sake of clarity, we summarize its main parts.

CASE's LLVM compiler pass performs static analysis to create

GPU tasks. We define a GPU task as the set of CUDA operations

formed by a kernel launch and the transitive closure of all GPU

Chris Porter, Chao Chen, and Santosh Pande

operations affected by its parameters. (i.e. any group of kernels

and their related operations). The compiler pass then instruments

all GPU tasks with probes at their start and end. More specifically,

the pass determines the latest dominating point in the control flow

graph (CFG) and the earliest post-dominating point in the CFG of

each GPU task via static analysis, and these serve as a task's start

and end boundaries, respectively. The probes convey each task's

resource requirements to the CASE runtime. Due to static analysis'

limitations, however, the pass may fail to discover the exact opera

tions that contribute to the resource requirements for a GPU task.

This can happen, for example, when performing def-use analysis

interprocedurally, where cudaMalloc calls might be located. The

compiler pass handles these cases using lazy requirement resolu

tion: CUDA API calls within a GPU task are replaced with wrappers

built into the CASE runtime. These are then lazily invoked, and

the GPU task's resource requirements are evaluated at runtime to

handle such cases.

2.2 Runtime component

The runtime component is two-fold: There is a library that serves

as the interface between CASE-enabled applications (which com

municate via the instrumented probes discussed above) and the

workload manager; and there is the workload manager itself that

handles incoming jobs and launches them on the system, and which

is the key contribution of this work. The API for the runtime library

consists of init/destroy and begin/end calls. Just before a GPU task

starts, its probe invokes case_task_begin with the task ID and

resource requirements as arguments. The runtime library relays

this to the workload manager via shared memory. A task completes

when a probe invokes case_ task_end.

The workload manager is responsible for assigning incoming

jobs to MIG instances. It maintains two separate queues for iso

lated and non-isolated jobs. CASE gives preference to isolated jobs,

though this is not a requirement. Intuitively, because isolated jobs

cannot be mixed with other jobs and require a dedicated device,

they should be prioritized. If they are not, they may starve due to

non-isolated jobs occupying all available partitions (whereas the

possibility of finding a partition for scheduling a non-isolated job

is high). A job mix typically has a ratio of jobs which need isolation

and which do not. This ratio critically affects, along with the par

tition sizes possible on a given GPU device, the overall utilization

and throughput achieved by our scheme. We analyze these factors

in our evaluation section.

The pseudocode for launching a batch is shown in Algorithm

1. The jobs to be scheduled are passed to the routine, and the

routine returns after all jobs complete. There are three steps to the

algorithm. First, CASE attempts to launch jobs from the isolated jobs

queue (lines 5-20). Second, it attempts to launch jobs from the non

isolated queue (lines 21-30). Third, CASE must wait, because the

devices at that point are either saturated; the workers are maxed; or

the queues are depleted (lines 31-33). When a job completes, CASE

wakes and checks for an end condition to the batch (lines 34-41). As

mentioned, the isolated jobs receive preference and are scheduled

first in the loop. If a GPU exists that can satisfy its constraints, it

is placed on the GPU, and the GPU is marked as isolated. Only

when a GPU has not been selected by any of the isolated jobs will

non-isolated jobs have a chance to run on the GPUs.

Notice that the isolated jobs must carry their memory footprint

requirement in order to pre-select a device that matches their needs

Compiler-Assisted Scheduling for Multi-Instance GP Us

Algorithm 1 CASE's pseudocode for launching a batch of jobs.

1: function LAUNCH_BATcHUobs)

2: NumWorkers t- O

3: NumCompleted t- O

4: while True do

5: // 1) Launch isolated jobs

6: for Jin jobs.Isolated do

7: if NumWorkers == MaxWorkers then

8: break
end if 9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

for Gin GPUs do

if J.f ootprint == G.TotalMem then

if !G.Haslsolated]ob then

LAUNCHJOBU, G)

G.Haslsolatedjob t- True

].GPU t- G

NumWorkers + +

end if

end if

end for

20: end for

21: // 2) Launch non-isolated jobs

22: while NumWorkers < MaxWorkers do

23: if]obs.Nonlsolated.EMPTY() then
24: break
25: end if

26:]obs.Nonlsolated.PoP()
21, J t- Jobs.Nonlsolated.PoP()

28: LAUNCHJOBU, -1)

29: NumWorkers + +

30: end while

31: // 3) Devices are saturated, workers are maxed

32: // or queues are depleted. Wait.

33: J t- WAIT(Timeout)
34: if J then

35:].GPU.Haslsolated]ob t- False

36: NumWorkers - -

37: NumCompleted + +

38: end if

39: if NumCompleted == BatchSize then
40: break
41: end if

42: end while

43: end function

(line 11). This is the same as common workload managers today

that need some basic information about a job in order to select an

appropriate device. In contrast, the non-isolated jobs have been

instrumented with dynamic probes that share their kernel require

ments with CASE on-the-fly. Thus, they do not need to carry their

requirement in a configuration file or as arguments to the workload

manager, which is how Slurm operates. Similarly, they do not need

to pre-select a device when launching (contrast line 13 with 28,

where the GPU selection is deferred for the non-isolated job). This

alleviates some of the burden on users. CASE can launch multiple

non-isolated jobs in a batch without regard to GPU availability, so

long as there are workers available.

GPGPU'22, April 3, 2022, Seoul, Republic of Korea

Algorithm 2 CASE's pseudocode for handling probes.

1: function HANDLE_PROBE(Task)

2, T argetG t- None

3: MinWarps t- oo

4: for Gin GPUs do

5: if G.Haslsolatedjob then

6: continue

7: end if

8: if Task.MemReq < G.FreeMem then

9: if G.InUseWarps < Min Warps then

10: MinWarps t- G.InUseWarps

11, TargetG t- G
12: end if
13: end if
14: end for

15: if TargetG then

16: TargetG.ADD(Task)
17: end if

18: return T argetG

19: end function

The logic for how CASE assigns non-isolated jobs' GPU tasks

to GPUs is given in Algorithm 2. When an application's probe

fires at runtime, it calls the case_task_begin function mentioned

previously. This notifies CASE's workload manager that a task is

awaiting placement on a GPU, and triggers handle_probe. The goal

of this algorithm is to select the GPU that satisfies the following

properties: It must not have any isolated jobs running on it, and

it must have enough memory available for the task. If at least one

GPU is available, the task is placed on the GPU with the minimal

number of active warps.

The algorithm guarantees that GPUs with isolated jobs never add

non-isolated jobs that were launched in parallel. It also guarantees

that non-isolated jobs, which have no knowledge of each other and

their resources requirements, never overflow the memory of their

target device. Finally, it is fast, relying on a simple (but important)

check to estimate the GPU with the minimal compute load. The

algorithm caters to throughput. We leave additional scheduling

objectives as future work (e.g. for latency-critical scheduling, an

algorithm may need to incorporate history or modify placement

based on SLAs). A job may still be held back from executing on a

device if there are no GPUs available. This can happen if all GPUs

are filled with isolated jobs or if there is no GPU with enough

memory to satisfy the request. In the evaluation we show how this

ultimately affects the job turnaround times of the jobs.

3 Evaluation

We perform experiments on two separate hardware systems. Both

are 128-core, 250GB RAM machines using AMD EPYC 7502 proces

sors, CUDA vl 1.5 and driver v495.29.05, and Ubuntu 20.04 LTS. One

has 4xA30s (24GB each); each A30 is partitioned into 6 identical

slices (1 compute + 6GB memory). The other system has lxAlO0-

PCIE (40GB); it is partitioned into 5 slices (2 with 2 compute, 10GB

and 3 with 1 compute, 5GB). We use LLVM 9.0.0, and all neural

networks are written with PyTorch (torch==l.10.0+cul 13, torchvi

sion==0.ll.l+cu113). We perform comparisons with Slurm, which

is the default workload manager installed on the systems.

GPGPU'22, April 3, 2022, Seoul, Republic of Korea

Our evaluation seeks to answer the following questions: (1) How

effective is CASE and its packing technique for non-isolated jobs

at improving throughput and job turnaround time for GPU-bound

jobs? (2) What is the negative impact of CASE on individual ker

nel execution times due to co-execution within the same MIG in

stances? (3) How well does CASE scale to multiple GPUs and gen

eralize to heterogeneous MIG partitions?

3.1 Benchmarks, workloads, and workers

We assume two job types: isolated and non-isolated. Our isolated

jobs represent modern, cloud-based NN training tasks. Our non

isolated jobs are representative of modern HPC workloads.

The isolated jobs are training tasks for classification and ob

ject detection on the following networks: generative adversarial

networks (GAN), convolutional neural networks (CNN), recurrent

neural networks (RNN), and residual neural networks (ResNet).

Our training data on A30s is MNIST for GAN, CNN, and RNN;

CIFAR-10 for ResNet. On AlO0s, we also require 5-l0GB memory

footprints, so we use fruits-360 (from Kaggle) on a fully pre-trained

ResNet-152 model; and we use the VOC dataset on a pre-trained

(on ImageNet) VGG-16 model for object detection. Though NN

training could conceivably benefit from additional compute (even

after satisfying memory), both Slurm and CASE run them on iso

lated partitions, so neither has an advantage. For the non-isolated

jobs, we choose CUDA benchmarks from Rodinia v3.1. The do

mains of these traditional HPC tasks include molecular dynamics,

bioinformatics, and image processing. We choose benchmarks and

arguments that have sufficiently large memory footprints in order

to represent modern workloads. We identify 7 benchmarks from

the suite that can generate 1-lOGB footprints: backprop, bfs, sradvl,

sradv2, dwt2d, needle, lavaMD.

We construct workloads based on predetermined ratios of iso

lated to non-isolated jobs. We use ratios of 1:0, 4:1, 2:1, 1:1, 1:2, 1:4,

and 0:1. Table 1 shows the batch size used on each system. Each

experimental run is for a single batch on the respective system. The

jobs themselves are randomly selected from the pool of benchmarks

previously mentioned. For example, to create a 2:1, 128-job batch

for GPU configuration C (4xA30s), we randomly select 2 isolated

jobs for every randomly selected non-isolated job.

The number of workers (CPU processes) for Slurm cannot exceed

the number of GPUs available. Thus, for both the A30 and AlO0

experiments, Slurm's worker count is equal to the number of MIG

instances. For CASE, this heuristic can be tuned in future work, but

we select it based on the number of CPU cores, system RAM, and

sizes of the MIG instances. CASE assigns 4 workers per lg.6gb (A30)

and lg.Sgb (AlO0) instance, and it assigns 8 workers per 2g.10gb

(AlO0) instance. CASE can do this because the probes guarantee

that non-isolated jobs will block until their GPU requests can be

satisfied (see Section 2.2).

3.2 A30 experiments

Our first set of experiments is with 4xA30s. Table 1 shows the

configurations and batch sizes used for these experiments (systems

A, B, and C). The jobs in each batch are selected randomly from the

4 isolated jobs (gan, cnn, rnn, resnet) (each with memory footprints

of ~2GB), and from the 7 Rodinia benchmarks (each with 1-6GB

memory footprints).

Figure 1 shows the throughput improvement and job turnaround

speedup. As expected, when the ratio is 1:0 (all isolated jobs),

Chris Porter, Chao Chen, and Santosh Pande

Table 1. GPU configurations and their corresponding batch sizes.

ID GPU configuration Batch size

A lxA30 32

B 2xA30 64

C 4xA30 128

D lxAlO0 32

Slurm and CASE have identical behavior, because there are no

non-isolated jobs that CASE can more densely pack into a given

partition. When the ratio is 0:1 (all non-isolated jobs), and we ex

pect (and observe) CASE to have better opportunities for packing.

Broadly, the trend from a 1 :0 to a 0: 1 ratio should be an improvement

in performance under CASE. Across these three GPU configura

tions (i.e. on lxA30, 2xA30s, and 4xA30s), the results bear this out,

both in terms of throughput and job turnaround speedup. The av

erage throughput increase over all mixed workloads (i.e. excluding

the 1:0 and 0:1 workloads) is 1.45x, and the average job turnaround

speedup is 1.39x.

Because the non-isolated jobs in this experiment have a 1-6GB

footprint, opportunities for packing are limited. We run a second set

of experiments that is nearly identical, but where the non-isolated

jobs' memory footprint is now from 300MB-6GB. Figure 2 presents

the results. The expectation is that, though the jobs may be unreal

istically small, the presence of more non-isolated jobs that take less

than half of the available MIG instance's memory should allow for

more packing and performance benefit. The average throughput

increase over all mixed workloads (i.e. excluding the 1:0 and 0:1

workloads) is 1.53x, and the average job turnaround speedup is

1.48x. This is a modest improvement over the first set of results.

Next, we capture memory utilization across the GPUs. Figure 4

displays the memory utilization over time for the 1:4, 128-job batch

on 4xA30s. The memory utilization for CASE is much higher than

Slurm. CASE takes advantage of the unused memory in the MIG

instances by assigning them to non-isolated jobs. As the workload

ends, there are fewer packing opportunities, so the utilization re

duces. This result also helps to show that the improvement when

using CASE is not necessarily from more workers on the CPU. CASE

has a direct effect on the GPU's memory utilization. On a workload

by-workload comparison, the memory utilization improvement of

CASE over Slurm is 2.93x higher on average.

To measure the framework's overhead, we capture probe and

workload manager overhead. We find they are on the order of lO0us

and lO0ms, respectively. Probe overhead would remain the same

when scaling up MIG partitions; it would increase by a constant

when scaling up multiple nodes. Scheduler overhead increases

quadratically (num_GPUs * numjobs) which may lead to future

work if partition counts increase dramatically or CASE is applied

to a clustered environment.

Lastly, from our first experiment, we capture the kernel slow

downs for batches with the most non-isolated jobs (1:4 and 0:1

ratios) (i.e. where we expect CASE's packing to be densest). Our

purpose is to check how much the kernels are slowing down due to

CASE's packing. Table 2 presents the results as a percentage. In the

case of workload 1:4-A, there is a slight speedup, which we accept

as noise (<2% faster). In fact, all kernel slowdowns appear to be

tolerable (under 10%), and the average is 2.2%.

Compiler-Assisted Scheduling for Multi-Instance GPUs GPGPU'22, April 3, 2022, Seoul, Republic of Korea

2.0

1.5

::11 0.0

(a) Throughput improvement (b)Job turnaround speedup

Figure 1. Performance on A30 workloads for CASE (normalized to Slurm) using non-isolated jobs with 1-6GB memory footprint.

2.0

1.5

1.0·11·

0.5

0.0

(a) Throughput improvement (b)Job turnaround speedup

Figure 2. Performance on A30 workloads for CASE (normalized to Slurm) using non-isolated jobs with 300MB-6GB memory footprint.

1.5

1.0 ..

0.5

1··

0.0

(a) Throughput improvement (b)Job turnaround speedup

Figure 3. Performance on AlO0 workloads for CASE (normalized to Slurm).

Table 2. Kernel slowdowns (%) for workloads with the highest

ratios of non-isolated jobs across the A30 configurations.

I 1:4-A I 0:1-A 1:4-8

1 -1.1 1 1.5 5.7

0:1-B 1:4-C

0.7 0.4

0:1-C I Avg I
0.1 1 2.2 1

3.3 AlOO experiments

We run a final experiment on an AlO0 to test how CASE performs on

a system with heterogeneous partitioning (Figure 3). In a real-world

setting, a system administrator or person with a similar role would

likely provision the MIG instances to match, as best as possible, the

expected mix of jobs (and their resource requirements). Using the

workload characteristics that are proclaimed by each job in terms of

peak memory utilization, we determine that the expected workload

will require roughly 2/5 MIG instances with up to 10GB of memory,

GPGPU'22, April 3, 2022, Seoul, Republic of Korea

- Slurm - CASE

100

Time

Figure 4. Memory utilization over time (128-job batch on 4xA30s).

and 3/5 with up to 5GB. Then we create randomized workloads

that are close to the expectation. Specifically, 2/5 of our isolated

job pool has a 5-lOGB footprint, and 7 /15 of our non-isolated job

pool has a 5-l0GB footprint. In real world scenarios, we expect

such requirements to come through GPU SLA agreements which

announce the peak needs of each job to ensure it gets a big enough

partition so as not to cause out of memory runtime error.

As before, the 1 :0 batch has only isolated jobs, so we expect (and

observe) Slurm and CASE to perform identically. As the ratio of

non-isolated jobs increases, we expect to see the same trend that

we saw in all of the A30 experiments, namely an overall increase in

throughput improvement and job turnaround speedup. Though we

observe this in these experiments, the result is slightly different. The

average throughput increase over all mixed workloads (excluding

the 1:0 and 0:1 workloads) is l.15x, and the average job turnaround

speedup is 2.31x. The throughput improvement is less than before,

suggesting CASE has less edge in terms of scheduling on the het

erogeneous system. This is due to the fact that AlO0 is already

sensitized and provisioned as per the peak memory requirements

and ratios in the job mix. Thus the partitioning is done efficiently

to support such needs and thus the baseline improves. In contrast,

however, the job turnaround speedup is markedly better than in the

A30 experiments. Upon closer examination, though the proportion

of isolated and non-isolated jobs with memory footprints > 5GB is

~2/5 (matching with the 2/5 2g.10gb provisioning), the execution

time of these larger jobs is significantly longer than the smaller

jobs. This difference in runtime effectively increases the proportion

of those large jobs, which keeps the 10GB MIG slices saturated

while the 5GB remain idle at the tail end of the experiments. CASE

succeeds at improving the job turnaround times on the 5GB slices

when possible, but like Slurm, it is mostly bottlenecked by the lim

ited number of 10GB slices. This result suggests that on-the-fly

re-provisioning, which MIG supports, could have been useful. Up

coming works such as [11] are looking at this problem, and though

it is not our focus here, this could be an interesting area to pursue.

4 Conclusion

In this work, we show an extension of CASE towards MIG, an

isolation feature present on modem GPUs. The new workload

scheduler deals with a mix of isolated and non-isolated jobs that

would represent current and future workloads in data-centers. We

show that CASE outperforms Slurm, the current state-of-the-art

Chris Porter, Chao Chen, and Santosh Pande

scheduler in terms of providing better throughput and utilization.

We also show how performance is affected due to the different ratios

of isolated to non-isolated jobs in the mixes. In conclusion, CASE

could provide a practical solution in data-center environments due

to its superior performance and automation.

Acknowledgments

This research was supported in part through research infrastructure

and services provided by the Rogues Gallery testbed [15] hosted

by the Center for Research into Novel Computing Hierarchies

(CRNCH) at Georgia Tech. The Rogues Gallery testbed is primarily

supported by the National Science Foundation (NSF) under NSF

Award Number 2016701. Any opinions, findings and conclusions,

or recommendations expressed in this material are those of the

author(s), and do not necessarily reflect those of the NSF. We also

would like to acknowledge NVIDIA for the donation of an AlO0

through their NVIDIA Academic Hardware Grant Program.

References
[l] Amazon. High performance computing. URL https://aws.amazon.com/hpc/.
[2] C. Chen, C. Porter, and S. Pande. CASE: a compiler-assisted scheduling framework

for multi-gpu systems. In J. Lee, K. Agrawal, and M. F. Spear, editors, PPoPP '22:
27th ACM SIG PLAN Symposium on Principles and Practice of Parallel Programming,
Seout Republic of Korea, April 2- 6, 2022, pages 17-31. ACM, 2022. doi: 10.1145/
3503221.3508423. URL https://doi.org/10.1145/3503221.3508423.

[3] Q. Chen, H. Yang, J. Mars, and L. Tang. Baymax: Qos awareness and increased
utilization for non-preemptive accelerators in warehouse scale computers. In
Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, page 681-696. ACM, 2016.
ISBN 9781450340915. doi: 10.1145/2872362.2872368.

[4] Google. High performance computing. URL https://cloud.google.com/solutions
/hpc.

[5] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, 0. Mutlu, and Y. N. Patt.
Improving GPU performance via large warps and two-level warp scheduling.
In C. Galuzzi, L. Carro, A. Moshovos, and M. Prvulovic, editors, 44rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2011, Porto
Alegre, Brazil, December 3-7, 2011, pages 308-317. ACM, 2011. doi: 10.1145/2155
620.2155656. URL https://doi.org/10.1145/2155620.2155656.

[6] NVIDIA. Multi-process service. Technical Report MSU-CSE-06-2, June 2020.
URL https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overv
iew.pdf.

[7] NVIDIA. Nvidia al00 tensor core gpu architecture. Technical Report V!.0, 2020.
URL https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia
ampere-architecture-whitepaper.pdf.

[8] Oracle. High performance computing (hpc) solution. URL https://www.oracle.c
om/cloud/hpc/.

[9] Rescale. Big compute 2021 state of cloud hpc report. URL https://rescale.com/re
sources/big-compute-2021-state-of-cloud-hpc-report/.

[10] T. K. Samuel, S. McNally, and J. Wynkoop. An analysis of gpu utilization trends
on the keeneland initial delivery system. In Proceedings of the 1st Conference
of the Extreme Science and Engineering Discovery Environment: Bridging from
the EXtreme to the Campus and Beyond, XSEDE '12, New York, NY, USA, 2012.
Association for Computing Machinery. ISBN 9781450316026. doi: 10.1145/2335
755.2335793. URL https://doi.org/10.1145/2335755.2335793.

[11] C. Tan, Z. L�J. Zhang, Y. Cao, S. Qi, Z. Liu, Y. Zhu, and C. Guo. Serving DNN mod
els with multi-instance gpus: A case of the reconfigurable machine scheduling
problem. CoRR, abs/2109.11067, 2021. URL https://arxiv.org/abs/2109.11067.

[12] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han, P. Patel,
X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou. Gandiva: Introspective cluster
scheduling for deep learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, page 595-610. USENIX, 2018. ISBN
9781931971478.

[13] G. Yeung, D. Borowiec, A. Friday, R. Harper, and P. Garraghan. Towards GPU
utilization prediction for cloud deep learning. In A. Phanishayee and R. Stutsman,
editors, 12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2020,
July 13-14, 2020. USENIX Association, 2020. URL https://www.usenix.org/confe
rence/hotcloud20/presentation/yeung.

[14] A. B. Yoo, M. A.Jette, and M. Grondona. SLURM: simple linux utility for resource
management. In Job Scheduling Strategies for Parallel Processing, 9th International
Workshop, volume 2862, page 44. Springer, 2003. doi: 10.1007/10968987_3.

[15] J. S. Young, J. Riedy, T. M. Conte, V. Sarkar, P. Chatarasi, and S. Srikanth. Experi
mental insights from the rogues gallery. In 2019 IEEE International Conference on
Rebooting Computing (ICRC), pages 1-8, Nov 2019. doi: 10.1109/ICRC.2019.8914
707.

