
88

A Survey on Wireless Device-free Human Sensing:

Application Scenarios, Current Solutions, and Open Issues

JIANG XIAO, HUICHUWU LI, MINRUI WU, and HAI JIN, National Engineering Research

Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster

and Grid Computing Lab, School of Computer Science and Technology, Huazhong University

of Science and Technology, China

M. JAMAL DEEN, McMaster University, Canada

JIANNONG CAO, The Hong Kong Polytechnic University, China

In the last decade, many studies have significantly pushed the limits of wireless device-free human sensing

(WDHS) technology and facilitated various applications, ranging from activity identification to vital sign

monitoring. This survey presents a novel taxonomy that classifies the state-of-the-art WDHS systems into

11 categories according to their sensing task type and motion granularity. In particular, existing WDHS sys-

tems involve three primary sensing task types. The first type, behavior recognition, is a classification problem

of recognizing predefined meaningful behaviors. The second type is movement tracking, monitoring the quan-

titative values of behavior states integrating with spatiotemporal information. The third type, user identifica-

tion, leverages the unique features in behaviors to identify who performs the movements. The selected papers

in each sensing task type can be further divided into sub-categories according to their motion granularity.

Recent advances reveal that WDHS systems within a particular granularity follow similar challenges and de-

sign principles. For example, fine-grained hand recognition systems target extracting subtle motion-induced

signal changes from the noisy signal responses, and their sensing areas are limited to a relatively small range.

Coarse-grained activity identification systems need to overcome the interference of other moving objects

within the room-level sensing range. A novel research framework is proposed to help to summarize WDHS

systems from methodology, evaluation performance, and design goals. Finally, we conclude with several open

issues and present the future research directions from the perspectives of data collection, sensing methodology,

performance evaluation, and application scenario.
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1 INTRODUCTION

With the emergence of the Internet of Things, human sensing techniques have attracted consider-
able attention in creating a smart life with many compelling applications, e.g., smart healthcare,
safety surveillance, and ubiquitous interaction. To promote these applications, researchers have
explored many sensing techniques [10, 35, 53] to obtain spatiotemporal and motion-related infor-
mation of human behaviors. For example, in a construction site scene, a sensing system should
have the ability to track workers to alert them when they enter dangerous areas. When an elderly
person living alone falls, a sensing system with a fall detection function can promptly notify their
children or guardians for rescue.

Human sensing techniques can be classified into two categories: device-based and device-free.
The device-based approach depends on wearable sensors [49, 55] to monitor human health and
behaviors and achieve seamless availability across different environments. It is still unsuitable
for some scenarios, e.g., elderly patient monitoring. On-body sensors cause additional carrying
burdens, and people may forget to wear them. Device-free human sensing, namely wireless device-
free human sensing (WDHS), provides a non-intrusive sensing approach. WDHS utilizes the
infrastructure, e.g., camera [112], signal readers [81], access points [86], and radar [119], to capture
human motions.

The image-based approaches have achieved a remarkable breakthrough in the last decade and
enabled many mature commercial applications. However, they are limited by some inherent prob-
lems. First, most of the systems require that the target persons not be impeded. Second, they are
sensitive to the brightness of the environment. Third, cameras make people feel monitored contin-
uously by some unknown people. These problems make the image-based techniques unsuitable
for some application scenarios focusing on long-term and privacy-conscious sensing tasks.

Researchers have proposed many attractive solutions involving various wireless signals such
as Wi-Fi [61], Radio Frequency Identification (RFID) [29], ultrasonic [68], and visible light
(VL) [111] to broaden the boundaries of WDHS. These heterogeneous wireless signals enable
fantastic applications in a variety of scenarios such as through-wall sensing [100], whole-home
intrusion detection [113], and vital sign monitoring [83]. Since there are many studies based on
different techniques, a scoping review is required to help researchers efficiently understand the
research state.

To date, several surveys relevant to WDHS have been published, as summarized in Table 1.
Systematic surveys provide an in-depth analysis of particular narrow scopes, e.g., application sce-
narios [16, 34, 70], wireless techniques [46], and sensing methods [35, 58], since they can compre-
hensively compare the relevant systems.

Unlike the systematic surveys, the scoping surveys provide a broader scope of WDHS. For exam-
ple, Ngamakeur et al. [56] reviewed the techniques of device-free indoor localization and tracking.
Liu et al. [42] surveyed the wireless sensing techniques for multiple application scenarios. Com-
pared with these two scoping reviews, this survey reviews the WDHS systems involving more
wireless techniques and application scenarios.

We conducted an initial search of scientific databases, e.g., Google Scholar, ACM Digital Library,
Web of Science, and IEEE Xplore, to find the most related literature using combination keywords:
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Table 1. Summary of Related Surveys on WDHS

Reference Type Application Scenarios Signal Sources Topic & Taxonomy

Shit et al. [70] Systematic Whole-body movement tracking RFID, FM, ultrasonic,
and Wi-Fi

Techniques of device-free
localization

Kouyoumdjieva
et al. [34]

Systematic Whole-body movement tracking Acoustic, Wi-Fi, and
VL

Techniques of crowd counting

Deep et al. [16] Systematic Activity identification RFID and Wi-Fi Techniques of anomalous
behavior detection for elderly care

Ma et al. [46] Systematic Activity identification, hand gesture recognition,
whole-body movement tracking, hand/finger
tracking, vital sign monitoring, and whole-body-
motion-based authentication

Wi-Fi Techniques of CSI-based human
sensing

Nirmal et al.
[58]

Systematic Activity identification, hand gesture recognition,
whole-body movement tracking, pose estimation,
vital sign monitoring, and whole-body-motion-
based authentication

RFID, FM, and Wi-Fi Deep learning techniques of
device-free human sensing

Li et al. [35] Systematic Activity identification, hand gesture recognition,
whole-body movement tracking, pose estimation,
hand/finger tracking, vital sign monitoring, and
whole-body-motion-based authentication

RFID, FM, and Wi-Fi Deep learning techniques for
wireless sensing

Ngamakeur
et al. [56]

Scoping Activity identification, whole-body movement
tracking, whole-body-motion-based
authentication

Acoustic, RFID, and
Wi-Fi

Techniques of device-free indoor
localization for multi-resident
scenarios

Liu et al. [42] Scoping Activity identification, hand gesture recognition,
whole-body movement tracking, vital sign
monitoring, and whole-body-motion-based
authentication

FM and Wi-Fi Techniques of wireless sensing

This survey Scoping Activity identification, limb motion recognition,
hand gesture recognition, lip reading, whole-
body movement tracking, pose estimation, hand/
finger tracking, vital sign monitoring, whole-
body-motion-based authentication, finger-
motion-based authentication, and lip-motion-
based authentication

Audio, ambient radio
frequency (RF), EMF,
FM, RFID, mmWave,
solar, ultrasonic, VL,
Wi-Fi

A scoping review of the
application of WDHS according to
the sensing task type and motion
granularity

wireless, device-free, human sensing, and gesture recognition. Then, we inspected the proceedings
of the major relevant conferences (e.g., AAAI, CCS, CHI, CVPR, ICDCS, INFOCOM, IPSN, Mobi-
Com, MobiHoc, MobiSys, NSDI, PerCom, SECON, SenSys, SIGCOMM, UbiComp, and WWW) and
the papers of the related transactions (e.g., IMWUT and TMC) from 2013. Next, a novel taxonomy
is proposed to classify the recent advances of WDHS systems according to their sensing task types
and granularity.

1.1 Taxonomy of WDHS

We propose a novel taxonomy that classifies WDHS systems according to sensing task type and mo-
tion granularity, as shown in Figure 1. After reviewing the selected papers, current WDHS systems
can be classified into three classes according to their sensing task types: behavior recognition, move-

ment tracking, and user identification. Such classes can be further classified into sub-categories ac-
cording to their granularity. Previous research [66] showed that motion granularity affects sensing
accuracy and brings different challenges. For example, WDHS systems with small sensing targets
such as fingers [57] and lips [44] are often limited to a small sensing range to capture slight move-
ments. The short sensing range constrains the application scenario to a single user and requires a
specific deployment setting. In contrast, WDHS systems designed for larger sensing targets, such
as whole-body movements, have a broader sensing range. However, they require more attention
to mitigate the unavoidable interference caused by other people in practical applications.

Behavior recognition is a pure classification problem of recognizing predefined meaningful
gestures or activities [52]. It has two main challenges, which are separating target behaviors from
ambient noise and designing a proper classification model to distinguish the differences among the
detected behaviors. When people move in the field covered by wireless signals, their movements
will change the propagation paths causing specific signal patterns received by the antennas. The
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Fig. 1. Taxonomy of wireless device-free human sensing systems.

sensing systems utilize thresholds or pattern fitting methods to detect movement-related segments
from the signal streams. Then, these systems extract the features of the segments and input them to
machine learning models and deep neural networks for recognition. Following this general frame-
work, many studies were proposed for various sensing targets, including the whole body [61],
limbs [79], hands [68], fingers [75], and lips [74], facilitating a wide range of applications.

Movement tracking systems monitor the quantitative values of behavior states integrated
with spatiotemporal information. The most challenging problem for these systems is to find a
proper representation reflecting the details of the target behaviors. According to the target size,
these systems can be classified into whole-body movement tracking [2], pose estimation [117],
hand/finger tracking [9], and vital sign monitoring [83]. Typically, location sensing systems [2, 3]
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aim at estimating the coordinates of the target users who are regarded as points in the maps. Pose
estimation is defined as locating human joints [119] like the concept used in the computer vision
community [77]. Compared with image-based pose estimation systems, wireless-based methods
have excellent performance in through-wall conditions. Hand/finger tracking systems track the
hands’ locations near smart devices in terms of breaking the limits of small screens. Researchers
have explored the use of wireless-based vital sign monitoring [4], which frees users from the
on-body sensors.

User identification is to determine who performs the movements. Each person’s movement pat-
terns are unique due to the difference in body shapes, behaviors, and health conditions. Such
personal information also exists in the wireless signal patterns reflected by the human body, e.g.,
gaits [85, 109], fingers [31], and lips [44, 74]. However, it is non-trivial to define or extract personal
information through a theoretical model. Therefore, existing works leverage experience-based
models for user identification.

1.2 Contributions

• We conduct a thorough scoping review of WDHS according to the sensing target types and
motion granularity, hoping to help readers keep up-to-date about the research state and
inspire more exciting application scenarios.
• We propose a novel researcher framework to guide the summary of WDHS systems from

seven components: data collection, preprocessing, segmentation, representation, modeling,
evaluation, and application.
• We conclude with the problems of WDHS and present the future research directions from

the aspects of data collection, sensing methodology, performance evaluation, and application

scenario.

The rest of this article is as follows. In Section 2, we introduce the general research framework
of WDHS. In Sections 3 to 5, we describe behavior recognition, movement tracking, and user iden-
tification. Then, in Section 6, we present the challenges in this area and give an outlook of the
research directions. Finally, we provide conclusions in Section 7.

2 RESEARCH FRAMEWORK

In this section, we give a research framework of human sensing from a high-level perspective like
the prior work [107]. Since the research framework proposed by the prior work is very general, it is
unable to guide us in building up summarization tables of the selected WDHS papers. Therefore, we
propose a novel research framework to provide an overview of how the systems process wireless
signals for human sensing and how the researchers evaluate their works, as shown in Figure 2.
Please note that this article does not describe the detailed methodologies, such as how a system
transforms wireless signals from the time domain to the frequency domain. For more details about
the sensing methodology of WDHS systems, we recommend the readers refer to the prior surveys
mentioned in Table 1 or to the referenced papers. The general research framework consists of seven
sequential components: data collection, preprocessing, segmentation, representation, modeling,
evaluation, and application.

2.1 Data Collection

The selected WDHS systems involve various wireless techniques, including acoustic sig-
nals [96], electromagnetic field (EMF) [117], frequency-modulated (FM) radio [3], microwave
(mmWave) [69], RFID [29], VL [102], and Wi-Fi [113].

According to the way of capturing these signals, the selected papers can be divided into two
types: active and passive. The active ones borrow the idea of radar that they have specific patterns

ACM Computing Surveys, Vol. 55, No. 5, Article 88. Publication date: December 2022.



88:6 J. Xiao et al.

Fig. 2. Research framework of wireless device-free human sensing.

of sensing signals and close distance between transmitting and receiving antennas. Passive sensing
systems do not change the device deployment design for communication. They analyze the motion-
induced multipath effects to recognize human behaviors.

Most systems extract features from the measurements relevant to signal strength, e.g., received
signal strength (RSS) [69] and received signal strength indicator (RSSI) [1]. Such measure-
ments are the superposition of signals of multiple propagation paths. It results in an unstable
performance in a dynamic environment and has a coarse-grained spatial resolution. Therefore, re-
searchers introduce phase [90] and channel state information (CSI) [89] that can describe the
state of propagation channels in detail.

2.2 Preprocessing

Preprocessing has two major goals of noise reduction and structure conversion. The meaningful
signals are often buried in the noise floor. The noise can be briefly summarized into three types:
device-induced noise, environmental noise, and dynamic noise.

To mitigate the device-induced noise, researchers induce an efficient method, namely conjugated
multiplication [37]. The key insight is that receiving antennas sharing the same processing circuits
have identical measurement errors. The environmental noise refers to the signals with strong
strengths reflected by the static environment, having a very low Doppler frequency shift (DFS).
Researchers remove such noise using a band-pass filter (BPF) [65], a high-pass filter (HPF) [69],
or background subtraction methods [86]. The dynamic noise is caused by moving objects around
the target users. Some moving objects have different moving speeds causing out-band noise, which
can be removed by a low-pass filter (LPF), BPF, HPF, or the combination of discrete wavelet
transform (DWT) and thresholding-based methods [75] in the frequency domain. Other moving
objects may have a speed close to the target users but are in a farther place. Designers can leverage
long delay removal [92] to filter out this noise in the time domain.

Besides the mentioned three noise types, other occasional measurement errors, e.g., missing and
burst values, degrade the sensing performance. Researchers have explored many methods such
as moving average [115], Savitzky-Golay filter [116], Hampel filter [27], principal component
analysis (PCA) [86], and interpolation [84] to smooth the received signals.

After removing the noise, some systems directly extract features from the data in the time do-
main. Other systems will convert the data into the frequency domain like spectrogram through
short-time Fourier transform (STFT) [79] or DWT [1]. Compared with the raw wireless signals
received, the spectrogram provides information on motion speed.

2.3 Segmentation

The goal of this component is to capture candidate signal segments with respect to human be-
haviors. Many systems use thresholding [17] methods to separate motion-induced signals from
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the background. Some systems leverage preamble gestures [80] to notify the sensing systems that
the following activities are the targets. Both thresholding-based and preamble-based segmentation
methods have inherent delays since they detect motions that are already finished. For real-time
scenarios such as movement tracking applications, most systems adopt a time window [100] to
divide the signal stream into sequences of frames.

2.4 Representation

After segmentation, researchers extract features from the segments for dimension reduction and
format alignment. There are three ways to obtain a representation: pattern encoding, feature ex-

traction, and deep neural network (DNN). Pattern encoding uses a series of numbers to encode
the instance according to trends in the signal change [1]. In feature extraction, the instances are
transformed into manually defined feature vectors, e.g., statistical features [94], Mel-Frequency
Cepstrum Coefficients (MFCCs) [106], profile feature [22, 89], Time-of-flight (ToF) [9], angle-
of-arrival (AoA) [72], and time difference of arrival (TDoA) [122]. For complex gestures or
activities, it is challenging to determine the features manually. Therefore, DNN models were ap-
plied for feature extraction thanks to their strong representation ability [27, 99].

2.5 Modeling

Behavior recognition and user identification systems utilize classification models to distinguish
their sensing targets. Based on the complexity of the sensing targets, the sensing models can be
divided into two categoires: logic-based model and experience-based model. Logic-based models
include pattern matching [61] and if-then-else statements [29]. These models are computation ef-
ficient but only available for tasks with simple movements and small target spaces. For complex
sensing targets, like American sign language (ASL) [69], the corresponding systems prefer to
utilize experience-based models, e.g., hidden Markov model (HMM) [86], support vector ma-
chine (SVM) [22], k-nearest neighbor (kNN) [80], and DNN [25, 121]. The performance of such
experience-based models relies on their training datasets. They become computationally time in-
tensive when the behavior types increase.

Most movement tracking systems concentrate on the coordinates of the sensing targets. Such
sensing tasks can design geometric-based mathematical mapping functions [64] to estimate the
coordinates or introduce the traditional localization models, such as dead reckoning [63], ellipse

model [3], triangulation model [105], and hyperbola model [122]. Researchers propose to utilize
deep learning models [119, 120] for the pose estimation systems that tackle more complex problems
of locating multiple joints.

Other movement tracking systems are designed for specific movements or behaviors, e.g., crowd
counting, step counting, and vital sign monitoring. Researchers can more easily find the correla-
tions between such sensing targets and the signal patterns. For example, there is a monotonic
relationship between CSI variation and the number of moving people, and human gaits, respira-
tion, and heartbeats have repeated patterns.

2.6 Evaluation

Generally speaking, researchers evaluate their work from the micro and macro perspectives. In
the micro view, researchers conduct experiments to find the best parameters or settings based on
the details of the method, which we do not summarize in this survey. In the macro perspective, the
experiments are conducted to evaluate the practicability of the WDHS systems. In this survey, we
summarize the performance evaluation from six aspects, i.e., overall accuracy, robustness, stability,
generality, multiuser, and scalability.
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• The overall accuracy describes the performance for the best experimental settings. We use the
term “overall” to denote this performance in the summarization tables. There are two formats
for classification and tracking tasks. For classification tasks, including behavior recognition
and user identification, researchers use the correct recognition ratio to record the possibility
of a WDHS system that can accurately recognize human behaviors or user identity. The
movement tracking systems often utilize estimation error to describe the distance between
the outputs and the ground truth.
• Robustness evaluates the performance when applying a WDHS system to different multi-

path conditions. The relevant experiments involve the accuracy in different environments,
comparison between line of sight (LOS) and non-line of sight (NLOS), and user location
changes.
• Stability indicates the ability to overcome continuous signal changes caused by dynamic en-

vironments due to unknown persons’ activities. In practice, unknown persons occasionally
appear within the sensing range when a WDHS system interacts with a registered user. The
signals reflected from such unknown persons will confuse the WDHS system. In addition,
human activities gradually change the layout. After a long period, the multipath state may be
significantly different from the raw condition. Therefore, a practical WDHS system should
keep stable performance in long-time-duration applications.
• Generality evaluates the sensing performance across different users without additional train-

ing costs. Due to the difference in body shapes, behaviors, and health conditions, namely
user diversity, a well-trained WDHS system may have poor performance for new users. It
requires new users to provide training data for fine-tuning, which seriously influences user
experience.
• Multiuser records the maximum number of coexisting users. It is an imperative feature for

real-world deployment. On the one hand, it is impossible to avoid situations where multiple
targets exist at the same time in practical applications, such as room-level location sensing.
On the other hand, multi-user support needs to combine the user’s location and identity
information to make the perception system smarter and safer.
• Scalability indicates the size of the sensing target space, reflecting the sensing boundaries

of WDHS systems. This survey records the target number of classification systems and the
sensing range of tracking systems.

2.7 Application

WDHS systems are used in a wide range of applications. This survey concludes three main cate-
gories based on the sensing task types: behavior recognition, movement tracking, and user iden-
tification. Behavior recognition and movement tracking are motion-centric sensing tasks, and the
third type focuses on user identity. These application scenarios will be discussed in detail in the
next sections.

3 BEHAVIOR RECOGNITION

In this section, we present the behavior recognition systems according to the behavior granular-
ity. The selected systems can be classified into four categories: activity identification, limb motion

recognition, hand gesture recognition, and lip reading. Then, we conclude with the challenges and
research opportunities in terms of research guidance at the end of this section.

3.1 Activity Identification

In the past decade, activity identification was one of the hottest research topics in WDHS. It fo-
cuses on whole-body movements, promoting exciting applications, such as motion detection, fall
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Table 2. Methodology of Activity Identification Systems

Reference
Data Collection

Preprocessing Segmentation Representation Sensing Model
Source Measurement Type

[113] Wi-Fi
Amplitude of

CSI
Passive - Time Window Auto-correlation Hypothesis Testing

[37] Wi-Fi CSI Passive
Conjugate

Multiplication
Time Window Statistical Feature Thresholding

[22] Wi-Fi
Amplitude of

CSI
Passive Moving Average

Local Outlier
Factor

Statistical Feature,
Profile Feature

Random Forests,
SVM

[84] Wi-Fi CSI Passive
Interpolation,

BPF
Thresholding,
Time Window

Statistical Feature,
Profile Feature

v-SVM

[115] Wi-Fi
Amplitude of

CSI
Passive

Moving Average,
BPF, PCA

Thresholding
Statistical Feature,

Profile Feature
Transfer Learning,

SVM

[89] Wi-Fi CSI Passive LPF Thresholding
Statistical Feature,

Profile Feature
Pattern Matching

[61] Wi-Fi OFDM Passive STFT Thresholding Encode Pattern Matching

[86] Wi-Fi
Amplitude of

CSI
Passive

Background
Subtraction, PCA

Thresholding
Frequency Vector,
Statistical Feature

HMM

[90] RFID Phase Passive
Frequency Hops
Normalization,
Median Filter

Thresholding Statistical Feature Machine Learning

[27]
Wi-Fi, VL,
mmWave,
Ultrasonic

Amplitude Passive Hampel Filter Time Window CNN
DNN combined with

discriminator

[99] Fusion Amplitude Passive Hampel Filter Time Window CNN
DNN Combined

with Discriminator

[7] Wi-Fi
Amplitude of

CSI
Passive

Conjugate
Multiplication,

LPF, PCA, STFT
Time Window Frequency Vector HMM

[96] Ultrasonic RSS Passive STFT Thresholding PCA
Voting Mechanism,

Random Forest, SVM

[79] Wi-Fi
Amplitude of

CSI
Passive

Conjugate Multi-
plication, STFT,

Background Sub-
traction, PCA

Thresholding Frequency Vector
Jaccard Similarity

Coefficient

[94] Wi-Fi Amplitude Passive LPF
Morphology

Matching
Statistical Feature

Voting Mechanism,
SVM

Table 3. Performance of Activity Identification Systems

Reference
Performance Evaluation

Description
Overall Robustness Stability Generality Multiuser Scalability

[113] 99.68% 92.75% 99.68% - 1 1 Calibration-free motion detection

[37] 99.4% 99.42% - 97% 1 1 Boundary-aware motion detection

[22] 94% 94% - - 1 1 Fall detection

[84] 93% 91.25% 79.75% 86.2% 1 1 Fall detection

[115] 86.83% 86.83% - - 1 1 Adaptable fall detection

[89] >94% >80% - - 1 9 Multi-activity classification

[61] 94% 94% 90% - 4 9 Multi-activity classification

[86] 96.5% >80% - - 1 9 Multi-activity classification

[90] 93.5% >85.5% >83% - 1 8 Multi-activity classification

[27] >50% - - - 1 6
Environment-independent activity

classification

[99] 87.9% 81.2% - 84.2% 1 8 Multi-modal activity classification

[7] 91.3% >74% - >83% 1 7 Driving activity classification

[96] 94.8% - - >91.73% 1 8 Early driving activity classification

[79] >90% >88% - - 6 15 Multi-user activity classification

[94] 93.1% <6% (ERR) - <2% (ERR) 3 7 Multi-user activity classification

detection, and multi-activity classification. The relevant works are summarized in Tables 2 and 3
based on the general research framework discussed in section 2.

Motion detection aims at detecting the presence of moving things. It is a classical binary clas-
sification problem of WDHS. Once persons enter a monitored place, their movements will change
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the propagation paths of the wireless signal and cause burst signal patterns at the receivers. Con-
ventional methods [86] leverage pre-defined thresholds to distinguish such motion-induced burst
signals. However, they need to be calibrated for different environments since wireless signals
are sensitive to the environment and environmental changes. To overcome this problem, WiDe-
tect [113] used statistical theory to model the signal states in scattering-rich environments. Though
WiDetect is robust and calibration-free and has broad coverage, it still suffers from false alarms
in real life due to the fuzzy sensing range. WiBorder [37] gave an in-depth analysis of CSI conju-
gate multiplication and proposed a sensing boundary determination method. Thus, it can precisely
tell whether a person enters a given place. Nevertheless, the deployment of transceivers requires
a specific design, which may influence the user experience of the fundamental communication
function.

Fall detection is a typical problem of detecting a specific target in daily activities. It is non-trivial
to find a feature that can clearly distinguish falls from other movements compared with motion
detection. Therefore, WiFall [22] and RT-Fall [84] selected data-driven methods for fall detection,
e.g., random forest and SVM. As we know, such data-driven models require big datasets to remove
bias and improve generality. However, collecting data in different environments is laborious, and
labeling wireless signals requires professional knowledge due to their unintuitive expression. The
researchers of TL-Fall [115] observed that the knowledge learned in old environments had a posi-
tive influence on training models in new environments. Based on this observation, they introduced
a feature-based transfer learning method to reduce the data collection costs in new environments.

Multi-activity classification is related to what the activity is, and the recognition systems
need more features to distinguish multiple activities. E-eyes [89] directly compared the signal pat-
terns by Dynamic Time Warping (DTW). WiSee [61], CARM [86], and TACT [90] converted
the wireless signals into the frequency domain to obtain the environment-independent DFS (indi-
cating movement speed information) and leveraged machine learning models for classification. To
improve the environmental robustness, EI [27] and DeepMV [99] combined DNN with a domain
discriminator to extract the general features of activity. WiDrive [7] and ER [96] explored the meth-
ods to detect dangerous driving activities. In the scenarios of driving, the drivers are fixed to their
seats, and the in-car environments are stable. Therefore, WiDrive and ER do not need to consider
the robustness of environmental changes. The prior works are constrained to single-user scenar-
ios. Distinguishing the in-home activities of multiple users at the same time is more challenging.
WiMU [79] analyzed the channel frequency response power model of the combined movements
of multiple users and designed a virtual sample generation method to reduce data collection costs.
However, this method can only recognize the gestures performed, not who performed the gestures.
Motion-Fi [94] leveraged the short interaction range of Wi-Fi-based backscatter tags to separate
users physically. This method requires a specific design of deployment to avoid the overlapping
of different tags’ sensing areas.

Challenges and research opportunities: Most activity identification systems we reviewed
are based on Wi-Fi since such devices are most prevalent in modern homes. These systems have
limited practicability before the breakthrough in robustness and multiuser support. To improve
the robustness, finding environment-independent representation is important. However, it is very
challenging to derive the representation manually due to the sophisticated domain knowledge. Al-
ternatively, researchers can benefit from deep learning techniques like EI [27] and DeepMV [99].
Then, there is the problem of reducing the costs of data collection. Designers can leverage few-shot
learning techniques, e.g., transfer learning [59] and meta-learning [19]. Besides, they can choose
data simulation techniques [5, 8] to generate virtual samples to accelerate the model training phase.
Multiuser support is also important for home-level activity identification. Current Wi-Fi-based sys-
tems working at 2.4GHz and 5GHz cannot separate one person from another due to their narrow
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Table 4. Methodology of Limb Motion Recognition Systems

Reference
Data Collection

Preprocessing Segmentation Representation Sensing Model
Source Measurement Type

[29] RFID RSS Passive
Moving Average,

Background
Subtraction

Thresholding Profile Feature
If-then-else
Statement

[80] Wi-Fi CSI Passive
Background

Subtraction, PCA
Thresholding,

Preamble
Location Feature,
Statistical Feature

kNN

[121] Wi-Fi CSI Passive

Conjugate Multi-
plication, STFT,

Background Sub-
traction

Time Window BVP
Recurrent Neural

Network (RNN) with
GRU

[13]
Ambient

RF
Noise Floor Passive

Data Reconstruction,
CSSD

Thresholding Frequency Vector Markov Chain Model

[65] Wi-Fi CSI Passive
Conjugate

Multiplication, BPF,
PCA, STFT

Thresholding
Frequency Vector,

LPF, STFT
Pattern Matching

Table 5. Performance of Limb Motion Recognition Systems

Reference
Performance Evaluation

Description
Overall Robustness Stability Generality Multiuser Scalability

[29] 97% - - - 1 8 Low-power arm gesture recognition

[80] 91.4% - >90% - 1 6 Location-aware arm gesture recognition

[121] 92.7% >87% - >85% 1 6 Location-aware arm gesture recognition

[13] 92.2% - - - 1 8 Arm gesture recognition via ambient RF

[65] 92% - - >85% 1 9 Leg motion direction recognition

bandwidth. In order to identify the activities of co-existing users, high bandwidth is necessary.
Hence, we envision that more techniques with high bandwidths will be applied for multiuser ac-
tivity identification.

3.2 Limb Motion Recognition

Limb motions are the basic forms to send instructions to intelligent devices. As summarized in
Tables 4 and 5, the selected papers can be divided into two groups according to the target body
parts: arm gesture recognition and leg gesture recognition.

Arm gesture recognition aims to recognize some common actions, e.g., push, pull, and slide,
for interacting with smart devices. In the era of the Internet of Things (IoT), many IoT devices
with limited computational resources appear in our lives. One practical problem is the requirement
of low power consumption. AllSee [29] used power-harvesting sensors to provide energy to RFID
tags for gesture classification. It leveraged if-then-else statements to distinguish eight predefined
arm movements. However, it was sensitive to position changes since a given movement induced
different multipath patterns in different locations. To overcome this problem, WiAG [80] proposed
a transfer function based on a theoretical analysis of the relationship between gestures in differ-
ent locations. It can estimate user location through a simple preamble movement and recognize
the following gestures by comparing them with virtual samples. WiDar3.0 [121] introduced the
body-coordinate velocity profile (BVP), integrating movement speed, orientation, and location,
to realize location-independent gesture recognition.

Leg motion recognition has a narrow scope of application since legs are not as flexible as
arms. WiDance [65] proposed a leg motion recognition method for interactive exergames where
the moving direction was essential information. Inspired by the prior Wi-Fi-based human sensing
work [61], WiDance analyzed the relations between motion direction and the related DFS. Then,
it designed a specific deployment of two T-R pairs to recognize nine different leg gestures with
different moving directions.
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Table 6. Methodology of Hand Gesture Recognition Systems

Reference
Data Collection

Preprocessing Segmentation Representation Sensing Model
Source Measurement Type

[1] Wi-Fi RSSI Passive DWT
Thresholding,

Preamble
Encode Pattern Matching

[36] Wi-Fi
Amplitude of

CSI
Passive

Outlier Removal,
Moving Average, LPF

Thresholding Profile Feature DTW, KNN

[75] Wi-Fi
Amplitude of

CSI
Passive

DWT, Long Delay
Removal

Thresholding
Weighted Profile

Feature
DTW

[6] Wi-Fi CSI Passive
LPF, PCA,

Normalization
Dynamic

Thresholding
DWT DTW, KNN

[68] Ultrasonic DFS Active
Background

Subtraction, Gaussian
Smoothing

Time Window Radical Velocity Pattern Matching

[11] Ultrasonic Amplitude Active STFT Time Window Encode Pattern Matching

[40] Ultrasonic CIR Active
First-order Difference,

LPF
Thresholding Image CNN

[124] RFID Phase Passive
Unwrapping,

Savitzky-Golay Filter,
Normalization

Thresholding Profile Feature
Voting Mechanism,

DTW

[116] RFID Phase Passive
Unwrapping,

Savitzky-Golay Filter,
Normalization

Thresholding
Statistical Feature,

Profile Feature
Random Forest

[45] Solar
Photocurrent

amplitude
Passive DWT Thresholding

Statistical Feature,
Profile Feature

Machine Learning

[50] Wi-Fi CSI Passive LPF Thresholding Profile Feature
Cross-correlation,

DTW

[69] mmWave RSS Active LPF, HPF, STFT Preamble CNN
Multitask Learning

Network

[18] Audio Amplitude Passive
Background

Subtraction, STFT, LPF
Thresholding Gray-scale LeNet-5

[106] Audio Amplitude Passive Moving Average Threshold
Statistical Feature,

MFCC
SVM

[81] RFID CIR Active
Interpolation, Moving

Average
Time Window

Pearson Correlation
Coefficient, RSSI

Distribution
KNN, CNN

Challenges and research opportunities: Limb motion recognition has a stronger interaction
tendency than activity identification. The systems are designed for room-level application scenar-
ios where the users may interact with multiple IoT devices simultaneously. Besides the challeng-
ing requirement of low-power consumption, a practical limb motion recognition system should
be context-aware and available for mobile persons. When IoT devices increase, it needs many in-
structions to control them. It is very difficult to map every instruction to a unique limb gesture.
From the perspective of user experience, the design of instruction gestures should be simple and
natural. For example, users usually use a finger swipe to switch videos playing on their phones.
So, it is more natural to use an arm swipe to switch songs playing on smart speakers and shows
on TV. Therefore, a practical system can infer which device the user wants to control by aggre-
gating the information of the user’s direction and location. In addition, limb-motion-induced sig-
nals are weaker than those caused by torso movements. Hence, existing systems require users to
stand still when performing limb motions to avoid the interference of the torso. Designers can
select the signals with a fine-grained spatial resolution to recognize limb behaviors in mobile
scenarios.

3.3 Hand Gesture Recognition

Hand gesture recognition has attracted increasing attention since the potential target gestures can
express as much information as the human voice. The application scenarios include in-air hands-

free input, ASL recognition, and handwriting recognition, as summarized in Tables 6 and 7.
In-air hands-free input maps predefined hand or finger gestures to control instructions. Hand

and finger gestures are smaller than limb motions, inducing much smaller wireless signal changes.
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Table 7. Performance of Hand Gesture Recognition Systems

Reference
Performance Evaluation

Description
Overall Robustness Stability Generality Multiuser Scalability

[1] 96% 96% - - 1 9 Wi-Fi-based hand gesture recognition

[36] >90% - - - 1 9 Wi-Fi-based finger gesture recognition

[75] 93% 90% >90% >90% 1 6 Wi-Fi-based finger gesture recognition

[6] 93.47% - - - 1 36 Keystroke recognition

[68] 95.1% >85% - >85% 1 6 Acoustic-based hand gesture recognition

[11] 96.8% - 96.8% - 1 6 Hand gesture recognition for file sharing

[40] 97.92% 85.67% >88.81% 92.56% 1 6 Acoustic-based hand gesture recognition

[124] 96.5% 93.7% >60% - 1 6 RFID-based hand gesture recognition

[116] >94% - - - 1 9 Real-time hand gesture recognition

[45] >96% >85% >94.2% >85% 1 6 Solar-based hand gesture recognition

[50] 92% 88% >67% >72% 1 25 ASL recognition

[69] 87% 86.7% 78% >75.2% 1 50 Long-range ASL recognition

[18] 88% - - 74.83% 1 26 Handwriting recognition

[106] 55% - - 64.94% 1 26 Privacy risk of handwriting recognition

[81] >89% - - >89% 1 26 Multi-touch handwriting recognition

Such small signal changes are usually buried in strong ones caused by other body parts or moving
objects, and it is non-trivial to extract them. Therefore, researchers often constrain the interaction
range to a small space to zoom into the signals of hands and fingers.

WiGest [1] required users to perform gestures close to laptops to capture the hand-induced
RSSI changes of Wi-Fi signals. WiFinger [36] fixed the distance between transceivers at 50 cm
and asked users to place their hands on the LOS path. It measured the CSI with higher spatial
resolution than RSSI and leveraged KNN to classify nine finger gestures. Another work, also named
WiFinger [75], achieved high robustness and resilience to individual diversity through a weighted
profile comparison method. By assigning higher weights to the more representative parts, this
work can reduce the negative impact of movement instability and user diversity. The authors of
WiKey [6] observed that each keystroke had a unique CSI pattern due to the different hand gestures.
Then, it used a threshold-based method for segmentation, DWT for feature extraction, and KNN
for keystroke recognition, achieving high accuracy of 93.47%. However, this system was sensitive
to the changes in the relative positions between users and devices.

In recent years, researchers have paid much attention to acoustic-based hand recognition meth-
ods based on the built-in speakers and microphones of IoT devices. AudioGest [68] turned the
device into an active sonar. By analyzing the features extracted from the audio DFS, it can recog-
nize six hand gestures to control media applications with an accuracy of up to 96% within a range
of 25 cm. AirLink [11] leveraged the direction information of DFS and realized hand-controlled
file sharing. However, these DFS-based methods had a low spatial resolution, limiting their perfor-
mance on recognizing fine-grained gestures, especially involving fingers. Hence, UltraGesture [40]
utilized Channel Impulse Response (CIR) with higher resolution. Then, it regarded the measure-
ments as images and leveraged a convolutional neural network (CNN) for gesture recognition.

RFID-based gesture recognition is attracting increasing attention from academia and indus-
try due to the properties of lightweight, low power consumption, and convenient deployment.
GRfid [124] matched the signal segments to a set of registered templates. Such a pattern matching
method had a low generalization ability and increased the recognition latency. ReActor [116] ex-
tracted coarse-grained and fine-grained features through statistic-based and DWT-based methods,
respectively. Then, it leveraged random forest for more robust and real-time performance.

An interesting work, namely SolarGest [45], proposed a solar-based gesture recognition
approach to control solar-powered smart devices. The key insight was that hand gestures
near the transparent solar panel, transforming solar light to photocurrent signals, can induce
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unique photocurrent signal patterns. Hence, SolarGest analyzed the correlations between
the hand gestures and the motion-induced photocurrent signals and designed an end-to-end
machine-learning-based framework for recognition.

ASL recognition systems need to capture richer features to distinguish a wider range of hand
gestures. Melgarejo et al. [50] explored the application scenarios of controlling a wheelchair or a
car through ASL gestures. In such scenarios, the users were constrained in their seats, and their
torsos and legs were static relative to their arms. Therefore, the ASL-induced signals would not be
covered by the stronger signals caused by other body parts’ movements. Moreover, the researchers
leveraged directional antennas near the target hands to capture fine-grained features and selected
the most similar class via DTW. Santhalingam et al. [69] proposed an mmWave-based ASL recog-
nition system, extending the interaction range to 3m away from the devices.

Handwriting recognition. Existing works of handwriting recognition mainly use acoustic sig-
nals from friction between pens and papers. WordRecorder [18] utilized microphones deployed
near fingers to receive the audio signals propagating on the desktop for handwriting recognition.
WritingHacker [106] explored the risk of eavesdropping on handwriting by a nearby microphone.
It obtained stroke and letter segmentation through a threshold-based method and recognized
words by SVM. RF-Finger [81] designed a 2D RFID tag array for in-air handwriting recognition.
When a finger moves close to an RFID tag, the finger-reflected RSSI becomes stronger. Hence,
RF-Finger regarded the 2D tag array’s RSSI distribution as images and fed them into CNN for
recognition.

Challenges and research opportunities: Compared with other body parts, hands can express
the most meanings. To distinguish hand gestures accurately, one challenge is that hand-induced
signals are much lower than other body parts. Existing systems usually deploy sensing devices
near the hands. However, the application scenarios are limited. On account of this, researchers can
leverage directional antennas and beamforming techniques to zoom in on the space of hands like
mmASL [69] or explore more robust signal models like CSI-quotient [110]. The second challenge
is to extract distinguishable features. Since it is relatively difficult to model hand gestures, we
envision that more data-driven models will be adopted in the future.

3.4 Lip Reading

Wireless signals can not only “see” what people write but also “hear” what people say. WiHear [82]
leveraged directional antennas to send Wi-Fi signals in the direction of the target user’s face. Thus,
the reflected signals contained the information of mouth motions, and WiHear introduced a DTW-
based classification method to recognize 14 syllables and 32 words with an accuracy of 91%. This
system required a user to stand in front of the devices, making it unsuitable for mobile scenarios.
WiTalk [17] explored a more general application scenario of lip reading while making a phone
call. The relative location between phone and mouth is stable no matter where the user is or in
which direction the user faces. It measured the DFS to obtain the motion information of the mouth
and adopted DTW to classify 12 syllables, achieving higher than 82.5% accuracy. SilentTalk [73]
turned a mobile phone into a sonar to capture fine-grained motion features. Then, it introduced a
probability model for lip reading and achieved an accuracy of 95.4%.

Challenges and research opportunities: Except for the limitations of sensing range due to the
slight movements, the practicality of lip motion recognition is also constrained by the assumption
of simple transition states, e.g., short pauses between words or syllables. Based on this assumption,
current systems leveraged threshold-based methods to decompose the signals and narrow the tar-
get space. However, the transition states are complex in real life and closely related to their context.
Therefore, we envision that more context-aware models will be applied for lip reading. For example,
designers can refer to the methods for sequence-to-sequence problems such as Transformer [78].
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Fig. 3. Research status of behavior recognition application scenarios.

To show the research gaps of behavior recognition, we conclude the current research status
of the involved eight applications with six metrics of overall accuracy, robustness, stability, gen-
erality, multi-user support, and scalability, as shown in Figure 3. The binary classification prob-
lems, including motion detection and fall detection, are close to practical requirements. However,
there is still room for improvement, such as incorporating boundary detection to reduce the false-
positive rate. A common problem for the home-level multi-class activity classification and limb

motion recognition is multi-user support. Hands/fingers-related applications are well researched.
Hands and fingers are more flexible than limbs but induce much smaller signal variations, result-
ing in a small interaction space. To a certain degree, small interaction spaces can filter out the
environmental noise and reduce the impact of user diversity existing in other body parts. There-
fore, in-air hands-free input and ASL recognition have good robustness, stability, and generality
performance. Handwriting recognition lacks evaluation of robustness and stability, but we think it
should have comparable performance because of the similar sensing task and granularity. Lip read-
ing is an emerging research field, and there are many existing challenges of stability, generality,
and multi-user support.

4 MOVEMENT TRACKING

This section summarized the WDHS systems that track human behaviors. According to the target
sizes, the selected papers can be classified into four categories: whole-body movement tracking, pose

estimation, hands/fingers tracking, and vital sign monitoring.

4.1 Whole-body Movement Tracking

Whole-body movement tracking systems mainly focus on three applications: location sensing,
crowd counting, and step counting. Location sensing systems concentrate on the coordinates of
the target people. Crowd counting systems estimate how many people are in an interesting place.
The step counting systems can estimate the number of steps to assist in efficient walking based
on the repeated gait-induced signal patterns. We summarize the methodology and performance of
whole-body movement tracking systems in Tables 8 and 9, respectively.

Location sensing has attracted significant attention in the field of WDHS because it provides an
opportunity to locate or track people without requiring them to carry on-body devices. It outper-
forms the traditional device-based methods in specific application scenarios, e.g., locating tourists
in the scenic area to prevent them from entering dangerous areas or damaging the environment.
Tadar [100] deployed an RFID tag array on the outer wall of a target room to track the indoor target.
It extracted the motion-induced signals by subtracting the learned empty room information since
the strong signals reflected by the wall would not be changed by people moving indoors. Widar [63]
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Table 8. Methodology of Whole-body Movement Tracking Systems

Reference
Data Collection

Preprocessing Segmentation Representation Sensing Model
Source Measurement Type

[100] RFID
Amplitude
and Phase

Active
Background
Subtraction

Time Window - HMM

[63] Wi-Fi CSI Passive
BPF, PCA, STFT,
Moving Average

Time Window Velocity Vector Dead Reckoning

[64] Wi-Fi CSI Passive
Conjugate Multi-

plication, HPF
Time Window ToF, AoA, DFS

Mathematical
Mapping

[3] FM FMCW Active
Background
Subtraction

Time Window ToF Ellipse Localization

[2] FM FMCW Active
Background
Subtraction

Time Window,
Silhouette

Cancellation
Heatmap Peak Detection

[92] Wi-Fi
Amplitude of

CSI
Passive

Long Delay
Removal

Time Window PEM Probabilistic Model

[33] Wi-Fi Phase of CSI Passive PCA, HPF Time Window CFPs, CSPs Probabilistic Model

[102] VL Voltage Passive Moving Average Time Window
Geographical Feature,

Temporal Feature
Support Vector

Regression

[98] Wi-Fi CSI Passive
Long Delay

Removal, BPF
Time Window

PCA, DWT,
Short-time Energy

Peak Detection

[114] Wi-Fi
Amplitude of

CSI
Passive

Savitzky-Golay
Filter

Time Window
Canonical Polyadic

Decomposition
Peak Detection

Table 9. Performance of Whole-body Movement Tracking Systems

Reference
Performance Evaluation

Description
Overall Robustness Stability Generality Multiuser Scalability

[100] 9.8 cm - - - 1 <7.6 m Through-wall location sensing

[63] 25 cm - - <50 cm 1 <10 m Location sensing

[64] 75 cm <51 cm <100 cm <75 cm 1 <10 m Location sensing with a single Wi-Fi link

[3] <17.7 cm <21 cm - - 1 <11 m Location sensing via FMCW radar

[2] <15.9 cm <16.1 cm - - 4 <7 m Through-wall multi-user location sensing

[92] 98% 84% - - 30 <8 m Crowd counting

[33] 96.3% 94.23% - - 10 - Crowd counting for stationary people

[102] >92% - >90% - 20 - Crowd counting using existing LEDs

[98] >87.6% 88.9% - >80% 1 <8 m Step counting

[114] >84.53% - - - 5 - Multi-runner step counting

and Widar2.0 [64] tracked users in 2D coordinates via two orthogonal Wi-Fi links relying on the
relationship between motion velocity and the relevant DFS. At the beginning of wireless sensing,
scientists developed radars to track moving objects. Inspired by this idea, Adib et al. proposed
a frequency modulated carrier wave (FMCW)-based tracking system, WiTrack [3], working
in the frequency band of WLAN. It measured the ToF of FMCW and estimated the propagation
distance. Then, WiTrack leveraged the ellipse model to track a single person. In a further study,
WiTrack2.0 [2] designed a subtraction strategy to locate multiple users. After locating one target,
it removed the corresponding impulses from the measurements and then found the next target
iteratively.

Crowd counting, focusing on the exact number of people in a specific place, is highly important
in smart living. For example, when people gather in dangerous places, it can automatically notify
security officers to avoid man-made disasters. The typical strategy is to find a metric with a mono-
tonic relationship with the number of people. The device-free crowd counting system, FCC [92],
introduced a metric, percentage of nonzero elements (PEM), formulating a monotonic relation-
ship between CSI variation and the number of moving people. However, with the number of people
increasing, PEM almost stopped growing, which caused FCC’s performance degradation. The au-
thors of CelingSee [102] observed that the diffuse reflection with respect to the number of people
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Table 10. Methodology of Pose Estimation Systems

Reference
Data Collection

Preprocessing Segmentation Representation Sensing Model
Source Measurement Type

[119] FM
FMCW
Symbol

Active
Background
Subtraction

Time Window Heatmap TSN

[120] FM
FMCW
Symbol

Active
Background
Subtraction

Time Window Heatmap CNN

[28] Wi-Fi CSI Passive
Conjugated Multi-

plication, STFT
Time Window Velocity Vector CNN-RNN

[117] EMF RSS Passive HPF Time Window Z-Score Threshold

[38] VLC RSS Passive STFT Thresholding Shadow Map
Optimization,

Greedy Algorithm

had a monotonic relationship with the lightning-induced voltage changes in the conventional bidi-
rectional interface between the LED and its micro-controller. Korany and Mostofi [33] mapped the
counting stationary people to the M/G/∞ queuing problem. They introduced two specific metrics:
crowd fidgeting periods (CFPs), indicating the periods in which at least one person had small in-
place natural body movements, and crowd silent periods (CSPs), indicating the periods in which
no person moved. Then, Korany et al. utilized a thresholding-based motion detection method to
obtain such metrics and then leverage the maximum a posteriori (MAP) to estimate the number
of people based on the M/G/∞ queuing theory.

Step counting. It is challenging to track steps directly because the corresponding signals of legs
or feet might be covered by the stronger ones reflected by the torso. Based on the insight that the
torso and legs move at different speeds and cause different frequency shifts, WiStep [98] utilized
time-frequency analysis to recognize the repeated walking patterns. It leveraged DWT to separate
the leg-induced signals from the torso-induced ones and a peak detection method to count steps.
WiStep achieved a step counting accuracy higher than 87.6% in 2D space. However, it required a
single person in the monitoring space. Wi-Run [114] proposed a multi-user-supported step count-
ing method and applied it for workout assistance. It deployed a transceiver and a receiver on both
sides of a set of treadmills. The users were asked to run on the treadmills. Wi-Run assumed that
running-induced CSI measurements of a single person can be approximated by sinusoid-like pat-
terns. Then, a tensor decomposition function was implemented to separate the running-related
signals of multiple users. Hence, Wi-Run realized counting the steps of up to five users simultane-
ously and achieved an average accuracy higher than 84.5%.

Challenges and research opportunities: The whole-body movement tracking systems have
simple sensing targets, such as people’s coordinates [63], people numbers [33], and step num-
bers [98]. Since tracking whole-body movements is a coarse-grained sensing task, the sensing
devices can be deployed far from the targets. However, a larger sensing area suffers from more
frequent interference from other moving objects. Hence, robustness and multi-user support are
two important properties. To improve the performance on these aspects, designers can improve
the sensing systems’ spatial resolution by increasing the number of antennas [2] or using signals
with higher bandwidths [69].

4.2 Pose Estimation

Limb-oriented tracking systems concentrate on the locations of people’s joints, namely pose es-

timation. Pose estimation is well studied in the computer vision community but is an emerging
area in WDHS. Wireless signals are waves that cannot intuitively show the spatial relationship of
joints like images. Fortunately, in recent years, wireless techniques have made a breakthrough in
this area, as shown in Tables 10 and 11.
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Table 11. Performance of Pose Estimation Systems

Reference
Performance Evaluation

Description
Overall Robustness Stability Generality Multiuser Scalability

[119] 93.3% >85% - - 14 <12 m FM-based pose estimation via TSN

[120] <4.9 cm <5.2 cm - - 5 <10 m Multi-user 3D pose estimation

[28] 3.67 cm 5.42 cm 7.91 cm 8.58 cm 1 - Pose estimation via COTS Wi-Fi devices

[117] 8.6 cm - - - 1 <3 m
Pose estimation by transforming a wall to

a touchscreen

[38] 10◦ - <10◦ <16◦ 1 - Skeleton reconstruction

It is promising to search with the help of other mature techniques, e.g., image-based pose estima-
tion [119, 120] and VICON [28]. Such systems deployed cameras or VICON systems in parallel with
their wireless sensing devices to simultaneously record human behaviors. Then, they trained pose
estimation models in a semi-supervised learning framework such as the teacher-student network
(TSN). The experimental results showed that these systems can achieve comparable performance
to their teacher systems. Researchers have explored other techniques for pose estimation with-
out the assistance of external systems. Inspired by the modern touchscreens, Wall++ [117] turned
the common wall into a giant touchscreen to sense human motion in a near place based on EMF
signals. Based on the insight that shadows are 2D projects of the objects that block light beams,
LiSense [38] built up a photodiode matrix to obtain coarse-grained shadow information. Then, it
regarded the skeleton reconstruction as an optimization problem and selected a greedy algorithm
to speed up the pose estimation.

Challenges and research opportunities: Wireless-based pose estimation is a challenging task
because of the difficulty of modeling human postures. The wireless signals are not intuitive enough
to show the spatial correlations between joints. Thus, most systems take advantage of DNN to learn
the joints’ spatial knowledge from wireless signals under the guidance of other techniques, such
as image and VICON. Compared with the teacher systems, such sensing models have comparable
performance in LOS conditions and much higher accuracies in NLOS conditions. The common
limitation of existing systems is the cost of data collection because they need to deploy additional
devices to collect other signals in parallel. To ensure proper guidance, the device of the teacher
system needs to be set up in the same location as the student system and kept in sync. Therefore,
it would be troublesome to improve the robustness of the system by changing the layout to collect
data from different perspectives. To reduce the data collection costs, we envision that more studies
will leverage simulation technology to generate virtual data by changing the device places in the
digital world [5].

4.3 Hand/Finger Tracking

Hand and finger movement tracking systems monitor the moving trajectories of hands or fingers.
The goals of these systems are to extend the interaction ways of intelligent devices with small
screens. Generally, they involve three applications: hand tracking, finger tracking, and keystroke

tracking, as shown in Table 12.
Hand tracking shares a similar idea to location sensing systems. It aims at estimating hand

positions in real time. EchoTrack [9] turned a mobile device into sonar and tracked hands through
simple mathematical mapping algorithms. WiDraw [72] proposed a hand tracking method via
Wi-Fi signals. It regarded hands as moving transmitters and introduced the typical multiple sig-
nal classification (MUSIC) algorithm to obtain the AoA measurements. To meet the requirement
of precisely controlling an intelligent device, e.g., adjusting the volume of sounds, QGesture [105]
quantified hand movements using commercial off-the-shelf (COTS) Wi-Fi devices. It calculated
the propagation path changes via the observation on the hand-induced DFS and leveraged a trian-
gulation model to quantify the hand movements.
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Table 12. Methodology of Hand/Finger Tracking Systems

Reference
Data Collection

Preprocessing Segmentation Representation Sensing Model
Source Measurement Type

[9] Ultrasonic CIR Active
BPF, Long Delay

Removal
Time Window ToF

Mathematical
Mapping

[72] Wi-Fi CSI Passive MUSIC, LPF Time Window
Azimuth,

Elevation, Depth
Mathematical

Mapping

[105] Wi-Fi CSI Passive
Interpolation,

Moving Average,
PCA

Preamble
Phase-distance
Relationship

Triangulation Model

[54] Ultrasonic
OFDM
Symbol

Active STFT Time Window
Phase-distance
Relationship

Ellipse Model

[87] Ultrasonic Phase Active

Local Min-max
Averaging,
Cascaded

Integrator Comb
Filter

Time Window
Phase-distance
Relationship

Ellipse Model

[108] Ultrasonic CIR Active
Background
Subtraction

Time Window
Phase-distance
Relationship

Ellipse Model

[111] VL RSS Active
Background
Subtraction

Time Window RSS Vectors Pattern Matching

[39] VL RSS Active STFT Thresholding Shadow Map
Quasi-random

Search

[91] Wi-Fi CSI quotient Passive
Savizky-Golay

Filter
Threshold

Phase-distance
Relationship

Ellipse Model

[122] Audio RSS Passive - Thresholding TDoA Hyperbola Model

[43] Audio RSS Passive - Thresholding TDoA, MFCC K-means

Finger tracking systems usually track fine-grained finger motions in an active manner. They
design specific modulated wireless signals and leverage directional antennas tracking finger mo-
tions like radar. Thus, smart devices can track fingers through typical ellipse models [54, 87, 108].
Okuli [111] proposed a VL-based system tracking a single finger in a 2D plane through fingerprint-
ing. According to the reflection coefficient modeling how the finger bends the propagation paths,
Okuli generated a lookup table consisting of the virtual RSS fingerprints. Then, it located fingers
through a simple pattern matching method. Aili [39] designed a table lamp with photodiodes to
obtain fine-grained shadow profiles of hands within 54 cm. Through an optimization search algo-
rithm, Aili tracked not only hand location but also hand posture. To further improve the tracking
accuracy of Wi-Fi, the passive tracking system FingerDraw [91] proposed a CSI-quotient model. It
can cancel random phase offsets and remove uncertain impulse noise in the received CSI data. As a
result, CSI-quotient maximized the SNR and decreased the passive finger tracking error to 12.7mm.

Keystroke tracking infers the inputs of keystrokes according to finger trajectories, exposing
the privacy concern of keystroke-based eavesdropping. Since the finger tracking systems can lo-
cate the coordinates of fingers in a 2D plane, researchers can reconstruct keyboards based on
the possibility of the keystroke location. Zhu et al. [122] estimated the TDoA of keystroke sound
propagating to different microphones on one phone. Every TDoA can determine the region of a
keystroke. The overlapping regions from multi-TDoA can precisely locate the position of the key-
stroke. In another work, Liu et al. [43] used only one phone to obtain a set of candidate keystrokes
by TDoA. Then, they analyzed the Mel-Frequency Cepstral Coefficients to select the accurate one
from the candidate keystrokes.

Challenges and research opportunities: Hand/finger tracking has the potential to provide a
natural interaction way with smart devices, especially in the near future of Metaverse. As summa-
rized in Table 13, most of the existing systems focus on the coordinates’ information and do not
track hand postures. Hence, people cannot interact with virtual objects through natural motions
such as grabbing. Tracking hand posture is relatively challenging because the hands are too flexi-
ble to be modeled, and fingers are so thin that it is non-trivial to separate their relevant signals. To
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Table 13. Performance of Hand/Finger Tracking Systems

Reference
Performance Evaluation

Description
Overall Robustness Stability Generality Multiuser Scalability

[9] <3.6 cm - <4 cm - 1 <80 cm Hand tracking via a COTS smartphone

[72] <5.4 cm <6 cm <5.76 cm - 1 <60 cm Hand tracking via COTS Wi-Fi devices

[105] <3.75 cm <5 cm <5 cm <4 cm 1 <200 cm Quantifying hand motion

[54] 8 mm <13.5 mm - <10 mm 1 <50 cm
Finger tracking via smartwatches and

smartphones

[87] 4.57 mm - 5.81 mm - 1 <20 cm Finger tracking

[108] 3 mm <13.5 mm - - 1 <20 cm Finger tracking

[111] <7.5 mm <7.5 mm <7.5 mm - 1 <13 cm VL-based finger tracking

[39] 2.5 mm - - - 1 <54 cm Hand pose reconstruction

[91] 12.7 mm <20 mm - <20 mm 1 <100 cm Finger tracking via CSI-quotient

[122] 72.2% - >64% - 1 <10 cm Keystroke tracking

[43] >85.5% - - - 1 <13 cm Keystroke tracking via single smartphone

Table 14. Methodology of Vital Sign Monitoring Systems

Reference
Data Collection

Preprocessing Segmentation Representation Sensing Model
Source Measurement Type

[83] Wi-Fi Phase of CSI Passive
Hampel Filter,

Moving Average
Time Window,
Thresholding

Power Spectral
Density

Peak Detection

[110] Wi-Fi CSI quotient Passive
Savitzky-Golay

Filter
Time Window Profile Feature

Autocorrelation,
Peak Detection

[12] RFID RSS, Phase Passive
Moving Average,

BPF
Time Window

Power Spectral
Density

Peak Detection

[57] FM Phase, RSS Active
LPF, Background

Subtraction
Time Window Profile Feature Neural Network

[97] Ultrasonic ESD Active
Background

Subtraction, BPF,
STFT

Time Window Helbert Spectrum GAN

[4] FM
FMCW
Symbol

Active
Background
Subtraction

Time Window,
Thresholding

Profile Feature,
Frequency Vector

Pattern Matching,
Peak Detection

[88] Wi-Fi Phase of CSI Passive
Hampel Filter,

DWT
Time Window

Profile Feature,
Frequency Vector

root-MUSIC, Peak
Detection, Pattern

Matching

[62] Ultrasonic
FMCW
Symbol

Active
IIR comb notch

filter
Time Window Frequency Vector Peak Detection

Table 15. Performance of Vital Sign Monitoring Systems

Reference
Performance Evaluation

Description
Overall Robustness Stability Generality Multiuser Scalability

[83] - - - - 1 <6 m Fresnel-based respiration monitoring

[110] <0.5 bpm <0.34 bpm <0.3 bpm - 1 <8 m Long-range respiration monitoring

[12] >93% - >90% 98.7% 2 - Multi-user respiration monitoring

[57] >90% - - - 1 - Respiration waveform monitoring

[97] 0.11 bpm - <0.22 bpm 0.11 bpm 1 <0.3 m Respiration waveform monitoring

[4] 99% <90.1% <91.7% - 3 <8 m Respiration and heartbeat monitoring

[88] <1 bpm <0.52 bpm - - 4 - Respiration and heartbeat monitoring

[62] 19 ms - - <50 ms 1 <0.3 m Heartbeat monitoring by smartphone

improve tracking hand posture, one can use signals with higher spatial resolution [39] and deep
learning techniques.

4.4 Vital Sign Monitoring

It is challenging for device-free systems to monitor respiration and heartbeats due to the subtle
chest movements. Tables 14 and 15 show that the typical applications of WDHS are respiration

monitoring and heartbeat monitoring. Some vital sign monitoring systems use beats per minute
(bpm) to describe heart rate according to clinical experience.
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Respiration monitoring systems often leverage peak detection to count the respiration rate
based on the repeated patterns of the chest movements. Wang et al. [83] designed a Fresnel-Zone-
based model to monitor human respiration without training, and it was robust to different positions
and orientations. FarSense [110] leveraged the CSI-quotient model to expand the monitoring range
to 8 meters. These systems were designed for the situation of a single user. However, a respiration
monitoring system should simultaneously monitor multiple users in the real application scenario,
e.g., hospitals. Thus, LungTrack [12] proposed an RFID-based multi-user respiration monitoring
method. For each propagation link between readers and tags, there existed dead zones that had
poor sensing performance. Inspired by this observation, LungTrack carefully designed the deploy-
ment of the tags to ensure that dead zones can separate every user, thus realizing monitoring multi-
ple people simultaneously. Another problem limiting the practice was monitoring moving targets.
WiSpiro [57] proposed an FM-based respiration system designed for sleeping people. When a user
changed his/her sleeping pose, WiSpiro automatically moved the sensing devices to the proper
place where they could capture clear chest movements. Then, a neural network was implemented
for non-contact respiration monitoring. BreathListener [97] extended the acoustic-based vital sign
monitoring to a dynamic scenario of the driving environment. It extracted the energy spectrum
density (ESD) of the received acoustic data. Then, this system utilized a generative adversarial
network (GAN) to generate fine-grained respiration waveforms.

Heartbeat monitoring systems have a common problem: heartbeat-induced vibrations are
orders of magnitude lower than breath-induced chest movements. Thus, the heartbeat-related
signals are normally masked by chest movements. Vital-Radio [4] observed that the rates of heart-
beats were usually in the range from 40Hz to 200Hz, while the respiration rate was lower than
20Hz. Hence, it can filter the heartbeat-induced signal from the frequency perspective. Similarly,
PhaseBeat [88] leveraged DWT for movement separation and monitored respiration and heartbeat
at the same time, reaching accuracies of 0.5 bpm and 1 bpm, respectively. Acousticcardiogram
(ACG) [62] transformed the commercial smartphone into an FMCW sonar and monitored spatial
changes of the chest. Then, it utilized an IIR comb notch filter to obtain heartbeat-induced signals.

Challenges and research opportunities: Device-free vital sign monitoring has a promising
application future since it does not bring additional wearing burden to users like traditional meth-
ods. With the increase of sensing precision, we envision that more studies will explore monitoring
more precise indicators, e.g., heartbeat waveform and lung functions [71]. Further, one can moni-
tor other health indices related to respiration and heartbeats. For example, TagSleep [41] proposed
a low-cost solution for sleep state identification, including snore, cough, and somniloquy, through
respiration-induced chest movements. Based on the assumption that some physiological signals
like heartbeats change with emotion, EQ-Radio [118] extracted the heartbeat from wireless signals
and leveraged SVM to identify human emotion, achieving an average accuracy of 87% of four emo-
tions, e.g., joy, sadness, anger, and neutral. In addition, we observe that even for the same sensing
task, researchers may select different metrics [12, 110] to evaluate the performance. This will make
it difficult for readers know which one is better. For a complete comparison, a generally accepted
metric selection rule is required.

Finally, we provide an overview of the current state of movement tracking applications. As
shown in Figure 4, the scalability of current model-based crowd detection systems has reached the
upper bound, counting up to 30 people within 8 meters. When the number of co-existing people
grows, the signal indicators selected are nearly unchanged. Hence, researchers need more power-
ful feature extraction methods to break this limitation. The step counting systems lack evaluation
to validate their long-term working performance, and multi-user support is also a problem. We
put the three applications, e.g., location sensing, pose estimation, and hand tracking, in one group
since they select the same accuracy evaluation metric. At present, WDHS-based location sensing
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Fig. 4. Research status of movement tracking application scenarios.

Table 16. Methodology of Whole-body Motion Authentication Systems

Reference
Data Collection

Preprocessing Segmentation Representation Sensing Model
Source Measurement Type

[109] Wi-Fi CSI Passive
Long Delay

Removal, BPF

Thresholding,
Peak-valley
Detection

Statistical Feature Decision Tree

[85] Wi-Fi CSI Passive
Background

Subtraction, LPF,
PCA, STFT

Thresholding,
Autocorrelation

Profile Feature,
Spectrogram

SVM

[123] Wi-Fi
Amplitude of

CSI
Passive DWT

Peak-valley
Detection

Profile Feature Shapelet Learning

[95] Ultrasonic RSS Active
Band-stop Filter,

BPF, STFT
Thresholding Statistical Feature SVM

[51] mmWave Point Cloud Active
DBSCAN,
Hungarian
Algorithm

Time Window
Horizontal Angle,
Pitching Angle of
Points, Distance

CNN

[25] RFID Phase, RSSI Passive
Interpolation,
Unwrapping

Time Window - CNN

systems cannot be implemented in public places with more than 10 co-existing people. Hand track-
ing application achieves a good performance within an interaction range shorter than 2 meters.
Thanks to the specific devices, pose estimation can track more than 10 people simultaneously at
a distance of around 12 meters. Finger tracking aims at broadening the ways of interacting with
intelligent devices at a close distance. Hence, multi-user support is not necessary. However, there
is still a big gap to be bridged for practical applications such as the impact of user diversity. Vital
sign monitoring achieved accurate tracking of the respiration and heartbeat of up to four people
within a range of 8 meters. For more practical use, researchers and developers can explore the way
of tracking finer-grained signs like electrocardiograms.

5 USER IDENTIFICATION

User identification systems leverage behavioral features to distinguish different people. Each per-
son has unique behavioral patterns due to the user diversity caused by different body shapes, gaits,
and health conditions. For gesture classification models, user diversity may harm the generaliza-
tion ability of new users. However, on the other hand, it provides an opportunity to identify users.
According to the motion granularity, the existing wireless-based user identification systems can
be grouped into three categories: whole-body-motion-based authentication, finger-motion-based au-

thentication, and lip-motion-based authentication.

5.1 Whole-body-motion-based Authentication

In Tables 16 and 17, we summarize the methodology of whole-body motion authentication systems
and their performance. Existing systems mainly use the personal characteristics in gait and daily
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Table 17. Performance of Whole-body Motion Authentication Systems

Reference
Performance Evaluation

Description
Overall Robustness Stability Generality Multiuser Scalability

[109] >80% - - - 1 6 Gait recognition via COTS Wi-Fi devices

[85] >79.28% - - - 1 50 Gait recognition via COTS Wi-Fi devices

[123] 91% - - - 1 20 Gait recognition via shapelet learning

[95] 96.6% - - >86.5% 1 50 Gait recognition via a mobile phone

[51] 88% - >86% - 5 50 Multi-user gait recognition

[25] 97.72% - - - 5 15 User authentication via daily activities

activities for authentication. Therefore, the systems can be classified into gait recognition and daily-

activity-based authentication.
Gait recognition provides a silent authentication solution when target users pass through a

specific sensing area. Since gait-induced signals have repeated patterns, most gait recognition sys-
tems conform to a common strategy. They extract the repeated gait cycle from the signal streams
and then leverage machine learning [85, 95, 109] or DNN [123] for user identification. mmGait [51]
used FMCW radars working at 60GHz to obtain the 3D point cloud of walking people. Then, it ex-
tracted the location, the radial speed, and the signal speed of the points to train a DNN-based user
identifier. The model achieved an average identification accuracy of 90% and 88% for single-user
and multi-user scenarios, respectively.

Daily-activity-based authentication. Continuous authentication plays an essential role in
future smart home scenarios [15, 48]. It can protect privacy and prevent families from dangerous
conditions. For example, continuous authentication can ensure that a smart oven will not respond
to naughty kids’ orders. One problem with continuous authentication systems is how to make them
transparent. Based on the assumption that the personal feature exists in not only a specific motion
type but also our daily activities, Au-Id [25] proposed an RFID-based authentication method through

sequential daily activities. It deployed RFID tags on the infrastructure like doors with which people
will interact. Based on the correlation between the tags and the infrastructure, Au-Id stacked a CNN
with a long short-term memory (LSTM) to label different activities automatically. Then, it input
the labeled data to another CNN for user identification and achieved an average identification
accuracy of 97.72%.

Challenges and research opportunities: Unlike biometrics, such as fingerprints and irises,
which remain constant, behavioral patterns can change with mental and health conditions. There-
fore, behavior-based authentication methods require regular updates to improve their stability.
However, in real life, it is impossible to ask every person to provide a set of training data to fine-
tune the authentication models when they enter a monitored place. One can take advantage of
another modality of authentication methods to ease the pain of data collection. For example, in an
early attempt XModal-ID [32] combined video-based authentication with Wi-Fi-based authentica-
tion to track unknown people in unknown places. We envision that cross-modal authentication
techniques will be implemented to improve stability.

5.2 Finger-motion-based Authentication

With the development of IoT, people will frequently interact with intelligent appliances where fin-
ger motions play an important role. Based on the user diversity in finger motions, FingerPass [31]
proposed continuous finger-motion-based authentication methods via Wi-Fi signals. It proposed a
three-layer LSTM model to extract features of gesture, motion, and user, respectively. This model
can simultaneously recognize finger motions and identify who performed them with an authenti-
cation accuracy of 91.4%.
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Fig. 5. Research status of user identification application scenarios.

Challenges and research opportunities: FingerPass and Au-ID [25] (mentioned in
Section 5.1) expose the fact that user diversity widely exists in human behaviors. These works
validated the feasibility of behavioral authentication by conducting small-scale experiments.
However, the result cannot answer how many users can be identified through a certain finger
motion. It lacked a theory or model to describe the feasibility of behavior-based user authentica-
tion. Since it is relatively challenging to find such a theory, we envision that more daily activities
will be used for authentication, and a theory or a model will be proposed to guide the system
design.

5.3 Lip-motion-based Authentication

Lips have many features for user identification, e.g., lip-prints, lip shape, and lip color [14]. How-
ever, these features require high-resolution techniques like images. At present, wireless-based sens-
ing techniques cannot meet the resolution requirement. Hence, lip-oriented wireless user identifi-
cation systems distinguish people based on lip motions.

Since lip motion contains personal characteristics, SilentKey [74] obtained the rhythm (i.e.,
the interval time between two consecutive mouth motions) and the duration (i.e., the time spent
for inputting passwords) from the received CIR signals. It utilized SVM to estimate users and
achieved 70% to 83.1% user ID accuracy, and the spoofer detection accuracy ranged from 86.7% to
90.7%. LipPass [44] designed a three-layer autoencoder network to extract the lip motion features
and SVM to identify the users. It achieved 90.2% user identification accuracy and 93.1% spoofer
detection accuracy.

Challenges and research opportunities: Lip motion is a soft biometric for user identifica-
tion. It may change with human health conditions. Therefore, lip-motion-based user identification
systems should be adaptable to keep their performance stable over a long-term period. A straight-
forward way is to build up big datasets and train a general model. However, it requires tedious
efforts of data collection. To reduce such costs, one can design adaptable models such as transfer
learning [59] or online learning.

In Figure 5, we show the Research status of user identification. WDHS-based gait recognition
systems are deployed in some important corridors of a smart building for authentication, and
their deployment seldom changes. In such scenarios, robustness to environmental changes is not
a necessary indicator. More important in practical use is multi-user support, as it is common to
have multiple people in public corridors simultaneously. Leveraging daily activities and finger
motions for user identification are two emerging research fields, and there are many challenges
that need to be solved. WDHS lip-motion-based authentication has comparable performance to
mature commercial applications based on face recognition techniques [44]. However, the related
systems should improve the stability to meet the requirement of long-term usage.
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Fig. 6. Challenges and future research directions of WDHS.

6 CHALLENGES & RESEARCH DIRECTIONS

This section concludes with 11 challenges from the aspects of data collection, sensing methodology,
performance evaluation, and application scenario. In addition, we provide corresponding research
directions for each challenge, as shown in Figure 6.

6.1 Data Collection

Challenges: In recent years, there was a trend of leveraging experience-based models to sense
complex movements or activities. To train robust sensing models is relatively challenging due
to the following issues: (1) Data instability. Unlike the constant biological characteristics such as
fingerprints, iris, and retina, human behaviors change over time, so the induced wireless signals
will also change over time. As a result, the performance of a human sensing system may degrade
when it works for a long time. (2) Data heterogeneity. Researchers have explored a wide range of
wireless sensing techniques, e.g., Wi-Fi, acoustic, mmWave, and Image. Due to the differences in
devices, deployment design, and system parameters, many datasets may be built for similar sensing
targets from different views. The related models are not general, resulting in limited practicality.
(3) Labeling unintuitive data. The received wireless signals are in waves and are not as intuitive as
images. Thus, it is difficult for humans to distinguish different movements only according to the
wireless signals, making it impossible to offload data annotation tasks to remote people.

Research directions: To address these challenges, we suggest that one can benefit from the
techniques of few-shot learning, data transformation, and simulation and knowledge distillation.

Few-shot learning. In the past decade, few-shot learning techniques were well studied to address
the lack of data. To ease the pain of data instability caused by collection costs, one can leverage ac-
tive learning [67] that selects the most representative unknown samples for annotation. Since peo-
ple’s behavior changes are not sudden, we can use online learning [23] to gradually adjust sensing
systems. Alternatively, researchers can leverage transfer learning [59, 93] and meta-learning [19]
techniques to reduce the data collection efforts.

Data transformation. Designers can build bridges between heterogeneous data through data
transformation methods. The heterogeneous data provides multiple views describing the same
human movements. Based on this observation, some attempts [5, 8] converted heterogeneous data
into the same feature space to realize cross-modal WDHS systems. Specifically, they first construct
a human body mesh from videos via image processing techniques [30]. Through analyzing the
vertex location changes of the body mesh, they can obtain the velocity of each body part and sim-
ulate the DFS measurements derived from propagation models. Such methods reveal a promising
research direction of pre-trained WDHS models. People can train such models on massive pub-
lic videos. Since the videos involve many people and movements, the pre-trained WDHS models
will have better performance on robustness than the existing wireless sensing models. Moreover,

ACM Computing Surveys, Vol. 55, No. 5, Article 88. Publication date: December 2022.



88:26 J. Xiao et al.

the pre-trained models can quickly adapt to new modality techniques if we convert the data into
speed-related feature spaces.

Simulation and knowledge distillation. To ease the pain of labeling unintuitive data, one can
leverage simulation techniques to generate virtual samples of human behaviors. For example, we
can leverage game engines, reinforcement learning techniques [60], or GAN [20] to simulate the
3D motions of human behavior and map the 3D motions to the time-frequency space based on
path loss models. Thus, it is possible to obtain countless virtual samples to train a pre-trained
model and only need a small volume of labeled data for fine-tuning in real applications. In addition,
researchers can learn from the idea of knowledge distillation to reduce costs of data annotation like
the prior attempts [28, 119, 120]. They leverage non-wireless-based systems to train a WDHS model
in semi-supervised learning frameworks, and the wireless sensing models can achieve comparable
performance to the teacher systems.

6.2 Sensing Methodology

Challenges: (1) Interference of other people. Most WDHS systems have limited practicality be-
cause they only work well in single-user conditions. They cannot separate the people moving
around, resulting in performance degradation. (2) Mismatched models. With the development of
deep learning, DNN shows an excellent ability to learn the representation of complex objects.
Since current DNN models are designed for image-based sensing tasks, the input data’s format
requirement is structured and non-complex numbers. Existing systems must convert the wireless
signals to an image-like format before feeding them to the models [40]. This signal conversion
operation may result in the loss of some information. (3) Bias of sensing models. Existing sensing
models are trained on local datasets covering limited environments and users. As a result, these
models exhibit bias on the training dataset and poor generalization ability.

Research directions: For the challenges of interference of other people, mismatched models,
and bias of sensing models, we envision the following research directions:

Multi-user support methods are a necessary property for many applications, e.g., activity iden-
tification and location sensing. To sense the behaviors of co-existing people by COTS devices is
relatively challenging. For example, WiMU [79] leveraged COTS Wi-Fi devices to recognize the
combined gestures of multiple users. However, they cannot build the connections between user
and gesture. MotionFi [94] and LungTrack [12] took advantage of the tags’ short sensing range
to sense multiple users, but they needed a specific deployment design. It required a theoretical
model or experimental study to discuss the boundaries of COTS-based multi-user sensing. Except
for the costs of devices, specific hardware-based methods [2, 51] have better accuracy and a more
convenient deployment strategy. We envision that more techniques with high spatial resolution
will be implemented for multi-user sensing.

Wireless-signal-oriented models. Wireless signals have unique features such as frequency and
phases that reflect human movements. These unique features provide additional views to represent
human movements. However, it is very challenging to leverage these unique features directly. In
terms of taking advantage of frequency, Yao et al. [103] proposed STFNets, combining DNN with
time-frequency analysis to learn the motion representation in the frequency domain. Experimental
results showed that STFNets outperformed the baselines of DNN-based wireless sensing models.
It validated that the unique features can improve the performance of WDHS systems. Hence, we
envision that more sensing models specifically designed for wireless signals will be proposed.

Federated learning frameworks. The straightforward way to mitigate bias is by expanding the
training datasets, covering more people, gestures, and environments. However, people may not
like to share their data to the public due to privacy concerns. A promising research direction to
overcome the bias may be the combination of Federated Learning [101] and WDHS. Intuitively,
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federated learning is a secure way to transfer knowledge. It can train models on local datasets
without directly sharing the data. Therefore, we can “gather” all local datasets safely and cooper-
atively train general models.

6.3 Performance Evaluation

Challenges: Existing WDHS systems with the same sensing target cannot be fully compared be-
cause of the following problems: (1) Local experiments. Existing works evaluate their performance
on local testing datasets collected from different users in different environments. These varied fac-
tors also make their performance lack comparability. (2) Metric selection. Different systems may
select incomparable metrics for the same sensing target to evaluate their performance. For exam-
ple, FarSense [110] selected bpm error to evaluate the accuracy of respiration monitoring, while
LungTrack [12] defined the accuracy as a ratio between the correctly detected number and the
ground truth. (3) Baseline reproduction. Since the model parameters are not described in detail in
the original work, researchers may get different results when they try to reproduce it. Therefore,
the comparison results may be unconvincing.

Research directions: To improve the comparability, researchers can provide guidance in the
aspects of open evaluation platform, generally accepted metrics, and reliable sensing toolkit.

Open evaluation platform. Researchers have made efforts to overcome the problem of local ex-
periments. For example, Yousefi et al. [104] proposed a public dataset involving six people and
six activities. Ma et al. [47] constructed a sign language dataset including 276 sign words. Zheng
et al. [121] published the Widar3.0 dataset with 258,575 gestures referring to 22 types provided by
17 users in 75 domains. However, the in-total volume of WDHS open datasets is not large enough
compared with other research communities’ datasets like ImageNet [26]. It is a long-term effort
for WDHS researchers to build a big open evaluation platform.

Generally accepted metrics. Systems for different applications have different requirements. For
example, location sensing systems use location error to evaluate their accuracy, and multi-user
support is a potentially important metric. For lip-motion-based authentication systems, they may
select F1-Score to evaluate accuracy. In their application scenarios, users will interact with in-
telligent devices at a short distance, so multi-user support is unnecessary. Therefore, the WDHS
community needs studies to tell us whether a WDHS system can meet the practical requirement of
real application scenarios. Also, we need guidance on which properties are essential in a specific
application scenario and how we conduct experiments to validate such properties.

Reliable sensing toolkit. Besides the open platform and metric guidance, it would be better if
there was a toolkit to help reproduce the baselines correctly. Due to differences in understanding,
people may have deviations when reproducing a certain job, which reduces the credibility of the
comparison results.

6.4 Application Scenario

Challenges: From the perspective of the application scenario, WDHS encounters different chal-
lenges of confusion in resourced scenarios and resource-constrained environments:

(1) Confusion in resourced scenarios. With IoT devices increasing, WDHS systems need to avoid
confusing users’ instructions. For example, when a user performs a “light up” motion in the living
room, he does not want to find the kitchen light. For another case, a smart home should distinguish
the gestures from different people for personalized services.

(2) Resource-constrained scenarios. There will be some blind spots that the sensing system cannot
cover in resource-constrained environments, e.g., construction sites. Existing WDHS systems re-
quire costly methods of expanding the device topology since they are designed for environments
where sufficient signal resources are used.
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Research directions: These challenges can be addressed by context-aware task fusion and in-

telligent multi-modal sensing.
Context-aware task fusion develops systems with multiple sensing capabilities to meet the

requirements in different application scenarios, making them more practical to complex sens-
ing tasks. For example, multiTrack [76] proposed a Wi-Fi-based location-aware human sensing
method, integrating behavior recognition with location sensing. It can recognize different behav-
iors of coexisting users. Guo et al. [21] fused activity identification with user identification and pro-
posed a personal assistance system providing custom workout recommendations. EZ-Sleep [24]
fused location sensing with vital sign monitoring, and it automatically tracked the users’ sleep
states without knowing the beds’ locations.

Intelligent multi-modal sensing. We recommend that researchers explore the multi-modal sens-
ing solutions from two perspectives: fusing unknown ambient signals and fusing known signals.

The key problem with fusing unknown ambient signals is signal instability. Since most ambient
signals are sent by sensors, the sparsity and instability make them more difficult for human sensing.
The sensing systems, e.g., EAR [13], should use as many wireless signals as possible. However, the
more wireless signal sources a system uses, the more unstable are the received signal states. In
addition, the transmitters are invisible, and they may be far from the target person. Also, the
signal propagation paths are easily interfered with by moving objects or people. Furthermore,
it needs more complex signal processing tools or sensing models to extract the motion-induced
signals.

For fusing known signals, “When to fuse?” is an important question that needs to be carefully
considered. On the one side, the signal sources in poor conditions may negatively influence the
sensing tasks. On the other side, it requires a flexible power management strategy since more
devices engage in a single sensing task, resulting in higher power consumption. Therefore, the
forthcoming multi-modal sensing systems must adjust their fusion schemes according to the en-
vironmental context. Based on the general framework of WDHS systems, different sensing tech-
niques can be fused at three levels: data level, feature level, and result level.

• Data level means that a multi-modal system fuses the heterogeneous data at the beginning to
unify the input format. Through combining with other modal data, researchers can mitigate
the inherent shortages of wireless signals, e.g., instability. For example, human gait is un-
stable due to changes in health conditions. Wireless-based gait recognition systems require
long-term data collection efforts to maintain good performance. To overcome this problem,
one can leverage the mature image-based authentication method to give footage of the wire-
less data when an unknown person first appears [32]. At the same time, the system can
implicitly fine-tune its wireless-based gait recognition model for continuous authentication.
• Feature level transforms different data into the same feature space. For example,

DeepMV [99] utilized CNN to extract features from received Wi-Fi and ultrasonic measure-
ments and generate feature vectors of the same size. Then, it fuses the vectors as the input
of a DNN-based sensing model. The main advantage is that the sensing model can learn
the fusion weights automatically during the training process. As a result, the feature-level
fusing strategy can avoid the negative influence of some signal types with poor sensing
performance according to the environmental conditions.
• Result level means that all the candidate techniques are parallel, and their outputs will be

fused. This strategy is simple, modular, and flexible. However, researchers should have an
in-depth understanding of the candidate systems, making sure that their outputs are useful
to the sensing task or should be ignored. Thus, they can avoid the fused results from being
misled by some untrustworthy outputs.
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7 CONCLUSION

This survey gives an up-to-date review of wireless device-free human sensing (WDHS) systems from
the perspectives of sensing task type and motion granularity. We grouped the WDHS systems into
12 categories according to their sensing task type and granularity. We summarized related research
under a general research framework to expose researchers and developers with an overview of the
typical methodology and current performance. Finally, the article discussed the challenges from
data collection, sensing methodology, performance evaluation, and application scenario, aiming to
stimulate further efforts in WDHS.

Correspondingly, we envision that WDHS systems can reduce data collection costs by lever-
aging few-shot learning, data transformation, simulation, and knowledge distillation techniques.
The sensing models will be more practical if they could sense co-existing people, match wireless
signals, and be trained on various datasets under federated learning frameworks. With the help of
generally accepted metric selection rules, reliable sensing toolkit, and open evaluation platform,
the forthcoming WDHS systems can be accurately compared. As a result, developers will easily
figure out the proper sensing methods. Finally, we believe that more context-aware multi-modal
systems will be proposed to handle the complex sensing tasks in real life.
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