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Online stores have become fundamental for the fashion industry, revolving around recommendation systems to suggest

appropriate items to customers. Such recommendations often sufer from a lack of diversity and propose items that are similar

to previous purchases of an user. Recently, a novel kind of approach based on Memory Augmented Neural Networks (MANN)

has been proposed, aimed at recommending a variety of garments to create an outit by complementing a given fashion

item. In this paper we address the task of compatible garment recommendation developing a MANN architecture by taking

into account the co-occurrence of clothing attributes, such as shape and color, to compose an outit. To this end we obtain

disentangled representations of fashion items and store them in external memory modules, used to guide recommendations at

inference time. We show that our disentangled representations are able to achieve signiicantly better performance compared

to the state of the art and also provide interpretable latent spaces, giving a qualitative explanation of the recommendations.

CCS Concepts: ·Networks→Network architectures; · Information systems→ Information retrieval; · Computing

methodologies→Machine learning; · Human-centered computing→ Visualization.

Additional KeyWords and Phrases: garment recommendation, memory augmented neural networks, recommendation systems

1 INTRODUCTION

With a gross sale of over 3, 000 billion dollars, the fashion industry covers 2 percent of the world’s Gross Domestic

Product (GDP) 1. These numbers are possible thanks to a thriving industry that sells and promotes fashion items

all over the world, always renovating and rethinking itself. For this reason, captivating customers has become an

essential part of the business process, as they are an essential asset. It is thus of paramount importance that they

should not only be ofered a satisfactory selling process, but also accompanied in exploring and discovering new

products that may be of their interest among the huge catalogs available both in stores and online.

For these reasons, the fashion industry constantly strives to engage customers into discovering new products.

From mass advertising to personalized ofers, multimedia systems are exploited to spark interest in the inal user,

with the intent of selling speciic products. On the other hand, customers themselves often require assistance for

discovering new outits or identifying garments compatible with previously purchased items. This sort of aid

may stem from employees in physical shops, but it must be replaced by automatic recommendation algorithms in

online stores, which nowadays are the principal source of income for fashion companies.

1https://fashionunited.com/global-fashion-industry-statistics/
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Fig. 1. Overview of our garment recommendation system. A memory network stores features extracted from the encoder

part of a convolutional autoencoder (ENC). Top proposals are retrieved by decoding features using the decoder part of a

convolutional autoencoder (DEC).

An easy way to recommend garments is to follow trends or suggest items according to user preferences. This

will likely yield recommendations capable of engaging lots of users in the short term, but will also keep suggesting

similar items over and over. For efective long term recommendations, suggested items must be variegated and

cover diferent styles to meet temporary changes in customer tastes or be suitable for diferent social occasions.

With this in mind, we formulate the problem of garment recommendation as the task of suggesting dressing

modalities rather than exact fashion items out of a given collection. In fact, we want to guarantee diversity instead

of proposing multiple similar outits, that only difer by small details.

In particular, in this paper we address the problem of recommending compatibile complementary clothing

items that compose an outit, e.g., identifying a set of bottoms that can be paired with a given top (Fig. 1). To

ensure diversity we rely on two strategies. First, we learn disentangled representations for shape and color

using a self-supervised contrastive learning approach; then, we train two Memory Augmented Neural Networks

(MANN) [10, 20, 22, 24, 30, 35] to identify and store pairing modalities for shapes and colors separately. We

exploit MANNs to model general garment compatibility and then, only after having identiied diferent pairing

modalities, we reine results including fashion trends to make recommendations.

The idea of using MANNs for fashion recommendation has been recently explored in [7], demonstrating

promising capabilities thanks to the ability to match relevant pairs of garments that compose an outit at training

time and then making this information part of the recommendation process at inference time. Here, we extend

this idea by proposing an improved memory module with an adaptive controller and separate memory banks

to identify pairing modalities for diferent attributes, such as shape and color. This is made possible by our

disentangled feature learning approach.

The task of compatible garment recommendation, which we address in this paper, is closely related to the one

of outit compatibility estimation. This has been previously addressed in literature by several works [26, 27, 29, 33].

The two settings difer since compatibility estimation establishes if two or more given items it well together,
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whereas, compatible garment recommendation proposes a ranked list of candidates that are compatible with a

given item. This makes the recommendation task more challenging since a model must learn to select suitable

garments among a large collection of fashion items. Nonetheless, we show how our model can be easily modiied

to perform compatibility estimation. In fact, our model naturally generates rankings for compatible garments,

which can be used as a means to provide compatibility scores for outits. Therefore, our model can be employed

for a variety of tasks, i.e., to recommend garments, estimate compatibility between complementary garments and

retrieve compatible outits among a set of candidates.

The main contributions of this paper are the following:

• We exploit separate color and shape data augmentations while training our feature extractor as an autoen-

coder, in order to learn disentangled features relying only on self-supervision.

• We store non-redundant compatible pairing modalities in external memories, both for color and shape. Our

MANNs are equipped with a novel memory controller with an adaptive threshold, designed to write only a

small fraction of representative samples.

• We demonstrate the efectiveness of combining disentangled features and external memories for tasks of

compatible garment recommendation, outit compatibility estimation and complementary item retrieval,

obtaining state of the art results on two diferent datasets.

2 RELATED WORK

Given the great recent interest in customer recommendation, a lot of recent work among the scientiic community

has been focusing on estimating interest and performing recommendations in the fashion domain [3, 4, 14,

16, 23, 29]. In this work, we are interested in recommending fashion items that are compatible with a given

complementary garment. For instance, given a top, we want to propose a ranked list of compatible bottoms that

can be used to create an outit.

A large crop of literature has studied how to model compatibility between fashion items when composing

an outit [5, 11, 26, 27, 29, 32, 33], although often declining the problem as compatibility estimation. Several of

these works leverage a Bayesian Personalized Ranking (BPR) scheme to model compatibility between garments

[17, 26ś29]. The irst to adopt such approach has been Song et al. [28] to overcome the limitations of matrix

factorization due to excessive data sparsity. The approach has then been extended by exploiting diferent strategies

such as attentive knowledge distillation through a teacher-student network [27], personalized compatibility

modeling including personal preferences [29], visual-textual multimodal learning [17], garment matching of

labeled and unlabeled data with siamese networks [9] and attribute-wise interpretable compatibility scheme with

personal preference modelling [26].

A diferent take on the problem has been provided by recent works trying to exploit contextual information

from outits including additional complementary garments and accessories. The collection of items composing an

outit has been processed either as a whole relying on graph-neural networks to learn context-conditioned item

embeddings [5] or treated as a sequence using bidirectional LSTMs to iteratively predict the next compatible item

based on previous ones. Additionally, [31] proposes an outit representation which is learned on both notions of

similarity and inter-outit compatibility, leveraging an image embedding that respects item types and jointly

learns notions of item similarity and compatibility in an end-to-end model. In [32], instead, siamese networks are

exploited to learn a visual notion of compatibility across categories and a feature transformation from images of

items into a latent space that expresses compatibility. To further analyze the problem, an approach to not only

predict but also diagnose outit compatibility has been proposed in [33], where backpropagation gradients are

used to identify the incompatible factors.

All the aforementioned approaches that address garment compatibility, however, focus on determining whether

an outit or a complementary garment is more compatible compared to another. Such models are thought to

ACM Trans. Multimedia Comput. Commun. Appl.



1:4 • L. De Divitiis et al.

provide compatibility scores to rank outits, rather than recommending a list of suitable items to complement a

partial outit. Recommending compatible items is indeed a more challenging task since the problem does not

break down to comparing a few candidate outits, but instead requires to identify suitable fashion items among a

large collection of garments. This issue has recently been raised in [6, 7], where bottom garments are proposed

to match an input top. The focus here shifts from modeling compatibility between garments to understanding

possible dressing modalities to complement a top. In this paper we follow such line of research. The problem

has then been extended in [6] by leveraging emotive color information to give multiple recommendations that

adhere to a desired style.

The most similar approach to ours is the one of De Divitiis et al. [7]. The authors propose to use a Memory

Augmented Neural Network (MANN) as the central part of their garment recommendation system to pair

compatible clothing items. The MANN is populated with a memory writing controller, trained to store a non-

redundant subset of samples, which is then used to propose a ranked list of suitable bottoms to complement a

given top. Similarly, we exploit a MANN but we use two separate memory modules to store disentangled features

for shape and color. This enables a more precise modeling of how fashion items can be worn together, breaking

down the problem to how classes of garments can be paired and how colors can be combined. In addition, we also

improve the memory controllers by adding a regularization term and exploiting an adaptive threshold to avoid

trivial solutions that in the original formulation may occur when data is unbalanced. This leads to signiicant

improvements compared to [7].

Aside from compatibility, research involving recommendation systems in the fashion domain has followed

several promising directions. Several works have designed speciic systems to model user preferences. For

example, in [15], personalized outit recommendation is achieved by suggesting sets of items through a functional

tensor factorization method. This models the interactions between user and fashion items by using multi-modal

features of fashion items and leveraging gradient boosting based methods to map the feature vectors into some

low dimensional latent space. He and McAuley [12] instead make use of visual features extracted from product

images to build a scalable factorization model to incorporate visual signals into predictors of people’s opinions. A

consumer-oriented recommendation system by fuzzy techniques and Analytic Hierarchy Process (AHP) has been

proposed in [37] to take into account consumers’ perception on products. With eiciency in mind, [18] learns

a binary code for eicient personalized fashion outit recommendation using a set of type-dependent hashing

modules to learn binary codes and a module that conducts pairwise matching. Focusing on the style, [13] creates

a recommendation method that employs a pair of neural networks: a feedforward network generates article

embeddings in "fashion space" which serves as input to a recurrent neural network that predicts a style vector in

this space for each client, based on their past purchase sequence. Dynamic personalized recommendations have

also been studied in [2], where user proiles are built with customers in the loop by analyzing facial reactions to

recommended items.

An interesting parallel line of research has focused on learning domain-speciic features for fashion items.

For instance, [36] focuses on aesthetic features, proposing a new tensor factorization model to incorporate

such features in a personalized manner. To realize interpretable and customized fashion outit compositions,

[8] proposes a partitioned embedding network to learn interpretable representations from clothing items by

leveraging an auto-encoder module, a supervised attributes module and a multi-independent module to build

an outit composition graph and an attribute matching map. A pool or independent representations is learned

by using attribute-speciic classiiers in [14]. Such features are used to build attribute prototypes and perform

attribute manipulation. Similarly to these works, we also propose to learn discriminative features to represent

garments, but we rely on a self-supervised approach to disentangle color and shape latent spaces. We do not

exploit manually annotated attributes, instead we use speciically designed forms of data augmentation paired

with a novel contrastive learning strategy.
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Fig. 2. The garment is encoded into two disentangled latent spaces, representing color and shape separately. The model is

trained as an autoencoder to reconstruct the input image.

3 COMPATIBLE GARMENT RECOMMENDATION

We formulate the task of compatible garment recommendation as the task of retrieving a dressing modality by

suggesting suitable complementary fashion items to be paired with a given one.

More formally, let o = (t ,b) be an outit composed of a top item t and a bottom item b. Each garment is labeled

with a color and shape label, referred to as c and s , respectively. Given a top t , we want to retrieve a set of bottoms

{bk }k=1:K that are compatible with t . To consider a recommendation correct, at least one of the proposed bottoms

bk has to share the same color and shape labels with the ground truth bottom b, i.e., it must exist at least one

k ∈ {1, ...,K } for which ck = c and sk = s .

Our recommendation model is based on two external memory modules in which disentangled color/shape

features are stored. Each module acts as an associative memory, relating top features with bottom features and

describing diferent combination modalities for either color or shape. The retrieved modalities are then combined

to recreate a inal recommendation, that can be re-ranked according to general preferences. In the following we

present the building blocks of our architecture.

3.1 Disentangled Feature Representation

We process garment images with a convolutional encoder followed by a lattening operation. In this way we map

garments into a latent representation ϕ. To obtain separate features for shape and color we use two diferent

Multi-Layer Perceptron (MLP) models,MLPshape andMLPcolor , that yield descriptors ϕshape and ϕcolor , which

are intended to capture diferent traits of the garment. The two representations are then concatenated, blended

together with an additional MLP and inally decoded with a deconvolutional decoder reconstructing the input

image. The model, shown in Fig. 2, acts as an autoencoder with two intermediate latent states, trained by

optimizing a reconstruction MSE loss Lr ec over pixels.

To disentangle the hidden representations of such states and capture either shape or color, we adopt a contrastive

learning approach using a siamese network with three branches (Fig. 3). At training time, we feed to the model

three images in parallel. The main branch processes the original unaltered image, while the other two branches

receive as input color-jittered and rotated versions of the same image. Thanks to these augmentations, the three

images share attributes pair-wise: the main branch and the color branch receive images of garments with the

same shape, while the main branch and the shape branch observe images with the same color. The rotated and

color-jittered images instead do not share any color/shape attribute. In order to disentangle the latent states of

the autoencoder, we optimize two triplet margin losses [1] across the three branches.
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Fig. 3. We exploit rotated and color jitered augmentations to learn disentangled features for shape and color with triple

losses. Each branch processes an image with a diferent augmentation (top: rotated image; center: original image; botom:

color-jitered image).

The rationale is to make features of shared attributes to be close in the latent space, while pushing away

the feature of the altered image. For instance, we want the shape features to be similar for the original and

color-jittered images while being dissimilar to the ones of the rotated image.

Let the triplet margin loss be deined as:

Ltr iplet (ϕ,ϕ
+
,ϕ−) = max{d (ϕ,ϕ+) − d (ϕ,ϕ−) +M, 0} (1)

where d (·, ·) is a distance function, ϕ is a reference anchor feature, ϕ+ a positive feature that we want to be

close to ϕ and, vice-versa, ϕ− a negative feature that we want to separate from the others by a marginM . In our

experiments we use the cosine distance andM = 0.5.

To ensure ϕcolor and ϕshape to respectively capture color and shape characteristics, we optimize the following

losses:

Lcolor
tr iplet = Ltr iplet (ϕcolor ,ϕ

rot
color ,ϕ

jit ter

color
) (2)

L
shape

tr iplet
= Ltr iplet (ϕshape ,ϕ

jit ter

shape
,ϕrotshape ) (3)
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Fig. 4. Architecture overview. The top garment is encoded into disentangled color and shape features, which are used as

access keys for the two memory modules. The best K botom features are read from the memories and are combined via

outer product. Ater a re-ranking based on frequency co-occurrence of top-botom atributes, we are able to decode the best

K botoms.

Here, the rot and jitter superscripts indicate that the feature is extracted from the rotated image or the color-

jittered image, respectively. Overall, to train the siamese autoencoder, we jointly optimize the reconstruction

losses for the three branches, which share all the parameters, and the two triplet margin losses for shape and

color

L = Lr ec + L
rot
rec + L

jit ter
r ec + λ(Lcolor

tr iplet + L
shape

tr iplet
) (4)

where the triplet losses are weighed by a coeicient λ, which we set to 0.01.

We train the autoencoder using both top and bottom images, thus obtaining generic encoder/decoder functions

that can be used for any garment image. For the sake of simplicity, in the following we refer to ϕT for features

extracted from top garments and ϕB for bottom garments.

3.2 Model

To perform recommendations, we adopt a Memory Augmented Neural Network (MANN), with two external

memories,Mcolor andMshape , as depicted in Fig. 4. The idea is derived from [7], where top and bottom garments

are paired in a permanent memory, according to user deined outits. Here, instead, we learn to store pairs of

top-bottom features concerning either shape or color and we perform a late fusion in the decoding phase. The

advantage of our approach is that we can identify non-redundant modalities to pair colors and shapes separately,

thus avoiding combinatorial growth in memory size and obtaining more diverse recommendations.

Both memories contain pairs of top-bottom features belonging to known outits. The memories relect the

feature disentanglement provided by the encoders of the autoencoder. That is, inMcolor we only store pairs of

color features (ϕT
color
,ϕB

color
) and inMshape pairs of shape features (ϕ

T
shape

,ϕB
shape

).

At inference time, a top image is fed as input to our recommendation system and encoded into two latent

vectors ϕT
shape

and ϕT
color

, using the shape and color encoders. The two features are compared via cosine similarity

against the respective memories, acting as read keys to ind the most relevant locations.

We retrieve the best K elements from both memories, retaining only the bottom items. We then combine such

bottom features from both memories together with an outer product, creating all K2 possible combinations of

shapes and colors. These combined features represent diferent ways of matching shapes and colors, which can be

decoded into actual garment images. However, to perform recommendations we need to suggest existing garments,
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so we simply retrieve the training sample with the highest cosine similarity according to the concatenation of

shape and color features.

Among the K2 generated pairs, we establish a re-ranking based on the frequency of co-occurrence of color and

shape labels (c, s ) between top and bottom pairs that belong to a same outit in the training set. The idea behind

this re-ranking strategy is that the MANN is useful to extract good modalities from a pure content-based point of

view. By re-ranking using co-occurrence frequencies we are also taking into account how common these outits

are according to fashion trends.

Memory controller training. In order to ill up the two memories, we train two separate memory controllers,

Cshape and Ccolor . The training process for both controllers is identical, so we will refer to a generic memoryM

and generic features (ϕT ,ϕB ) without any attribute subscript.

Given a top attribute representation ϕT , the memory outputs K bottom features ϕB
k
for k = 1...K . Since the

memory should be able to propose an attribute (either shape or color, depending on the memory), we compare

the features of all proposed items against the corresponding feature of the ground truth bottom ϕ̄B using a cosine

distance:

dk = 1 −
ϕB
k
· ϕ̄B

∥ϕB
k
∥ · ∥ϕ̄B ∥

,k = 1, ...,K (5)

As in [7, 21], we take the minimum error and we feed it to the memory controller, which is trained to

write samples in a non-redundant way, storing only relevant information necessary to obtain a satisfactory

recommendation. The advantage of considering only the best recommendation is that the network is not penalized

for recommending a variety of diferent outputs, while instead it is enforced to recommend at least an item

similar to the ground truth.

A memory controller is a simple linear layer with sigmoidal activation that emits a writing probability pw ,

taking as input the minimum distance d∗ = min{dk }. A sample gets written in memory when such probability

exceeds a given threshold thw . Previous works in literature [7, 21] have trained similar memory controllers to

maximize the writing probability when the error is high, i.e., when the sample should be added in memory to

obtain a better prediction, and minimizing the writing probability when the output is already satisfactory, thus

avoiding redundancy. Such behavior is obtained minimizing the following controller loss:

Lcontroller = d
∗ · (1 − pw ) + (1 − d∗) · pw (6)

The controller loss in this form, however, sufers from two issues: i) dependence on the distribution of d∗, which

relects on the number of samples getting written in memory; and ii) collapsing to trivial solutions where pw is

always 0 or 1. Both issues rise when d∗ does not follow a normal or uniform distribution, i.e., when there is a

strong unbalance towards either low or high distances.

To avoid these issues, we extend this loss in the following way. First, we scale the cosine distances in [0, 1] and

we apply a normalization dividing each d∗ by an estimate of the maximum distance d∗max , accumulated during

training. This has the efect of stretching all errors to cover the whole [0, 1] interval, making the second term

in Lcontroller tend to zero when d∗ is suiciently high. Second, we add a penalty term to avoid collapsing to

trivial solutions. To do so, we accumulate the Nth-percentile of d∗, which we denote with percN , averaging across

batches. We assume that samples with errors higher than such value should be written in memory, therefore we

penalize the model when their writing probability is lower than thw . Vice-versa, we still add the penalty when a

sample is written but the corresponding d∗ is lower than the Nth-percentile. The penalties can be formalized as

margin losses with marginm:
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Lpenalty =





thw − pw +m i f pw < thw & d∗ > percN

pw − thw +m i f pw > thw & d∗ < percN

(7)

where we make the threshold thw adaptive by setting it equal to the estimate of the Nth-percentile of d∗,

normalized by d∗max :

thw =
percN

d∗max

(8)

The inal controller loss that we adopt is therefore:

L∗controller =
d∗

d∗max

· (1 − pw ) + (1 −
d∗

d∗max

) · pw + α · Lpenalty (9)

In our experiments we usem = 0.3, α = 10 and set the distance threshold to the 99.5-percentile of the distance

distribution.

3.3 Training details

We train our model in two separate steps. First we train the autoencoder to learn disentangled features for shape

and color and then we train the memory controllers to store non redundant samples. Separating training into

two phases is necessary since we do not want the representations of stored samples to change during training.

During the training phase or the memory controllers, to avoid storing incorrect samples at the irst iterations, we

reset the memory after each epoch by emptying it and re-initializing it with K random samples, i.e., the number

of samples that we want to suggest. When the controller is fully trained, we ill the memory from scratch by

iterating over the training samples for an additional epoch. We observed that, once convergence is achieved,

diferent initializations do not lead to substantial diferences in the inal results.

We train our model on two difrent datasets, IQON3000 [29] and FashionVC [28], as outlined in Sec. 5. Our

inal memory modules, trained on the IQON3000 dataset, are illed with 9282 pairs for color and 2157 pairs for

shape, whereas the memories trained on FashionVC are illed up with 399 pairs for color and 262 pairs for shape.

The diferent number of pairs in the memories illed with the two datasets is given by the diferent size of the

datasets: IQON3000 has 308,747 outits, on the contrary FashionVC has just 20,726 outits.

As for the components of our model, the autoencoder is composed as follows. The encoder has 4 convolutional

layers with kernel size 3 × 3, padding 1 and number of channels equal to 8, 16, 32 and 64. Each layer has a ReLU

activation and is followed by a max-pooling operation. The resulting feature is a 9 × 9 × 64 feature map, which

is lattened into a 5184-dimensional vector and fed to the two MLP encoders, both with a hidden dimension

of 1024 and an output of 256. Again, all outputs are followed by ReLU activations. The MLP decoder and the

convolutional decoder follow an inverse structure, replacing convolutions with transposed convolutions with

stride 2.

For training both models we use the Adam optimizer with a learning rate of 0.005.

4 OUTFIT COMPATIBILITY ESTIMATION

To provide a more comprehensive evaluation with reference to the state of the art, we show that our model can

be easily adapted to address a task of outit compatibility estimation. Even if closely related, this task is slightly

diferent from the task of garment recommendation, since instead of proposing a compatible bottom for a given

top, we need to establish the compatibility of a given outit. Since our model is capable of providing a ranked list

of bottoms after accessing memory via top-similarity, we exploit such similarity to obtain a compatibility score.
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In detail, for either the color or shape modality, we want to obtain a compatibility score c for an outit o = (t ,b)

composed of a top t and a bottom b. We irst access memory via top similarity using t :

sTi =
ϕT · ϕTi

∥ϕT ∥ · ∥ϕTi ∥
, i = 1, ..., |M | (10)

where ϕT is the feature corresponding to the top garment and ϕTi is the i − th memory key. This gives us a

way of ranking each memory entry, according to top-similarities sTi . We then compare b against each bottom in

memory to ind suiciently similar items. We consider only bottoms with a bottom similarity sB higher than a

chosen threshold thB by building a positive bottom set PB = {i ∈ 1, ..., |M | i f sBi > thB }.

Finally, in order to obtain the compatibility score c , we simply take the top-similarity sT of the highest ranked

memory entry with bottom belonging to PB . We perform this operation for both color and shape memories and

simply add the two scores together to get a inal compatibility.

5 EXPERIMENTS

In this section, we report experiments to demonstrate the compatible garment recommendation capabilities of

our system. In addition, to provide a more comprehensive comparison with the state of the art, we also adapt

our model to perform outit compatibility estimation and complementary item retrieval. In the following we

provide a brief overview of these experimental settings and the metrics we used, explaining how our model

can be modiied to address such tasks, along with a description of the datasets we use to carry out experiments.

Finally, a detailed quantitative and qualitative analysis is reported and a series of ablation studies underline the

contribution of several modules in our recommendation network.

5.1 Datasets

The evaluation of the proposed method is extensively performed on the real-world datasets IQON3000 [29] and

FashionVC [28].

IQON3000. This dataset is composed of garment images and metadata. Garments are grouped by outit and

are associated to diferent users. These data were collected from IQON, a Japanese fashion community website,

in which members could mix fashion items in order to create new outits. Once created, an outit could be shared

with other users, and they could express their preferences and create new ones in turn. Each outit is paired with

a csv ile which contains the metadata of the fashion apparel: a "setID", that is the unique identiier of the outit;

"setUrl" the url of the outit; "likeCount" number of likes that the outit received; "user" is a unique identiier that

identiies user; "items" is the list of all the garments that compose the outit, and for each of them, the authors

provide the url of the image, price, category and color, an item id, an item name and a description. The dataset

encloses 308,747 outits created by 3,568 users with 672,335 fashion items. Each fashion item was also labeled

with a category and a color (among 16 categories and 12 colors respectively). The authors also provide train,

validation and test splits specifying: user id, top id, bottom id and negative bottom id, which corresponds to a

diferent bottom chosen randomly. We adopted these settings in our experiments.

FashionVC. In our experiments we also involved the FashionVC [28] dataset. The dataset is composed of

images and contextual metadata. Speciically, the images are grouped by tops and bottoms, whereas the metadata

are composed of id, title and category. The id is a unique identiier that identiies a garment; the title is a brief

description of the garment, for instance "Balenciaga Stretch-leather skinny pants"; the category express in which

category the garment belongs to, for instance "Women’s Fashion>Clothing>Pants>Balenciaga pants". The authors

also provide top and bottom pairs that compose an outit. These data were collected from Polyvore. Polyvore is a

website that allows users to mix and match diferent garments in order to create new outits. These outits can be
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shared with other members, who can express their preferences about them. The dataset is composed of 20,726

outits, which include 14,871 tops and 13,663 bottoms. Diferently from IQON3000, FashionVC does not include

any metadata regarding color. Regarding train, validation and test splits, we adopted the same split proposed by

the authors in our experiments: 80% for training, 10% for validation, and 10% for testing.

On dataset biases. Since IQON3000 [29] was crawled from the Japanese website IQON, data will be biased

towards the Japanese culture and outits will relect Japanese taste. FashionVC [28], instead, is based on data

extracted from Polyvore, which is an American fashion portal and has a wider user-base. Diferent datasets biases

however will likely relect into a bias in the model. The memory controller in fact will store pairs of outits based

on their occurrence in the dataset. Nonetheless, two important remarks have to be considered. First, the memory

controller is trained to store a sample, i.e. an outit, when the previously stored ones are not suicient to perform

well. This makes the model able to deal with outliers, intended as dressing modalities which do not follow the

bias in the training data. Our model thus is able to model the overall preferences of the users, both the frequent

ones and the less common ones. Second, in a real world context, making the suggestions adhere to speciic tastes

(or biases) would correspond to be coherent with the collection of a given store and the tastes of its customers.

5.2 Tasks and Metrics

In the following sections, we will perform the evaluation of our method using multiple metrics depending on the

task. Here we briely introduce those metrics, referring to the relative task.

Compatible Garment Recommendation. For the task of compatible garment recommendation, we follow

the experimental settings of [7]. We compute Accuracy@K for category and color classiication while varying

the number K of recommended garments. We compute the fraction of recommendations that have at least one

sample among the irst K suggested items with the same category and/or color of the ground truth.

As in [7], we also use mean Average Precision (mAP) to establish the ranking quality of the recommendations

suggested by our model. We consider as correct each bottom for which the category and/or color matches the

one in the ground truth, varying the number of recommended items K . For both metrics, category and color

labels are derived from the IQON3000 annotations.

Outit Compatibility Estimation. As detailed in Sec. 4, our model can be adapted to perform outit compati-

bility estimation. To evaluate this task, we use the Area Under the Curve (AUC) metric. Here we follow [28, 29, 34],

and compute the fraction of times that an outit, considered as positive by a user, is preferred over a random

negative one. In other words, we keep track of how often the system prefers items that are appreciated by a user

over the ones that he/she does not like.

Complementary Fashion Item Retrieval. We extend the evaluation for outit compatibility estimation by

also evaluating our model for complementary fashion item retrieval, as in [28, 29]. We compute the Mean

Reciprocal Rank (MRR) metric. For each top, we randomly select K bottoms as ranking candidates, among which

only one is labeled as correct in the ground-truth. Since we need to rank K given outits instead of proposing a

ranked list of bottoms as in the mAP evaluation, we assign a compatibility score to each outit similarly to the

AUC evaluation. We use such scores to sort the candidates. To compute the MRR, we average for each sample the

inverse of the ranked position (i.e., the reciprocal rank), where the correct ranked position is compared against

the ground truth.

5.3 Experimental Results

In the following we present the results for the tasks of garment recommendation, compatibility estimation and

complementary fashion item retrieval. Our focus is on the capability of our model to recommend bottom garments
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Table 1. Accuracy results for category and color classification on the IQON3000 dataset.

Num Items 5 10 20 30 40 50 60

Category × Color
Ours 46.76 67.00 80.57 86.15 89.08 91.12 92.61

GR-MANN [7] 30.00 45.00 59.00 67.00 71.00 75.00 78.00

Category
Ours 78.99 87.01 91.84 94.10 95.32 96.11 96.67

GR-MANN [7] 81.00 89.00 93.00 95.00 96.00 96.00 97.00

Color
Ours 58.70 76.80 87.62 91.52 93.42 94.78 95.76

GR-MANN [7] 58.00 73.00 85.00 91.00 94.00 96.00 97.00

Table 2. Accuracy results for category and color classification on the IQON3000 dataset using botom garments as queries

and proposing tops.

Num Items 5 10 20 30 40 50 60

Category × Color 36.96 59.91 75.11 81.31 86.68 89.86 90.58

Category 59.95 75.73 83.70 88.15 93.06 95.93 96.35

Color 60.97 78.58 89.73 92.36 93.24 93.70 94.03

to complement the given top, but we show that our model performs well also for compatibility tasks, obtaining

state of the art results.

Compatible Garment Recommendation Results. We present a quantitative analysis of our method for

the task of compatible garment recommendation in terms of accuracy for category and/or color. We use the

IQON3000 dataset for garment recommendation, as in [7], since it provides both labels for category and color.

Our model, which disentangles color and shape features, well adapts to this kind of evaluation, since our two

modalities loosely correspond to the provided labels. In fact, when modeling shapes, we are learning (without

direct supervision) to represent an information which is closely tied to the category annotations in the dataset.

To irst evaluate the method, we compute accuracy over both color and category domains separately. Then

we perform a cross-domain evaluation as described in [7]. Results are shown in Tab. 1. Here, we can see that

our method performs particularly well when using the combination of the two disentangled features, showing

that our model has learned to extrapolate meaningful representations from the two domains. Note that this

sub-task requires to correctly predict both category and shape at the same time, making it considerably harder

than predicting one single modality. Nonetheless our method outperforms GR-MANN [7] by a considerable

margin. Using only one modality, instead, it can be seen that our method performs comparably with the baseline.

Also note that the original authors do not report decimal values for their results. These results show that our

method was able to learn to correctly disentangle the two pieces of information while preserving single domain

discriminatory power.

As a sanity check, we retrained our model to perform the same task but inverting the queries in order to

suggest tops given a bottom. We retrain the memory controller inverting the data and we then populate a new

memory mapping bottoms to tops. For training and testing we adopt the usual IQON split. Results are shown in

Tab. 2. It can be observed that the accuracy, varying the number of suggested items, follows a similar trend to the

one in Tab. 1. Interestingly though, category accuracy is lower than color accuracy consistently for the whole

experiment, indicating that modeling top categories is harder than bottom categories.
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Fig. 5. Mean Average Precision for garment retrieval using both category and color on the IQON3000 dataset.

We also perform an analysis in terms of ranking of the proposed bottoms. Following [7], we report the mAP of

the ranking proposed by our model on IQON3000, varying the number of retrieved garments. That is, given a top

we want to retrieve the irst K bottoms for which both category and color should be correctly predicted. Results

are shown in Fig. 5. It can be seen that our proposed method signiicantly performs better than [7] for each

number of retrieved items, gaining from 4 to 8 points. Moreover, our method is also more robust when predicting

a high number of proposals as the mAP does not decrease as fast as for GR-MANN [7]. The explanation to this

behavior can be found in the variety of the bottoms proposed by the model. In fact, since the memory is trained

to store non redundant outits, there will be a limited amount of bottoms that share the same category and color

among the proposed ones. As a consequence, this will limit the number of garments to be retrieved, thus reducing

the decreasing efect of the mAP that happens when relevant garments are proposed with a bad ranking. In

addition, this conirms that on average the model is capable of proposing the correct bottom with just a small

amount of recommendations.

We also added in Fig. 5 a Random baseline, obtained by randomly shuling the K2 proposals of our architecture

and taking the irst K . This helps to better deine a lower bound for the task and thus to allow a better comparison.

Outit Compatibility Estimation Results. We apply the strategy outlined in Sec. 4 to assign compatibility

scores to outits. This allows us to assess the capabilities of our model also for the task of outit compatibility

estimation. We compare compatibility scores for outits in both the IQON3000 and FashionVC datasets. In Tab. 3

(left) we compare the AUC obtained by our model against several competing methods from the state of the art.

For our model we propose three diferent approaches, i.e., using scores derived from only color or shape, or by

combining them together summing the two compatibility scores. Interestingly, using a single modality does

not suice to obtain a higher AUC than several baselines. On the other hand, when combining the two scores

together we observe a 10% improvement, yielding state of the art results. The same kind of behavior can be seen

for FashionVC in Tab. 3 (right). Here, even using color or shape alone, our method is able to obtain a higher AUC

compared to the best competing method.
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Table 3. Performance comparison among diferent approaches in terms of Area Under the Curve (AUC) for IQON3000 (let)

and FashionVC (right).

Method AUC

Baselines

POP-T [29] 60.42

POP-U [29] 59.51

RAND [29] 50.14

Bi-LSTM [11] 66.11

BPR-DAE [28] 69.12

BPR-MF [25] 78.67

VBPR [12] 80.88

TBPR [29] 81.02

VTBPR [29] 81.94

GP-BPR [29] 83.21

PAI-BPR-V [26] 84.13

PAI-BPR-T [26] 84.32

PAI-BPR [26] 85.02

Proposed

Shape 80.77

Color 81.61

Combined 88.08

Method AUC

Baselines

POP [28] 42.06

RAND [28] 50.94

RAW [28] 54.94

IBR [23] 60.75

ExIBR [23] 70.33

BPR-DAE [28] 76.16

Proposed

Shape 81.37

Color 79.48

Combined 88.13

Complementary Item Retrieval. Here we study how our model performs for complementary item retrieval.

Following [29] and [28], we compute the Mean Reciprocal Rank (MRR) of the positive bottom among K

candidates. Since a candidate can be any bottom in the training set and may be missing from memory, we

compute the ranking of the candidates using the compatibility score described in Sec 5.3. In Fig. 6 we report

the MRR for diferent K values for both the IQON3000 and FashionVC datasets. As in the outit compatibility

evaluation, we propose the three variants with only color, only shape or combining both. In both datasets, our

combined and color-based methods outperform the state of the art. The shape-based model instead exhibits

diferent behaviors for the two datasets. In IQON3000 the MRR is much lower than the other variants and even

lower than some BPR baselines. On FashionVC instead, the shape-based model is able to slightly outperform the

combined version of our model with a large number of items as candidates. We attribute this diference to the

higher complexity of the IQON dataset, which has a much larger variability in shapes compared to FashionVC.

5.4 Ablation Studies

We carry out a series of ablation studies to demonstrate the efectiveness of the architectural choices. We trained

three variants of our model: Ours-NoPenalty - a memory network without the penalty term Lpenalty in the

controller loss of Eq. 9; Ours-ConcatFeat - a memory network with a single memory obtained by concatenating

color and shape features; Ours-SingleFeat - a model with no shape and color distinction. For the irst two variants,

Ours-NoPenalty and Ours-ConcatFeat, we used the same autoencoder as in our standard model, while for Ours-

SingleFeat the whole model is re-trained from scratch. All the ablations are performed on IQON3000 and evaluated

for the task of compatible garment recommendation varying the number of suggested items, as in Tab. 1.

First, we observed that Ours-NoPenalty did not manage to converge to meaningful solutions. The controller

without the penalty term is not capable of handling samples due to distances d∗ not being normally distributed,

as discussed in Sec. 3.2. The training phase always yields a controller which stores in memory either all samples
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Fig. 6. Mean Reciprocal Rank (MRR) for garment retrieval for the IQON3000 (let) and FashionVC (right) datasets

or none. This conirms the lack of lexibility of the controller loss as introduced in previous works such as [7, 20]

and the need for a more complex formulation.

In Tab. 4 we report the results for the two other ablations. We compare them to our standard approach, which

we dub here as Ours-Full. Both variants achieve lower results compared to the standard approach, with the

notable exclusion of Ours-ConcatFeat for a large number of suggested items, where the diference with Ours-Full

are minimal. The memory in the Ours-ConcatFeat model is trained by letting a single controller decide whether

to store pairs of shape and color features in memory. The two features however are kept separate and are

concatenated when performing memory access. Thanks to this ablation, we show that having two separate

memories adds expressiveness to the model, allowing it to retrieve meaningful samples from memory for both

modalities.

A lower drop in accuracy is reported when shape and color disentanglement is completely removed from the

model. In fact, when training Ours-SingleFeat, we kept only a single MLP encoder and halved the input size of the

MLP decoder. Since we now have only a single feature, we trained the autoencoder by removing entirely the

triplet losses and retaining only the reconstruction loss Lr ec . The memory network instead is trained as usual,

but using a single memory and a single controller to store samples, similarly to Ours-ConcatFeat. From Tab. 4 it

can be seen how this deeply afects the accuracy of the model, conirming the beneits of learning disentangled

features. The accuracy drop for this model is due to a lack of diversity in the recommendations and conirms that

using disentangled features to perform separate color and shape recommendations yields a more diverse set of

proposed bottoms.

5.5 ualitative Results

Here we present a qualitative study of the features generated by our system in terms of both category and color.

As our research aims to give bottom recommendations for a given top, we focused the qualitative analysis on

these two questions: i) how are the features of all the bottoms in the test set of the IQON3000 dataset distributed

w.r.t. their category and color?; ii) given a bottom, what are the categories and the colors of the closest bottoms

in each feature space? The irst question allows us to study the feature space distributions, so to understand how

the two feature spaces are organised and assess the quality of the two learned embeddings. The second question,

on the other hand, serves the purpose of understanding how descriptive our features are and how well may they

perform for tasks such as image retrieval where similarity plays an important role.
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Table 4. Ablation study. We report the accuracy of our compatible garment recommendation system varying the architecture.

Ours-Full denotes the standard architecture. Ours-ConcatFeat refers to the architecture with a single memory populated with

the concatenation of color and shape features. Ours-SingleFeat is an architecture with a single memory and no color-shape

separation.

Num Items 5 10 20 30 40 50 60

Category

×

Color

Ours-Full 46.76 67.00 80.57 86.15 89.08 91.12 92.61

Ours-ConcatFeat 42.37 62.49 78.19 85.13 88.66 91.21 92.78

Ours-SingleFeat 39.52 54.59 70.27 78.35 82.68 85.12 86.56

Category

Ours-Full 78.99 87.01 91.84 94.10 95.32 96.11 96.67

Ours-ConcatFeat 76.70 86.50 91.53 93.80 94.99 95.91 96.51

Ours-SingleFeat 73.58 80.73 87.06 86.94 88.15 88.88 89.34

Color

Ours-Full 58.70 76.80 87.62 91.52 93.42 94.78 95.76

Ours-ConcatFeat 54.03 71.46 85.04 90.54 93.13 94.94 96.00

Ours-SingleFeat 48.92 61.74 75.78 82.84 86.27 88.11 89.13

(a) (b)

Fig. 7. T-SNE embeddings for (a) category and (b) color features of the botoms in the test set.

Feature Distribution. To understand the feature distribution w.r.t. category and color of the test bottoms, we

performed a t-sne analysis on the features [19]. Fig. 7 shows the t-sne of category (Fig. 7a) and color (Fig. 7b)

respectively. In Fig. 7a we can see how bottoms of similar categories are put close to each other in the embedding

space. Jeans and trousers are put close to each other, whereas skirts and shorts are more distant. Focusing on

skirts, we can see how skirts of similar shapes are indeed closer to each other w.r.t. other skirts with diferent

shape (e.g., long skirts and short ones). Similarly, Fig. 7b shows us how bottoms are placed in the color feature

space. It is clearly visible that bottoms of similar colors are placed in the same region of the space, with region

colors going from dark tones to brighter ones. Note that, despite the dataset only contains 12 colors, the system

is trained on the actual colors of the bottoms and thus the underlying space is able to relect the diversity of a

greater number of colors. As a result, we were able to conirm that the system is able to learn feature embeddings

that correctly model both category and color characteristics of the garments.
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Fig. 8. Reconstruction of shape and color feature combinations applied to jitered and rotated images of tops and botoms.

To further understand the disentanglement degree, we also performed a qualitative analysis on the features

generated by each modality encoder on the variation of shape and color while training the network. As described

in Sec. 3.1, our systems performs several augmentations to learn disentangled representations. In Fig. 8, we

show the reconstruction of top and bottom features, where both rotation and color jitter is applied. Features are

extracted from the respective autoencoders, merged and decoded by our decoder to produce a visual result of the

reconstructed garment. The igure serves two purposes: to show how our augmentations work, and to evaluate

how disentangled the two modalities are. In the right part of the igure we can see how the reconstructions are

able to preserve both shape and color, while also preserving jitter and rotation. The reconstruction is essentially

a new garment that preserves the properties that have been captured by the features, conirming once again that

the two embeddings are correctly disentangling the two modalities.

Feature Similarity. For tasks such as image retrieval, leveraging an embedding that ensures a good similarity

among features of similar items usually relects into good retrieval performances. This is due to the fact that,

to perform retrieval given an input image, results are given by looking for images for which features are close

to the input one for a certain distance metric, such as the cosine distance. For this reason, in Fig. 9 we present

the qualitative results of image retrieval given a test bottom. Note that we are not using the memory in this

experiment but just bottom features. Fig. 9a shows the retrieval results of 10 bottoms in the category feature

space ordered by similarity, whether Fig. 9b shows the result for the same number of bottoms in the color feature

space with the same ordering. Starting from the category, we can see how the input image in the irst column

produces bottoms that have a similar shape. Skirts for the irst and last examples produce other skirts that are

almost identical in the irst results except for the color, which is a desired property that tells us that the two

modalities have been well disentangled by the system. Another good example is given by the second and third

bottoms, where, ignoring the color, similar results preserve the peculiar properties of the shape given by the

fabric.
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(a) (b)

Fig. 9. Retrieval results using (a) category and (b) color for 10 botoms (first column).

Top input Groundtruth Bottom Retrieved Bottoms

Fig. 10. Retrieval of botom garments given a top using IQON3000. From let to right : the first column represents the query

top; the second one is the groundtruth botom; the third shows the botoms retrieved by our network. Results are kept in the

order given by our memory network. In this example the model has to retrieve 10 botoms.

Similarly, in Fig. 9b we can see how bottoms of similar colors are retrieved. With some exceptions where the

brightness of the image is dominant over the color, such as for the last bottom, usually all retrieved items possess

a color similar to the queried one. Similarly to the previous case, the color embedding does not consider the

shape, as we can see in the fourth example, where trousers, jeans, skirts and shorts are all correctly considered

similar because of their color, conirming once again that the two modalities have been correctly disentangled to

a good extent.

We also performed a qualitative analysis of garment retrieval using the two datasets IQON3000 and FashionVC.

In this analysis we used tops, from the test set, as inputs. Fig. 10 shows the results given by our system using

the IQON3000 dataset. The aim of our memory network is to suggest bottoms, that preserve the correct shape

and color of the ground-truth, but in addition we want variation, in terms of shapes and colors, in the proposed
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Top input Groundtruth Bottom Retrieved Bottoms

Fig. 11. Retrieval of botom garments given a top using FashionVC. From let to right : the first column represents the query

top; the second one is the groundtruth botom; the third shows the botoms retrieved by our network. Results are kept in the

order given by our memory network. In this example the model has to retrieve 10 botoms.

results. We can see that the system both proposes garments that preserve the characteristics of the ground-truth

bottom and bottoms that difer for shape/color from the ground-truth. Looking at the irst row of Fig. 10, the top

input is paired with a gray and black skirt. We can see that our system mostly proposes skirts of similar shape

and suitable color variations. The same happens for the jeans in the second row and for the trousers in the third

row. In these cases, the recommendations are close to the ground truth according to color, but still ofer diferent

styles to complement the top. In the last row we can observe how the system suggests a variety of bottoms, e.g.,

proposing both skirts and trousers while mostly retaining similar color tonalities to the ground truth. The same

evaluation was performed on FashionVC dataset as shown in Fig. 11. The system preserves the same behavior of

the results shown above, i.e., the retrieved bottoms preserve the correct shape and color of the ground-truth but

introduce variation in the proposed results.

Quantitative results can also be discussed in light of the qualitative properties of the features. In fact, experiments

have shown a good improvement when both color and shape features are used together. As Fig. 7 and Fig. 9

suggest, both embeddings exhibit good descriptive power in their respective domain. Thus it is not unexpected

that, when used together, they are able to produce better proposals that are correct in both category and color.

6 CONCLUSIONS

In this paper we have presented an approach based on the combination of color/shape feature disentanglement

and the usage of external memory modules to store pairing modalities between top and bottom fashion items.

We have extended the common controller loss to train such memory modules by addressing issues arising from

uneven data distributions, obtaining compact and representative memories. The usage of external memories with

disentangled representations has led to signiicant improvements over the state of the art for compatible garment

recommendation.
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