
NORMALIZATION FOR MULTIMODAL TYPE THEORY

DANIEL GRATZER

Aarhus University
e-mail address: gratzer@cs.au.dk

Abstract. We prove normalization for MTT, a general multimodal dependent type theory
capable of expressing modal type theories for guarded recursion, internalized parametricity,
and various other prototypical modal situations. We prove that deciding type checking and
conversion in MTT can be reduced to deciding the equality of modalities in the underlying
modal situation, immediately yielding a type checking algorithm for all instantiations of
MTT in the literature. This proof uses a generalization of synthetic Tait computability—an
abstract approach to gluing proofs—to account for modalities. This extension is based on
MTT itself, so that this proof also constitutes a significant case study of MTT.

1. Introduction

If type theory is classically the study of objects invariant under change of context, modal
type theory is the study of adding non-invariant connectives—modalities—to type theory.
Given that many natural features of particular models of type theory are not invariant under
substitution, modal type theories have sparked considerable interest. By nature, however,
modal type theories must thread the needle of presenting modalities in such a way that the
classical substitution theorems of type theory still hold.

Typically, modal type theories require modifications to the apparatus of contexts and
substitutions. Unfortunately, these tweaks are often more art than science, with expert
attention required even to make the most trivial modification to the modal structure of a
type theory. In order to address this complexity, general modal type theories have been
introduced [LSR17, GKNB20a]. These theories can be instantiated by a description of a
modal situation to produce a system enjoying the theorems usually proved by experts.

1.1. Multimodal type theory. We focus on one such general modal type theory: MTT
[GKNB20a]. MTT can be instantiated with an arbitrary collection of modalities and
transformations between them to yield a highly usable syntax. The modalities in MTT
behave like (weak) dependent right adjoints (DRAs) [BCM+20] so that MTT can be used
to internalize nearly any right adjoint. This flexibility allows MTT to encode calculi for
guarded recursion, internalized parametricity, and other handcrafted calculi.

More precisely, MTT can be instantiated by a mode theory, a strict 2-category describing
modes, modalities, and natural transformations between these modalities. This 2-categorical

Received by the editors Monday 30th January, 2023.

Preprint submitted to
Logical Methods in Computer Science

© NORMALIZATION FOR MULTIMODAL TYPE THEORY
CC© Creative Commons

ar
X

iv
:2

30
1.

11
84

2v
1

 [
cs

.L
O

]
 2

7
Ja

n
20

23

https://orcid.org/0000-0003-1944-0789
http://creativecommons.org/about/licenses

2 NORMALIZATION FOR MULTIMODAL TYPE THEORY

structure is then reflected into the structure of substitutions in MTT, ensuring that e.g., a
transformation between two modalities µ and ν gives rise to a function 〈µ | A〉 → 〈ν | A〉.

While this flexibility allows MTT to accommodate many interesting calculi, it becomes
proportionally more challenging to prove metatheoretic results about MTT. In particular, the
rich substitution structure inherited from the mode theory can introduce subtle equations
between terms. The proof that the crisp induction principles can be reconstructed in
MTT [GKNB21, Theorem 10.4], for instance, exemplifies this and hinges on many such
calculations. In fact, the metatheoretic results established by Gratzer et al. [GKNB20a]
(soundness and canonicity) are results on closed terms in MTT, allowing their proofs to
avoid the majority of the substitution apparatus.

Crucially, it remained open whether MTT admitted a normalization algorithm and,
consequently, whether type checking was decidable. Even in the presence of a normalization
algorithm MTT cannot admit an unconditional type checking algorithm: it is not only
necessary to have a decision procedure for terms in the language, but also for modalities
and 2-cells as both appear in terms for MTT.

In this paper we show the best possible result holds: MTT admits an unconditional
normalization algorithm and conversion of normal forms is decidable if and only if conversion
is decidable in the mode theory. As corollaries, we show that type constructors in MTT are
always injective and that type checking is decidable when the mode theory is decidable.1

1.2. Normalization-by-evaluation. A normalization algorithm must begin by defining
normal forms. Their precise formulation varies depends on the situation but they always
satisfy two crucial properties. First, the equality of normal forms u = v is clearly decidable—
often no more than structural equality—and there is a function dec(u) decoding a normal
form to a term of the same type.

Relative to a notion of normal form, a normalization algorithm sends a term Γ `M : A
to a normal form nfΓ(M,A) such that (nfΓ(−, A),dec(−)) lifts to an isomorphism between
equivalence classes of terms of A and normal forms [Abe13]. Typically one breaks the
condition that (nfΓ(−, A),dec(−)) forms an isomorphism into three conditions:

(1) Completeness: if Γ `M = N : A then nfΓ(M,A) = nfΓ(N,A).
(2) Soundness: Γ ` dec(nfΓ(M,A)) = M : A.
(3) Idempotence: u = nfΓ(dec(u), A).

Proving normalization is an involved affair. Traditionally, one begins by fixing a strongly
normalizing confluent rewriting system presenting the equational theory of the type theory.
The normal forms are then exactly the terms of the theory which cannot be further reduced.
This approach does not scale, however, to type theories with type-directed equations such as
the unicity principles of dependent sums and the unit type. These equations defy attempts
to present them in a rewriting system and require type-directed algorithms.

The preeminent type-directed technique for normalization is normalization-by-evaluation
(NbE) [Abe13]. Proving that an NbE algorithm works, however, is an extremely intricate
affair involving a variety of complex constructions. After the algorithm is defined, the
proof of correctness typically proceeds by establishing properties (1)-(3) in order. Each
property, moreover, requires a separate argument. Completeness is established through a
PER model, soundness through a cross-language logical relation, and idempotence through a

1This requirement is potentially nontrivial e.g., the word problem for groups is known to be undecidable
and is subsumed by the problem for 2-categories.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 3

final inductive argument. The first two properties in particular are time-consuming to verify;
recent work by Gratzer et al. [GSB19a] extended NbE to a type theory with an idempotent
comonad but even in this minimal case the correctness proof occupied a 90 page technical
report [GSB19b].

These difficulties are not unique to modal type theories, and a long line of research focuses
on taming the complexity of NbE through gluing [AHS95, Str98, Fio02, AK16, Coq19, Ste21].
This line of work recasts normalization algorithms as the construction of models of type
theory in categories defined by Artin gluing.

1.3. Normalization-by-gluing. Stepping back from type theory and normalization, fix
a functor F : C D between a pair of categories. The gluing of F (written Gl(F)) is a
category whose objects triples

(
C : C, D : D, f : D F (D)

)
. Morphisms in this category

are given by pairs of morphisms (x0, x1) fitting into a commuting square, e.g.:

D0

F (C0)

f0

D1

F (C1)

x1

f1

F (x0)

We note that there are evident projection functors π0 : Gl(F) C and π1 : Gl(F) D.
We will view Gl(F) as a category of proof-relevant predicates on C. To illustrate this,

consider E = Gl(Γ) where Γ = [1,−] : C Set is the global sections map on a cartesian
closed category C sending each object to the set of its global points. Objects in E then
correspond to an object C : C equipped with a map of sets π : X [1, C]. Shifting
perspective, we can view π as a (proof-relevant) predicate on the global points of C by
setting Φ(c) = π−1(c).

Remarkably, E inherits much of the structure of C so that E is also a Cartesian closed
category and π0 preserves finite products and exponentials. This is a recurrent pattern
with Artin gluing; if F : C D is a nice functor between categories closed under (co)limits,
exponentials, etc., then Gl(F) will be closed under the same operations in such a way that π0

preserves them. In fact, unfolding the construction of e.g. binary products and exponentials
in E yields, we the definition familiar from logical relations.

Example 1.1. Viewing objects of E as proof-relevant predicates as described above, the
exponential (C,Φ)(D,Ψ) is given by the following pair (CD,Ξ) where Ξ is defined as follows
(writing ε for the evaluation map associated with CD):

Ξ(f) =
∏
d∈[1,D] Ψ(d)→ Φ(ε〈f, d〉)

Informally, therefore, we view Gl(F : C D) as the category of D-valued predicated
on C and the construction of exponentials, products, etc. within Gl(F) corresponds to
defining a logical relation on C. See Mitchell and Scedrov [MS93] for an exposition on this
perspective.

Carrying out a normalization-by-gluing proof, therefore, turns the classical approach on
its head. Originally one defined the normalization algorithm then showed it to be sound,
complete, and idempotent. When carrying out the proof by gluing, the algorithm is not
defined up front. Instead, one carefully one constructs a gluing category Gl(F) built on a

4 NORMALIZATION FOR MULTIMODAL TYPE THEORY

functor out of the category of contexts of the initial model I. Concretely, this is the category
of syntactic contexts and simultaneous substitutions between them up to definitional equality.
The heart of the argument then breaks down into three steps:

(1) We show that Gl(F) supports a particular model of type theory G.
(2) We define a reify operation which sends terms from G to normal forms.
(3) We show that the projection π0 induces a morphism of models G I and that for a

given term x in G reifying x yields a normal form for π0(x).

In particular, types in G will be chosen such that they consist of a type from the initial
model along with a proof-relevant predicate carving out those terms which have (suitably
hereditary) normal forms. A term in this model is then a term from the syntactic model
together with a witness for the proof-relevant predicate associated with the type.

The first step and the universal property of the initial model produces a morphism of
models i : I G and the second step ensures that π0 ◦ i = id. Remarkably, this already
defines a sound and complete normalization algorithm. The algorithm simply takes a
syntactic term M : A, regards it as an element of the initial model, and then reifies i(M) to
obtain the normal form. Moreover, because π0 ◦ i = id we conclude that this yields a normal
form for the supplied M .

To a coarse approximation, the construction of G and reification specifies the normaliza-
tion algorithm and proves its soundness in a single step. The attentive reader will notice,
however, that the completeness requirement from Section 1.2 seems to be absent from this
new story. In fact, in this approach completeness is automatic and no proof is required.
Indeed, terms and types within the initial model are realized by equivalences classes of
syntactic terms and types taken up to definitional equality. Accordingly, the morphism
i—and therefore the normalization algorithm—cannot distinguish between definitional equal
terms.

One might suspect that working with equivalence classes of terms when defining G
simply causes the burden to shift so that—while there is no need to prove completeness
separately—the work of such a proof is spread throughout the construction of G. In fact the
opposite is the case: working with terms up to definitional equality substantially simplifies
the construction of G. Connectives in type theory only have universal properties up to
definitional equality. Only when working with equivalences classes therefore, can we use
these universal properties and benefit from existing results. For instance, we shall see that
our construction of dependent products in our gluing model is essentially mechanical.

The gluing approach yields other unexpected advantages. Recall that Gl(F) intuitively
consists of proof-relevant predicates. This proof relevance is crucial to an elegant treatement
of universes in the model [Coq19]. We are able to define the predicate associated with an
element of a universe to consist not only of an appropriate normal form but to also contain
the data of the type it encodes within the model. In proof-irrelevant settings, universes were
a frequent source of difficulty which necessitated laborious techniques to encode [All87].

1.4. Synthetic Tait computability. Using gluing to prove normalization is certainly
an improvement over ‘free-hand’ proofs of normalization-by-evaluation, but the picture is
not as rosy at may first appear. Models of type theory are subject to a variety of strict
equations (see 3) which often force external constructions, where naturality obligations can be
prohibitive. Worse, the passage between between mathematics internal to the gluing category
and external constructions is difficult and the boundary frequently raises mismatches.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 5

We follow Sterling and Harper [SH21] and adopt a synthetic approach to gluing. We
begin with two crucial observations. First, while models of type theory are strangely
behaved objects, one can often embed a model into a presheaf topos and thereby work in an
extremely rich setting. Second, when gluing together presheaf topoi along a nice functor
Gl(F : PSh(C) PSh(D)), the result is another presheaf topos and the internal language
of this topos contains lex idempotent monads (#,) allowing one to recover both PSh(C)
and PSh(D).

Sterling and collaborators have then shown that it is possible to work exclusively within
the internal language of Gl(F) to construct the normalization model and have termed
this approach synthetic Tait computability (STC). Experience has shown that working
internally simplifies constructions involved in the gluing model, making it practical to prove
metatheorems for even extremely complex type theories like cubical type theory [SH21,
SA21, Ste21, GB22, SH22].

Proofs using STC construct the model within Gl(F) by defining a sequence of constants
within the internal language. Accordingly, the heart of the normalization proof is realized
by a series of programming exercises in extensional type theory. This alone does not remove
the strict equations that cause trouble with typical gluing proofs but it does provide a
systematic approach to handling them. Concretely, within an STC proof, all the required
strict equations have a particular form: for some type operator in the object theory, we are
given an element op : #Ty corresponding to the operator in the syntactic model, and we
must extend this to an element of Ty. Within the internal language, the two components of
this problem (the element of Ty and the proof that it extends op) can be represented by an
element of the following dependent sum:2∑

A:Ty x← op;#(A = x)

The second component in particular represents the aforementioned strict equation. In
practice, it is easy to obtain an element of Ty which extends op up to isomorphism i.e. an
element of the following type:∑

A:Ty x← op;#(Tm(A) ∼= Tm(x))

Remarkably, this proves to be enough. The internal language of Gl(F) supports a
strictification axiom [OP18] which provides a section to the canonical projection from the
first type to the second. We are therefore able to construct various connectives which agree
only up to isomorphism with their syntactic counterparts and correct them to construct
the model. In practice, this one maneuver enables STC to avoid all the standard pitfalls
resulting from strict equations.

1.4.1. Synthetic Tait computability for MTT. Unlike Martin-Löf type theory or cubical type
theory, a model of MTT is not a single category equipped with additional structure. Rather,
a model is a network of categories, each supporting their own individual model of type
theory which are then connected by various adjoints and natural transformations. The
internal language of any of these categories is insufficient to construct the gluing model,
so it is necessary to generalize from working in the extensional type theory of a topos to
working in all topoi simultaneously using extensional MTT. Each topos then comes equipped
with the structure of STC: a pair of lex monads and a strictification axiom. We prove that
this mode-local structure is respected by the MTT modalities between topoi and call the

2Here we have used standard syntactic sugar to represent the monadic operations of #.

6 NORMALIZATION FOR MULTIMODAL TYPE THEORY

resulting language multimodal synthetic Tait computability. The smooth interaction between
MTT modalities and the lex monads # and ensures that the key techniques of STC proofs
can be generalized to multimodal STC.

With this machinery, we are able to give a concise and conceptual construction of the
gluing model and extract the first normalization algorithm for multimodal type theory. In
practice, this internal proof is necessary; removing the simplifying assumption on substitutions
used in the canonicity proof given by Gratzer et al. [GKNB21] is already nearly intractable.

1.5. Contributions. We contribute a normalization algorithm for MTT equipped with the
full suite of connectives: dependent sums, products, booleans, intensional identity types, a
universe, and modal types. In addition to the usual corollaries of normalization (decidability
of type checking, injectivity of type constructors, etc.), this sharpens the canonicity result
of Gratzer et al. [GKNB20a]. This algorithm applies to any choice of mode theory and
therefore simultaneously establishes normalization results for many specialized modal calculi.

In order to prove this result, we advance modern gluing techniques to apply to modal
type theories and demonstrate that extensional MTT itself is a suitable metalanguage for
carrying out the proof of normalization-by-gluing. We further argue that these techniques
scale by extending the proof to a version of MTT supplemented with crisp induction principles
and deduce e.g., normalization continues to hold.

Section 2 gives a brief tutorial on MTT and introduces normal forms for this type theory.
In Section 3, we discuss the models of MTT and relax the definition of a model of MTT to
obtain MTT cosmoi. We prove that the syntactic cosmos enjoys a privileged position among
MTT cosmoi (Theorem 3.9). Section 4 introduces multimodal synthetic Tait computability
and shows that gluing together a network of topoi results in a model of extensional MTT
equipped with STC structure in each mode (Theorem 4.17). Finally, in Section 5 we construct
the normalization cosmos (Theorem 5.11) and extract the normalization function in Section 6
(Theorem 6.4). Section 7 discusses an extension of this proof to support crisp induction.

2. A primer on MTT

We collect the key ideas of MTT [GKNB21]. First, as mentioned in Section 1, MTT is
parametrized by a mode theory: a strict 2-categoryM whose objects are modes, morphisms
are modalities, and 2-cells are natural transformations between modalities. Henceforth, we
will work with MTT over a fixed mode theory M.

MTT plays two distinct roles in this paper. First, it is the object theory under consider-
ation and the subject of our normalization theorem. However, as the proof of normalization
uses MTT as an internal language to construct the normalization model MTT is also used
as a metalanguage. These two different uses invite two very distinct perspectives on the
type theory. In order to crystallize MTT precisely enough for the normalization result, we
will view MTT as a particular generalized algebraic theory (GAT). Accordingly, binding is
handled by De Bruijn indices and the theory uses explicit substitutions [ML92]. On the
other hand, we will not use De Brujin indices and explicit substitutions when working with
MTT as a metalanguage. In these instances, we will treat MTT as a normal type theory and
avail ourselves of conveniences similar to what a proof assistant like Agda might provide.

As a compromise, we introduce MTT in Sections 2.1 and 2.2 as a formal theory but go
through several important constructions in Section 2.3 using the informal surface-language

NORMALIZATION FOR MULTIMODAL TYPE THEORY 7

employed by much of Section 5. For a comprehensive account of both perspectives, we refer
the reader to Gratzer et al. [GKNB21].

2.1. Mode-local connectives in MTT. Each mode in MTT constitutes its own separate
type theory. In fact, each mode m is equipped with its own copy the of judgments of type
theory e.g., Γ cx @m, Γ ` A@m, Γ `M : A@m. Much of the theory of MTT is mode-local
and only mentions a single copy of these judgments at a time. For these connectives the rules
are precisely the standard rules from MLTT, replicated for each mode. The connectives of
type theory—dependent sums, intensional identity types, booleans—are all incorporated in
this fashion. Each mode also contains a weak universe à la Tarski. Explicitly, this means that
there are separate codes and an El(−) operation decoding a code to a type, but the decoding
operation only commutes with connectives up to isomorphism. While the restriction to weak
universes is not fundamental, it simplifies the proof and recent implementations have shown
them to be practical [Red20].

2.2. Modalities in MTT. The novelty of MTT comes from those connectives which mix
two modes: the modalities. MTT draws inspiration from Fitch-style type theories [Clo18,
BCM+20] and defines each modality together with an adjoint action on contexts. Accordingly,
each µ : n m defines a context former sending contexts in mode m to contexts in mode n
and this is then used to define modal types 〈µ | A〉:

Γ cx @m

Γ.{µ} cx @n

Γ.{µ} ` A@n

Γ ` 〈µ | A〉@m

Γ.{µ} `M : A@n

Γ ` modµ(M) : 〈µ | A〉@m

These context operations assemble into a 2-functor m 7→ Cxm from Mcoop3 to the
category of contexts. Concretely, a substitution ∆ ` γ : Γ @m lifts to a substitution
∆.{µ} ` γ.{µ} : Γ.{µ}@n and each 2-cell α : ν µ induces a substitution Γ.{µ} ` {α} :
Γ.{ν}@n. These operations satisfy several equations to organize them into a 2-functor e.g.,
Γ.{µ} ` id.{µ} = id : Γ.{µ}@n and Γ.{µ}.{ξ} = Γ.{µ ◦ ξ} cx @ o. We record these rules in
Figure 1.

Two basic questions remain: what is the elimination principle for 〈µ | A〉 and which
terms can be constructed in the context Γ.{µ}? Both of these problems are addressed
through the same idea, the final component of MTT. We generalize the context extension
Γ.A from MLTT to annotate each variable with a modality:

Γ cx @m Γ.{µ} ` A@n

Γ.(µ | A) cx @m

Intuitively, Γ.(µ | A) plays the same role as Γ.〈µ | A〉 and comes equipped with a similar
universal property: a substitution ∆ ` γ : Γ.(µ | A) @m is precisely determined by a
substitution ∆ ` γ′ : Γ @m and a term ∆.{µ} ` M : A[γ′.{µ}] @n. The ordinary context
extension Γ.A is recovered by taking µ = id; the equation Γ.{id} = Γ ensures that the
universal properties of Γ.A and Γ.(id | A) match.

3Given a 2-category C, recall that Ccoop is a 2-category with the same objects as C but with 1- and 2-cells
reversed.

8 NORMALIZATION FOR MULTIMODAL TYPE THEORY

µ : n m Γ cx @m

Γ.{µ} cx @n

µ : n m Γ ` δ : ∆ @m

Γ.{µ} ` δ.{µ} : ∆.{µ}@n

µ : n m Γ ` δ0 : ∆0 @m ∆0 ` δ1 : ∆1 @m

Γ.{µ} ` (δ1 ◦ δ0).{µ} = δ1.{µ} ◦ δ0.{µ} : ∆1.{µ}@n

µ : n m Γ cx @m

Γ.{µ} ` id.{µ} = id : Γ.{µ}@n

ν : o n µ : n m Γ cx @m

Γ.{µ ◦ ν} = Γ.{µ}.{ν} cx @ o

ν : o n µ : n m Γ ` δ : ∆ @m

Γ.{µ ◦ ν} ` δ.{µ}.{ν} = δ.{µ ◦ ν} : ∆.{µ ◦ ν}@ o

µ, ν : n m α : ν µ Γ ` δ : ∆ @m

Γ.{µ} ` {α}Γ : Γ.{ν}@n

µ : n m Γ cx @m

Γ.{µ} ` id = {id}Γ : Γ.{µ}@n

Γ,∆ cx @m µ, ν : n m Γ ` δ : ∆ @m α : ν µ

Γ.{µ} ` {α}Γ ◦ (δ.{µ}) = (δ.{ν}) ◦ {α}∆ : ∆.{ν}@n

Γ cx @m µ0, µ1, µ2 : n m α0 : µ0 µ1 α1 : µ1 µ2

Γ.{µ2} ` {α1 ◦ α0}Γ = {α0}Γ ◦ {α1}Γ : Γ.{µ0}@n

Γ cx @m ν0, ν1 : o n µ0, µ1 : n m β : ν0 ν1 α : µ0 µ1

Γ.{µ0 ◦ ν0} ` {α •β}Γ = {α}Γ.{ν1} ◦ {β}Γ.{µ0} : Γ.{µ1 ◦ ν1}@ o

Figure 1: Key rules for contexts and substitutions in MTT

Despite the similarities between Γ.(µ | A) and Γ.(id | 〈µ | A〉), they occupy different
positions in the theory. The variable rule of MTT is adjusted to take into account modal
annotations and require that the modalities in the context must cancel a variable’s annotation:

Γ cx @m Γ.{µ} ` A@n

Γ.(µ | A).{µ} ` v0 : A[↑.{µ}] @n

As in Martin-Löf type theory, it is necessary to apply a weakening substitution ↑ to A
when describing the type of v0. The normal variable rule arises again as a special case after
setting µ = id. Note that attempting to state such a variable rule for Γ.(id | 〈µ | A〉) would
quickly introduce issues around substitution within the theory, so these two contexts behave
quite differently in practice.

Remark 2.1. From the view of Fitch-style type theories where −.{µ} is left adjoint to the
modal type, this rule plays the role of the counit; it allows us to pass from L(R(A)) to A.

The addition of modal annotations creates a redundancy in our system: we may
hypothesize of 〈ν | A〉 with annotation µ or directly hypothesize over A with annotation
µ ◦ ν. There is a substitution navigating in one direction, but not the other:

Γ.(µ ◦ ν | A) ` ↑.modν(v0) : Γ.(µ | 〈ν | A〉) @ o

NORMALIZATION FOR MULTIMODAL TYPE THEORY 9

This mismatch is addressed through elimination for 〈ν | −〉. Informally, this rule ensures
that these two contexts are isomorphic ‘from the perspective of a type’:4

ν : o n µ : n m
Γ cx @m Γ.{µ}.{ν} ` A@ o Γ.(µ | 〈ν | A〉) ` B@m

Γ.{µ} `M0 : 〈ν | A〉@n Γ.(µ ◦ ν | A) `M1 : B[↑.modν(v0)] @m

Γ ` letµ modν()←M0 in M1 : B[id.M0] @m

letµ modν()← modν(M0) in M1 = M1[id.M0]

Notice that the elimination rule for the modal type 〈ν | −〉 is parameterized by an
additional modality µ. We refer to ν as the main modality and µ as the framing modality.

Remark 2.2. Standard Fitch-style type theories require that Γ.(µ ◦ ν | A) ` ↑.modν(v0) :
Γ.(µ | 〈ν | A〉) @ o is invertible. Such an inverse, however, again disrupts substitution in the
presence of multiple modalities.

In addition to modal types, dependent products in MTT are also modalized so that
A→ B is replaced by (µ | A)→ B:

Γ.(µ | A) `M : B@m

Γ ` λ(M) : (µ | A)→ B@m

Γ `M : (µ | A)→ B@m Γ.{µ} ` N : A@n

Γ `M(N) : B[id.N] @m

This feature is a useful convenience; it ensures that many functions avoid the need to
accept an argument of modal type only to immediately apply the elimination rule. We will
see frequent examples of this pattern later as MTT is used as a metalanguage.

2.3. Standard combinators within MTT. As the assignment m 7→ Γ.{µ} is pseudo-
functorial, its adjoint action on types is likewise functorial up to propositional equality. In
particular, there are equivalences triv : 〈id | A〉 → A and comp : 〈µ | 〈ν | A〉〉 → 〈µ ◦ ν | A〉:

triv(x) = letid modid(y)← x in y

triv−1(x) = modid(x)

comp(x) = letid modµ(y0)← x in letµ modν(y1)← y0 in modµ◦ν(y1)

comp−1(x) = letid modµ◦ν(y)← x in modµ(modν(y))

Each modality 〈µ | −〉 also satisfying axiom axiom K i.e., they preserve finite products.
In practice, this axiom serves as an internalization of functoriality as it provides a canonical
comparison map 〈µ | A→ B〉 → 〈µ | A〉 → 〈µ | B〉. In fact, we can prove a dependent
version of this map as in Birkedal et al. [BCM+20]:

(~) : 〈µ | (x : A)→ B(x)〉 → (a : 〈µ | A〉)→ let modµ(a0)← a in 〈µ | B(a0)〉
f ~ a = let modµ(f0)← f in let modµ(a0)← a in modµ(f0(a0))

While it is far less useful, one can also define a version of ~ using the modalized
dependent product rather than accepting elements of 〈µ | −〉:

(~′) : (µ | (x : A)→ B(x))→ (µ | a : 〈µ | A〉)→ 〈µ | B(a0)〉
f ~′ a = modµ(f(a))

4Formally, this rule ensures that, among others, this map is anodyne in the sense of Awodey [Awo18].

10 NORMALIZATION FOR MULTIMODAL TYPE THEORY

This is indicative of a common pattern; it is typically far more concise to use the modal-
ized dependent product instead accepting 〈µ | −〉 in order to avoid needing to immediately
eliminate arguments.

2.4. Normal and neutral forms in MTT. As mentioned in Section 1.2, the starting
point for normalization is the definition of normal form. In MTT—as in other type theories—
normal forms are presented together with a class of neutral forms. Intuitively, normal forms
capture terms in β-normal and η-long form while neutrals are chains of eliminations applied
to a variable.

We define normal and neutral forms as separate syntactic classes, equipped with their
own family of typing judgments and decoding functions sending them to terms. Dependency
complicates this definition as various typing rules require substitution in the types of premises
or the conclusion. Unfortunately, it is just as hard to define substitution on normal forms
as it is to define normalization in general [WCPW04]. Accordingly, a normal form (resp.
neutral, normal type) is typed by the judgment Γ `nf u : A@m (resp. Γ `ne e : A@m,
Γ `nf τ @m) where A is not required to be any sort of normal form. Furthermore, these
judgments are defined inductive-recursively with decoding functions |u| (resp. |e|, |τ |) which
send a normal form (resp. neutral, normal type) to its corresponding piece of syntax. Normal
and neutral forms for mode-local connectives are unchanged from their standard presentation
in type theory:

(Normals) u ::= λ(u) | up(e) | modµ(u) | . . .
(Neutral) e ::= vαk | e(u) | letmod(µ; ν; τ ; e;u) | . . .
(Normal types) τ ::= τ → σ | 〈µ | τ〉 | El(u) | . . .

We defer a more complete presentation of the judgments and decoding function to
Figure 3, but remark that the neutral form for variables is annotated with a 2-cell and index,
decoding to v0 together with a combination of weakening and 2-cell substitutions ↑ and {α}.

To ensure that normal forms are η-long, neutrals can only be ‘injected’ into normals
by up(−) for types without an η law e.g., at modal types but not at dependent products.
Finally, we emphasize that normal forms are freely generated, so their equality is decidable
if and only if equality of modalities and 2-cells is decidable.

Renamings. While normal and neutral forms are not stable under substitution, they are
stable under the restricted class of renamings. The formal definition of renamings is presented
in Figure 2. Intuitively, they are the smallest class of substitutions closed under weakening,
composition, identity, modal substitutions (−.{µ},{α}), and extension by variables vαk .

Renamings are easily seen to act on normal forms, neutral forms, and normal types.
Unlike normals and neutrals, however, renamings are taken up to a definitional equality
which ensures that e.g., composition is associative and that modal substitutions organize
into a 2-functor. This poses no issue as the action of renamings on normals and neutrals
send definitionally equal renamings to identical normals and neutrals, ensuring that the
action lifts to equivalences classes.

A nontrivial definitional equality on renamings is essential, however, as it ensures that
the class of contexts of mode m and renamings between them organizes into a category
Renm and that the assignments m 7→ Renm, µ 7→ −.{µ}, and α 7→ {α} define a 2-functor
Mcoop Cat.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 11

Γ ` ! : 1 @m |!| = ! Γ.(µ | A) ` ↑ : Γ @m |↑| = ↑ Γ ` id : Γ @m |id| = id

Γ0 ` r : Γ1 @m Γ1 ` s : Γ2 @m

Γ0 ` s ◦ r : Γ2 @m |s ◦ r| = |s| ◦ |r|
Γ ` r : ∆ @m

Γ.{µ} ` r.{µ} : ∆.{µ}@n |r.{µ}| = |r|.{µ}

µ, ν : n m α : ν µ

Γ.{µ} ` {α}Γ : Γ.{ν}@n |{α}Γ| = {α}Γ

Γ ` r : ∆ @m Γ.{µ} `ne vαk : A[|r|.{µ}] @n

Γ ` r.vαk : ∆.(µ | A) @m |r.vαk | = |r|.|vαk |

Figure 2: Complete definition of renamings

Lemma 2.3. The decoding of renamings to substitutions gives a 2-natural transformation
i[−] : Ren− Cx−.

3. Models and cosmoi

Gratzer et al. [GKNB21] introduced MTT as a generalized algebraic theory so that MTT
is automatically equipped with a category of models. A standard result of GATs ensures
that that the syntax of MTT organizes into an initial model which opens the possibility of
semantic methods for proving results about syntax. Gratzer et al. [GKNB21] then repackages
the definition of models in the language of natural models [Awo18].

3.1. Natural models of MTT. We begin by recalling the presentation of a model of MTT
given by Gratzer et al. [GKNB21]. Recall that a natural model of type theory [Awo18] is a
pair of a category C—representing a category of contexts—together with a representable
natural transformation τ : T • T:

Definition 3.1. A natural transformation f : X Y : PSh(C) is representable when
each fiber of f over a representable point of Y is itself representable i.e., y(C) ×Y X is
representable for each y(C) Y .

Intuitively, τ displays pairs of terms with their types over types. These two objects
organize into presheaves through substitution on terms and types. With this in mind, the
representability condition encodes context extension.

In order to adapt this to MTT, we can no longer consider just a category of contexts.
The existence of multiple modes mandates that we consider a 2-functor of contexts F :
Mcoop Cat. The action of modalities F (µ) : F (m) F (n) gives the semantic equivalent
of −.{µ}, while the 2-cell component F (α) interprets {α}.

Each mode m :M is equipped with a morphism τm : T •m Tm : PSh(F (m)) represent-
ing the terms and types of mode m and each modality µ : n m induces a functor which
acts by precomposition F (µ)∗.

Definition 3.2. A model of MTT without any type constructors is a strict 2-functor
F : Mcoop Cat together with a collection of morphisms τm : T •m Tm : PSh(F (m))
such that F (µ)∗(τn) is representable for each µ : n m.

12 NORMALIZATION FOR MULTIMODAL TYPE THEORY

Γ `nf bool @m Γ `nf U @m

Γ `nf τ @m Γ.(id | A) `nf σ@m

Γ `nf τ → σ@m

Γ `nf τ @m Γ.(id | A) `nf σ@m

Γ `nf τ × σ@m

Γ `nf τ @m Γ `nf u, v : A@m

Γ `nf IdA(u, v) @m

Γ.{µ} `nf τ @n

Γ `nf 〈µ | τ〉@m

Γ `nf u : U @m

Γ `nf El(u) @m

Γ(k) = (µ | A) mods(Γ, k) = ν α : µ ν

Γ `ne vαk : A[{α} ◦ (↑.{νk−1}) · · · ◦ (↑.{ν0})] @m

Γ `nf tt : bool @m Γ `nf ff : bool @m

Γ `ne e : bool @m

Γ `nf up(e) : bool @m

Γ.(idm | bool) `nf τ @m
Γ `ne e : bool @m Γ `nf v1 : A[id.tt] @m Γ `nf v2 : A[id.ff] @m

Γ `ne if(τ ; e; v1; v2) : A[id.|e|] @m

Γ `nf u : A@m

Γ `nf refl(u) : IdA(M,M) @m

Γ `M0,M1 : A@m Γ `ne e : IdA(M0,M1) @m

Γ `nf up(e) : IdA(M0,M1) @m

Γ `M0,M1 : A@m
Γ `ne e : IdA(M0,M1) @m Γ.(idm | A).(idm | A).(idm | IdA[↑2](v1,v0)) `nf τ @m

Γ.(id | A) `nf u : C[id.v0.v0.refl(v0)] @m

Γ `ne J(τ ;u; e) : C[id.M0.M1.P] @m

Γ.(µ | A) `nf u : B@m

Γ `nf λ(u) : (µ | A)→ B@m

Γ `ne e : (µ | A)→ B@m Γ `nf u : A@m

Γ `ne e(u) : B[id.|u|] @m

Γ.{µ} `nf u : A@n

Γ `nf modµ(u) : 〈µ | A〉@m

Γ `ne e : 〈µ | A〉@m

Γ `nf up(e) : 〈µ | A〉@m

Γ.{µ} `ne u : 〈ν | A〉@n
Γ.(µ | 〈ν | A〉) `nf τ @m Γ.(µ ◦ ν | A) `nf u : B[↑.modν(v0)] @m

Γ `ne letmod(µ; ν; τ ; e;u) : B[id.|e|] @m

Γ `ne e : U @m

Γ `nf up(e) : U @m

Γ.{µ} `nf u : U @m

Γ `nf 〈̂µ | u〉 : U @m

Γ `ne e : U @m Γ `ne f : El(|e|) @m

Γ `nf up(f) : El(|e|) @m

Γ.{µ} ` A : U @n Γ `ne e : El(〈̂µ | A〉) @m

Γ `ne dec�(e) : 〈µ | El(A)〉@m

Γ `nf u : 〈µ | El(A)〉@m

Γ `nf dec�(u) : El(〈̂µ | A〉) @m

Figure 3: Definition of selected normals, neutrals, and normal types

NORMALIZATION FOR MULTIMODAL TYPE THEORY 13

Connectives are individually specified on top of this structure. For instance, the following
pullback square in PSh(F (m)) for each mode m ensures closure under dependent sums:∑

A:Tm
∑

B:τm[A]→Tm
∑

a:τm[A] τm[B(a)]

∑
A:Tm

∏
:τm[A] Tm

T •m

Tm (3.1)

Diagram 3.1 takes advantage of the model of extensional MLTT in a presheaf topos [Hof97].
We will freely take advantage of this model and use our assumption of a hierarchy of
Grothendieck universes to equip it with an infinite hierarchy of cumulative universes [HS97].
We refer to a family of presheaves as small if it is classified by a universe.

Dependent products (µ | A)→ B are specified by a similar pullback square but their
encoding in MTT presents a slight complication. Recall that dependent products include a
modality (µ | A)→ B. In order to account, we use F (µ)∗; if elements of Tm(X) represents
types from mode m in context X : F (m), elements F (µ)∗(Tn)(X) represents types from
mode n but in context F (µ)(X). Accordingly, the presence of dependent products is encoded
by the following pullback square:

∑
A:F (µ)∗(Tm)

∑
B:F (µ)∗(τn[A])→Tm

∏
a:F (µ)∗(τn[A]) τm[B(a)]

∑
A:F (µ)∗(Tn) F (µ)∗(τn[A])→ Tm

T •m

Tm (3.2)

Given µ : n m, we can specify the formation and introduction rules of 〈µ | −〉 with
another commuting square:

F (µ)∗T •n

F (µ)∗Tn

T •m

Tm (3.3)

Unlike dependent sums or products, modal types do not have a universal property—an η law—
so they cannot be encoded by a single pullback. Instead we must describe the elimination
principle separately. Following Gratzer et al. [GKNB21], we encode the elimination principle
as an internal lifting structure.

Definition 3.3 Definition 18 [Awo18]. An internal lifting structure s : i t τ between a pair
of morphisms i : A B and τ : X Y is a section of canonical map XB Y B ×Y A XA.

Fix a pair of modalities µ : n m and ν : o n and write m for the comparison
map F (ν)∗(T •o) F (ν)∗(To)×Tn T •n induced Diagram 3.3. The elimination principle for
ν-modal types with a framing modality µ is encoded by a lifting structure of the following
type:

F (µ)∗(m) t F (µ ◦ ν)∗(To)× τm : PSh(F (o))/F (µ ◦ ν)∗(To)
This definition is somewhat obstruse, but we will soon be in a position to formulate a far

more intuitive version of it by taking advantage of a richer version of the internal language
in Section 3.3.

14 NORMALIZATION FOR MULTIMODAL TYPE THEORY

As models of a particular GAT, models of MTT assemble into a category. A morphism
between models F and G is given by a 2-natural transformation F G along with natural
assignments of terms and types of F to the terms and types of G. All of these operations
are required to strictly preserve term, type, and context formers. We refer the reader to
Gratzer et al. [GKNB21] for a precise description.

Finally, a standard result of GATs is that the syntactic model occupies a distinguished
place in the category of models:

Theorem 3.4. Syntax is the initial model of MTT.

3.2. MTT cosmoi. As mentioned in Section 1, normalization is proven through the con-
struction of a model of MTT together with a map from this model to syntax. Models
of MTT and morphisms between them are difficult to construct, however, because of the
extreme strictness of morphisms and the requirement that each τm be a representable natural
transformation. Prior to normalization, therefore, we introduce a weakened notion of model:
an MTT cosmos. An MTT cosmos is an axiomatization of a natural model of MTT, but
rather than working in presheaf topoi and requiring that τm is a representable natural
transformation a cosmos requires only that τm be a morphism in a locally cartesian closed
category equipped with structure such as Diagrams 3.2 and 3.3.

Definition 3.5. A cosmos is a pseudofunctor F : M Cat such that each F (m) is a
locally cartesian closed category and each F (µ) has a left adjoint F!(µ) a F (µ).

Example 3.6. A model of MTT F assembles into a cosmos G by taking G(m) = PSh(F (m))
and G(µ) = F (µ)∗. In particular, we write S :M Cat for the cosmos induced by the
initial model of MTT specified by Theorem 3.4.

The additional requirements imposed by natural models of MTT to encode various
connectives can be transferred mutatis mutandis to a cosmos; they are all stated within the
language of locally cartesian closed categories.

Definition 3.7. An cosmos F is an MTT cosmos when equipped with the following structure:

(1) In F (m), there is a universe τm : T •m Tm with a choice of codes witnessing its closure
under dependent sums and products, identity types, and booleans. For instance, a choice
of pullback square of the following shape:

∑
A:F (µ)(Tm)

∑
B:F (µ)(τn[A])→Tm

∏
a:F (µ)(τn[A]) τm[B(a)]

∑
A:F (µ)(Tn) F (µ)(τn[A])→ Tm

T •m

Tm

lam

Prod

NORMALIZATION FOR MULTIMODAL TYPE THEORY 15

(2) For each µ, there exists a chosen commuting square

F (µ)(T •n)

F (µ)(Tn)

T •m

Tm
Mod

(3.4)

(3) For each µ : n m and ν : o n, there is a chosen lifting structure F (µ)(m) t
F (µ ◦ ν)(To) × τm, where m : F (ν)(T •o) F (ν)(To)×Tn T •n is the comparison map
induced by Diagram 3.4.

(4) τm contains a subuniverse also closed under all these connectives.

Definition 3.8. A morphism between MTT cosmoi α : F G is a 2-natural transformation
α such that αm is an LCCC functor and preserves all connectives strictly.

Furthermore, we require that α satisfies the Beck-Chevalley condition so that there is a
natural isomorphism βµ : αn ◦ F (µ)!

∼= G(µ)! ◦ αm commuting with transposition. Precisely,
if a : X F (µ)(Y) : F (m) the transposition of αµ ◦ αm(a) is αn(â) ◦ β−1

µ .

A morphism of MTT cosmoi is both more and less restrictive than a morphism of
MTT models. While a morphism of models need not induce an LCC functor between the
relevant presheaf categories, a morphism of cosmoi is not required to strictly preserve context
extension or the choice of terminal context. It so happens that the only map of consequence
in this proof is locally cartesian closed, so the additional structure of morphisms of cosmoi
poses no issue. Not requiring the strict preservation of context extension and dropping the
representability requirements from MTT cosmoi, however, ensures that cosmoi are far easier
to construct.

Merely defining a normalization cosmos G and projection π : G S, however, is not
enough to prove normalization; we also need a section to π. In the category of models,
this section would exist as a consequence of initiality, but S is not initial in the category
of MTT cosmoi.5 Accordingly, we cannot easily obtain a section of a map into S and in
fact sections rarely exist. Any such map, however, is surjective on definable terms and this
‘quasi-projectivity’ is sufficient:

Theorem 3.9. Fix an MTT cosmos G and π : G S.

(1) For Γ cx @m, there exists JΓK : G(m) and a canonical isomorphism αΓ : π(JΓK) ∼= y(Γ).
(2) For every Γ ` A@m, there exists JAK : JΓK Tm such that π(JAK) ◦ αΓ = bAc.
(3) For every Γ ` M : A@m, there exists JMK : JΓK T •m lying over JAK such that

π(JMK) ◦ αΓ = bMc.
Here b−c is the isomorphism induced by the Yoneda lemma.

Remark 3.10. While we have proven this result at quite generally, we will apply it only in
the special case where π is a 2-natural transformation between strict 2-functors and required
isomorphisms of left adjoints are likewise identities. The reader may accordingly safely
ignore these coherences when reading the proof without consequence.

52-monad theory [KPT99, GS20] yields an initial cosmos I but we work with S because—unlike I—it is
known to adequately represent syntax.

16 NORMALIZATION FOR MULTIMODAL TYPE THEORY

Remark 3.11. Both Theorem 3.4 and 3.9 are categorical abstractions of rule induc-
tion. Indeed, 3.4 is used to prove 3.9—via the construction of an appropriate displayed
model [KKA19]—and the latter takes the place of rule induction in the proof of normalization
(see Theorem 6.4).

Proof. We write Elm, Tym and Tmm instead of τm, Tm, and T •m in the syntactic model,
reserving the latter exclusively for G. We write JµK for the functor sending Γ to Γ.{µ}. We
begin by replacing G by an equivalent strict 2-functor so that π becomes strictly 2-natural.

We construct a displayed model of MTT [KKA19] which lies over the syntactic model.
Using the existing coherence result for MTT [GKNB20b], we only ensure that Γ.{µ}.{ν}
and Γ.{µ ◦ ν} agree up to pseudonatural isomorphism.

• A context in m is a triple X : G(m), Γ cx @m, and α : π(X) ∼= y(Γ).
• A type in a context (X,Γ, α) is a pair of Ā : X Tm and Γ ` A@m such that π(Ā) =
bAc ◦ α.
• A term in a context (X,Γ, α) of type (A∗, A) is a pairM∗ : X τm[A∗] and Γ `M : A@m

such that π(M∗) = bMc ◦ α.
• A substitution (X,Γ, α) (Y,∆, β) is a pair f : X Y and Γ ` δ : ∆ @m satisfying
β ◦ π(f) = y(δ) ◦ α

Once this model is constructed, the result is follows from Theorem 3.4. The construction of
contexts, substitutions, terms, and types is straightforward as π is a 2-natural transformation
which preserves finite limits, and commutes with all connectives. We show two cases.

The action of a modality on a context. Given a triple (X,Γ, α) at mode n and a
modality µ : n m, we define the ‘locked’ context to be the following:

(G(µ)!(X),Γ.{µ}, γ ◦ JµK!α ◦ β)

Here β : π(G(µ)!X) ∼= JµK!π(X) and γ : JµK!y(Γ) ∼= y(Γ.{µ}) are the canonical isomorphisms.

Modal types. Suppose we are given a context (X,Γ, α) and a type (A∗, A) in the context
(G(µ)!(µ)(X),Γ.{µ}, γ ◦ JµK∗(α) ◦ βµ). We form the modal type as

(Modµ(Â∗), 〈µ | A〉)

It remains to check that these types are coherent i.e.:

π(Modµ(Â∗)) = b〈µ | A〉c ◦ α

By assumption, π(A∗) = bAc ◦ γ ◦ JµK∗(α) ◦ β. By our assumption that π satisfies Beck-

Chevalley π(Â∗) = b̂Ac ◦ γ ◦ α. The result follows from the fact that π preserves Modµ.

3.3. Presheaf cosmoi. Example 3.6 shows that each model of MTT induces an MTT
cosmos. In fact, such cosmoi are particularly well-behaved as they are comprised of presheaf
topoi connected by adjoint triples. These cosmoi enjoy a privileged role in our proof and we
observe some of their unique behavior.

Definition 3.12. A presheaf cosmos F is a cosmos where each F (m) is a presheaf topos
and each right adjoint F (µ) sends small families to small families.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 17

What distinguishes presheaf cosmoi from other cosmoi is the rich internal language
they offer. Gratzer et al. [GKNB21] have proven that such a cosmos F supports a model
of extensional MTT with the same mode theory where 〈µ | −〉 is interpreted by F (µ). We
will now use extensional MTT as a multimodal metalanguage to specify the structure of
an MTT cosmos as a sequence of constants, thereby reducing its construction to a series
of programming exercises. It is this characterization of MTT-cosmoi that we will use in
Section 5 to construct the normalization cosmos.

Remark 3.13. Some caution is required here, as a presheaf cosmos will frequently host
more than one interpretation of MTT. A presheaf cosmos is always equipped with this modal
metalanguage (extensional MTT) which can then be used to specify a model of (intensional)
MTT. This is comparable to Diagram 3.1, where type theory is used to describe a model of
type theory.

Within this internal language, the universe τm : T •m Tm is encoded by a pair of types:

Tym : U0 Tmm : (A : Tym)→ U0

Each of the diagrams discussed in Sections 3.1 and 3.2 can then be translated into
constants within this language with the use of dependent types automatically encoding
commutativity. For instance, Diagram 3.4 becomes the following pair of constants:

Modµ : (µ | Tyn)→ Tym mµ : (µ | A : Tyn)(µ | Tmn(A))→ Tmm(Modµ(A))

In this language it is far easier to specify the modal elimination principle:

letmodµ;ν :

(ν ◦ µ | A : Tyn) (B : (µ | Tmn(Modµ(A)))→ Tyo)(
b :
(
ν ◦ µ | x : Tmn(A)

)
→ Tmo

(
B(mµ(A, x))

))
→ (ν | a : Tmm(Modµ(A)))→ Tmo(B(a))

Each argument to letmodµ;ν corresponds directly to a premise of the rule given in
Section 2. The hypothetical judgment is encoded by the dependent products in the language
and each occurrence of −.{−} is replaced with an occurrence of the corresponding modal
type within the metalanguage. The β-rule for this elimination principle is encoded by
another constant inhabiting the equality type:

Mod/betaµ;ν :

(ν ◦ µ | A : Tyn) (B : (µ | Tmn(Modµ(A)))→ Tyo)(
b :
(
ν ◦ µ | x : Tmn(A)

)
→ Tmo

(
B(mµ(A, x))

))
→ (ν ◦ µ | a : Tmm(A))→ letmodµ;ν(A,B, b,mµ(A, a)) = b(a)

The remaining connectives are detailed in Figure 4.

4. Multimodal Synthetic Tait computability

In light of Section 3, we revise the proof outlined in Section 1: instead of constructing a
glued model of MTT, we will construct a glued MTT cosmos. In fact, we will construct a
glued presheaf cosmos, and take advantage of the internal language discussed in Section 3.3
to upgrade it to an MTT cosmos with a projection onto S. Prior to this, however, we
must show that (1) a pair of cosmoi can be glued together and (2) that each mode of the

18 NORMALIZATION FOR MULTIMODAL TYPE THEORY

Prod : (µ | A : Tym) (B : (µ | Tmm(A))→ Tym)→ Tym

αProd : (µ | A : Tym) (B : (µ | Tmm(A))→ Tym)

→ Tmm(Prod(A,B)) ∼= [(µ | a : Tmm(A))→ Tmm(B(a))]

Sig : (A : Tym)→ Tmm(A)→ Tym → Tym

αSig : (A : Tym)(B : Tmm(A)→ Tym)

→ Tmm(Sig(A,B)) ∼=
[∑

a:Tmm(A) Tmm(B(a))
]

Bool : Tym

true, false : Tmm(Bool)

if : (A : Tmm(Bool)→ Tym)

→ Tmm(A(true))→ Tmm(A(false))→ (b : Tmm(Bool))→ Tmm(A(b))

: (A : Tmm(Bool)→ Tym) (t : Tmm(A(true))) (f : Tmm(A(false)))

→ (if(A, t, f, true) = t)× (if(A, t, f, false) = f)

Id : (A : Tym)(a0, a1 : Tmm(A))→ Tym

refl : (A : Tym)(a : Tmm(A))→ Tmm(Id(A, a, a))

J : (A : Tym) (B : (a0, a1 : Tmm(A))(p : Tmm(Id(A, a0, a1)))→ Tym)

→ ((a : Tmm(A))→ Tmm(B(a, a, refl(a))))

→ (a0, a1 : Tmm(A))(p : Tmm(Id(A, a0a1)))→ Tmm(B(a0, a1, p))

: (A : Tym) (B : (a0, a1 : Tmm(A))(p : Tmm(Id(A, a0, a1)))→ Tym)

→ (b : (a : Tmm(A))→ Tmm(B(a, a, refl(a))))

→ (a : Tmm(A))→ J(A,B, b, a, a, refl(a)) = b(a)

Uni : Tym

El : Tmm(Uni)→ Tym

Ŝig : (A : Tmm(Uni))→ (Tmm(El(A))→ Tmm(Uni))→ Tmm(Uni)

P̂rod : (A : Tmm(Uni))→ (Tmm(El(A))→ Tym)→ Tmm(Uni)

B̂ool : Tmm(Uni)

M̂od : (µ | Tmn(Uni))→ Tmm(Uni)

dec
Ŝig

: (A : Tmm(Uni))(B : Tmm(El(A))→ Tmm(Uni))

→ Tmm(El(Ŝig(A,B,))) ∼= Tmm(Sig(El(A),El ◦B))

dec
P̂rod

: (A : Tmm(Uni))(B : Tmm(El(A))→ Tmm(Uni))

→ Tmm(El(P̂rod(A,B))) ∼= Tmm(Prod(El(A),El ◦B))

dec
B̂ool

: Tmm(El(B̂ool)) ∼= Tmm(Bool)

dec
M̂od

: (µ | A : Tmm(Uni))→ Tmm(El(M̂od(A))) ∼= Tmm(Modµ(El(A)))

Figure 4: Internal presentation of an MTT cosmos

NORMALIZATION FOR MULTIMODAL TYPE THEORY 19

internal language of the resulting cosmos can be extended with synthetic Tait computability
primitives compatible with the already-present MTT modalities.

4.1. Synthetic Tait computability. For this subsection, fix two presheaf topoi E and F
along with a continuous functor ρ : E F .

Definition 4.1. The Artin gluing Gl(ρ) is a category whose objects are triples (E,F, f) of
an object from E , an object from F , and a morphism F ρ(E). Morphisms in Gl(ρ) are
commuting squares:

F0

ρ(E0)

F1

ρ(E1)

f0

ρ(f1)

Projection induces functors π0 : Gl(ρ) E and π1 : Gl(ρ) F .

Example 4.2. Intuitively Gl(ρ) is a category of proof-relevant F -predicates on ρ-elements
of E . To cultivate this intuition, consider F = Set and ρ = [1,−]. An object of Gl([1,−])
is a triple of (S,E, f) which induces a proof-relevant predicate Φ(e) = f−1(e) on the global
points of E. Following Tait [Tai67], we refer to elements in the image of f as computable
elements. Morphisms are then morphisms of E equipped with additional structure ensuring
that computable elements are sent to computable elements.

We now reap the first reward from considering proof-relevant predicates: Gl(ρ) is
extremely well-behaved.

Theorem 4.3 [AGV72, CJ95]. Gl(ρ) is a presheaf topos and π0 is a logical functor with
left and right adjoints.

As a presheaf topos, Gl(ρ) enjoys a model of extensional type theory with a strictly
cumulative hierarchy of universes and a universe of propositions Ω. We can use this language
to synthetically build logical relations models [SH21]. In order to effectively construct such
models, however, we must supplement type theory with primitives specific to Gl(ρ). The
most fundamental of these is a proposition:

Definition 4.4. The syntactic proposition syn : Ω is interpreted in Gl(ρ) as the subterminal
object (1E ,0F , !).

Recalling the correspondence between objects of Gl(ρ) and predicates, syn is the
predicate on 1E with no computable elements. What makes this proposition useful is
its ability to wipe out the obligation to track computable elements. A morphism f :
syn×A B must contain a morphism π0(f) : π0(syn×A) ∼= π0(A) π0(B), but there
are no computable elements of syn×A so π0(f) entirely determines f ; there is a bijection
[syn×A,B]Gl(ρ)

∼= [π0(A), π0(B)]E . Internally, hypothesizing syn collapses the category to
E :

Lemma 4.5. There is an equivalence E ' Gl(ρ)/syn.

In topos-theoretic terms, E is an open subtopos of Gl(ρ). As an open subtopos, we can
present E internally to Gl(ρ) through a lex idempotent monad #A = syn → A [RSS20].

20 NORMALIZATION FOR MULTIMODAL TYPE THEORY

This modality has a strongly disjoint lex idempotent modality, A [RSS20, Section 3.4].
While we could work with entirely through this characterization, it is helpful to fix a
definition:

syn×A

syn

A

 A (4.1)

Intuitively, A is the portion of A with a trivial E component. This is even clearer if one
calculates the behavior of on a closed type A = (E,F, f) as A = (1, F, !). Just as
hypothesizing syn i.e., working under #, recovers E internally to Gl(ρ), working under
recovers F . Phrased in topos-theoretic terms, F is a closed subtopos of Gl(ρ).

The final ingredient we must add to our type theory is the realignment axiom [OP18,
BBC+19, SH21], stating that the following canonical map has an inverse re for any B : U:(∑

A:U [A ∼= B]
)
→
(∑

A:syn→U

∏
z:synA(z) ∼= B

)
(4.2)

Unfolding these conditions yields the following:

Definition 4.6. Fix B : U, A : #U, and α :
∏
z:synA(z) ∼= B. The realignment re(B,A, α)

of B along α is a term of type
∑

A∗:U A
∗ ∼= B satisfying the following condition:∏

z:syn re(B,A, α) = (A(z), α(z))

More intuitively, realignment states that a predicate lying over an object in E can be
shifted to lie over an isomorphic object. A proper motivation of realignment is deferred
to its use in Section 5, but broadly realignment will be used to satisfy the strict equalities
demanded by Definition 3.8 where a priori two constants might agree only up to isomorphism.

Theorem 8.4 of Orton and Pitts [OP18] shows that a Hofmann–Streicher universe
satisfies realignment for levelwise decidable propositions. Using the presentation of Gl(ρ)
as a presheaf topos [CJ95], syn is clearly levelwise decidable and so realignment at syn is
constructively valid.

Definition 4.7. The language of synthetic Tait computability is extensional type theory
with a cumulative hierarchy of universes and a universe of propositions equipped with a
distinguished proposition syn : Ω such that each universe satisfies the realignment axiom
for syn.

This subsection is summarized by the following result, which might be termed the
‘fundamental lemma’ of STC:

Theorem 4.8. Gl(ρ) is a model of STC.

4.2. Gluing together cosmoi. While a model in Gl(ρ) for a carefully chosen E , F , and ρ
is sufficient to prove many results of MLTT [Coq19] the situation for MTT is more complex.
Rather than gluing along a single functor, it is necessary to glue along an entire 2-natural
transformation of continuous functors between 2-functors of presheaf topoi. We begin by
considering a pair of presheaf cosmoi for the mode theory

{
µ : n m

}
and a 2-natural

NORMALIZATION FOR MULTIMODAL TYPE THEORY 21

transformation of right adjoints between them:

En

Em

f

Fn

Fm

ρn

g

ρm
(4.3)

Let us further assume that f and g preserve finite colimits.
Gluing ‘horizontally’, we obtain a pair of categories Gl(ρn) and Gl(ρm) and by The-

orems 4.3 and 4.8 both are presheaf topoi and models of STC. Artin gluing is functorial,
and Diagram 4.3 induce a functor Gl(f, g) : Gl(ρn) Gl(ρm) sending (En, Fn, x) to
(f(En), g(Fn), g(x)).

Lemma 4.9. Gl(f, g) : Gl(ρn) Gl(ρm) is a right adjoint.

Proof. While this follows classically from the special adjoint functor theorem, an explicit
construction is useful. There is a comparison β : g! ◦ ρm ρn ◦ f! induced by transposition
and the unit of the f! a f . The left adjoint Gl(f, g)! sends f : F ρm(E) to β ◦ g!(f) :
g!(F) ρn(f!(E)). The isomorphism [[f, g]!(X), Y] ∼= [X, [f, g](Y)] is given component-wise
by the isomorphisms associated with f! a f and g! a g.

Remark 4.10. This explicit calculation show that πn : Gl(n) En and πn : Gl(m) Em
assemble into a natural transformation which satisfies Beck-Chevalley.

Lemma 4.11. The adjunction Gl(f, g)! a Gl(f, g) induces a dependent right adjoint with
respect to sufficiently large Hofmann-Streicher universe U .

Proof. It suffices to argue that Gl(f, g) sends a U-small family in Gl(ρn) to a U-small in
Gl(ρm). This is proven by e.g., Gratzer et al. [GSS22, Lemma 3.3.7].

As a consequence of Lemma 4.11, we obtain a model of MTT with the mode theory{
µ : n m

}
which interprets n, m, and µ as Gl(ρn), Gl(ρm), and Gl(f, g) respectively.

This model of MTT is particularly well-behaved: equality is extensional and Gl(f, g) validates
the strong transposition-style elimination rules specified by Birkedal et al. [BCM+20].

Lemma 4.12. In this model of MTT, 〈µ | synn〉 ∼= synm

Proof. Externally, synn = (1,0, !) but g preserves 0 while f preserves 1, so Gl(f, g)(synn) ∼=
(1,0, !) = synm.

Lemma 4.13. In this model of MTT, #〈µ | A〉 ∼= 〈µ | #A〉 and 〈µ | A〉 ∼= 〈µ | A〉.

Proof. We consider the only case of #, as the argument for is identical. First, we observe
that Gl(f, g) preserves # externally. That is, there is an isomorphism α : Gl(f, g) ◦# ∼=
◦Gl(f, g). It remains to show that this isomorphism can be internalized. Let us write
τm : T •m Tm for the universe of types in Gl(ρm) and write τn for its counterpart in
Gl(ρn). Let us further write i, #̂m, and #̂n for the cartesian natural transformations
Gl(f, g)(τn) τm, #τm τm, and #τn τn that are used to interpret 〈µ | −〉 and # in
both Gl(ρn) and Gl(ρm), respectively.

22 NORMALIZATION FOR MULTIMODAL TYPE THEORY

Unfolding this statement into the model, we must argue that the following pair of maps
classify isomorphic families:

Gl(f, g)(#Tn) Gl(f, g)(Tn) Tm

Gl(f, g)(#Tn) #Tm Tm

Gl(f, g)(#̂) i

#i ◦ α #̂

We directly check that both classify GLf, g(#τn) using the fact that both Gl(f, g) and
preserve finite limits.

Remark 4.14. Technically, syn, #, and should be always annotated with a mode. In
light of these results, however, we shall omit this annotation and systematically identify synm
and 〈µ | synn〉. As both are subterminal, there are no coherence issues in this identification.

Definition 4.15. The language of multimodal STC (MSTC) is extensional MTT with a
cumulative hierarchy of universes and a universe of propositions such that

• Each mode is equipped with a proposition syn.
• Each universe satisfies the realignment axiom for syn.
• MTT modalities commute with syn, #, and .

Summarizing the preceding discussion:

Theorem 4.16. Gl(ρn), Gl(ρm), and Gl(f, g) assemble into a presheaf cosmos and a model
of MSTC.

In fact, it is only a small step from this result to the full fundamental lemma of
multimodal STC:

Theorem 4.17. Given a pair of cosmoi F,G :M Cat and a 2-natural transformation ρ :
F G such that each F (µ), G(µ) preserves finite colimits and each ρm is continuous, Gl(ρ) :
M Cat both a presheaf cosmos and a model of MSTC. Furthermore π0 : Gl(ρ) F is a
morphism of cosmoi.

5. The normalization cosmos

Recall from Section 2.4 the 2-functor of categories of renamings Ren−. By an identical
construction to Example 3.6, we obtain the cosmos of renamings R(−) = PSh(Ren−) and
the 2-natural transformation i[−] : Ren− Cx− acts by precomposition to yield a 2-natural
transformation i[−]∗ : S R. Theorem 4.17 then yields the following:

Definition 5.1. The normalization cosmos G is a presheaf cosmos and model of MSTC
where G(m) = Gl(i[m]∗).

As a further consequence of Theorem 4.17, the projection map π0 : G S is a morphism
of cosmoi. In this section, we equip G with the structure of an MTT cosmos and show that
π0 extends to a morphism of MTT cosmoi.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 23

5.1. Prerequisites for the normalization cosmos. Before we extend G to an MTT
cosmos, we import features of G into the language of MSTC to specialize the latter to this
situation. In this section, we begin using the interpretation of MTT to work internally to G
and explicitly record the extensions to MSTC required for the normalization proof.

Notation 5.2 (Dependent open modality). As #A = syn → A, we will write #zA(z) =
(z : syn)→ A(z) for the dependent version of the open modality.

Notation 5.3 (Extension types). Given a type A, a proposition φ, and an element a : φ→ A,
we write {A | x : φ 7→ a(x)} for subtype of A of elements equal to a under φ. Formally:

{A | x : φ 7→ a(x)} =
∑

a′:A (x : φ)→ a′ = a(x)

We treat the coercion {A | x : φ 7→ a(x)} → A as silent and refer to the equation a′ = a(x)
as a boundary condition.

Recall from Example 3.6 that S already contains the structure of an MTT cosmos. As a
presheaf cosmos, this manifests through a series of constants in the internal language of S.
Using Lemma 4.5 we import these constants into G.

Extension 1. For each m : M, there is a pair of constants z : syn ` Tym(z) : U0 @m
and z : syn, A : Tym(z) ` Tmm(z,A) : U0 @m. These constants are further equipped with
operations à la Figure 4 closing them under dependent sums, dependent products, modal
types, etc.

Next, observe that normals, neutrals, and normal types are equipped with an action by
renamings, so that they can be structured as presheaves over Ren−. The decoding operations
further organize them into proof-relevant predicates over terms and types e.g., the presheaf
of normal types as an object of G lying over the presheaf of types from S(m). In fact,
because renamings map variables to variables, the collection of variables of a given type
organizes into a presheaf over Ren− and part of an object in G. We import these objects
into the internal language as additional constants:

Extension 2. Given m :M and A : #zTym(z), we have constants Nfm(A),Nem(A),Vm(A) :
{U0 | z : syn 7→ Tmm(z,A(z))} and NfTym : {U0 | z : syn 7→ Tym(z)}.

We treat the coercion from Vm(A) to Nem(A) as silent.

Notation 5.4. We frequently omit explicitly passing z : syn as an argument to M : #X. For
instance, given A,B : #Tym we write Nfm(Prod(A,B)) not Nfm(λz. Prod(z,A(z), B(z))).

The normals and neutrals themselves lift to constants of type Nfm(A), Nem(A), and
NfTym using a form of higher-order abstract syntax [Hof99]. These operations collapse to
the corresponding syntactic constants specified by Extension 1 under z : syn—recall from
Extension 2 that here e.g. Nfm(A) = Tmm(z,A). The full collection of constants is specified
in Figure 5.

Extension 3. There are constants internalizing normals, neutrals, and normal types.

Finally, inspecting Definition 5.1 reveals that modalities are interpreted by functors
which are both left and right adjoints. As a result, modalities preserve coproducts:

Extension 4. 〈µ | A+B〉 ∼= 〈µ | A〉+ 〈µ | B〉

24 NORMALIZATION FOR MULTIMODAL TYPE THEORY

Prod : (A : NfTym)(B : Vm(A)→ NfTym)→ NfTym

Sum : (A : NfTym)(B : Vm(A)→ NfTym)→ NfTym
Bool : NfTym

Modµ : (µ | NfTyn)→ NfTym

lam : (A : #Tym)(B : #Tmm(A)→ #Tym)

→ ((a : Vm(A))→ Nfm(B(a)))→ Nfm(Prod(A,B))

app : (µ | A : #Tym)(B : #Tmm(A)→ #Tym)

→ Nem(Prod(A,B))→ (a : Nfm(A))→ Nem(B(a))

up : Nem(Bool)→ Nfm(Bool)

tt,ff : Nfm(Bool)

if : (A : Vm(Bool)→ NfTym)

→ Nfm(A(true))→ Nfm(A(false))→ (b : Nem(Bool))→ Nem(A(b))

up : (A : #Tym)(a0, a1 : #Tmm(A))

→ Nem(Id(A, a0, a1))→ Nfm(Id(A, a0, a1))

refl : (A : #zTym(z))(a : #zTmm(z,A(z)))→ Nfm(Id(A, a, a))

J : (A : #Tym) (B : (a0, a1 : Vm(A))(p : Vm(Id(A, a0, a1)))→ NfTym)

→ ((a : Vm(A))→ Nfm(B(a, a, refl(a)))) (a0, a1 : #zTmm(A))(p : Nem(Id(A, a0, a1)))

→ Nem(B(a0, a1, η(p)))

up : (µ | A : Tyn)→ Nem(Modµ(A))→ Nfm(Modµ(A))

modµ : (µ | A : #Tyn)(µ | Nfn(A))→ Nfm(λz. Modµ(z,A(z)))

letmodµ;ν : (ν ◦ µ | A : #Tyn) (B : (ν | a : Vm(Modµ(A)))→ NfTyo)

→ ((ν ◦ µ | a : Vn(A))→ Nfo(B(mµ(a))))→ (ν | a : Nem(Modµ(A)))→ Neo(B(a))

Uni : NfTym

El : Nfm(Uni)→ NfTym

up : Nem(Uni)→ Nfm(Uni)

M̂odµ : (µ | Nfn(Uni))→ Nfm(Uni)

dec�
M̂odµ

: (µ | A : Nfn(Uni))→ Nfm(Modµ(A))→ Nfm(El(M̂od(A)))

dec�
M̂odµ

: (µ | A : Nfn(Uni))→ Nem(El(M̂od(A)))→ Nem(Modµ(A))

Figure 5: Neutral and normal forms, internally

5.2. The MTT cosmos. We now extend G to an MTT cosmos. To ensure that π0 induces
a morphism of MTT cosmoi, it suffices to ensure that each constant we add to G is equal to
the corresponding piece of S as internalized by Extension 1 under z : syn.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 25

The universe of computable types and terms. We begin with the definition of types
and terms in this cosmos. Concretely, we require the following for each m :M:

Ty∗m : {U2 | z : syn 7→ Tym(z)}
Tm∗m : (A : Ty∗m)→ {U1 | z : syn 7→ Tmm(z,A)}

We start with the following putative definition of types:

record T : U2 where
code : NfTym
pred : {U1 | z : syn 7→ Tmm(z, code)}
reflect : {Nem(code)→ pred | syn 7→ id}
reify : {pred→ Nfm(code) | syn 7→ id}

(5.1)

In prose, A : T contains the code of a normal type A.code as well as a proof-relevant predicate
on the elements of A.code.

The last two fields ensure that (1) all elements tracked by this predicate can be assigned
normal forms, and (2) all neutrals lie within the predicate. We write ↓A and ↑A for A.reify
and A.reflect. Of the two, the reify is the crucial operation needed for the normalization
algorithm: it ensures that computable elements can be given normal forms. Tait [Tai67],
however, has shown that the pair of operations is necessary to close all type formers under
just reify.

We cannot simply define Ty∗m = T , as T does not satisfy the equation z : syn ` T =
Tym(z). It does, however, satisfy this condition up to isomorphism: under z : syn, the types
of pred, reflect, and reify collapse to singletons, while the type of code collapses to Tym(z)
by Extension 2:

α#(z,A) = A.code :
∏
z:syn T

∼= Ty∗m(z)

Observe (Tym, α#) :
∑

A:#U

∏
z:synA(z) ∼= T , so the realignment axiom of Definition 4.6

applies and we can define
(Ty∗m, α) = re(T,Tym, α#) (5.2)

The equation z : syn ` Ty∗m = Tym(z) follows immediately from the second half of Defini-
tion 4.6. On elements A : Ty∗m, this implies z : syn ` A = α(A).code. For readability, we
continue to use record notation to manipulate Ty∗m.

Given A : Ty∗m, we define Tm∗m(A):

Tm∗m(A) = A.pred : {U1 | z : syn 7→ Tm∗m(z,A)} (5.3)

To see that this is well-typed, we must show Tm∗m(A) = Tmm(z,A) given z : syn. The type
of A.code in Constructions 5.1 ensures Tm∗m(A) = Tmm(z,A.code). We have observed that
A = A.code under z : syn so Tm∗m(A) = Tmm(z,A).

Type connectives. It remains only to close (Ty∗m,Tm∗m) under all connectives. For mode-
local connectives, these constructions are very similar to those given by Sterling [Ste21]
(Lemmas 5.7, 5.8, 5.9, and 5.10). Modal types and dependent products, however, are involve
modalities and thus are different than the other connectives (Lemmas 5.5 and 5.6).

Lemma 5.5. (Ty∗m,Tm∗m) is closed under dependent products.

Proof. We must define two constants:

Prod∗ : (µ | A : Ty∗n)(B : (µ | Tm∗n(A))→ Ty∗m)→ Ty∗m

αProd∗ : (µ | A : Ty∗n)(B : (µ | Tm∗n(A))→ Ty∗m)→ Ty∗m

26 NORMALIZATION FOR MULTIMODAL TYPE THEORY

→ Tm∗m(Prod∗(A,B)) ∼= [(µ | a : Tm∗n(A))Tm∗m(B(a))]

Additionally, we must show that if z : syn then Prod∗ = Prod(z) and αProd∗ = αProd(z).
We begin by fixing (µ | A : Ty∗m) andB : (µ | Tm∗n(A))→ Ty∗m. Define Φ = (µ | a : Tm∗n(A))→

Tm∗m(B(a)) and observe under z : syn, the following equality holds:

Φ = (µ | a : Tmn(z,A))→ Tmm(B(z, a))

We may apply realignment using αProd(z) : Tmm(z,Prod(z,A,B)) ∼= Φ. This realign-
ment yields a type Ψ and isomorphism β : Ψ ∼= Φ. Under z : syn, these restrict to
Tmm(z,Prod(z,A,B)) and αProd(z) respectively.

With these to hand we define Prod∗ and αProd∗ as follows:

Prod∗(A,B).code = Prod(A.code, λv. B(↓Av).code)

Prod∗(A,B).pred = Ψ

Prod∗(A,B).reflect = λe. β−1(λa. app(e, ↓Aa))

Prod∗(A,B).reify = λf. lam(λv. ↑B(↑Av)β(f)(↑Av))

αProd∗ = β

It remains to check a variety of boundary conditions under z : syn. In particular, we must
show that Prod∗(A,B) = Prod(z,A,B) and that reflect and reify become the identity. These
follow directly from assumptions about A, B, and the boundaries of various constructors.
For instance

Prod∗(A,B) = Prod∗(A,B).code

= Prod(A.code, λv. B(↓Av).code)

= Prod(z,A.code, λv. B(↓Av).code)

= Prod(z,A, λv. B(↓Av))

= Prod(z,A,B)

Lemma 5.6. (Ty∗m,Tm∗m) is closed under modal types.

Proof. Fix a modality µ : n m. In this case we define the four constants specified by
4, subject to the expected boundary conditions. Fix a variable A : Ty∗n under the modal
annotation µ i.e., (µ | A : Ty∗n). We define the unaligned predicate as follows:

record Φ : U1 where
tm : Nfm(Modµ(A))

prf :

(∑
e:Nem(Modµ(A)) tm = up(e)

+
∑

a:〈µ|A.pred〉 tm = modµ(↓Aa)

)
For the first time, we have used the closed modality to explicitly tweak the proof-relevant
predicate. Intuitively, Φ is a predicate on Tmm(z,Modµ(z,A)) and tm ensures that this
predicate tracks elements with normals forms. The second field, moreover, ensures that
these normal are either neutral or modµ(a) where a is computable. Without the closed
modality shielding the second field of Φ, however, this could never have the correct extent
along z : syn. Using # X ∼= 1 and the boundary of Nfm(Modµ(A)), we can now define the
following isomorphism:

α#(z, p) = p.tm :
∏
z:syn Φ ∼= Tmm(z,Modµ(z,A))

NORMALIZATION FOR MULTIMODAL TYPE THEORY 27

Realigning Φ along α# , we obtain Ψ and α : Ψ ∼= Φ which under z : syn become
Tmm(z,Modµ(z,A)) and α# .

We now define Mod∗µ:

Mod∗µ(A).code = Modµ(A.code)

Mod∗µ(A).pred = Ψ

Mod∗µ(A).reflect = λe. α−1〈up(e), η ι1〈e, ?〉〉
Mod∗µ(A).reify = λm. α(m).tm

Unlike Lemma 5.5, the introduction and elimination principles are not automatically
obtained from α and they must be constructed separately:

m∗µ(A, a) = α−1〈↓Aa, η ι2〈a, ?〉〉

It remains to define the elimination principle letmod∗µ;ν . This is an involved affair and
we describe it step-by-step. Begin by fixing ν : m o along with the following:

B : (ν | Tm∗m(Mod∗µ(A)))→ Tyo

b : (ν ◦ µ | x : Tm∗n(A))→ Tm∗o(B(m∗µ(A, x)))

(ν | m : Tm∗m(Mod∗µ(A)))

We must construct an element of Tm∗o(B(a)). We begin by inspecting m. As MTT modalities
in extensional MTT commute with dependent sums, equality, , and—by Extension 4—with
finite coproducts, m can be decomposed into the following:

(ν | tm : Nfm(Modµ(A)))

prf :

(∑
e:〈ν|Nem(Modµ(A))〉modν(tm) = up ~ e

+
∑

a:〈ν◦µ|A.pred〉modν(tm) = (modµ ◦ ↓A) ~ a

)
Recall from Diagram 4.1 that X is a pushout of syn and X. To define a map out of

 X, therefore, it suffices to define a map out of X which is constant assuming z : syn. We
conclude by scrutinizing prf:{

ι1(modν(e),) 7→ ↑letmodµ;ν(A, λv. B(↑v).code, λx. ↓b(↑x), e)

ι2(modν(a),) 7→ b(a)

Given z : syn, both branches collapse to letmodµ;ν(z,A,B, b, a) so this yields a well-defined
map. The boundary conditions follow from routine computations.

Lemma 5.7. (Ty∗m,Tm∗m) is closed under dependent sums.

Proof. Fixing A : Ty∗m and B : Tm∗m(A) → Ty∗m. We must construct the following pair of
constants:

Sig∗(A,B) : Ty∗m

αSig∗ : Tmm(Sig∗(A,B)) ∼=
∑

a:Tm∗m(A) Tm∗m(B(a))

Such that they lie over Sig and αSig respectively.
We begin by applying realignment to the following:(∑

a:A.predB(a).pred, αSig(z)

)

28 NORMALIZATION FOR MULTIMODAL TYPE THEORY

This produces Ψ : U1 and αSig∗ : Ψ ∼=
∑

a:A.predB(a).pred such that under the assumption
z : syn the following holds:

Ψ = Sig(z,A,B) αSig∗ = αSig(z)

We now define Sig∗(A,B) as follows:

Sig∗(A,B).code = Sum(codeA, λv. B.code(↑Av))

Sig∗(A,B).pred = Ψ

Sig∗(A,B).reflect = λe. α−1
Sig∗〈↑A(proj0(e)), ↑B(↑A(proj0(e)))(proj1(e))〉

Sig∗(A,B).reify = λp. pair(↓A(αSig∗p.0), ↓B(αSig∗p.0)(αSig∗p.1))

The fact that ↓ and ↑ lie over the identity follows directly from the β and η laws of dependent
sums in MTT. We show the calculations for ↑. Fix z : syn:

↑Sig∗(A,B)(e) = α−1
Sig∗〈↑A(proj0(e)), ↑B(↑A(proj0(e)))(proj1(e))〉

= α−1
Sig〈proj0(e),proj1(e)〉

= α−1
Sig〈αSig(A,B)(e)0, αSig(A,B)(e)1〉

= e

The fact that Sig∗(A,B).code and Sig∗(A,B).pred lie over Sig(A,B) and Tmm(z,Sig(z,A,B))
follows from their definition and realignment.

Lemma 5.8. (Ty∗m,Tm∗m) is closed under booleans.

Proof. We must implement the following constants:

Bool∗ : {Ty∗m | z : syn 7→ Bool(z)}
true∗ : {Tm∗m(Bool) | z : syn 7→ true}
false∗ : {Tm∗m(Bool) | z : syn 7→ false}
if∗ : (A : Tm∗m(Bool(z))→ Ty∗m)

→ Tm∗m(A(true∗))

→ Tm∗m(A(false∗))

→ (b : Tm∗m(Bool∗))

→ {Tm∗m(A(b)) | z : syn 7→ if(A, t, f, b)}
: (A : Tm∗m(Bool∗)→ Ty∗m)

→ (t : Tm∗m(A(true∗)))

→ (f : Tm∗m(A(false∗)))

→ (if∗(A, t, f, true∗) = t)× (if∗(A, t, f, false∗) = f)

First, we define Φ by realignment:

record Φ : {U1 | z : syn 7→ Tmm(z,Bool)} where
tm : Nfm(Bool)

prf :

(∑
e:Nem(Bool) tm = up(e)

+
∑

b:2 tm = rec2(b; tt; ff))

)

NORMALIZATION FOR MULTIMODAL TYPE THEORY 29

We may now define Bool∗:

Bool∗.code = Bool

Bool∗.pred = Φ

Bool∗.reflect = λe.〈up(e), η(ι1(e, ?))〉
Bool∗.reify = λb. b.tm

It remains to define the introduction and elimination forms.

true∗ = 〈tt, η(ι2(0, ?))〉
false∗ = 〈ff , η(ι2(1, ?))〉

The elimination form is defined by constructing a map out of X, by taking advantage
of its definition as a pushout (Diagram 4.1):

if∗(A, t0, t1, b = 〈tm, prf〉) =
if(z, Tm, t0, t1, s) prf = ι1(z)

↓A(b)if(λv. A(↑v).code, ↓t0, ↓t1, e) prf = ι2(ι1(e,))

ti prf = ι2(ι2(i,))

Lemma 5.9. (Ty∗m,Tm∗m) is closed under intensional identity types.

Proof. We must implement the following constants:

Id∗ : (A : Ty∗m)(a0, a1 : Tm∗m(A))

→ {Ty∗m | z : syn 7→ Id(z,A, a0, a1)}
refl∗ : (A : Ty∗m)(a : Tm∗m(A))

→ {Tm∗m(Id(A, a, a)) | z : syn 7→ refl(z,A, a)}
J∗ : (A : Ty∗m)

→ (B : (a0, a1 : Tm∗m(A))→ Tm∗m(Id∗(A, a0, a1))→ Ty∗m)

→ (b : (a : Tm∗m(A))→ Tm∗m(B(a, a, refl(a))))

→ (a0, a1 : Tm∗m(A))(p : Tm∗m(Id∗(A, a0, a1)))

→ {Tm∗m(B(a0, a1, p)) | z : syn 7→ J(z,B, b, p)}
: (A : Ty∗m)

→ (B : (a0, a1 : Tm∗m(A))→ Tm∗m(Id∗(A, a0, a1))→ Ty∗m)

→ (b : (a : Tm∗m(A))→ Tm∗m(B(a, a, refl(a))))

→ (a : Tm∗m(A))→ J∗(A,B, b, refl∗(a)) = b(a)

Fix A : Ty∗m and a0, a1 : Tm∗m(A). Just as with the normalization structure for booleans,
we begin by defining Φ by realignment:

record Φ : {U1 | z : syn 7→ Tmm(z, Id(A, a0, a1))} where
tm : Nfm(Id(A, a0, a1))

prf :

(∑
e:Nem(Id(A,a0,a1)) tm = up(e)

+
∑

a:A.pred tm = refl(↓Aa)

)

30 NORMALIZATION FOR MULTIMODAL TYPE THEORY

We now define Id∗:

Id∗(A, a0, a1).code = IdcodeA(↑Aa0, ↑Aa1)

Id∗(A, a0, a1).pred = Φ

Id∗(A, a0, a1).reflect = λe.〈up(e), η(ι1(e, ?))〉
Id∗(A, a0, a1).reify = λp. p.tm

We define reflexivity by refl∗ = 〈refl(,)η(ι2(?, ?))〉. Finally, the elimination principle is
defined using the induction principle for X.

J∗(B, b, a0, a1, p = 〈tm, prf〉) =
J(z,B, b, a0, a1, p) prf = ι1(z)

↓J(λl, r, p.B(↑l, ↑r, ↑p).code, λa.↓b(↑a), e) prf = ι2(ι1(e,))

b(a0) q = ι2(ι2(,))

Lemma 5.10. (Ty∗m,Tm∗m) is closed under a universe.

Proof. We begin by constructing the two constants for the universe and the decoding family:

Uni∗ : {Ty∗m | z : syn 7→ Uni}
El∗ : (A : Tm∗m(Uni∗))→ {Ty∗m | z : syn 7→ El(A)}

At this point we take advantage of the fact that pred is an element of U1; in particular,
we use the fact that is a universe U0 small enough to fit inside U1.

We may then define Ψ by realigning the following element of U1 along the evident
isomorphism to Tm∗m(z,Uni(z)):

record Ψ : {U1 | z : syn 7→ Tm∗m(z,Uni)} where
code : Nfm(Uni)
pred : {U0 | z : syn 7→ Tmm(z,El(code))}
reflect : {Nem(El(code))→ pred | z : syn 7→ id}
reify : {pred→ Nfm(El(code)) | z : syn 7→ id}

With Ψ in hand, we may define Uni∗:

Uni∗.code = Uni

Uni∗.pred = Ψ

Uni∗.reflect = λe. 〈up(e); Nem; id;λe. up(e)〉
Uni∗.reify = λA. A.code

The definition of El∗ is essentially cumulativity:

El∗(〈code; pred; reify; reflect〉) = 〈El(code); pred; reify; reflect〉
It remains to show that (Uni∗,El∗) is closed under various type formers. We show

a representative cases: modal types. This concretely entails implementing the following
constants:

M̂od
∗

: (µ | A : Tm∗n(Uni∗))→ {Tm∗m(Uni∗) | z : syn 7→ M̂od(z,A)}
dec∗

M̂od
: (µ | A : Tm∗n(Uni∗))

→ {Tm∗m(El∗(M̂od
∗
(A))) ∼= Tm∗m(Mod∗µ(El∗(A))) | z : syn 7→ dec

M̂od
(z,A)}

NORMALIZATION FOR MULTIMODAL TYPE THEORY 31

Fix (µ | A : Tm∗n(Uni∗)). We realign Tm∗m(Mod∗µ(El∗(A))) along the isomorphism dec
M̂od

to obtain a type Ψ and an isomorphism:

dec∗Modµ : {Tm∗m(El∗(M̂od
∗
(A))) ∼= Tm∗m(Mod∗µ(El∗(A))) | z : syn 7→ dec

M̂od
(z,A)}

It remains only to define M̂od
∗
(A) such that M̂od

∗
(A).pred = Ψ:

M̂od
∗
(A).code = ̂〈µ | A.code〉

M̂od
∗
(A).pred = Ψ

M̂od
∗
(A).reflect = λe. (dec∗

M̂od
)−1(↑Mod∗µ(El∗(A))dec�(e))

M̂od
∗
(A).reify = λm. dec�(↓Mod∗µ(El∗(A))dec∗

M̂od
(m))

The checks that all constructions lie over their syntactic counterparts follow immediately
from the conclusions of realignment.

Theorem 5.11. G supports an MTT cosmos built around (Ty∗m,Tm∗m) and π0 : G S is a
map of MTT cosmoi.

6. The normalization algorithm

After Theorem 5.11, it remains only to parlay the existence of the normalization cosmos
into a normalization function.

6.1. The normalization function. At this point, it becomes necessary to shift from
working purely internally to G to inspecting some constructions externally. Accordingly, we
will have use for the total spaces of terms and normal forms e.g. Tm∗m =

∑
A:Ty∗m

Tm∗m(A).

We write Tm and T •m for the presheaves of types and terms in S(m) to disambiguate them
from Ty∗m and Tm∗m.

Lemma 6.1. There is a morphism ↓ : Tm∗m Nfm which restricts to id under syn.

Proof. Working internally, ↓(A,M) = (A, ↓AM).

Fix a term Γ `M : A@m. Theorems 3.9 and 5.11 define a map JMK : JΓK Tm∗m in
G(m) along with an isomorphism α : π0(JΓK) ∼= y(Γ) such that π0(JMK) = bMc ◦ α.

We would like to obtain a normal form for M from JMK. To this end, we can unfold
JMK along with ↓ from Lemma 6.1 to obtain a commuting diagram:

π1(JΓK)

i[m]∗(y(Γ))

α ◦ JΓK

π1(Tm∗m)

i[m]∗(T •m)
i[m]∗(bMc)

π1(Nfm)

To normalize M , it suffice to construct atomsΓ : π1(JΓK)Γ such that α(JΓK(atomsΓ)) =
id : i[m]∗(y(Γ))Γ: pushing atomsΓ along the top of the diagram would yield a normal form
(an element of π1(Nfm)) which decodes to M by Yoneda.

Lemma 6.2. For any Γ cx @m there exists atomsΓ : π1(JΓK)Γ lying over id : i[m]∗(y(Γ)).

32 NORMALIZATION FOR MULTIMODAL TYPE THEORY

Proof. This proof proceeds by induction on Γ.

Case: Γ = 1
Here JΓK is terminal, so atoms1 is its unique element.

Case: Γ = ∆.(µ | A)
In this case JΓK = J∆K ×G(µ)(Ty∗n) G(µ)(Tm∗n). First, we reindex atoms∆ by Γ ` ↑ :
∆ @m to obtain δ ∈ J∆KΓ. Next, using the element v0 ∈ G(µ)(Nen(A))Γ we define
atomsΓ = (δ, ↑Av0).

Case: Γ = ∆.{µ}
We define atomsΓ = G(µ)!(atoms∆)

Remark 6.3. atomsΓ is analogous to the initial environment used in classical NbE proofs
to kick off normalization. Abel [Abe13], for instance, denotes the environment ↑Γ.

Combining Lemma 6.2 with the argument above, we conclude that for term Γ ` M :
A@m, there exists Γ `nf u : A@m such that |u| = M . Moreover, because we have
consistently worked with equivalences class of terms, this function automatically respects
definitional equality. Summarizing:

Theorem 6.4. There is a function nfΓ(−, A) sending terms of type Γ ` A@m to normal
forms such that

(1) If Γ `M : A@m then Γ ` |nfΓ(M,A)| = M : A@m.
(2) If Γ `M = N : A@m then nfΓ(M,A) = nfΓ(N,A).

We can repeat this process to normalize types instead of terms. Given Γ ` A@m, we
obtain JAK : JΓK Ty∗m which unfolds to an analogous diagram with only a small change:
rather than using ↑ to pass from π1(Tm∗m) to normal forms, we use code to shift from Ty∗m
to normal types:

π1(JΓK)

i[m]∗(y(Γ))

α ◦ JΓK

π1(Ty∗m)

i[m]∗(Tm)
i[m]∗(bAc)

π1(NfTym)

By again pushing atomsΓ along the top of this diagram, we obtain a normalization
function for types.

Theorem 6.5. There is a function nftyΓ(−) sending types to normal types such that

(1) If Γ ` A@m then Γ ` |nftyΓ(A)| = A@m.
(2) If Γ ` A = B@m then nftyΓ(A) = nftyΓ(B).

6.2. Corollaries of normalization. A number of important theorems follow as corollaries
of Theorems 6.4 and 6.5. For instance, we can reduce the decidability of conversion to the
decidability of the mode theory.

Corollary 6.6 (Decidability of conversion).

(1) Γ `M = N : A@m iff nfΓ(M,A) = nfΓ(N,A).
(2) Γ ` A = B@m iff nftyΓ(A) = nftyΓ(B).

NORMALIZATION FOR MULTIMODAL TYPE THEORY 33

Proof. We show only the proof for this first claim. The ‘only if’ direction is established by the
second point of Theorem 6.4. Suppose instead nfΓ(M,A) = nfΓ(N,A), so |nfΓ(M,A)| =
|nfΓ(N,A)|. By the first point of Theorem 6.4, |nfΓ(M,A)| = M and |nfΓ(M,A)| = N , so
the conclusion follows.

Equality of normal forms and normal types is evidently decidable if equality in M is
decidable, so this proves the promised sharp bound on the decidability of conversion in
MTT. While we have not developed a bidirectional syntax for MTT, the fully annotated
presentation of its syntax is decidable precisely when conversion is decidable:

Corollary 6.7. If M is decidable, type checking is decidable.

A priori, however, a given term could have multiple normal forms which complicates
further analysis. We therefore strengthen Theorem 6.4 with the following:

Theorem 6.8 (Tightness).

(1) If Γ `nf u : A@m, then nfΓ(|u|, A) = u.
(2) If Γ `nf τ @m, then nftyΓ(|τ |) = τ .

Proof. Recall that Theorems 3.9 and 5.11 induce a function J−K sending a piece of syntax
to its interpretation in the normalization model. Furthermore, recall the (|Θ|)-element
atomsΘ : JΓK constructed in Lemma 6.2.

We begin by strengthening the statement to make it more amenable to induction:

(1) If Γ `ne e : A@m, then J|M |K(atomsΘ) = ↑JAK(atomsΘ)e

(2) If Γ `nf u : A@m, then ↑JAK(atomsΘ)J|u|K(atomsΘ) = u.

(3) If Γ `nf τ @m, then codeJ|A|K(atomsΘ) = τ .

Here we have identified a code u (resp. e) as an (|Θ|) element of NfA (resp. NeA). All three
follow straightforwardly from mutual induction and the relevant definitions.

Corollary 6.9. Normalization is an isomorphism between equivalence classes of terms (resp.
types) and normal forms (resp. normal types).

Proof. Corollary 6.6 already shows that normalization is injective and Theorem 6.8 provides
a section.

These results imply the injectivity of type constructors, an essential property for
implementation.

Corollary 6.10. If Γ ` A0 → B0 = A1 → B1 @m then Γ ` A0 = A1 @m and Γ.(id | A0) `
B0 = B1 @m.

Proof. Set τi = nftyΓ(Ai) and σi = nftyΓ.(id|A0)(Bi). Unfolding definitions shows that

|τi → σi| = |τi| → |σi| = Ai → Bi. By Corollary 6.9, nftyΓ(Ai → Bi) = τi → σi.
Next, we recall that Γ ` A0 → B0 = A1 → B1 @m by assumption, so τ0 → σ0 = τ1 → σ1.

As an operation on normal forms, however, − → − is clearly injective, so τ0 = τ1 and
σ0 = σ1. The result now follows from Corollary 6.6.

Finally, Gratzer et al. [GKNB20a] show canonicity for MTT extended with the equality
1.{µ} = 1. Normalization provides a (heavy-handed) proof of canonicity without this
equation by scrutinizing the definition of normal forms:

Corollary 6.11. If 1.{µ} `M : bool @m then M ∈ {tt,ff}.

34 NORMALIZATION FOR MULTIMODAL TYPE THEORY

7. Extending MTT with crisp identity induction

To demonstrate the flexibility of the normalization argument given in Sections 5 and 6, we
now show how it may be extended to accommodate modal principles not included in MTT.

Recall that, intuitively, a modality in MTT corresponds to a right adjoint. This intuition
is supported by the fact that MTT modalities commute with products. In an extensional
version of MTT, modalities also commute with (extensional) equality. That is, the following
canonical map is an equivalence:

(µ | x, y : A)→ Id〈µ|A〉(modµ(x),modµ(y))→ 〈µ | IdA(x, y)〉 (7.1)

In intensional MTT, the same principle is not derivable.

Theorem 7.1. There exists a model of intensional MTT with one mode m and one modality
µ : n m in which Equation 7.1 is not invertible.

Proof. Consider intensional MTT and define an interpretation of MTT into intensional MLTT
which interprets both modes as MLTT and sends all non-modal types to their counterparts
within MLTT and interprets modal connectives as follows:

JΓ.{µ}K = JΓK.Nat

JΓ.(µ | A)K = JΓK.(Nat→ JAK)
JΓ.{id}K = JΓK
JΓ.(id | A)K = JΓK.JAK
J〈µ | A〉K = Nat→ JAK
J〈id | A〉K = JAK
Jmodµ(M)K = λ(JMK)
Jmodid(M)K = JMK
Jletχ modξ()←M in NK = JNK[id.JMK]

Unfolding the interpretation of Equation 7.1, we observe that an inverse to this map
corresponds to function extensionality for functions Nat→ A. As function extensionality is
independent of MLTT, there must be no inverse to Equation 7.1 definable within MTT.

In light of Theorem 7.1, we refer to the existence of an inverse to Equation 7.1 as
modal extensionality. Modal extensionality is useful in practice. In incarnations of guarded
recursion within MTT, for instance, some version of modal extensionality is required to prove
any equalities involving guarded types [GKNB21, GB22]. It is therefore worth investigating
whether modal extensionality is compatible with both normalization and canonicity.6

In work by Shulman [Shu18] and Gratzer [GKNB21], crisp induction principles are
a variation of the induction principles for types such as bool or IdA(a0, a1) which allow
the scrutinee of the induction to occur beneath a modality. Crisp induction principles are
derivable in MTT if the modality has an internal right adjoint [GKNB21], but they are
justified in other situations. In particular, crisp induction for identity types is validated if
and only if modal extensionality holds. In contrast to modal extensionality, however, it is

6Like function extensionality, it is straightforward to maintain either normalization or canonicity in the
presence of modal extensionality. Ensuring for both simultaneously is far more difficult.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 35

straightforward to directly adapt the proofs of normalization and canonicity to account for
crisp identity induction principles:

Γ.(µ | A).(µ | A[↑]).(µ | IdA[↑2](v1,v0)) ` B@m

Γ.(µ | A) `M : B[↑.v0.v0.refl(v0)] @m
Γ.{µ} ` N0, N1 : A@n Γ.{µ} ` P : IdA(N0, N1) @n

Γ ` Jµ(B,M,P) : B[id.N0.N1.P] @m

Jµ(B,M, refl(N)) = M [id.N]

The modularity of our proof of normalization ensures that only local changes to the
construction of identity types in G are needed to adapt the entire proof to support crisp
induction. Concretely, two changes to primitive constants added to MSTC by Section 5.1.
One alteration to the definition of cosmoi and one to the definition of neutral forms:

Jµ : (µ | A : Tyn) (B : (µ | a0, a1 : Tmn(A))(µ | p : Tmn(Id(A, a0, a1)))→ Tym)

→ ((µ | a : Tmn(A))→ Tmm(B(a, a, refl(a))))

→ (µ | a0, a1 : Tmn(A))(µ | p : Tmn(Id(A, a0, a1)))

→ Tmm(B(a0, a1, p))

Jµ : (µ | A : #Tyn) (B : (µ | a0, a1 : Vn(A))(µ | p : Vm(Id(A, a0, a1)))→ NfTym)

→ ((µ | a : Vn(A))→ Nfm(B(a, a, refl(a))))

→ (µ | a0, a1 : #zTmn(z,A(z)))(µ | p : Nen(Id(A, a0, a1)))

→ Nem(B(a0, a1, η(p)))

These changes simply reflect the change to the elimination principle of the identity type.
After having made this change, only one portion of Section 5.2 must change: Lemma 5.9

which shows that the gluing cosmos is closed under identity types. We must show that
(Ty∗m,Tm∗m) is closed under crisp induction.

Lemma 7.2. (Ty∗m,Tm∗m) is supports crisp identity induction.

Proof. This argument is similar to 5.6, as the induction principle for modal types is always
‘crisp’ in MTT. We must implement the following constant.

J∗µ : (µ | A : Ty∗n) (B : (µ | a0, a1 : Tm∗n(A))(µ | p : Tm∗n(Id∗(A, a0, a1)))→ Ty∗m)

→ (b : (µ | a : Tm∗n(A))→ Tm∗m(B(a, a, refl∗(a))))

→ (µ | a0, a1 : Tm∗n(A))(µ | p : Tm∗n(Id(A, a0, a1)))→
→ {Tm∗m(B(a0, a1, p)) | z : syn 7→ Jµ(A,B, b, p)}

Let us fix A, B, b, a0, a1, and p with the types described above. Recalling the definition
of Id∗(A, a0, a1).pred from 5.9, we can commute 〈µ | −〉 past the dependent sum, closed
modalities, equality types, and coproducts to decompose p into a pair of the following:

(µ | tm : Nfn(Id(A, a0, a1)))

prf :

[∑
e:〈µ|Nen(Id(A,a0,a1))〉 up ~ e = modµ(m)

+ modµ(m) = modµ(refl(a0))

]

36 NORMALIZATION FOR MULTIMODAL TYPE THEORY

We then define J∗µ(B, b, a0, a1, p) by analyzing prf:
J(z,B, b, a0, a1, p) prf = ι1(z)

↓J(λa0, a1, p. B(↑a0, ↑a1, ↑p).code, λa. ↓b(↑a), e) q = ι2(ι1(e,))

b(a0) q = ι2(ι2())

Having made this alteration, the remainder of Sections 5 and 6 are unchanged. In
particular, all the results of Section 6 continue to hold in the presence of crisp induction.

8. Related work

We have built on top of a long line of research systematically structuring logical relations
as gluing models [MS93, AHS95, Str98, Fio02, Shu15, KHS19, Coq19, SA21, Ste21]. In
particular, Altenkirch et al. [AHS95] and Fiore [Fio02] recast NbE into the construction of a
gluing model in which types are triples (A, ↓, ↑). Generalizing from this work to dependent
type theory has proven a considerable challenge [AK16]. The final ingredient for Martin-Löf
type theory was provided by Coquand [Coq19]: a construction of a universe in this gluing
model similar to that of Shulman [Shu15].

Gluing for modal type theory. Gratzer et al. [GSB19a] gave a classical normalization-
by-evaluation proof for a Fitch-style type theory. The complexity of this proof, however,
makes it intractable to extend to a general modal type theory like MTT. Unfortunately,
extending gluing techniques to modal type theories has proven challenging. In particular,
Gratzer et al. [GKNB20a] used gluing to prove canonicity for MTT, but they were forced
to add an additional equality to MTT (1.{µ} = 1) to tame the construction of the gluing
model. The challenge lies in fitting the glued category of contexts into a CwF-style model of
type theory; the natural definition of glued types and terms fails to admit modalities. While
there have been some attempts to systematize the construction of glued CwFs [KHS19],
they do not apply to MTT.

Recently, Hu and Pientka [HP22] gave a proof of normalization for a simply-typed
Fitch-style type theory (Kripke-style in their parlance) with one modality. They give
two separate proofs of normalization; one through both an untyped PER model similar
to Gratzer et al. [GSB19a] and one using a gluing model. Their gluing proof is closely
related to the argument above. For instance, their theory of unified substitutions and
modal transformations corresponds to a specialization of MTT’s substitution calculus to
one modality and, accordingly, their category of renamings offers a strict presentation of
the category of renamings described above. Their proof, however, is done using external
constructions on the gluing category which may make it difficult to scale to either multiple
modalities or dependent types.

Synthetic Tait computability. The introduction of representable map categories [Uem19]
and LCCCs [GS20] for modeling the syntax of (non-modal) type theory offered an al-
ternative approach. Crucially, they show that syntax can be given a universal property
among structured categories with better behavior than CwFs. Sterling and collabora-
tors [SH21, SA21, Ste21] have built on this idea and introduced synthetic Tait computability
to prove syntactic metatheorems via gluing together LCCCs rather than CwFs. Unlike other
approaches to gluing, STC generalizes well to a multimodal setting and by extending STC
to MSTC normalization for MTT becomes tractable.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 37

MTT as a metalanguage. In a parallel line of work, Bocquet et al. [BKS21] have also used
MTT as a metalanguage in the construction of models of type theory. They, however, do
not work with a modal object type theory and instead use MTT to internalize a functor F
rather than working internally to Gl(F). As a result, while both proofs use MTT modalities,
the modalities used by op. cit. are encoded in our proof by fibered lex monads (#,) which
prove easier to manipulate.

9. Conclusions and future work

We prove normalization for MTT (Theorem 6.4) and thereby reduce the decidability of
conversion and type checking to the decidability of equality of the underlying mode theory
(Corollaries 6.6 and 6.7). In addition, we deduce a number of corollaries from normalization
itself, including the injectivity of type constructors and canonicity (Corollaries 6.10 and
6.11).

By working constructively, we have obtained an effective procedure for normalization.
This, along with our results on type checking, open the door to a theoretically-sound
implementation of MTT generic in the mode theory. In the future, we intend to develop a
bidirectional syntax for MTT and implement it. Stassen et al. [SGB22] have made promising
initial steps in this direction for poset-enriched mode theories.

Acknowledgments

I am thankful for discussions with Carlo Angiuli, Martin Bidlingmaier, Lars Birkedal, Thierry
Coquand, Alex Kavvos, Christian Sattler, and Jonathan Sterling. The author was supported
in part by a Villum Investigator grant (no. 25804), Center for Basic Research in Program
Verification (CPV), from the VILLUM Foundation.

References

[Abe13] Andreas Abel. Normalization by Evaluation: Dependent Types and Impredicativity. Habilitation,
2013.

[AGV72] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Théorie des topos et cohomologie
étale des schémas. Springer-Verlag, 1972. Séminaire de Géométrie Algébrique du Bois-Marie
1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier. Avec la collaboration
de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269, 270, 305.

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of a
reduction free normalization proof. In David Pitt, David E. Rydeheard, and Peter Johnstone,
editors, Category Theory and Computer Science, pages 182–199. Springer Berlin Heidelberg,
1995.

[AK16] Thorsten Altenkirch and Ambrus Kaposi. Normalisation by Evaluation for Dependent Types. In
Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016), volume 52 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 6:1–6:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2016/5972, doi:
10.4230/LIPIcs.FSCD.2016.6.

[All87] Stuart Frazier Allen. A non-type-theoretic semantics for type-theoretic language. PhD thesis,
Cornell University, 1987.

[Awo18] Steve Awodey. Natural models of homotopy type theory. Mathematical Structures in Computer
Science, 28(2):241–286, 2018. arXiv:1406.3219, doi:10.1017/S0960129516000268.

[BBC+19] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and Andrea
Vezzosi. Guarded cubical type theory. Journal of Automated Reasoning, (63):211–253, 2019.

http://drops.dagstuhl.de/opus/volltexte/2016/5972
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
http://arxiv.org/abs/1406.3219
https://doi.org/10.1017/S0960129516000268

38 NORMALIZATION FOR MULTIMODAL TYPE THEORY

[BCM+20] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts,
and Bas Spitters. Modal dependent type theory and dependent right adjoints. Mathemati-
cal Structures in Computer Science, 30(2):118–138, 2020. arXiv:1804.05236, doi:10.1017/

S0960129519000197.
[BKS21] Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. Induction principles for type theories,

internally to presheaf categories, 2021. arXiv:2102.11649.
[CJ95] Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and artin

glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995. doi:10.1017/

S0960129500001183.
[Clo18] Ranald Clouston. Fitch-Style Modal Lambda Calculi. In Christel Baier and Ugo Dal Lago,

editors, Foundations of Software Science and Computation Structures, pages 258–275. Springer
International Publishing, 2018.

[Coq19] Thierry Coquand. Canonicity and normalization for dependent type theory. Theoretical Computer
Science, 777:184–191, 2019. doi:10.1016/j.tcs.2019.01.015.

[Fio02] Marcelo Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus. In
Proceedings of the 4th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, PPDP ’02, pages 26–37. ACM, 2002. doi:10.1145/571157.571161.

[GB22] Daniel Gratzer and Lars Birkedal. A Stratified Approach to Löb Induction. In Amy P. Felty, editor,
7th International Conference on Formal Structures for Computation and Deduction (FSCD
2022), volume 228 of Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1–23:22,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https:
//drops.dagstuhl.de/opus/volltexte/2022/16304, doi:10.4230/LIPIcs.FSCD.2022.23.

[GKNB20a] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal dependent type
theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’20. ACM, 2020. doi:10.1145/3373718.3394736.

[GKNB20b] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. Type theory à la mode,
2020. Technical Report for the LICS paper ”Multimodal Dependent Type Theory”. URL:
https://jozefg.github.io/papers/type-theory-a-la-mode.pdf.

[GKNB21] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal Dependent
Type Theory. Logical Methods in Computer Science, Volume 17, Issue 3, July 2021. URL:
https://lmcs.episciences.org/7713, doi:10.46298/lmcs-17(3:11)2021.

[GS20] Daniel Gratzer and Jonathan Sterling. Syntactic categories for dependent type theory: sketching
and adequacy, 2020. arXiv:2012.10783.

[GSB19a] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Implementing a Modal Dependent Type
Theory. Proc. ACM Program. Lang., 3, 2019. doi:10.1145/3341711.

[GSB19b] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Normalization-by-
evaluation for modal dependent type theory, 2019. Technical Report for the
ICFP paper by the same name. URL: https://jozefg.github.io/papers/

2019-implementing-modal-dependent-type-theory-tech-report.pdf.
[GSS22] Daniel Gratzer, Michael Shulman, and Jonathan Sterling. Strict universes for grothendieck topoi,

2022. URL: https://arxiv.org/abs/2202.12012.
[Hof97] Martin Hofmann. Syntax and Semantics of Dependent Types. In Andrew M. Pitts and

P. Dybjer, editors, Semantics and Logics of Computation, pages 79–130. Cambridge Uni-
versity Press, 1997. URL: https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/
syntaxandsemanticsof-dependenttypes.pdf, doi:10.1017/CBO9780511526619.004.

[Hof99] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Proceedings of the 14th
Annual IEEE Symposium on Logic in Computer Science, LICS ’99, pages 204–. IEEE Computer
Society, 1999. URL: http://dl.acm.org/citation.cfm?id=788021.788940.

[HP22] Jason Z.S. Hu and Brigitte Pientka. A categorical normalization proof for the modal lambda-
calculus. volume Proceedings of the 38th International Conference on Mathematical Foundations
of Programming Semantics (MFPS’22), 2022.

[HS97] Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes. Unpublished note, 1997.
URL: https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf.

http://arxiv.org/abs/1804.05236
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1017/S0960129519000197
http://arxiv.org/abs/2102.11649
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1145/571157.571161
https://drops.dagstuhl.de/opus/volltexte/2022/16304
https://drops.dagstuhl.de/opus/volltexte/2022/16304
https://doi.org/10.4230/LIPIcs.FSCD.2022.23
https://doi.org/10.1145/3373718.3394736
https://jozefg.github.io/papers/type-theory-a-la-mode.pdf
https://lmcs.episciences.org/7713
https://doi.org/10.46298/lmcs-17(3:11)2021
http://arxiv.org/abs/2012.10783
https://doi.org/10.1145/3341711
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://arxiv.org/abs/2202.12012
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://doi.org/10.1017/CBO9780511526619.004
http://dl.acm.org/citation.cfm?id=788021.788940
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf

NORMALIZATION FOR MULTIMODAL TYPE THEORY 39

[KHS19] Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for type theory. In Herman Geuvers,
editor, Proceedings of the 4th International Conference on Formal Structures for Computation
and Deduction (FSCD 2019), volume 131, 2019.

[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, January 2019. doi:10.1145/
3290315.

[KPT99] Yoshiki Kinoshita, John Power, and Makoto Takeyama. Sketches. Journal of Pure and Applied
Algebra, 143(1):275–291, 1999. doi:10.1016/S0022-4049(98)00114-5.

[LSR17] Daniel R. Licata, Michael Shulman, and Mitchell Riley. A Fibrational Framework for Sub-
structural and Modal Logics. In Dale Miller, editor, 2nd International Conference on Formal
Structures for Computation and Deduction (FSCD 2017), volume 84 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1–25:22. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017. doi:10.4230/LIPIcs.FSCD.2017.25.

[ML92] Per Martin-Löf. Substitution calculus, 1992. Notes from a lecture given in Göteborg.
[MS93] John C. Mitchell and Andre Scedrov. Notes on sconing and relators. In E. Börger, G. Jäger,

H. Kleine Büning, S. Martini, and M. M. Richter, editors, Computer Science Logic, pages
352–378. Springer Berlin Heidelberg, 1993. doi:10.1007/3-540-56992-8_21.

[OP18] Ian Orton and Andrew M. Pitts. Axioms for Modelling Cubical Type Theory in a Topos. Logical
Methods in Computer Science, 14(4), 2018. arXiv:1712.04864, doi:10.23638/LMCS-14(4:23)
2018.

[Red20] The RedPRL Development Team. cooltt, 2020. URL: http://www.github.com/RedPRL/cooltt.
[RSS20] Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical

Methods in Computer Science, 16(1), 2020. arXiv:1706.07526.
[SA21] Jonathan Sterling and Carlo Angiuli. Normalization for cubical type theory. In Proceedings of

the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’21, New York,
NY, USA, 2021. ACM.

[SGB22] Philipp Stassen, Daniel Gratzer, and Lars Birkedal. A flexible multimodal proof assistant. In
Workshop on the Implementation of Type Systems, 2022.

[SH21] Jonathan Sterling and Robert Harper. Logical relations as types: Proof-relevant parametricity
for program modules. 68(6), 2021. arXiv:2010.08599, doi:10.1145/3474834.

[SH22] Jonathan Sterling and Robert Harper. Sheaf semantics of termination-insensitive noninterference.
In Amy P. Felty, editor, 7th International Conference on Formal Structures for Computation
and Deduction (FSCD 2022), volume 228 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 5:1–5:19, Dagstuhl, Germany, August 2022. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. arXiv:2204.09421, doi:10.4230/LIPIcs.FSCD.2022.5.

[Shu15] Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathemati-
cal Structures in Computer Science, 25(5):1203–1277, 2015. arXiv:1203.3253, doi:10.1017/
S0960129514000565.

[Shu18] Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. Mathe-
matical Structures in Computer Science, 28(6):856–941, 2018. doi:10.1017/S0960129517000147.

[Ste21] Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory of
Cubical Type Theory. PhD thesis, 2021. CMU technical report CMU-CS-21-142. doi:10.5281/
zenodo.5709838.

[Str98] Thomas Streicher. Categorical intuitions underlying semantic normalisation proofs. In O. Danvy
and P. Dybjer, editors, Preliminary Proceedings of the APPSEM Workshop on Normalisation
by Evaluation. Department of Computer Science, Aarhus University, 1998.

[Tai67] W. W. Tait. Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic
Logic, 32(2):198–212, 1967. doi:10.2307/2271658.

[Uem19] Taichi Uemura. A general framework for the semantics of type theory. 04 2019. URL: https:
//arxiv.org/abs/1904.04097, arXiv:1904.04097.

[WCPW04] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical
framework: The propositional fragment. In Stefano Berardi, Mario Coppo, and Ferruccio
Damiani, editors, Types for Proofs and Programs, pages 355–377, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-24849-1_23.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1016/S0022-4049(98)00114-5
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1007/3-540-56992-8_21
http://arxiv.org/abs/1712.04864
https://doi.org/10.23638/LMCS-14(4:23)2018
https://doi.org/10.23638/LMCS-14(4:23)2018
http://www.github.com/RedPRL/cooltt
http://arxiv.org/abs/1706.07526
http://arxiv.org/abs/2010.08599
https://doi.org/10.1145/3474834
http://arxiv.org/abs/2204.09421
https://doi.org/10.4230/LIPIcs.FSCD.2022.5
http://arxiv.org/abs/1203.3253
https://doi.org/10.1017/S0960129514000565
https://doi.org/10.1017/S0960129514000565
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.5281/zenodo.5709838
https://doi.org/10.5281/zenodo.5709838
https://doi.org/10.2307/2271658
https://arxiv.org/abs/1904.04097
https://arxiv.org/abs/1904.04097
http://arxiv.org/abs/1904.04097
https://doi.org/10.1007/978-3-540-24849-1_23

	1. Introduction
	2. A primer on MTT
	3. Models and cosmoi
	4. Multimodal Synthetic Tait computability
	5. The normalization cosmos
	6. The normalization algorithm
	7. Extending MTT with crisp identity induction
	8. Related work
	9. Conclusions and future work
	Acknowledgments
	References

