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CYCLIC IMPLICIT COMPLEXITY

GIANLUCA CURZI∗ AND ANUPAM DAS∗

Abstract. Circular (or cyclic) proofs have received increasing attention in
recent years, and have been proposed as an alternative setting for studying
(co)inductive reasoning. In particular, now several type systems based on
circular reasoning have been proposed. However, little is known about the
complexity theoretic aspects of circular proofs, which exhibit sophisticated
loop structures atypical of more common ‘recursion schemes’. This paper at-
tempts to bridge the gap between circular proofs and implicit computational
complexity. Namely we introduce a circular proof system based on the Bellan-
toni and Cook’s famous safe-normal function algebra, and we identify suitable
proof theoretical constraints to characterise the polynomial-time and elemen-
tary computable functions.

1. Introduction

Formal proofs are traditionally seen as finite mathematical objects modelling
logical or mathematical reasoning. Non-wellfounded (but finitely branching) proofs
represent a generalization of the notion of formal proof to an infinitary setting. In
non-wellfounded proof theory, special attention is devoted to regular (or circular)
proofs, i.e. those non-wellfounded proofs having only finitely many distinct sub-
proofs. Regular proofs can be turned into finite structures called cycle normal
forms, usually given as finite trees with additional ‘backpointers’. However, regular
proofs admit fallacious reasoning. To recover consistency, a standard solution is
based on the introduction of non-local correctness criteria, e.g. progressiveness,
typically checked by Büchi automata on infinite words.

Regular proofs, and their corresponding cycle normal forms, have been employed
to reason about modal µ-calculus and fixed-point logics [NW96, DHL06b], induction
and coinduction [BS11], Kleene algebra [DP17, DP18], linear logic [BDS16], arith-
metic [Das18], system T [KPP21a, Das21], and continuous cut-elimination [Min78,
FS13]. In particular, [KPP21a] and [Das21] investigate the computational aspects of
regular proofs. Due to their coinductive nature, non-wellfounded proofs are able to
define any number-theoretic (partial) function. Definability can be then restricted
by combining regularity and progressiveness: the former rules out uncomputable
functions, while the latter recovers termination.

Little is known, however, about the complexity-theoretic aspects of regular
proofs. Kuperberg, Pinault and Pous [KPP19] introduced a circular proof system
based on Kleene algebras and seen as a computational machinery for recognising
languages. The system and its affine version capture, respectively, the regular lan-
guages and the languages accepted in logarithmic time by random-access Turing
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2 CYCLIC IMPLICIT COMPLEXITY

machines. Their work does not consider the cut rule, which allows for a proof-
theoretical description of function composition and is the key ingredient to express
recursion in a cyclic-theoretic setting.

The present paper aims at bridging the gap between regular proofs and Implicit
Computational Complexity (ICC), a branch of computational complexity study-
ing machine-free languages and calculi able to capture a given complexity class
without relying on explicit resource bounds. Our starting point is Bellantoni and
Cook’s function algebra B characterising the polynomial time computable functions
(FPTIME) using safe recursion. Functions of B have shape f(x1, ..., xn; y1, ..., ym),
where the semicolon separates the normal arguments x1, ..., xn from the safe ar-
guments y1, ..., ym. The idea behind safe recursion is that only normal arguments
can be used as recursive parameters, while recursive calls can only appear in safe
position. This prevents recursive calls becoming recursive parameters of other pre-
viously defined functions. In the spirit of the Curry-Howard paradigm, which iden-
tifies proofs and programs, B can be alternatively designed as a sequent calculus
proof-system where safe recursion is introduced by a specific inference rule srec.
In this system, a two-sorted function f(x1, ..., xn; y1, ..., ym) is represented by a
derivation of the sequent �N, n. . .,�N,N, m. . ., N ⇒ N where N is the ground type
for natural numbers and �N is its modal version.

Starting from B we shall consider the non-wellfounded proofs, or coderivations,
generated by the rules of the subsystem B− := B \ srec. The circular proof system
CNB is then obtained by considering the regular and progressing coderivations of
B− which satisfy a further criterion, called safety. On the one hand, regularity and
progressiveness ensure that coderivations of CNB define total computable functions;
on the other hand, the latter criterion ensures that the recursion mechanisms defined
in this infinitary setting are safe, i.e. the recursive call of a function is never the
recursive parameter of the step function.

Despite CNB having only ground types, it is able to define safe recursion schemes
that nest recursive calls, a property that typically arises in higher-order recur-
sion. This is in fact a peculiar feature of regular proofs extensively studied by Das
in [Das21], who has shown that the number-theoretic functions definable by type
level n proofs of a circular version of system T are exactly those ones definable by
type level n+ 1 proofs of T.

In the setting of ICC, Hofmann [Hof97] and Leivant [Lei99] observed that the ca-
pability of nesting recursive calls by higher-order safe recursion mechanisms can be
used to characterise the elementary time functions (FELEMENTARY). In par-
ticular, in [Hof97] Hofmann presents the type system SLR (Safe Linear Recursion)
as a higher-order version of B. This system has been shown to capture FPTIME

once a linearity restriction on the higher-order ‘safe’ recursion operator is imposed,
which prevents duplication of the recursive calls, and hence their nesting.

Following [Hof97], we introduce a linearity requirement for CNB that is able to
control the interplay between loops and the cut rule, called left-leaning criterion.
The resulting circular proof system is called CB. Intuitively, CB can be seen as
a circular version of B, while CNB can be seen as the circular version of a new
function algebra, called NB, which generalises B by permitting nested versions of
the safe recursion scheme. In particular, in order to define the nesting of recursive
calls, the function algebra for CNB crucially requires the introduction of ‘auxiliary
functions’, i.e. oracles.
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FELEMENTARY

NB CNB NB⊂

B CB B⊂

FPTIME

Theorem 45

Theorem 52

Theorem 47

Lemma 57

Theorem 49

[BC92]

Lemma 57

Theorem 45

Figure 1. Summary of the main results of the paper, where →
indicates an inclusion (⊆) of function classes.

The main results of our paper are the following:

• a function is definable in CNB iff it is NB iff it is in FELEMENTARY;
• a function is definable in CB iff it is in FPTIME;

First, we define the function algebrasNB⊂ and B⊂, respectively obtained by extend-
ing NB and B with a safe recursion mechanism based on permutation of prefixes.
Then we show that NB and NB⊂ capture precisely the elementary time computable
functions, while B⊂ captures the polytime ones. Completeness for CNB can be
achieved by showing how to represent the functions of NB. In a similar way, we
represent the functions of B in CB. Soundness is subtler, as it relies on a translation
of coderivations of CNB and CB, which are essentially coinductive objects, into the
inductively defined functions of NB⊂ and B⊂, respectively.

Overview of results. The paper is structured as follows. Section 2 discusses B as
a proof system. In Section 3 we present the non-wellfounded proof system B− and
its semantics. We then analyse some proof-theoretical conditions able to restrict
the set of definable functions of B−. This leads us to the circular proof systems
CNB and CB. In Section 4 we present the function algebras NB, B⊂ and NB⊂,
which implement various safe recursion schemes. Section 5 shows that B⊂ captures
FPTIME (Corollary 46) and that both NB and NB⊂ capture FELEMENTARY

(Corollary 48). These results require a Bounding Lemma (Lemma 43) and the
encoding of the elementary time functions into NB (Theorem 47). In Section 6
we show that any function definable in B is also definable in CB (Theorem 49),
and that any function definable in NB is also definable in CNB (Theorem 52). In
Section 7 we present a translation of CNB into NB⊂ that maps CB coderivations
into B⊂ functions (Lemma 57).

The main results of this section are displayed in Figure 1. Many proofs are
reported in the appendices.

2. Preliminaries: two-tiered ‘safe-normal’ function algebras

Bellantoni and Cook introduced in [BC92] an algebra of functions based on a
simple two-sorted structure. This idea was itself inspired by Leivant’s impredicative
characterisations, one of the founding works in Implicit Computational Complexity
(ICC) [Lei91]. The resulting ‘tiering’ of the underlying sorts has been a recurring
theme in the ICC literature since, and so it is this structure that shall form the
basis of the systems we consider in this work.
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We consider functions on the natural numbers with inputs distinguished into
two sorts: ‘safe’ and ‘normal’. We shall write functions explicitly indicating inputs,
namely writing f(x1, . . . , xm; y1, . . . , yn) when f takes m normal inputs ~x and n
safe inputs ~y. Both sorts vary over the natural numbers, but their roles will be
distinguished by the closure operations of the algebras and rules of the systems we
consider.

Throughout this work, we write |x| for the length of x (in binary notation), and
if ~x = x1, . . . , xm we write |~x| for the list |x1|, . . . , |xm|.

2.1. Bellantoni and Cook’s characterisation of polynomial-time functions.

Let us first recall Bellantoni and Cook’s algebra in its original guise.

Definition 1 (Bellantoni-Cook algebra). B is the smallest class of (two-sorted)
functions containing,

• 0(; ) := 0 ∈ N.
• πm;n

j; (x1, . . . , xm; y1, . . . , yn) := xj , whenever 1 ≤ j ≤ m.

• πm;n
;j (x1, . . . , xm; y1, . . . , yn) := yj, whenever 1 ≤ j ≤ n.

• si(;x) := 2x+ i, for i ∈ {0, 1}.
• p(;x) := ⌊x/2⌋.

• cond(;w, x, y, z) :=











x w = 0

y w = 0 mod 2, w 6= 0

z w = 1 mod 2

and closed under the following:

• (Safe composition)
– If f(~x, x; ~y) ∈ B and g(~x; ) ∈ B then f(~x, g(~x; ); ~y) ∈ B.
– If f(~x; ~y, y) ∈ B and g(~x; ~y) ∈ B then f(~x; ~y, g(~x; ~y)) ∈ B.

• (Safe recursion on notation)1 If g(~x; ~y) ∈ B and hi(x, ~x; ~y, y) ∈ B for i = 0, 1
then so is f(x, ~x; ~y) given by:

f(0, ~x; ~y) := g(~x; ~y)
f(s0x, ~x; ~y) := h0(x, ~x; ~y, f(x, ~x; ~y)) if x 6= 0
f(s1x, ~x; ~y) := h1(x, ~x; ~y, f(x, ~x; ~y))

Intuitively, in a function f(~x; ~y) ∈ B only the normal arguments ~x can be used as
recursive parameters. The idea behind safe recursion is that recursive calls can only
appear in safe position, and hence they can never be used as recursive parameters
of other previously defined functions. Safe composition preserves the distinction
between normal and safe arguments by requiring that, when composing along a
normal parameter, the pre-composing function has no safe parameter at all. As a
result, we can move a normal parameter to a safe position but not vice versa.

Writing FPTIME for the class of functions computable in polynomial-time, the
main result of Bellantoni and Cook is:

Theorem 2 ([BC92]). f(~x; ) ∈ B if and only if f(~x) ∈ FPTIME.

1This was originally called ‘predicative recursion on notation’ by Bellantoni and Cook in
[BC92], in reference to Parsons’ predicative higher-order characterisation of the primitive recursive
functions (à la Kleene).
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id

N ⇒ N

Γ ⇒ B
wN

Γ, N ⇒ B

Γ ⇒ B
w�

�N,Γ ⇒ B

Γ, A,B,Γ′ ⇒ C
e

Γ, B,A,Γ′ ⇒ C

Γ, N ⇒ A
�l

�N,Γ ⇒ A

�Γ ⇒ N
�r

�Γ ⇒ �N
0
⇒ N

Γ ⇒ A
s0
Γ ⇒ A

Γ ⇒ A
s1
Γ ⇒ A

Γ ⇒ N Γ, N ⇒ B
cutN

Γ ⇒ B

Γ ⇒ �N �N,Γ ⇒ B
cut�

Γ ⇒ B

Γ ⇒ N Γ, N ⇒ N Γ, N ⇒ N
condN

Γ, N ⇒ N

Γ ⇒ N �N,Γ ⇒ N �N,Γ ⇒ N
cond�

�N,Γ ⇒ N

Γ ⇒ N �N,Γ, N ⇒ N �N,Γ, N ⇒ N
srec

�N,Γ ⇒ N

Figure 2. System B, as a sequent-style type system.

2.2. A type theoretic presentation of Bellantoni-Cook. In this section we
recall a well-known formulation of Bellantoni and Cook’s algebra as a type system
with modalities to distinguish the two sorts (cf., e.g., [Hof97]). In order to facili-
tate the definition of the circular system that we present later, we here work with
sequent-style typing derivations.

We only consider types (or formulas) N and �N which intuitively vary over the
natural numbers (we will give a formal semantics soon). We use A,B, etc. to vary
over types. A sequent is an expression Γ ⇒ A, where Γ is a list of types (called the
context or antecedent) and A is a type (called the succedent). For a list of types
Γ = N, k. . ., N , we write �Γ for �N, k. . .,�N .

In what follows, we shall essentially identify B with the S4-style type system
in Figure 2. The colouring of type occurrences may be ignored for now, they will
become relevant in the next section. Derivations in this system are simply called B-
derivations, and will be denoted D, E , . . ., and we write D : Γ ⇒ A if the derivation
D has end-sequent is Γ ⇒ A.

Convention 3 (Left normal, right safe). In what follows, we shall always assume
that sequents have the form �N, . . .,�N,N, . . ., N ⇒ A, i.e. in the LHS all �N oc-
currences are placed before allN occurrences. Note that this invariant is maintained
by the typing rules of Figure 2, as long as we insist that A = B in the exchange
rule e. This effectively means that exchange steps have one of the following two
forms:

Γ, N,N, ~N ′ ⇒ A
eN

Γ, N,N, ~N ′ ⇒ A

� ~N,�N,�N,Γ′ ⇒ A
e�

� ~N,�N,�N,Γ′ ⇒ A

Let us point out that this convention does not change the class of definable func-
tions, under the semantics we are about to give, as we are about to define, up to
permutation of inputs.

We define this system as a class of safe-normal functions by construing each rule
as an operation on safe-normal functions and identifying the system with the class
of thus definable functions. Formally:
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Definition 4 (Semantics). Given a B-derivation D : �N, m. . .,�N,N, n. . ., N ⇒ A
we define a two-sorted function fD(x1, . . . , xm; y1, . . . , yn) by induction on the struc-
ture of D as follows:

• If D is id

N ⇒ N
then fD(; y) := y.

• If D has the form
D0

Γ ⇒ A
wN

Γ, N ⇒ A

then fD(~x; ~y, y) := fD0
(~x; ~y).

• If D is
D0

Γ ⇒ A
w�

�N,Γ ⇒ A

then fD(x, ~x; ~y) := fD0
(~x; ~y).

• If D is
D0

Γ, N,N, ~N ′ ⇒ A
eN

Γ, N,N, ~N ′ ⇒ A

then fD(~x; ~y, y, y
′, ~y′) := fD0

(~x; ~y, y′, y, ~y′).

• If D is
D0

� ~N,�N,�N,∆ ⇒ A
e�

� ~N,�N,�N,∆ ⇒ A

then fD(~x, x, x
′, ~x′; ~y) := fD0

(~x, x′, x, ~x′; ~y).

• If D is
D0

Γ, N ⇒ A
�l

�N,Γ ⇒ A

then fD(x, ~x; ~y) := fD0
(~x; ~y, x).

• If D is
D0

�Γ ⇒ N
�r

�Γ ⇒ �N

then fD(~x; ) := fD0
(~x; ).

• If D is 0
⇒ N

then fD(; ) := 0.

• If D is
D0

Γ ⇒ A
s0
Γ ⇒ A

then fD(~x; ~y) := s0(; fD0
(~x; ~y)).

• If D is
D0

Γ ⇒ A
s1
Γ ⇒ A

then fD(~x; ~y) := s1(; fD0
(~x; ~y)).
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• If D is
D0

Γ ⇒ N

D1

Γ, N ⇒ A
cutN

Γ ⇒ A

then fD(~x; ~y) := fD1
(~x; ~y, fD0

(~x; ~y)).

• If D is
D0

Γ ⇒ �N

D1

�N,Γ ⇒ A
cut�

Γ ⇒ A

then fD(~x; ~y) := fD1
(fD0

(~x; ~y), ~x; ~y).

• If D is
D0

Γ ⇒ N

D1

Γ, N ⇒ N

D2

Γ, N ⇒ N
condN

Γ, N ⇒ N

then:

fD(~x; ~y, 0) := fD0
(~x; ~y)

fD(~x; ~y, s0y) := fD1
(~x; ~y, y) if y 6= 0

fD(~x; ~y, s1y) := fD2
(~x; ~y, y)

• If D is
D0

Γ ⇒ N

D1

�N,Γ ⇒ N

D2

�N,Γ ⇒ N
cond�

�N,Γ ⇒ N

then:

fD(0, ~x; ~y) := fD0
(~x; ~y)

fD(s0x, ~x; ~y) := fD1
(x, ~x; ~y) if x 6= 0

fD(s1x, ~x; ~y) := fD2
(x, ~x; ~y)

• If D is
D0

Γ ⇒ N

D1

�N,Γ, N ⇒ N

D2

�N,Γ, N ⇒ N
srec�

�N,Γ ⇒ N

then:

fD(0, ~x; ~y) := fD0
(~x; ~y)

fD(s0x, ~x; ~y) := fD1
(x, ~x; ~y, fD(x, ~x; ~y)) if x 6= 0

fD(s1x, ~x; ~y) := fD2
(x, ~x; ~y, fD(x, ~x; ~y))

The above formal semantics exposes how B-derivations and B functions relate.
The rule srec in Figure 2 corresponds to safe recursion, and safe composition along
safe parameters is expressed by means of the rules cutN . Note, however, that
the function fD is not quite defined according to function algebra B, due to the
interpretation of the cut� rule apparently not satisfying the required constraint on
safe composition along a normal parameter. However, this admission turns out to
be harmless, as exposited in the following proposition:

Proposition 5. Given a B-derivation D : �Γ, ~N ⇒ �N , there is a B-derivation
D∗ : �Γ ⇒ �N (of smaller size) such that:

fD(~x; ~y) = fD∗(~x; ).

Proof sketch. The proof is by induction on D, using the fact that condN , cond�N

and srec�N have only non-modal succedents. �
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Our overuse of the notation B (for a function algebra and for a type system) is
now justified by the following (folklore) result.

Proposition 6. f ∈ B iff there is a B-derivation D for which fD(~x; ~y) = f(~x; ~y).

Proof sketch. The left-right implication is routine and we omit it. For the right-left
implication we proceed by induction on the structure ofD. In particular, notice that
the interpretation fD of a derivation D given in Definition 4 almost induces a bona
fide interpretation of typing derivations into the function algebra, but for the case
where the last rule of D is cut�. To handle this we appeal to Proposition 5, which

allows us to infer that, if D0 : �Γ, ~N ⇒ �N is the sub-derivation of the leftmost
premise of cut�, it can be replaced by the (smaller) subderivation D∗

0 : �Γ ⇒
�N constructed in Proposition 5. From here, the interpretation from Definition 4
induces a correct instance of safe composition along a normal parameter. �

Convention 7. Given Proposition 6 above, we shall henceforth freely write f(~x; ~y) ∈

B if there is a derivation D : �Γ, ~N ⇒ N with fD(~x; ~y) = f(~x; ~y).

3. Two-tiered circular systems on notation

In this section we introduce a ‘coinductive’ version of B, and we study global
criteria that tame its computational strength. This proof-theoretic investigation
will lead us to two relevant circular systems: CNB, which morally permits ‘nested’
versions of safe recursion, and CB, which will turn out to be closer to usual safe
recursion.

Throughout this section we shall work with the set of typing rules B− := B\srec.

3.1. Non-wellfounded typing derivations. To begin with, we define the notion
of ‘coderivation’, which is the fundamental formal object of this section.

Definition 8 (Coderivations). A (B−-)coderivation is a possibly infinite rooted
tree (of height ≤ ω) generated by the rules of B−. Formally, it is a ternary tree
D ⊆ {0, 1, 2}∗ where each node of D is labelled by an inference step from B− such

that, whenever ν ∈ D is labelled by a step
S1 · · · Sn

S
, for n ≤ 3, ν has n children

in D labelled by steps with conclusions S1, . . . , Sn respectively. Sub-coderivations
of a coderivation D rooted at position ν ∈ {0, 1, 2}∗ will be denoted Dν , so that
Dǫ = D. We write ν ⊑ µ (resp. ν ⊏ µ) if ν is a prefix (resp. a strict prefix) of µ,
and in this case we say that µ is above (resp. strictly above) ν or that ν is below
(resp. strictly below) µ. We extend this order from nodes to sequents in the obvious
way.

We say that a coderivation is regular (or circular) if it has only finitely many
distinct sub-coderivations.

If we ignore modalities, the rules of B− can be obtained by adapting to binary
notation the rules of CT0, the type level 0 fragment of CT from [Das21], which are
in turn derivable in the type level 0 fragment of C from [KPP21a]. (See Theorem 22
for further discussion on this point.)

Note that, while usual derivations may be naturally written as finite trees or
dags, regular coderivations may be naturally written as finite directed (possibly
cyclic) graphs:
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Convention 9 (Representing coderivations). Henceforth, we may mark steps by •
(or similar) in a regular coderivation to indicate roots of identical sub-coderivations.
Moreover, to avoid ambiguities and to ease parsing of (co)derivations, we shall often
underline principal formulas of a rule instance in a given coderivation and omit
instances of w� and wN as well as certain structural steps, e.g. during a cut step.

Example 10 (Regular coderivations). The coderivations I, S and C below are
regular:

id

N ⇒ N
s1
N ⇒ N

�l

�N ⇒ N
�r

�N ⇒ �N

...
cut� •

�N ⇒ N
cut� •

�N ⇒ N

0
⇒ N

id

N ⇒ N
s1
N ⇒ N

cutN
⇒ N

id

N ⇒ N
s1
N ⇒ N

�l

�N ⇒ N

...
cond� •

�N ⇒ N

id

N ⇒ N
s0
N ⇒ N

cutN
�N ⇒ N

cond� •
�N ⇒ N

id

N ⇒ N

...
cond� ◦

�N,N ⇒ N
si i=0,1
�N,N ⇒ N

cond� ◦
�N,N ⇒ N

...
cond� •

�N,�N,N ⇒ N
si i=0,1
�N,�N,N ⇒ N

cond� •
�N,�N,N ⇒ N

As discussed in [Das21], and implicitly stated in [KPP21a], coderivations can
be identified with Kleene-Herbrand-Gödel style equational programs, in general
computing partial recursive functionals (see, e.g., [Kle71, §63] for further details).
We shall specialise this idea to our two-sorted setting.

Definition 11 (Semantics of coderivations). To each B−-coderivation D we asso-
ciate a ‘two-sorted’ Kleene-Herbrand-Gödel partial function fD obtained by con-
struing the semantics of Definition 4 as a (possibly infinite) equational program.

Given a two-sorted function f(~x; ~y), we say that f is defined by a B−-coderivation
D (or even, is B−-codefinable) if fD(~x; ~y) = f(~x; ~y).

Note, in particular, that from a regular coderivation D we obtain a finite equa-
tional program determining fD. Of course, our overuse of the notation fD is sug-
gestive since it is consistent with that of Definition 4.

Example 12 (Regular coderivations, revisited). Let us consider the semantics of
the coderivations I, S and C from Example 10.
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• The partial functions fIν are given by the following equational program:

fIǫ
(x; ) = fI1

(fI0
(x; ); )

fI0
(x; ) = fI00

(x; )
fI00

(x; ) = fI000
(;x)

fI000
(;x) = s1(;x)

fI1
(x; ) = fIǫ

(x; )

By purely equational reasoning, we can simplify this program to obtain:

fIǫ
(x; ) = fIǫ

(s1x; )

Since the above equational program keeps increasing the input, the function
fI = fIǫ

is always undefined.
• The equational program associated with the coderivation S is as follows:

fSǫ
(0; ) = fS0

(; )
fSǫ

(s0x; ) = fS1
(x; )

fSǫ
(s1x; ) = fS2

(x; )
fS0

(; ) = s10
fS1

(x; ) = s1x
fS2

(x; ) = fS21
(fS20

(x; ); )
fS20

(x; ) = fSǫ
(x; )

fS21
(x; ) = fS210

(;x)
fS210

(;x) = s0(;x)

By equational reasoning again we obtain:

fSǫ
(0; ) = s10

fSǫ
(s0x; ) = s1x x 6= 0

fSǫ
(s1x; ) = s0fSǫ

(x; )

Note, therefore, that the function fS = fSǫ
computes the unary successor

function x 7→ x+ 1.
• Last, the equational program of C can be written as:

fCǫ
(0, 0; z) = z

fCǫ
(0, siy; z) = sifCǫ

(x, y; z) 6= 0
fCǫ

(six, y; z) = sifCǫ
(x, y; z) 6= 0

which computes concatenation of the binary representation of three natural
numbers.

Despite regular coderivations being finitely presentable, they may introduce func-
tions that are undefined for some arguments, as shown in the above example. We
shall adapt to our setting a well-known ‘termination criterion’ from non-wellfounded
proof theory able to identify certain coderivations (even the non-regular ones) that
define total functions. First, let us recall some standard proof theoretic concepts
about (co)derivations, similar to those occurring in [Das21, KPP21b].

Definition 13 (Ancestry). Fix a coderivation D. We say that a type occurrence A
is an immediate ancestor of a type occurrence B in D if they are types in a premiss
and conclusion (respectively) of an inference step and, as typeset in Figure 2, have
the same colour. If A and B are in some Γ or Γ′, then we furthermore insist that
they are in the same position in the list.
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Being a binary relation, immediate ancestry forms a directed graph upon which
our correctness criterion is built.

Definition 14 (Progressing coderivations). A thread is a maximal path in the
graph of immediate ancestry. We say that a (infinite) thread is progressing if it is
eventually constant �N and infinitely often principal for a cond�N rule.

A coderivation is progressing if each of its infinite branches is progressing.

Example 15 (Regular coderivations re-revisited). In Example 10, both I and S
have precisely one infinite branch (that loops on •). The former is not progressing
because the infinite branch contains no instances of cond� at all. By contrast, S is
progressing, since the infinite branch has a progressing thread on the blue formulas
�N indicated there. Last, C has two simple loops, one on • and the other one on
◦. For any infinite branch B we have two cases:

• if B crosses the bottommost conditional infinitely many times, it contains
a progressing blue thread;

• otherwise, B crosses the topmost conditional infinitely many times, so that
it contains a progressing red thread.

Therefore, C is progressing.

As shown in previous works (see e.g. [Das21] and [KPP21a]), the progressing
criterion is sufficient to guarantee that the partial function computed is, in fact, a
well-defined total function:

Proposition 16 (Totality). If D is progressing then fD is total.

Proof sketch. We proceed by contradiction. If fD is non-total then, since each rule
preserves totality, we must have that fD′ is non-total for one of D’s immediate
sub-coderivations D′. Continuing this reasoning we can build an infinite ‘non-total’
branch B = (Di)i<ω . Let (�N i)i≥k be a progressing thread along B, and assign

to each �N i the least natural number ni ∈ N such that fDi is non-total when ni is
assigned to the type occurrence �N i.

Now, notice that:

• (ni)i≥k is monotone non-increasing, by inspection of the rules and their
interpretations from Definition 4.

• (ni)i≥k does not converge, since (�N i)i≥k is progressing and so is infinitely
often principal for cond�, where the value of ni must strictly decrease (cf.,
again, Definition 4).

This contradicts the well-ordering property of the natural numbers. �

One of the most appealing features of the progressing criterion is that, while
being rather expressive and admitting many natural programs, e.g. as we will see
in the next subsections, it remains effective (for regular coderivations) thanks to
well known arguments in automaton theory:

Fact 17 (Folklore). It is decidable whether a regular coderivation is progressing.

This well-known result (see, e.g., [DHL06a] for an exposition for a similar circular
system) follows from the fact that the progressing criterion is equivalent to the
universality of a Büchi automaton of size determined by the (finite) representation
of the input coderivation. This problem is decidable in polynomial space, though
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the correctness of this algorithm requires nontrivial infinitary combinatorics, as
formally demonstrated in [KMPS19].

Let us finally observe that the progressiveness condition turns out to be sufficient
to restate Proposition 5 in a non-wellfounded setting:

Proposition 18. Given a progressing B−-coderivation D : �Γ, ~N ⇒ �N , there is
a progressing B−-coderivation D∗ : �Γ ⇒ �N such that:

fD(~x; ~y) = fD∗(~x; ).

Proof. By progressiveness, any infinite branch contains a cond�-step, which has
non-modal succedent. Since the conclusion has a modal succedent, by inspection
on the rules of B− we conclude that each infinite branch contains an instance of
�r. Hence, the set of the conclusions of such �r-steps forms a bar across D. By
applying weak König Lemma, the set of all nodes of D below this bar, say XD,
is finite. The proof is by induction on the cardinality of XD and is analogous
to Proposition 5. �

Note that the above proof uniquely depends on progressiveness, and so it holds
for non-regular progressing B−-coderivations as well.

3.2. Computational strength of coderivations. The sequent calculus system B

(Figure 2) is a S4-style modal calculus transplanting Bellantoni and Cook’s function
algebra into a proof-theoretical setting (as in [Hof97]). In particular, B-derivations
locally introduce safe recursion by means of the rule srec, and Proposition 5 ensures
that the composition schemes defined by the cut rules are safe. A different situation
arises when we move from B-derivations to B−-coderivations: non-wellfoundedness
can actually be used to circumvent the normal/safe distinction and subsume more
complex recursion mechanisms. The following example illustrates the problem.

Example 19 (Non-safety in regular progressing coderivations). Let g(~x; ~y) and
hi(x, ~x, z; ~y) with i = 0, 1 be functions definable by some (regular and progressing)
B−-coderivations G and Hi, respectively. Then the following non-safe recursion
scheme,

(1)
f(0, ~x; ) = g(~x; )

f(six, ~x; ) = hi(x, ~x, f(x, ~x; ); )

can be defined by the following (regular and progressing) B−-coderivation:

G

� ~N ⇒ N

...
cond� •

�N,� ~N ⇒ N
�r

�N,� ~N ⇒ �N

Hi

�N,� ~N,�N ⇒ N
cut� i=0,1

�N,� ~N ⇒ N
cond� •

�N,� ~N ⇒ N

Note in particular that we can use the scheme in Equation (1) to define all primitive
recursive functions.

We can go further and show that, without restrictions on progressing coderiva-
tions, the distinction between modal and non-modal inputs becomes redundant:
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Proposition 20. For any coderivation D : �N, n. . .,�N,N, m. . ., N ⇒ N of B−

there is a coderivation D� : �N, n+m. . . ,�N ⇒ N such that:

• fD(~x; ~y) = fD�(~x, ~y; );
• D� does not contain instances of wN , eN , cutN , condN .

Moreover, D� is regular (resp. progressing) if D is.

Proof. We construct D� coinductively. The only interesting cases are when D is id
or it is obtained from D0 : Γ ⇒ N and D1 : Γ, N ⇒ A by applying a cutN -step.
Then, D� is constructed, respectively, as follows:

id

N ⇒ N
�l

�N ⇒ N

D�
0

�Γ ⇒ N
�r

�Γ ⇒ �N

D�
1

�Γ, N ⇒ N
�l

�Γ,�N ⇒ N
cut�N

�Γ ⇒ N

�

As we shall see in the next subsections, the above issues can be avoided by
imposing a further global criterion to recover safe recursion in a non-wellfounded
setting. On the other hand, Proposition 20 turns out to be particularly useful
to illustrate how regularity and progressiveness affect the class of B−-definable
functions. Indeed, thanks to the above proposition, we can recast several of the
computational results present in the (type 0) systems from [Das21, KPP21b]:

Proposition 21. We have the following:

(1) If f(~x) is primitive recursive then f(~x; ) is defined by a regular and pro-
gressing B−-coderivation.

(2) The class of regular B−-coderivations is Turing-complete, i.e. they define
every partial recursive function.

(3) Any function f(~x; ) is defined by a progressing B−-coderivation.

Self-contained demonstrations of these points can be found in Appendix B.1.

In light of the proposition above, it is natural to wonder at this point precisely
what class of functions is defined by the regular progressingB−-coderivations. Inter-
estingly [KPP21b] show that, in the absence of contraction rules, only the primitive
recursive funtions are so definable (even at all finite types). It is tempting, there-
fore, to conjecture that the regular and progressing B−-coderivations define just
the primitive recursive functions.

However there is a crucial difference between our formulation of cut and that in
[KPP21b], namely that ours is context-sharing and theirs is context-splitting. Thus
the former admits a quite controlled form of contraction that, perhaps surprisingly,
is enough to simulate the type 0 fragment CT0 from [Das21] (which has explicit
contraction):

Theorem 22. f(~x; ) is defined by a regular progressing B−-coderivation if and only
if f(~x) is type-1-primitive-recursive, i.e. it is in the fragment T1 of Gödel’s T with
recursion only at type 1.

The proof of this result is somewhat technical, relying on some results from
[Das21], and is somewhat orthogonal to the focus of this paper, so is devolved to
Appendix B.2.
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Note however that, given the computationally equivalent system CT0 with con-
traction from [Das21], we can view the above result as a sort of ‘contraction admis-
sibility’ for regular progressing B−-coderivations. Let us take a moment to make
this formal.

Call B− + {cN , c�N} the extension of B− with the rules cN and c�N below:

(2)
Γ, N,N ⇒ B

cN
Γ, N ⇒ B

Γ,�N,�N ⇒ B
c�

Γ,�N ⇒ B

where the semantics for the new system extends the one for B− in the obvious way,
and the notion of (progressing) thread is induced by the given colouring.2 We have:

Corollary 23. f(~x; ) is definable by a regular progressing B−+{cN , c�N}-coderivation
iff it is definable by a regular progressing B−-coderivation.

Proof idea. The former system is equivalent to CT0 from [Das21], whose type 1
functions are just those of T1 by [Das21, Corollary 80], which are all defined by
regular progressing B−-coderivations by Theorem 22 above. �

Remark 24. The reader may at this point wonder if a direct ‘contraction-admissibility’
argument exists for the rules in (2). First, notice that cN can be derived in B−:

id

N ⇒ N
wN

Γ, N ⇒ N Γ, N,N ⇒ B
cutN

Γ, N ⇒ B

While a similar derivation exists for c�, note that this crucially does not preserve
the same notion of thread (cf. colours above) and so does not, a priori, preserve
progressiveness.

3.3. Proof-level conditions motivated by implicit complexity. Example 19
from the previous subsection motivates the introduction of a further criterion on
B−-coderivations to rule out recursion schemes that are ‘not safe’. To this end we
propose the following simple criterion:

Definition 25 (Safety). A B−-coderivation is safe if each infinite branch crosses
only finitely many cut�-steps.

Example 26. The coderivation I in Example 10 is not safe, as there is an instance
of cut� in the loop on •, which means that there is an infinite branch crossing
infinitely many cut�-steps. By contrast, using the same reasoning, we can infer
that the coderivations S and C are safe.

By inspecting the coderivation of Example 19, we notice that the infinite branch
that loops on • contains infinitely many cut� steps, so that it does not respect the
above safety condition. Perhaps surprisingly, however, the safety condition is not
enough to restrict the set of B−-definable functions to the polytime computable
ones, as the following example shows.

2Note that the totality argument of Proposition 16 still applies in the presence of these rules,
cf. also [Das21, KPP21b].
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Example 27 (Safe exponentiation). Consider the following coderivation E ,

id

N ⇒ N
s0
N ⇒ N

...
cond� •

�N,N ⇒ N

...
cond� •

�N,N ⇒ N
cutN i=0,1

�N,N ⇒ N
cond� •

�N,N ⇒ N

where we identify the sub-coderivations above the second and the third premises
of the conditional. The coderivation is clearly progressing. Moreover it is safe, as
E has no instances of cut�. Its associated equational program can be written as
follows:

(3)
fE(0; y) = s0(; y)

fE(s0x; y) = fE(x; fE(x; y)) x 6= 0
fE(s1x; y) = fE(x; fE(x; y))

The above function fE has already appeared in [Hof97, Lei99]. It is not hard to

show, by induction on x, that fE(x; y) = 22
|x|

· |y|. Thus fE has exponential growth
rate (as long as y 6= 0), despite the program defining a ‘safe’ recursion scheme.

The above coderivation exemplifies a safe recursion scheme that is able to nest
one recursive call inside another in order to obtain exponential growth rate. This
is in fact a peculiar feature of regular proofs, and it is worth discussing.

As we have already seen, namely in Theorem 22, (progressing) B−-coderivations
are able to simulate some sort of higher-order recursion, namely at type 1 (cf. also
[Das21]). In this way it is not surprising that the sort of ‘nested recursion’ in
Equation (3) is definable since type 1 recursion, in particular, allows such nesting
of the recursive calls. To make this point more apparent, consider the following
higher-order recursion operator:

recA : �N → (�N → A → A) → A → A

with A = N → N , and f(x) = recA(x, h, g) is defined as f(0) = g and f(six) =
h(x, f(x)) for x > 0. By setting g := λy : N.s0y and h := λx : �N.λu : N →
N.(λy : N.u(u y)) we can easily check that fE(x; y) = recA(x, h, g)(y), where E
is as in Example 27. Hence, the function fE(x; y) can be defined by means of a
higher-order version of safe recursion.

As noticed by Hofmann [Hof97], and formally proved by Leivant [Lei99], thanks
to the capability of nesting recursive calls, higher-order safe recursion can be used
to characterise FELEMENTARY. In particular, Hofmann showed in [Hof97]
that by introducing a linearity restriction to the operator recA, which prevents
duplication of recursive calls, it is possible to recover the class FPTIME. The
resulting type system, called SLR (‘Safe Linear Recursion’), can be then regarded
as a higher-order formulation of B.

Following [Hof97], we shall impose a linearity criterion to rule out those coderiva-
tions that nest recursive calls. This is achieved by observing that the duplication
of the recursive calls of fE in Example 27 is due to the presence in E of loops on •
crossing both premises of a cutN step. Hence, our circular-proof-theoretic counter-
part of Hofmann’s linearity restriction can be obtained by demanding that at most
one premise of each cutN step is crossed by such loops. We shall actually present
a slightly more general criterion which does not depend on our intuitive notion of
loop.
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Definition 28 (Left-leaning). A B−-coderivation is left-leaning if each infinite
branch goes right at a cutN -step only finitely often.

Example 29. In Example 10, I is trivially left-leaning, as it contains no instances
of cutN at all. The coderivations S and C are also left-leaning, since no infinite
branch can go right at the cutN steps. By contrast, the coderivation E in Example 27
is not left-leaning, as there is an infinite branch looping at • and crossing infinitely
many times the rightmost premise of the cutN -step.

We are now ready to define our circular systems:

Definition 30 (Circular Implicit Systems). We define CNB as the class of safe
progressing regular B−-coderivations. CB is the restriction of CNB to only left-
leaning coderivations. A function f(~x; ~y) is CNB-definable (or CB-definable) if there
is a coderivation D ∈ CNB (resp., D ∈ CB) such that fD(~x; ~y) = f(~x; ~y).

Let us point out that Proposition 18 can be stated to preserve safety and left-
leaningness:

Proposition 31. Given D : �Γ, ~N ⇒ �N a coderivation in CNB (or CB), there
exists CNB-coderivation (resp., CB-coderivation) D∗ : �Γ ⇒ �N such that:

fD(~x; ~y) = fD∗(~x; )

3.4. On the complexity of proof-checking. Note that both the safety and the
left-leaning conditions above are defined at the level of arbitrary coderivations, not
just regular and/or progressing ones. Moreover, these conditions are easy to check
on regular coderivations:

Proposition 32. The safety and the left-leaning condition are NL-decidable for
regular coderivations.

Proof. We can represent a regular coderivation D as a finite directed (possibly
cyclic) graph GD labelled with inference rules. Then, the problem of deciding
whether D is not safe (resp. left leaning) comes down to the problem of deciding
whether a cycle π of GD exists crossing a node labelled cut� (resp. crossing the
rightmost child of a node labelled cutN ). W.l.o.g. we can assume that π is a simple
cycle. Given (an encoding of) GD as read-only input and (an encoding of) π as
a read-only certificate, we can easily construct a deterministic Turing machine M
verifying that the cycle π crosses cut� (resp. the rightmost child of a node cutN )
in GD. More specifically:

• the size of the certificate is smaller than the size of the description of GD;
• M reads once from left to right the addresses of the certificate which provide
the information about where to move the pointers;

• M works in logspace as it only stores addresses in memory. �

Recall that progressiveness of regular coderivations is decidable by reduction to
universality of Büchi automata, a PSPACE-complete problem. Indeed progres-
siveness itself is PSPACE-complete in many settings, cf. [NST19]. It is perhaps
surprising, therefore, that the safety of a regular coderivation also allows us to
decide progressiveness efficiently too, thanks to the following reduction:

Proposition 33. A safe B−-coderivation is progressing iff every infinite branch
has infinitely many cond�-steps.
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Proof. The left-right implication is trivial. For the right-left implication, let us
consider an infinite branch B of a safe B−-coderivation D. By safety, there exists a
node ν of B such that any sequent above ν in B is not the conclusion of a cut�-step.
Now, by inspecting the rules of B− \ {cut�} we observe that:

• every modal formula occurrence in B has a unique thread along B;
• any infinite thread along B cannot start strictly above ν.

Hence, setting k to be the number of �N occurrences in the antecedent of ν, B
has (at most) k infinite threads. Moreover, since B contains infinitely many cond�-
steps, by the Infinite Pigeonhole Principle we conclude that one of these threads is
infinitely often principal for the cond� rule. �

Thus, using similar reasoning to that of Proposition 32 we may conclude from Propo-
sition 33 the following:

Proposition 34. Given a regular B−-coderivation D, the problem of deciding if D
is in CNB (resp. CB) is in NL.

Let us point out that the reduction above is similar to and indeed generalises an
analogous one for cut-free coderivations for extensions of Kleene algebra, cf. [DP18,
Proposition 8].

Remark 35. Recall that in Proposition 20 we showed by means of an indirect argu-
ment that explicit contraction is ‘admissible’ for regular progressingB−-coderivations,
and in Remark 24 we pointed out that a more direct proof of this result cannot eas-
ily be found. In fact, we could not easily find such a direct contraction-admissibility
even for CB or CNB. However, let us point out that Proposition 33 still holds when
explicit contraction is added to B−. On the one hand, this observation witnesses
the robustness of the safety criterion; on the other hand, it stresses that, whatever
class of functions CB and CNB define in the presence explicit contraction, the result-
ing circular proof systems are still NL-checkable (cf. Proposition 34). A detailed
argument for this can be found in Appendix B.3.

4. Some variants of safe recursion on notation

In this section we shall introduce various extensions of B to classify the expres-
sivity of the circular systems CB and CNB. First, starting from the analysis of
Example 27 and the subsequent system CNB, we shall define a version of B with
safe nested recursion, called NB. Second, motivated by the more liberal way of
defining functions in both CB and CNB, we shall endow the function algebras B

and NB with forms of safe recursion over a well-founded relation ⊂ on lists of nor-
mal parameters. Figure 3 summarises the function algebras considered and their
relations.

4.1. Function algebras with nesting and composition during recursion.

One of the key features of safe recursion is that ‘nesting’ of recursive calls is not
permitted. For instance, recalling the coderivation E from Example 27, let us revisit
the following equational program:

(4)
ex(0; y) = s0y

ex(six; y) = ex(x; ex(x; y))

Recall that ex(x; y) = fE(x; y) = 22
|x|

· y. The ‘recursion step’ on the second line
is compatible with safe composition, in that safe inputs only occur in hereditarily
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safe recursion on notation on ⊂

unnested B B⊂

unnested, with compositions SB SB⊂

nested NB NB⊂

Figure 3. The function algebras considered in Section 4. Any
algebra is included in one below it or to the right of it.

safe positions, but one of the recursive calls takes another recursive call among its
safe inputs. In Example 27 we showed how the above function ex(x; y) can be CNB-
defined. It is thus reasonable to look for a suitable extension of B able to formalise
such nested recursion to serve as a function algebraic counterpart to CNB.

It will be convenient throughout this section to work with generalisations of B
including oracles. Formally speaking, these can be seen as variables ranging over
two-sorted functions, though we shall often identify them with functions themselves.

Definition 36. For all sets of oracles ~a = a1, . . . , ak, we define the algebra of B−

functions over ~a to include all the initial functions of B− and,

• (oracles). ai(~x; ~y) is a function over ~a, for 1 ≤ i ≤ k, (where ~x,~y have
appropriate length for ai).

and closed under:

• (Safe Composition).
(1) from g(~x; ~y), h(~x; ~y, y) over ~a define f(~x; ~y) over ~a by f(~x; ~y) = h(~x; ~y, g(~x; ~y)).
(2) from g(~x; ) over ∅ and h(~x, x; ~y) over ∅ define f(~x; ~y) over ~a by

f(~x; ~y) = h(~x, g(~x; ); ~y).

We write B−(~a) for the class of functions over ~a generated in this way.

Note that Safe Composition along normal parameters (Item 2 above) comes with
the condition that g(~x; ) is oracle-free. This restriction prevents oracles (and hence
the recursive calls) appearing in normal position. The same condition on h(~x, x; ~y)
being oracle-free is not strictly necessary for the complexity bounds we are after,
as we shall see in the next section when we define more expressive algebras, but is
convenient in order to facilitate the ‘grand tour’ strategy of this paper (cf. Figure 1).

We shall write, say, λ~v.f(~x;~v) for the function taking only safe arguments ~v
with (λ~v.f(~x;~v))(; ~y) = f(~x; ~y). Nested recursion can be formalised in the setting
of algebras-with-oracles as follows:

Definition 37 (Safe Nested Recursion). We write snrec for the scheme:

• from g(~x; ~y) over ∅ and h(a)(x, ~x; ~y) over a,~a, define f(x, ~x; ~y) over ~a by:

f(0, ~x; ~y) = g(~x; ~y)

f(s0x, ~x; ~y) = h0(λ~v.f(x, ~x;~v))(x, ~x; ~y) x 6= 0

f(s1x, ~x; ~y) = h1(λ~v.f(x, ~x;~v))(x, ~x; ~y)

We write NB(~a) for the class of functions over ~a generated from B− under snrec

and Safe Composition (from Definition 36), and write simply NB for NB(∅).
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Note that safe nested recursion, per se, admits definitions that are not morally
‘nested’ but rather use a form of ‘composition during recursion’. Such a scheme
might have the form:

• from g(~x; ~y), ~g1(x, ~x; ~y), . . . , ~gk(x, ~x; ~y) and hi(x, ~x; ~y, z1, . . . , zk) define:

(5)
f(0, ~x; ~y) = g(~x; ~y)

f(six, ~x; ~y) = hi(x, ~x; ~y, f(x, ~x;~g1(x, ~x; ~y)), . . . , f(x, ~x;~gk(x, ~x; ~y)))

In this case, note that we have allowed the safe inputs of f to take arbitrary values
given by previously defined functions, but at the same time f never calls itself in a
safe position, as in (4). Note that this safe recursion scheme does not require the
use of oracles in its statement, but is equivalent to the following one using a notion
of ‘nesting’ for Safe Composition:

Definition 38 (Safe Recursion with Composition During Recursion). An instance
of Safe Composition along Safe Parameters (Item 1 from Definition 36) is called
unnested if (at least) one of g(~x; ~y) and h(~x; ~y, y) is over ∅ (i.e. is oracle-free). We
define SB(~a) to be the restriction of NB(~a) using only unnested Safe Composition
along Safe Parameters, Item 1 from Definition 36, and write simply SB for SB(∅).

It is not hard to show that, indeed, SB defines the same class of functions of the
extension of B− by the scheme given in eq. (5). On the one hand, given hi and ~gj,
the scheme in (5) can be defined in NB(~a) using snrec and only unnested instances
of safe composition. On the other hand, given h(a)(x, ~x; ~y) over oracles a,~a, snrec
allows us to define f(six, ~x; ~y) by replacing the oracle a in h with the recursive calls
λ~v.f(x, ~x;~v). However, since h(a) is defined using unnested safe composition, no
recursive call of f can be found along the safe parameters of another one.

It should be said that we will not actually use SB in this work, but rather an
extension of it defined in the next section, but we have included it for completeness
of our exposition.

4.2. Safe recursion on well-founded relations. Function algebras in general
may be readily extended by recursion on arbitrary well-founded relations. For
instance, given a well-founded preorder E, and writing ⊳ for its strict variant,3

‘safe recursion on ⊳’ is given by the following scheme:

• from h(a)(x, ~x; ~y) over a,~a, define f(x, ~x; ~y) over ~a by:

f(x, ~x; ~y) = h(λv ⊳ x.f(v, ~x; ~y))(x, ~x; ~y)

Note here that we employ the notation λv ⊳ x for a ‘guarded abstraction’. For-
mally:

(λv ⊳ x.f(v, ~x; ~y))(v) :=

{

f(v, ~x; ~y) v ⊳ y

0 otherwise

It is now not hard to see that total functions (with oracles) are closed under the
recursion scheme above, by reduction to induction on the well-founded relation ⊳.

Note that such schemes can be naturally extended to preorders on tuples of
numbers too, by abstracting several inputs. We shall specialise this idea to a
particular well-founded preorder that will be helpful later to bound the complexity
of definable functions in our systems CB and CNB.

3To be precise, in this work, for a preorder E we write x ⊳ y if x E y and y 6E x. As an abuse
of terminology, we say that E is well-founded just when ⊳ is.
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Recall that we say that x is a prefix of y if y can be written x2n + z for some
n ≥ 0 and some z < 2n, i.e. y has the form xz in binary notation. We say that x
is a strict prefix of y if x is a prefix of y but x 6= y.

Definition 39 (Permutations of prefixes). Let [n] := {0, . . . , n−1}. We shall write
(x0, . . . , xn−1) ⊆ (y0, . . . , yn−1) if, for some permutation π : [n] → [n], we have that
xi is a prefix of yπi, for all i < n. We write ~x ⊂ ~y if ~x ⊆ y but ~y 6⊆ x, i.e. there is a
permutation π : [n] → [n] with xi a prefix of yi for each i < n, and for some i < n
xi is a strict prefix of yi.

It is not hard to see that ⊆ is a well-founded preorder, by reduction to the fact
that the prefix relation is a well-founded partial order. As a result, we may duly
devise a version of safe (nested) recursion on ⊂:

Definition 40 (Safe (nested) recursion on permutations of prefixes). We write
NB⊂(~a) for the class of functions over ~a generated from B− under Safe Composition,
and the scheme snrec⊂,

• from h(a)(~x; ~y) over a,~a define f(~x; ~y) over ~a by:

f(~x; ~y) = h(λ~u ⊂ ~x, λ~v.f(~u;~v))(~x; ~y)

as well as the following generalisation of Safe Composition along a Normal Param-
eter:

(2)′ from g(~x; ) over ∅ and h(~x, x; ~y) over ~a define f(~x; ~y) over ~a by f(~x; ~y) =
h(~x, g(~x; ); ~y).

Recalling Definition 38, we write SB⊂(~a) to be the restriction of NB⊂(~a) using only
unnested Safe Composition along Safe Parameters. Finally we define B⊂(~a) to be
the restriction of SB⊂(~a) where every instance of snrec⊂ has the form:

• from h(a)(~x; ~y) over a,~a, define f(~x; ~y) over ~a:

f(~x; ~y) = h(λ~u ⊂ ~x, λ~v ⊆ ~y.f(~u;~v))(~x; ~y)

We call this latter recursion scheme srec⊂, e.g. if we need to distinguish it from
snrec⊂.

Note that the version of safe composition along a normal parameter above differs
from the previous one, Item 2 from Definition 36, since the function h is allowed to
use oracles. This difference is inessential in terms of computational complexity, as
we shall see, but, again, the greater expressivity of B⊂ and NB⊂ will facilitate our
overall strategy for characterising CB and CNB, respectively.

Let us take a moment to point out that NB⊂(~a) ⊇ SB⊂(~a) ⊇ B⊂(~a) indeed con-
tain only well-defined total functions over the oracles ~a, by reduction to induction
on the well-founded relation ⊂.

4.3. Simultaneous recursion schemes. Finally, let us establish a standard type
of result, that the algebras B⊂, SB⊂ and NB⊂ are closed under simultaneous versions
of their recursion schemes.

Definition 41 (Simultaneous schemes). We define schemes ssrec⊂ and ssnrec⊂,
respectively, as follows, for arbitrary ~a = a1, . . . , ak:

• from hi(~a)(~x; ~y) over ~a,~b, for 1 ≤ i ≤ k, define fi(~x; ~y) over ~b, for 1 ≤ i ≤ k,
by:

fi(~x; ~y) = hi((λ~u ⊂ ~x, λ~v ⊆ ~y.fj(~u;~v))1≤j≤k)(~x; ~y)



CYCLIC IMPLICIT COMPLEXITY 21

• from hi(~a)(~x; ~y) over ~a,~b, for 1 ≤ i ≤ k, define fi(~x; ~y) over ~b, for 1 ≤ i ≤ k,
by:

fi(~x; ~y) = hi((λ~u ⊂ ~x, λ~v.fj(~u;~v))1≤j≤k)(~x; ~y)

Proposition 42. We have the following:

(1) If ~f(~x; ~y) over ~b are obtained from ~h(~a)(~x; ~y) ∈ B⊂(~a,~b) by ssrec⊂, then also
~f(~x; ~y) ∈ B⊂(~b).

(2) If ~f(~x; ~y) over ~b are obtained from ~h(~a)(~x; ~y) ∈ NB⊂(~a,~b) (or ∈ SB⊂(~a,~b))

by ssnrec⊂, then also ~f(~x; ~y) ∈ NB⊂(~b) (resp., ∈ SB⊂(~b)).

Proof. We only prove Item 1, i.e. that B⊂ is closed under ssrec⊂, but the same
argument works for Item 2: just ignore all guards on safe inputs in recursive calls,
and our construction preserves unnestedness of Safe Composition along Safe Pa-
rameters.

Let fi(~x; ~y) and hi(a1, . . . , ak)(~x; ~y) be as given in Definition 41, and temporarily

write f~x;~y
j for λ~u ⊂ ~x, λ~v ⊆ ~y.fj(~u;~v), so we have:

fi(~x; ~y) = hi(f
~x;~y
1 , . . . , f~x;~y

k )(~x; ~y)

For i ∈ N, let us temporarily write i for i in binary notation4, and ~i for the list
i, i+ 1, . . . , k, 1, 2, . . . , i− 1. Note that, for all i = 1, . . . , k, ~i is a permutation (in
fact a rotation) of 1, . . . , k.

Now, let f(~x; ~y, ~z) over oracles ~b be given as follows:

(6) f(~x; ~y, ~z) :=























h1(f
~x;~y
1 , . . . , f~x;~y

k )(~x; ~y) ~z = ~1
...

hk(f
~x;~y
1 , . . . , f~x;~y

k )(~x; ~y) ~z = ~k

0 otherwise

Note that this really is a finite case distinction since each of the boundedly many ~i
has bounded size, both bounds depending only on k, and so is computable in B−

over ~h.
By definition, then, we have that f(~x; ~y,~i) = fi(~x; ~y). Moreover note that, for

each j = 1, . . . , k, we have,

f~x;~y
j (~u′;~v′) = (λ~u ⊂ ~x, λ~v ⊆ ~y.fj(~u;~v))(~u

′;~v′)

= (λ~u ⊂ ~x, λ~v ⊆ ~y.f(~u;~v,~j))(~u′;~v′)

= (λ~u ⊂ ~x, λ~v ⊆ ~y, λ~w ⊆ ~z.f(~u;~v, ~w))(~u′;~v′,~j)

as long as ~z is some ~i, so indeed (6) has the form,

f(~x; ~y, ~z) = h(λ~u ⊂ ~x, λ~v ⊆ ~y, λ~w ⊆ ~z.f(~u;~v, ~w))(~x; ~y)

and f(~x; ~y, ~z) ∈ B⊂(~b) by srec⊂. Finally, since fi(~x; ~y) = f(~x; ~y,~i), we indeed have

that each fi(~x; ~y) ∈ B⊂(~b). �

4In fact, any notation will do, but we pick one for concreteness.
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5. Characterizations results for function algebras

In this section we characterise the complexities of the function algebras we intro-
duced in the previous section. On the one hand, despite apparently extending B,
B⊂ still captures the polynomial-time computable functions. On the other hand,
both NB and NB⊂ are shown to capture the elementary functions. All such results
rely on a ‘bounding lemma’ inspired by [BC92].

5.1. Bounding Lemma. Bellantoni and Cook showed in [BC92] that any function
f(~x; ~y) ∈ B satisfies the ‘poly-max bounding lemma’: there is a polynomial pf such
that:5

(7) |f(~x; ~y)| ≤ pf (|~x|) + max |~y|

This provided a suitable invariant for eventually proving that all B-functions were
polynomial-time computable.

In this work, inspired by that result, we extend that bounding result to a form
suitable for the algebras from the previous section. To this end we establish in the
next result a sort of ‘elementary-max’ bounding lemma that accounts for the usual
poly-max bounding as a special case, by appealing to the notion of (un)nested safe
composition. What is more, both the statement and the proof are quite subtle due
to our algebras’ formulation using oracles; we must assume an appropriate bound
for the oracles themselves, and the various (mutual) dependencies in the statement
are quite delicate.

For us to state and prove the Bounding Lemma, it will be useful to employ the
notation ||~x|| :=

∑

|~x|.

Lemma 43. Suppose f(~x; ~y) ∈ NB⊂(~a), with ~a = a1, . . . , ak. There is an elemen-
tary function ef and a constant df ≥ 1 such that if for 1 ≤ i ≤ k,

(8) |ai(~xi; ~yi)| ≤ ci + df
∑

j 6=i

cj +max |~yi|

for some constants ~c = c1, . . . , ck, then we have:

(9) |f(~x; ~y)| ≤ ef (||~x||) + df
∑

~c+max |~y|

Moreover, if in fact f(~x; ~y) ∈ SB⊂(~a), then df = 1 and ef(n) is a polynomial.

Unwinding the statement above, note that ef and df depend only on the function
f itself, not on the constants ~c given for the (mutual) oracle bounds in Equation (8).
This is crucial and we shall exploit this in the proof that follows, namely in the
case when f is defined by recursion, substituting different values for ~c during an
inductive argument. This independency of ef and df from ~c will be made explicit
in their definitions in the proof that follows.

While the role of the elementary bounding function ef is a natural counterpart
of pf in Bellantoni and Cook’s bounding lemma, cf. Equation (7), the role of df
is perhaps slightly less clear. Morally, df represents the amount of ‘nesting’ in the
definition of f , increasing whenever oracle calls are substituted into arguments for
other oracles. Hence, if f uses only unnested Safe Composition, then df = 1 as
required. In the argument that follows, it will only be important to distinguish
whether df = 1 or not, since df will form the base of an exponent when defining
ef in the case when f is defined by safe recursion.

5Recall that, for ~x = x1, . . . , xn, we write |~x| for |x1|, . . . , |xn|.
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Let us also point out that we may relativise the statement of the lemma to any
set of oracles including those which f(~x; ~y) is over. In particular, if f(~x; ~y) is over
no oracles, then we may realise Equation (8) vacuously by choosing ~a = ∅ and
we would obtain that |f(~x; ~y)| ≤ ef(||~x||) + max |~y|. More interestingly, in the case
when f(~x; ~y) is just, say, ai(~x; ~y), we may choose to set ~a = ai or ~a = a1, . . . , an in
the above lemma, yielding different bounds in each case. We shall exploit this in
inductive hypotheses in the proof that follows (typically when we write ‘WLoG’).

Proof of Lemma 43. We will proceed by induction on the definition of f(~x; ~y), al-
ways assuming that we have ~c satisfying Equation (8).

Throughout the argument we shall actually construct ef (n) that are monotone
elementary functions (without loss of generality) and exploit this invariant. In fact
ef(n) will always be generated by composition from 0, s,+,×, xy and projections. If
f(~x; ~y) ∈ SB⊂(~a) then ef(n) will be in the same algebra without exponentiation, xy,
i.e. it will be a polynomial with only non-negative coefficients. This property will
be made clear by the given explicit definitions of ef(n) throughout the argument.

If f(~x; ~y) is an initial function then it suffices to set ef (n) := 1 + n and df := 1.
If f(~x; ~y) = ai(~x; ~y) then it suffices to set ef (n) := 0 and df := 1.
If f(~x; ~y) = h(~x; ~y, g(~x; ~y)), let eh, eg, dh, dg be obtained from the inductive hy-

pothesis. We have,

|f(~x; ~y)| = |h(~x; ~y, g(~x; ~y))|
≤ eh(||~x||) + dh

∑

~c+max(|~y|, |g(~x; ~y)|)
≤ eh(||~x||) + dh

∑

~c+ eg(||~x||) + dg
∑

~c+max |~y|

so we may set ef (n) := eh(n) + eg(n) and df := dh + dg.
For the ‘moreover’ clause, note that if f(~x; ~y) uses only unnested Safe Composi-

tion, then one of g or h does not have oracles, and so we can assume WLoG that
either the term dh

∑

~c or the term dg
∑

~c above does not occur above, and we set
df := dg or df := dh, respectively. In either case we obtain df = 1 by the inductive
hypothesis, as required.

If f(~x; ~y) = h(~x, g(~x; ); ~y), let eh, eg, dh, dg be obtained from the inductive hy-
pothesis. Note that, by definition of Safe Composition along a normal parameter,
we must have that g has no oracles, and so in fact |g(~x; )| ≤ eg(||~x||). We thus have,

|f(~x; ~y)| = |h(~x, g(~x; ); ~y)|
≤ eh(||~x||, |g(~x; )|) + dh

∑

~c+max |~y|
≤ eh(||~x||, eg(||~x||)) + dh

∑

~c+max |~y|

so we may set ef (n) := eh(n, eg(n)) and df := dh. For the ‘moreover’ clause, note
that by the inductive hypothesis eh, eg are polynomials and dh = 1, so indeed ef is
a polynomial and df = 1.

Finally, if f(~x; ~y) = h(λ~u ⊂ ~x, λ~v.f(~u;~v))(~x; ~y), let eh, dh be obtained from
the inductive hypothesis. We claim that it suffices to set df := dh and ef(n) :=
ndnheh(n). Note that, for the ‘moreover’ clause, if dh = 1 then also dnh = 1 and so
indeed ef(n) is a polynomial if dh = 1 and eh(n) is a polynomial.
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First, let us calculate the following invariant, for n > 0:

(10)

ef (n) = ndnheh(n)
= dnheh(n) + (n− 1)dnheh(n)
= dnheh(n) + dh(n− 1)dn−1

h eh(n)
≥ eh(n) + dh(n− 1)dn−1

h eh(n) since dh ≥ 1
≥ eh(n) + dh(n− 1)dn−1

h eh(n− 1) since eh is monotone
≥ eh(n) + dhef (n− 1) by definition of ef

Now, to show that Equation (9) bounds for the f, ef , df at hand, we proceed by a

sub-induction on ||~x||. For the base case, when ||~x|| = 0 (and so, indeed, ~x = ~0), note
simply that λ~u ⊂ ~x, λ~v.f(~u;~v) is the constant function 0, and so we may appeal to
the main inductive hypothesis for h(a) setting the corresponding constant c for a
to be 0 to obtain,

|f(~0; ~y)| = |h(0)(~0; ~y)|
≤ eh(0) + dh

∑

~c+max |~y|
≤ ef (0) + df

∑

~c+max |~y|

as required. For the sub-inductive step, let ||~x|| > 0. Note that, whenever ~u ⊂ ~x we
have ||~u|| < ||~x|| and so, by the sub-inductive hypothesis and monotonicity of ef we
have:

|f(~u;~v)| ≤ ef (||~x|| − 1) + df
∑

~c+max |~v|

Now we may again appeal to the main inductive hypothesis for h(a) by setting
c = ef(||~x|| − 1) to be the corresponding constant for a = λ~u ⊂ ~x, λ~v.f(~u;~v). We
thus obtain:

|f(~x; ~y)| = |h(λ~u ⊂ ~x, λ~v.f(~u;~v))(~x; ~y)|
≤ eh(||~x||) + dhc+ dh

∑

~c+max |~y| by main IH
≤ (eh(||~x||) + dhef (||~x|| − 1)) + dh

∑

~c+max |~y| since c = ef (||~x|| − 1)
≤ ef (||~x||) + dh

∑

~c+max |~y| by Equation (10)
≤ ef (||~x||) + df

∑

~c+max |~y| since df = dh

This completes the proof of the Bounding Lemma. �

Before moving on to our soundness results, let us first present an important
consequence of the bounding lemma that will be important for characterising NB⊂.

Proposition 44. Let f(~a)(~x; ~y) ∈ NB⊂(~a) and let ef and df be as constructed in
the proof of Lemma 43 and write:

m~c
f (~x, ~y) := ef (||~x||) + df

∑

~c+max |~y|

If there are constants ~c such that ~a satisfy Equation (8), then:6

(11) f(~a)(~x; ~y) = f(λ~xi.λ|~yi| ≤ m~c
f (~x, ~y).ai(~xi; ~yi))i(~x; ~y)

Note that the point of the above proposition is somewhat dual to that of the
bounding lemma: while the latter bounds the output of a function, the former
bounds the inputs. Nonetheless, the argument follows essentially the same structure
as that of the Bounding Lemma 43.

6To be clear, here we write |~yi| ≤ m~c
f (~x, ~y) here as an abbreviation for {|yij ≤ m~c

f (~x, ~y)}j .
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Proof. We proceed by induction on the definition of f(~a)(~x; ~y), always making
explicit the oracles of a function.

The initial functions and oracle calls are immediate, due to the ‘max |~y|’ term in
Equation (11).

If f(~a)(~x; ~y) = h(~a)(~x; ~y, g(~a)(~x; ~y)) then, by the inductive hypothesis for h(~a),
any oracle call from h(~a) only take safe inputs of lengths:

≤ eh(||~x||) + dh
∑

~c+max(|~y|, |g(~a)(~x; ~y)|)
≤ eh(||~x||) + dh

∑

~c+ eg(||~x||) + dg
∑

~c+max |~y| by Bounding Lemma 43
≤ (eh(||~x||+ eg(||~x||)) + (dh + dg)

∑

~c+max |~y|
≤ ef (||~x||) + df

∑

~c+max |~y|

Note that any oracle call from g(~a) will still only take safe inputs of lengths ≤
eg(||~x||)+ dg

∑

~c+max |~y|, by the inductive hypothesis, and eg and dg are bounded
above by ef and df respectively.

If f(~a)(~x; ~y) = h(~a)(~x, g(∅)(~x; ); ~y) then, by the inductive hypothesis, any oracle
call will only take safe inputs of lengths:

≤ eh(||~x||+ |g(∅)(~x; )|) + dh
∑

~c+max |~y|
≤ eh(||~x||+ eg(||~x||)) + dh

∑

~c+max |~y| by Bounding Lemma 43
≤ ef (||~x||) + df

∑

~c+max |~y|

Finally suppose f(~a)(~x; ~y) = h(~a, λ~u ⊂ ~x, λ~v.f(~a)(~u;~v))(~x; ~y). We proceed by
a sub-induction on ||~x||. Note that, since ~u ⊂ ~x =⇒ ||~u|| < ||~x||, we immediately
inherit from the inductive hypothesis the appropriate bound on safe inputs for
oracle calls from λ~u ⊂ ~x, λ~v.f(~a)(~u;~v).

Now, recall from the Bounding Lemma 43, whenever ~u ⊂ ~x (and so ||~u|| < ||~x||),
we have |f(~u;~v)| ≤ ef(||~x|| − 1)+ df

∑

~c+max |~v|. So by setting c = ef(||~x|| − 1) in
the inductive hypothesis for h(~a, a), with a = λ~u ⊂ ~x, λ~v.f(~a)(~u;~v), any oracle call
from h(~a, a) will only take safe inputs of lengths:

≤ eh(||~x||) + dhef(||~x|| − 1) + dh
∑

~c+max |~y|
≤ ef (||~x||) + df

∑

~c+max |~y| by Equation (10)

This completes the proof. �

5.2. Soundness results. In this subsection we show that the function algebras B⊂

and NB⊂ (as well asNB) capture precisely the classesFPTIME andFELEMENTARY,
respectively. We start with B⊂:

Theorem 45. Suppose ~a satisfies Equation (8) for some constants ~c. We have the
following:

(1) if f(~x; ~y) ∈ B⊂(~a) then f(~x, ~y) ∈ FPTIME(~a).
(2) if f(~x; ~y) ∈ NB⊂(~a) then f(~x, ~y) ∈ FELEMENTARY(~a).

Before we give the proof note in particular that, for f(~x; ~y) in B⊂ or NB⊂,
i.e. not using any oracles, we immediately obtain membership in FPTIME or
FELEMENTARY, respectively. However, the reliance on intermediate oracles
during a function definition causes some difficulties that we must take into account.
At a high level, the idea is to use the Bounding Lemma, namely its consequence
Proposition 44, to replace certain oracle calls with explicit appropriately bounded
functions computing their graphs.
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Proof. We proceed by induction on the definition of f(~x; ~y).
Each initial function is polynomial-time computable, and each (relativised) com-

plexity class considered is under composition, so it suffices to only consider the re-
spective recursion schemes. We shall focus first on the case of B⊂(~a), Item 1 above,
so that ef is a polynomial and df = 1 (since, in particular, B⊂(~a) ⊆ SB⊂(~a)).

Suppose we have h(a)(~x; ~y) ∈ B⊂(a,~a) and let:

f(~x; ~y) = h(λ~u ⊂ ~x, λ~v ⊆ ~y.f(~u;~v))(~x; ~y)

We start by making some observations:

(1) First, note that |f(~x; ~y)| ≤ ef (|~x|) + df
∑

~c + max |~y|, by the Bounding
Lemma 43, and so |f(~x; ~y)| is polynomial in |~x, ~y|.

(2) Second, note that the set [~x; ~y] := {(~u,~v) | ~u ⊂ ~x,~v ⊆ ~y} has size polynomial
in |~x, ~y|:

• write ~x = x1, . . . , xm and ~y = y1, . . . , yn.
• Each xi and yj have only linearly many prefixes, and so there are at
most |x1| · · · · · |xm||y1| · · · · · |yn| ≤ ||~x, ~y||m+n many choices of prefixes
for all the arguments ~x, ~y. (This is a polynomial since m and n are
global constants).

• Additionally, there are m! permutations of the arguments ~x and n!
permutations of the arguments ~y. Again, since m and n are global
constants, we indeed have |[~x; ~y]| = O(||~x, ~y||m+n), which is polynomial
in |~x, ~y|.

We describe a polynomial-time algorithm for computing f(~x; ~y) (over oracles ~a)
by a sort of ‘course-of-values’ recursion on the order ⊂ × ⊆ on [~x; ~y].

First, for convenience, temporarily extend ⊂ × ⊆ to a total well-order on [~x; ~y],
and write S for the associated successor function. Note that S can be computed in
polynomial-time from [~x; ~y].

Define F (~x, ~y) := 〈f(~u;~v)〉~u⊂~x,~v⊆~y, i.e. it is the graph of λ~u ⊂ ~x, λ~v ⊆ ~y.f(~u;~v)
that we shall use as a ‘lookup table’. Note that |F (~x, ~y)| is polynomial in |~x, ~y| by
Item 1 and Item 2 above. Now, we can write:7

F (S(~x, ~y)) = 〈f(S(~x, ~y)), F (~x, ~y)〉
= 〈h(F (~x, ~y))(~x; ~y), F (~x, ~y)〉

Again by Item 2 (and since F is polynomially bounded), this recursion terminates
in polynomial-time. We may now simply calculate f(~x; ~y) as h(F (~x, ~y))(~x; ~y).

The argument for NB⊂ is similar, though we need not be as careful about com-
puting the size of the lookup tables (F above) for recursive calls. The key idea is
to use the Bounding Lemma, namely its consequence Proposition 44, to bound the
safe inputs of recursive calls so that we can adequately store the lookup table for
previous values. �

5.3. Completeness and characterisations. Note that we have the following as
an immediate consequence of the soundness result, Theorem 45 Item 1:

Corollary 46. The following statements are equivalent:

(1) f(~x; ) ∈ B

(2) f(~x; ) ∈ B⊂

(3) f(~x) ∈ FPTIME

7Here, as abuse of notation, we are now simply identifying F (~x; ~y) with λ~u ⊂ ~x, λ~v ⊆ ~y.f(~x; ~y).
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Proof sketch. (1) =⇒ (2) is trivial, and (2) =⇒ (3) is given by Theorem 45.(1).
Finally, (3) =⇒ (1) is from [BC92], stated in Theorem 2 earlier. �

The remainder of this subsection is devoted to establishing a similar equiva-
lence for NB, NB⊂ and FELEMENTARY. To this end, we naturally require the
following result:

Theorem 47. If f(~x) ∈ FELEMENTARY then f(~x; ) ∈ NB.

The proof can be divided into three steps:

• We define an equivalent formulation of the class FELEMENTARY for
binary notation, having an exponential growth rate function ε1(x), whence
one may define arbitrary elementary growth rate by setting εm+1(x) :=
ε1(εm(x)). Now we show that any function f(~x) ∈ FELEMENTARY in
binary notation is bounded above by εm(max(~x)) for some m.

• We show that for any function f(~x) ∈ FELEMENTARY in binary no-
tation there are a function f∗(x; ~x) ∈ NB and a monotone function8 ef ∈
FELEMENTARY such that for all integers ~x and all w ≥ ef (~x) we have
f∗(w; ~x) = f(~x).

• Now, given the function ex(x; y) in (4), we construct the function exm(x; )
by induction on m:

ex1(x; ) = ex(x; 1)

exm+1(x; ) = exm(ex1(x; ); )

so that, by increasing m, exm(x; ) achieves arbitrary elementary growth
rate, just like εm. If f(~x) ∈ FELEMENTARY, by the previous point we
obtain a function f∗(w; ~x) ∈ NB and a monotone function ef ∈ FELEMENTARY.
By the first point, there exists m ≥ 1 such that ef (~x) ≤ exm(max♯~x(~x; ); ),
where max(~x; ) in NB. Therefore, f(~x; ) = f∗(exm(max♯~x(~x; ); ); ~x) ∈ NB.

In particular, the first point is folklore, while the proof technique adopted for prov-
ing the last two points is well-known since [BC92], and has been adapted to the
case of the elementary functions by [WW99].

Now, by the same argument as for Corollary 46, only using Theorem 47 above
instead of appealing to [BC92], we can give our main characterisation result for
algebras for elementary computation:

Corollary 48. The following statement are equivalent:

(1) f(~x; ) ∈ NB,
(2) f(~x; ) ∈ NB⊂,
(3) f(~x) ∈ FELEMENTARY.

6. Completeness for circular systems

We now return our attention to the circular systems CB and CNB that we intro-
duced in Section 3. We will address the complexity of their definable functions by
‘sandwiching’ them between function algebras of Section 4, given their characteri-
sations in the previous section.

In particular, in this section we show that CB is ‘complete’ for FPTIME and
that CNB is complete for FELEMENTARY.

8Bear in mind that the function ef here is not necessarily the same as that of Lemma 43 in

the previous section.
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6.1. CB contains all polynomial-time functions. To show that CB contains all
polynomial-time functions, we simulate Bellantoni and Cook’s algebra:

Theorem 49. If f(~x; ~y) ∈ B then f(~x; ~y) ∈ CB.

Proof. By Proposition 6 it suffices to show that for any B-derivation D there is a
CB-coderivation D∗ such that fD(~x; ~y) = fD∗(~x, ~y). The proof is by induction on
D. The only non-trivial case is when D is the following derivation:

D0

Γ ⇒ N

D1

�N,Γ, N ⇒ N

D2

�N,Γ, N ⇒ N
srec�

�N,Γ ⇒ N

We define D∗ as follows:

D∗
0

� ~N, ~N ⇒ N

...
cond� •

�N,� ~N, ~N ⇒ N

D∗
i

�N,� ~N, ~N,N ⇒ N
cutN i=1,2

�N,� ~N, ~N ⇒ N
cond� •

�N,� ~N, ~N ⇒ N

where we identify the coderivations corresponding to the second and the third
premise of the conditional rule, as they only differ on the sub-coderivation D∗

i

(i = 1 for the former and i = 2 for the latter). The above coderivation is clearly
safe and left-leaning, by the inductive hypotheses for D0,D1,D2. To see that it is
progressing, note that any infinite branch is either eventually entirely in D∗

0 , D
∗
1 or

D∗
2 , in which case it is progressing by the inductive hypotheses, or it simply loops

on • forever, in which case there is a progressing thread along the blue �N .
Moreover, the equational program associated with D can be is equivalent to:

fD∗
ǫ
(0, ~x; ~y) := fD∗

0
(~x; ~y)

fD∗
ǫ
(s0x, ~x; ~y) := fD∗

1
(x, ~x; ~y, fD∗

ǫ
(x, ~x; ~y)) if x 6= 0

fD∗
ǫ
(s1x, ~x; ~y) := fD∗

2
(x, ~x; ~y, fDǫ

(x, ~x; ~y))

so that fD(~x; ~y) = fD∗(~x, ~y). �

6.2. CNB contains all elementary functions. Similarly to the case for CB, to
show that CNB is complete for elementary functions, we shall simulate our nested
algebra NB. First, we need to introduce the notion of oracle for B−-coderivations.

Definition 50 (Oracles for coderivations). Let ~a = a1, . . . , an be a set of safe-
normal functions. A B−(~a)-coderivations is just a usual B−-coderivation that may

use initial sequents of the form ai

�Nni , Nmi ⇒ N
, when ai takes ni normal and
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mi safe inputs. We write:

ai i
�Nni , Nmi ⇒ N

D(~a)

Γ ⇒ A

for a coderivation D with initial sequents among ai

�Nni , Nmi ⇒ N
, with i =

1, . . . , n. We write CNB(~a) for the set of CNB-coderivations with initial functions
~a. We may sometimes omit indicating some oracles ~a if it is clear from context.

The semantics of such coderivations and the notion of CNB(~a)-definability are as
expected, with coderivations representing functions over the oracles ~a, and fD(~a) ∈
CNB(~a) denoting the induced interpretation of D(~a).

Before giving our main completeness result for CNB, we need the following lemma
allowing us to ‘pass’ parameters to oracle calls. It is similar to the notion D~ρ

from [Das21, Lemma 42], only we must give a more refined argument due to the
unavailability of contraction in our system.

Lemma 51. Let D(a) be a regular coderivation over initial sequents ~a, a with shape:

a

∆ ⇒ N
ai i

∆i ⇒ N

D(a)

�N, k. . .,�N,Γ ⇒ N

where Γ and ∆ are lists of non-modal formulas, and the path from the conclusion to
each initial sequent a does not contain cut�-steps, �l-steps and the leftmost premise
of a cond�-step. Then, there exists an a∗ and a regular coderivation D∗(a∗) with
shape:

a∗

�N, k. . .,�N,∆ ⇒ N
ai i

∆i ⇒ N

D∗(a∗)

�N, k. . .,�N,Γ ⇒ N

such that:

• fD∗(a∗)(~x; ~y) = fD(a(~x))(~x; ~y);

• there exists a �N -thread from the jth modal formula in the context of the
conclusion to the jth modal formula in the context of any occurrence of the
initial sequent a∗ in D∗(a∗), for 1 ≤ j ≤ k.
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Moreover, if D(a) is progressing, safe or left-leaning, then D∗(a∗) is also progress-
ing, safe or left-leaning, respectively.

Proof sketch. Let us consider a path B from the root of D(a) to an occurrence of
the initial sequent a. Since the conclusion of D(a) contains k modal formulas, and
B cannot cross cut�-steps, B contains exactly k �N -threads, and all such threads
start from the root. Moreover, since a has only non-modal formulas and B cannot
cross �l-steps or the leftmost premise of a cond�-step, we conclude that each of
the k �N -threads must end in the principal formula of a w�-step. For each j we
remove the corresponding w�-step in B we add an extra �N to the antecedent
of all higher sequents in B (this operation may require us to introduce weakening
steps for other branches of the proof). By repeatedly applying the above procedure
for each possible path from the root of D(a) to an initial sequent a we obtain a
coderivation with the desired properties. �

Finally we can give our main simulation result for CNB:

Theorem 52. If f(~x; ~y) ∈ NB then f(~x; ~y) ∈ CNB.

Proof. We show by induction on f(~x; ~y) ∈ NB(~a) that there is a CNB(~a)-coderivation
Df such that:

(1) fDf
(~x; ~y) = f(~x; ~y);

(2) the path from the conclusion of Df to each initial sequent ai does not
contain cut�-steps, �l-steps and the leftmost premise of a cond�-step.

When f(~x; ~y) is an initial function the definition of D∗ is straightforward, as ~a = ∅.

If f(~x; ~y) = ai(~x; ~y) then Df is the initial sequent ai

� ~N, ~N ⇒ N
.

Suppose that f(~x; ~y) = h(~x, g(~x; ); ~y) with g(~x; ) ∈ NB(∅) and h(~x, z; ~y) ∈
NB(∅). Then f can be NB(∅)-defined by:

∅

Dg

� ~N ⇒ N
�r

� ~N ⇒ �N

∅

Dh

�N,� ~N, ~N ⇒ N
cut�

� ~N, ~N ⇒ N

Suppose f(~x; ~y) = h(~x; ~y, g(~x; ~y)). Then f is NB(~a)-defined by:

ai i
� ~N, ~N ⇒ N

Dg

� ~N, ~N ⇒ N

ai i
� ~N, ~N ⇒ N

Dh

� ~N, ~N,N ⇒ N
cutN

� ~N, ~N ⇒ N

Note that, while we introduce a cut� here, there crucially remains no cut� between
the conclusion and an oracle sequent, thanks to the condition that g and h are over
no oracles.
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Finally, suppose that f(x, ~x; ~y) is obtained from g(~x; ~y) over ∅, and h(a)(x, ~x; ~y)
over a,~a by snrec. Then, f(0, ~x; ~y) = g(~x; ~y) and f(six, ~x; ~y) = h(λ~v.f(x, ~x;~v))(x, ~x; ~y).
Note that a has same type as λ~v.f(x, ~x;~v), so it is a function taking safe arguments
only. Thus by induction hypothesis, h(a)(x, ~x; ~y) is NB(~a, a)-defined by:

a
~N ⇒ N

ai i
� ~N, ~N ⇒ N

Dh(a)

�N,� ~N, ~N ⇒ N

where the path from the conclusion of Dh(a) to each initial sequent ai does not con-
tain cut�-steps, �l-steps and the leftmost premise of a cond�-step. By Lemma 51
we obtain the following coderivation:

a∗

�N,� ~N, ~N ⇒ N
ai i

�N,� ~N, ~N ⇒ N

D∗
h(a

∗)

�N,� ~N, ~N ⇒ N

where fD∗
h
(a∗)(x, ~x; ~y) = fDh(a(x,~x))(x, ~x; ~y) and there exists a �N -thread from the

j-th modal formula in the antecedent of the conclusion to the j-th modal formula
in the antecedent of any a∗ initial sequent in D∗(a∗). We define Df as follows:

∅

Dg

� ~N, ~N ⇒ N

.

.

.
cond

� •
�N,� ~N, ~N ⇒ N

ai i
�N,� ~N, ~N ⇒ N

D∗
h(Df )

�N,� ~N, ~N ⇒ N
cond� •

�N,� ~N, ~N ⇒ N

where we identify the sub-coderivations corresponding to the second and the third
premises of the conditional rule. By construction and induction hypothesis, the
above coderivation is regular and safe. To see that it is progressing, note that any
infinite branch B either hits • infinitely often, in which case there is a progressing
thread along the blue �N , by the properties of D∗

h inherited from Lemma 51, or B
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shares a tail with an infinite branch of Dg or D∗
h(a

∗), which are progressing by the
inductive hypotheses.

We show thatDf NB(~a)-defines f by induction on x. For the base case, fD∗
f
(0, ~x; ~y) =

fDg
(~x; ~y) = g(~x; ~y) = f(0, ~x; ~y). For the inductive step:

fD∗
f
(six, ~x; ~y) = fD∗

h
(λ~v.fD∗

f
(x,~x;~v))(x, ~x; ~y)

= fD∗
h
(λ~v.f(x,~x;~v))(x, ~x; ~y)

= fDh(λ~v.f(x,~x;~v))(x, ~x; ~y)

= h(λ~v.f(x, ~x;~v))(x, ~x; ~y)

= f(six, ~x; ~y).

This completes the proof. �

7. Soundness for circular systems

In this section we define a translation of CNB-coderivations into functions of NB⊂

which, in particular, maps CB-derivations into functions of B⊂, thus concluding our
characterisation of CB and CNB in terms of computational complexity.

7.1. The Translation Lemma. A regular coderivation can be naturally seen as
a finite tree with ‘backpointers’, a representation known as cycle normal form,
cf. [Bro05, BS11].

Definition 53 (Cycle normal form). Let D be a regular B−-coderivation. The cycle
normal form (or simply cycle nf ) of D is a pair 〈D, RD〉, where RD is a partial
self-mapping on the nodes of D whose domain of definition is denoted Bud(D) and:

(i) every infinite branch of D contains some (unique) ν ∈ Bud(D);
(ii) if ν ∈ Bud(D) then both RD(ν) ⊏ ν and DRD(ν) = Dν ;
(iii) for any two distinct nodes µ ⊏ ν strictly below Bud(D), Dµ 6= Dν

We call any ν ∈ Bud(D) a bud, and RD(ν) its companion. A terminal node is
either a leaf of D or a bud. The set of nodes of D bounded above by a terminal
node is denoted TD. Given a node ν ∈ TD, we define Budν(D) as the restriction of
buds to those above ν.

Remark 54. The cycle normal form of a regular coderivation D always exists, as
by definition any infinite branch contains a node ν such that Dν = Dµ for some
node µ below ν. Bud(D) is designed to consist of just the least such nodes, so that
by construction the cycle normal form is unique. Note that Bud(D) must form an
antichain: if µ, ν ∈ Bud(D) with µ ⊏ ν, then RD(µ) ⊏ µ are below Bud(D) but we
have DRD(µ) = Dµ by (ii) above, contradicting the (iii).

Also, notice that any branch of D contains a leaf of TD. Moreover, since Bud(D)
is an antichain, the leaves of TD defines a ‘bar’ across D, and so TD is a finite tree.

The following proposition allows us to reformulate progressiveness, safety and
left-leaning conditions for cycle normal forms.

Proposition 55. Let D be a regular B−-coderivation with cycle nf 〈D, RD〉. For
any ν ∈ Bud(D), the (finite) path π from RD(ν) to ν satisfies:

(1) if D is progressing, π must contain the conclusion of an instance of cond�N ;
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(2) if D is a CNB-coderivation, π cannot contain the conclusion of cut�N , �l,
w�, and the leftmost premise of cond�;

(3) if D is a CB-coderivation, π cannot contain the conclusion of wN , the left-
most premise of condN , and the rightmost premise of cutN .

In what follows we shall indicate circularities in cycle nfs explicitly by extending
both CNB and CB with a new inference rule called dis:

Γ ⇒ A
dis X

Γ ⇒ A

where X is a finite set of nodes. In this presentation, we insist that each companion
ν of the cycle nf 〈D, RD〉 is always the conclusion of an instance of dis, where X
denotes the set of buds ν′ such that RD(ν

′) = ν. This expedient will allow us to
formally distinguish cases when a node of TD is a companion from those where it
is the conclusion of a standard rule of B−.

To facilitate the translation, we shall define two disjoint sets Cν and Oν . Intu-
itively, given a cycle nf 〈D, RD〉 and ν ∈ TD, Cν is the set of companions above ν,
while Oν is the set of buds whose companion is strictly below ν.

Definition 56. Let 〈D, RD〉 be the cycle nf of a B−-coderivation D. We define the
following two sets for any ν ∈ TD:

Cν := {µ ∈ RD(Budν(D)) | ν ⊑ µ}

Oν := {µ ∈ Budν(D)) | RD(µ) ⊏ ν}

We are now ready to state and prove the Translation Lemma. Its proof proceeds
by analysing each node ν0 ∈ TD and associates with it an instance of the scheme
snrec⊂ that simultaneously defines the functions {fDν

| ν ∈ Cν ∪ {ν0}}, with the
help of an additional set of oracles {fDµ

| µ ∈ Oν0}. When ν0 is the root of D, note
that Oν0 = ∅ and so the function thus defined will be oracle-free. Thus we obtain
an instance of snrec⊂ defining fD, and so fD ∈ NB⊂ by Proposition 42.

Lemma 57 (Translation Lemma). Let 〈D, RD〉 be the cycle nf of a CNB-coderivation
D, and let ν0 ∈ TD:

(1) If Oν0 = ∅ then fDν0
∈ NB⊂. In particular, if D is a CB-coderivation then

fDν0
∈ B⊂.

(2) If Oν0 6= ∅ then ∀ν ∈ Cν0 ∪ {ν0}:

fDν
(~x; ~y) = hν((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν0
∪Oν0

)(~x; ~y)

where:
(a) hν ∈ NB⊂((fDµ

)µ∈Oν0
, (aµ)µ∈Cν0

) and so fDν
∈ NB⊂((fDµ

)µ∈Oν0
);

(b) the order ~u ⊆ ~x is strict if either ν, µ ∈ Cν0 or the path from ν to µ in
Dν0 contains the conclusion of an instance of cond�;

(c) if D is a CB-coderivation then ~v ⊆ ~y.

Proof sketch. Points 1 and 2 are proven by simultaneous induction on the longest
distance of ν0 from a leaf of TD. We just consider the most relevant case, i.e. when
ν0 is the conclusion of an instance of dis with premise ν′, where X is the set of
nodes labelling the rule. We have Oν0 = Oν′ \X and Cν0 = Cν′ ∪ {ν0}. We want
to find (hν)ν∈Cν∪{ν0} defining the equations for (fDν

)ν∈Cν∪{ν0} in such a way that
points 2a-2c hold. We shall start by defining hν0 . First, note that, by definition of



34 CYCLIC IMPLICIT COMPLEXITY

cycle nf, fDν0
(~x; ~y) = fDν′ (~x; ~y) = fDµ

(~x; ~y) for all µ ∈ X . By induction hypothesis

on ν′ there exists a family (gν)ν∈Cν′∪{ν′} such that:

(12) fDν′ (~x; ~y) = gν′((λ~u ⊆ ~x, λ~v.fDµ
(~u;~v))µ∈Cν′∪Oν′ )(~x; ~y)

and, moreover, for all ν ∈ Cν′ :

(13) fDν
(~x; ~y) = gν((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν′∪Oν′ )(~x; ~y)

Since Oν′ = Oν0 ∪X and the path from ν′ to any µ ∈ X must cross an instance of
cond� by Proposition 55.1, the induction hypothesis on ν′ (point 2b) allows us to
rewrite (12) as follows:

(14)

fDν′ (~x; ~y) = gν′((λ~u ⊆ ~x, λ~v.fDν
(~u;~v))ν∈Cν′ ,

(λ~u ⊆ ~x, λ~v.fDµ
(~u;~v))µ∈Oν0

,

(λ~u ⊂ ~x, λ~v.fDµ
(~u;~v))µ∈X)(~x; ~y)

On the other hand, for all ν ∈ Cν′ , for all ~u ⊆ ~x and ~v, the equation in (13) can be
rewritten as:

(15)

fDν
(~u;~v) = gν((λ~w ⊂ ~u, λ~v′.fDµ

(~u; ~v′))µ∈Cν′ ,

(λ~w ⊆ ~u, λ~v′.fDµ
(~w; ~v′))µ∈Oν0

,

(λ~w ⊆ ~u, λ~v′.fDµ
(~w; ~v′))µ∈X)(~u;~v)

and so, for all ν ∈ Cν′ :

(16)

λ~u ⊆ ~x, λv.fDν
(~u;~v) = λ~u ⊆ ~x, λv.gν((λ~w ⊂ ~x, λ~v′.fDµ

(~u; ~v′))µ∈Cν′ ,

(λ~w ⊆ ~x, λ~v′.fDµ
(~w; ~v′))µ∈Oν0

,

(λ~w ⊆ ~x, λ~v′.fDµ
(~w; ~v′))µ∈X)(~u;~v)

Now, since the paths from ν′ to any µ ∈ X in D must contain an instance of cond�,
for all ν ∈ Cν′ and all µ ∈ X , we have that either the path from ν′ to ν contains
an instance of cond� or the path from ν to µ does. By applying the induction
hypothesis on ν′ (point 2b), given ν ∈ Cν′ and µ ∈ X , either λ~u ⊆ ~x, λ~v.fDν

(~u;~v)

in (14) is such that ~u ⊂ ~x, or λ~w ⊆ ~u, λ~v′.fDµ
(~w; ~v′) in (15) is such that ~w ⊂ ~u. This

means that, for any µ ∈ X , λ~w ⊆ ~x, λ~v′.fDµ
(~w; ~v′) in (16) is such that ~w ⊂ ~x. For

each ν ∈ Cν′ , by rewriting λ~u ⊆ ~x, λ~v.fDν
(~u;~v) in (14) according to the equation

in (16) we obtain:

fDν0
(~x; ~y) = tν0((λ~u ⊂ ~x, λ~v.fDµ

(~u;~v))µ∈Cν′∪X , (λ~u ⊆ ~x, λ~v.fDµ
(~u;~v))µ∈Oν0

)(~x; ~y)

for some tν0 . Since fDµ
= fDν0

for all µ ∈ X , and since Cν0 = Cν′ ∪{ν0}, by setting
hν0 := tν0 the above equation gives us the following:

(17) fDν0
(~x; ~y) = hν0((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν0
∪Oν0

)(~x; ~y)

which satisfies point 2b. From (17) we are able to find the functions (hν)ν∈Cν

defining the equations for (fDν
)ν∈Cν

. Indeed, the induction hypothesis on ν′ gives
us (13) for any ν ∈ Cν′ . We rewrite in each such equation any λ~u ⊆ ~x, λ~v.fDµ

(~u;~v)
such that µ ∈ X according to equation (17), as fDµ

= fDν0
for any µ ∈ X . We

obtain the following equation for any ν ∈ Cν′ :

fDν
(~x; ~y) = tν((λ~u ⊂ ~x, λ~v.fDµ

(~u;~v))µ∈Cν′∪{ν0}, (λ~u ⊆ ~x, λ~v.fDµ
(~u;~v))µ∈Oν0

)(~x; ~y)
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for some tν . Since Cν0 = Cν′ ∪ {ν0} and the above equation satisfies point 2b, we
set hν := tν and we obtain, for all ν ∈ Cν0 :

(18) fDν
(~x; ~y) = hν((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν0
∪Oν0

)(~x; ~y)

It remains to show that (17) and (18) satisfy points 2a and 2c. Concerning point 2a,
on the one hand for all ν ∈ Cν0 we have hν ∈ NB⊂((fDµ

)µ∈Oν0
, (aµ)µ∈Cν0

), with

(aµ)µ∈Cν0
oracle functions. On the other hand, by applying the induction hypoth-

esis, we have fDν0
= fDν′ ∈ NB⊂((fDµ

)µ∈Oν′ ) and fDν
∈ NB⊂((fDµ

)µ∈Oν′ ), for
all ν ∈ Cν0 . Since Oν′ = Oν0 ∪ X and fDν0

= fDµ
for all µ ∈ X , we have both

fDν0
∈ NB⊂((fDµ

)µ∈Oν0
) and fDν

∈ NB⊂((fDµ
)µ∈Oν0

, fDν0
) for all ν ∈ Cν0 , and

hence fDν
∈ NB⊂((fDµ

)µ∈Oν0
), for all ν ∈ Cν0 . Point 2c follows by applying the

induction hypothesis, as the construction does not affect the safe arguments. �

Finally, we can establish the main result of this paper:

Corollary 58.

• f(~x; ) ∈ CB iff f(~x) ∈ FPTIME;
• f(~x; ) ∈ CNB iff f(~x) ∈ FELEMENTARY.

Proof. Follows directly from Theorem 49, Theorem 52 and Lemma 57. �

8. Conclusions

In this work we presented two-tiered circular type systems CB and CNB and
showed that they capture polynomial-time and elementary computation, respec-
tively. This is the first time that methods of circular proof theory have been applied
in implicit computational complexity (ICC).

The widespread approach to ICC is based on the introduction of inductively
defined languages or calculi endowed with recursion mechanisms whose strength
is carefully calibrated in order to increase in complexity while not overstepping a
given bound on computation. The circular proof systems CB and CNB pave the
way to a radically different, top-down approach, where coinductive reasoning plays
a central role.

We conclude this paper with some further remarks, some comments about ex-
pressivity, and some avenues for future work.

8.1. Further remarks. It is well-known that FLINSPACE, i.e. the class of func-
tions computable in linear space, can be captured by reformulating B in unary
notation (see [Bel92]). A similar result can be obtained for CB by just defining a
unary version of the conditional in B⊂ (similarly to the ones in [Das21, KPP21b])
and by adapting the proofs of Lemma 43, Theorem 49 and Lemma 57. On the
other hand, CNB is (unsurprisingly) not sensitive to such choice of notation.

Given the deep connection between the notion of regularity for coderivations
and the notion of uniformity in computation discussed in Subsection 3.2, we may
wonder if dropping the regularity condition from e.g. CB would result in a char-
acterisation of the non-uniform version of PTIME, e.g. P/poly. In other words,
can we capture a non-uniform complexity class using the same proof-theoretic prin-
ciples adopted to capture its uniform formulation? Unfortunately, the answer of
this question is negative. To see this, notice that Example 59 shows how to de-
fine any number-theoretic function by a non-regular progressing B−-coderivation,
which happens to be both safe and left-leaning in a trivial way. It would nonetheless
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be interesting if the regular/non-regular distinction in circular proof theory could
somehow be leveraged to model the uniform/non-uniform distinction in computa-
tional complexity.

Let us finally observe that our proof-theoretic approach to ‘circular complex-
ity’ was motivated by the inherently syntactical nature of threads, which define
the progressing criterion, cf. Definition 14. Surprisingly enough, however, it seems
that a purely term-oriented presentation of Corollary 58 could be possible thanks
to Proposition 33, which shows that CB and CNB can be defined independently on
the notion of thread. Consequently, our circular proof systems might be directly
presented as ‘function coalgebras’ satisfying certain conditions or, alternatively, as
‘two-sorted’ Kleene-Herbrand-Gödel equational programs (as suggested by Defini-
tion 11). Such a presentation could be fruitful for future endeavours in this area.

8.2. On intensional expressivity of circular systems. Notice that Corollary 58
has an extensional flavour, as it refers only to usual function complexity classes.
What about the intensional power of our circular proof systems? Can we gain some
algorithmic expressivity by moving from a function algebra to its circular formula-
tion? At least one way of comparing the intensional power of two-tiered systems
in ICC is to compare their functions with both normal and safe inputs, not only
normal inputs as is usually the case, cf. Corollary 58.

To this end, let us point out that the relations in Figure 1 between two-tiered
systems indeed respect the safe-normal distinction of inputs. I.e. the inclusions
NB ⊆ CNB ⊆ NB⊂ and B ⊆ CB ⊆ B⊂ indeed hold when construing each system
as a set of safe-normal functions. In this way, note that showing NB⊂ ⊆ NB or
B⊂ ⊆ B would be enough to infer that all systems have equivalent intensional
expressivity, at the level of their definable safe-normal functions. We suspect that
such a collapse does not hold, but we should point out that existing techniques for
showing that a safe-normal function is not definable in a two-tiered system usually
exploit a version of the Bounding Lemma from [BC92] (cf. Equation (7)), which all
the systems considered here satisfy (cf. Lemma 43).

8.3. On the ‘power’ of contraction. Revisiting Remark 24, it not clear whether Corol-
lary 58 can be restated in presence of the contraction rule c�. Were this possible,
NL-checkability of both CB and CNB would still hold as a consequence of Remark 35.
Nonetheless, establishing soundness by means of a direct translation would be a
rather difficult task, as the rule c� introduces more involved thread structures
which invalidate some invariants of Lemma 57. Indeed in a setting where cut is
context-splitting rather than context-sharing, it is known that contraction strictly
increases extensional expressivity of regular progressing coderivations [KPP21b].

8.4. Future work. It would be pertinent to pursue higher-order versions of both
CNB and CB, in light of precursory works in circular proof theory [Das21, KPP21b]
as well as ICC [Hof97, Lei99, BNS00]. In the case of polynomial-time, for instance,
a soundness result for some higher-order version of CB might follow by translation
to (a sequent-style formulation of) Hofmann’s SLR [Hof97]. Analogous translations
might be defined for a higher-order version of CNB once the linearity restrictions on
the recursion operator of SLR are dropped. Finally, as SLR is essentially a subsystem
of Gödel’s system T, such translations could refine the results on the abstraction
complexity (i.e. type level) of the circular version of system T presented in [Das21].
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We are also investigating how to extend the results of this paper to other rel-
evant complexity classes, like FPSPACE. On the function algebraic side, notice
that Lemma 43 implies a polyspace bound for functions in SB⊂, and hence for
functions in SB. We conjecture that both function algebras capture precisely the
class FPSPACE. Indeed, as already observed, the unnnested version of the recur-
sion scheme snrec can be replaced by the scheme in (5), which allows both multiple
recursive calls and composition during recursion. Several function algebras for
FPSPACE have been proposed in the literature, and all of them involve variants
of (5) (see [LM94, Oit08]).

These recursion schemes reflect the parallel nature of polynomial space functions,
which in fact can be defined in terms of alternating polynomial time computation.
We suspect that a circular proof theoretic characterisation of this class can be
achieved by extending CB with the following parallel version of the cut rule:

Γ ⇒ N · · · Γ ⇒ N Γ, N, . . . , N ⇒ N
pcut

Γ ⇒ N

and by adapting the left-leaning criterion in such a way as to allow some forms
of composition during recursion. Indeed, we believe that SB itself characterises
FPSPACE, but this result is beyond the scope of this work.

Parallel cut might also play a fundamental role for potential circular proof theo-
retic characterisations of circuit complexity classes, like ALOGTIME or NC. In
such a setting, one would expect a conditional rule that implements a divide and
conquer searching mechanism (see, e.g., [Lei98, LM00, BKMO16]).
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[FS13] Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-
elimination. In Computer Science Logic 2013 (CSL 2013). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2013.

[Hof97] Martin Hofmann. A mixed modal/linear lambda calculus with applications to
bellantoni-cook safe recursion. In Mogens Nielsen and Wolfgang Thomas, editors,
Computer Science Logic, 11th International Workshop, CSL ’97, Annual Conference
of the EACSL, Aarhus, Denmark, August 23-29, 1997, Selected Papers, volume 1414
of Lecture Notes in Computer Science, pages 275–294. Springer, 1997.

[Kle71] Stephen Cole Kleene. Introduction to Metamathematics. Bubliotheca Mathematica.
Wolters-Noordhoff Publishing, 7 edition, 1971.

[KMPS19] Leszek Aleksander Kolodziejczyk, Henryk Michalewski, Pierre Pradic, and Michal
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[NST19] Rémi Nollet, Alexis Saurin, and Christine Tasson. Pspace-completeness of a thread
criterion for circular proofs in linear logic with least and greatest fixed points. In
Serenella Cerrito and Andrei Popescu, editors, Automated Reasoning with Analytic
Tableaux and Related Methods - 28th International Conference, TABLEAUX 2019,
London, UK, September 3-5, 2019, Proceedings, volume 11714 of Lecture Notes in
Computer Science, pages 317–334. Springer, 2019.



CYCLIC IMPLICIT COMPLEXITY 39
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Appendix A. Proofs of Section 2

Proof of Proposition 5. The proof is by induction on the size of the derivation.
The case where the last rule of D is an instance of id, 0,�r, condN , cond�, or srec
are trivial. If the last rule of D is an instance of eN , e�,�l, si, and w� then we
apply the induction hypothesis. Let us now suppose that D has been obtained
from a derivation D0 by applying an instance of wN . By induction hypothesis,
there exists a derivation D∗

0 : �N, n. . .,�N ⇒ �N such that fD0
(~x; ~y) = fD∗

0
(~x; ).

Since fD(~x; ~y, y) = fD0
(~x; ~y) = fD∗

0
(~x; ) we just set D∗ = D∗

0 . Suppose now that
D is obtained from two derivations D0 and D1 by applying an instance of cutN .
By induction hypothesis, there exists D∗

1 such that fD1
(~x; ~y, y) = fD∗

1
(~x; ). Since

fD1
(~x; ~y, fD0

(~x; ~y)) = fD∗
1
(~x; ), we set D∗ = D∗

1 . As for the case where the last
rule is cut�, by induction hypothesis, there exist derivations D∗

0 and D∗
1 such that

fD0
(~x; ~y) = fD∗

0
(~x; ) and fD1

(~x, x; ~y) = fD∗
1
(~x, x; ), so that we define D∗ as the

derivation obtained from D∗
0 and D∗

1 by applying the rule cut�. �

Proof of Proposition 6. Let us first prove the left-right implication by induction on
f ∈ B. The cases where f is 0 or si are straightforward. If f is a projection then
we construct D using the rules id, wN , w�, eN , and e�. If f = p(;x) then D is as
follows:

0
⇒ N

id

N ⇒ N
id

N ⇒ N
condN

N ⇒ N

If f is cond(;x, y, z, w) then D is constructed using id, wN , eN and condN . Suppose
now that f(~x; ~y) = h(~x, g(~x; ); ~y). Then D is as follows:

D0

� ~N ⇒ N
�r

� ~N ⇒ �N

D1

� ~N,�N, ~N ⇒ N
cut�

� ~N, ~N ⇒ N

where D0 and D1 are such that fD0
= g and fD1

= h. If f(~x; ~y) = h(~x; ~y, g(~x; ~y)),
then D is as follows:

D0

� ~N, ~N ⇒ N

D1

� ~N, ~N,N ⇒ N
cutN

� ~N, ~N ⇒ N

where D0 and D1 are such that fD0
= g and fD1

= h. Last, suppose that f(x, ~x; ~y)
has been obtained by safe recursion from g(~x; ~y) and hi(x, ~x; ~y, y) with i = 0, 1.
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Then, D is as follows:

D0

� ~N, ~N ⇒ N

D1

�N,� ~N, ~N,N ⇒ N

D2

�N,� ~N, ~N,N ⇒ N
srec

�N,� ~N, ~N ⇒ N

where D0, D1, and D2 are such that fD0
= g, fD1

= h0 and fD2
= h1.

For the right-left implication, we prove by induction on the size of deriva-
tions that D : �N, n. . .,�N,N, m. . ., N ⇒ C implies fD ∈ B. The cases where
the last rule of D is id, 0, si,wN ,w�, eN , e�,�l,�r are all straightforward using
constants, successors and projections. If D has been obtained from two deriva-
tions D0 and D1 by applying an instance of cutN then, by applying the induc-
tion hypothesis, fD(~x; ~y) = fD0

(~x; ~y, fD1
(~x; ~y)) ∈ B. As for the case where the

last rule is cut�, by Proposition 5 there exists a derivation D∗
1 with smaller size

such that fD1
(~x; ~y) = fD∗

1
(~x; ). By applying the induction hypothesis, we have

fD(~x; ~y) = fD0
(~x, fD∗

1
(~x; ); ~y) ∈ B. If D has been obtained from derivations D0,

D1, D2 by applying an instance of condN then, by using the induction hypothesis
we have fD(~x; ~y, y) = cond(; y, fD0

(~x; ~y), fD1
(~x; ~y, p(; y)), fD2

(~x; ~y, p(; y))) ∈ B. As
for the case where the last rule is cond�, by applying the induction hypothesis we
have fD(x, ~x; ~y) = cond(;x, fD0

(~x; ~y), fD1
(p(x; ), ~x; ~y), fD2

(p(x; ), ~x; ~y)) ∈ B, where

p(x; ) = p(;π1;0
1; (x; )). Last, if D has been obtained from derivations D0, D1, D2 by

applying an instance of srec, then fD ∈ B using the induction hypothesis and the
safe recursion scheme. �

Appendix B. Further proofs and examples for Section 3

B.1. Examples for Proposition 21. In what follows, in light of Proposition 20,
we shall simply omit modalities in (regular) (progressing) coderivations, i.e. we
shall regard any formula in the context of a sequent as modal and we shall omit
applications of �r. Consequently, we shall write e.g. cut instead of cut�N and avoid
writing semicolons in the semantics of a coderivation.

Following essentially [Das21], the first fundamental observation is that any type
1 function is B−-definable by a progressing coderivation.

Example 59 (Extensional completeness at type 1). For any function f : Nk → N

there is a progressing coderivation F such that fF = f . Proceeding by induction
on k, if k = 0 then we use the rules 0, s0, s1, cut to construct F defining the natural
number f . Otherwise, suppose f : N × N

k → N and define fn as fn(~x) = f(n, ~x).
We construct the coderivation defining f as follows:

N

N, ~N ⇒ N

f0

~N ⇒ N

f1

~N ⇒ N

f2

~N ⇒ N

...
cond

N, ~N ⇒ N
cond

N, ~N ⇒ N
cond

N, ~N ⇒ N
cond

N, ~N,⇒ N
cut

N, ~N ⇒ N
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where N is the coderivation converting n into s1 n. . .s10 (see Appendix E), and we
omit the second premise of cond as it is never selected. Notice that, by a cardinality
argument, F is not regular in general: there are only countable many regular
coderivations, while there are continuum many functions over N. Moreover, F is
progressing, as red formulas N (which are modal) form a progressing thread.

The above example illustrates the role of regularity as a uniformity condition:
regular coderivations admit a finite description (e.g. a finite tree with backpointers),
so that they define computable functions. In fact, it turns out that any (partial)
recursive function is B−-definable by a regular coderivation. This can be easily
inferred from the next two examples using Proposition 20.

Example 60 (Primitive recursion). Let f(x, ~x) be defined by primitive recursion
from g(~x) and h(x, ~x, y). Given coderivations G and H defining g and h respectively,
we construct the following coderivation R:

N

N ⇒ N

G

~N ⇒ N

P

N ⇒ N

...
cond •

N,N, ~N ⇒ N

H

N, ~N,N ⇒ N
cut

N,N, ~N ⇒ N
cut

N,N, ~N ⇒ N
cond •

N,N, ~N ⇒ N
cut

N, ~N ⇒ N

whereN is the coderivation converting n into s1 n. . .s10, P is the coderivation defining
unary predecessor (see Appendix E), and we avoid writing the second premise of
cond as it is never selected. Notice that R is progressing, as blue formulas N (which
are modal) form a progressing thread contained in the infinite branch that loops
on •. From the associated equational program we obtain:

fRǫ
(x, ~x) = fR1(fN (x), x, ~x)

fR1
(0, x, ~x) = g(~x)

fR1
(s1z, x, ~x) = h(fP(x), ~x, fR1

(z, fP(x), ~x))

so that fR = fRǫ = f .

Example 61 (Unbounded search). Let g(x, ~x) be a function, and let f(~x) :=
µx.(g(x, ~x) = 0) be the unbounded search function obtained by applying the min-
imisation operation on g(~x). Given a coderivation G defining g, we construct the
following coderivation U :

0
⇒ N

G

N, ~N ⇒ N

id

N ⇒ N

S

N ⇒ N

...
cut •

N, ~N ⇒ N
cut

N, ~N ⇒ N
cond

N,N, ~N ⇒ N
cut •

N, ~N ⇒ N
cut

~N ⇒ N



42 CYCLIC IMPLICIT COMPLEXITY

where the coderivation N computes the unary successor (see Example 10), and we
identify the sub-coderivations corresponding to the second and the third premises
of the conditional rule. It is easy to check that the above coderivation is regular
but not progressing, as threads containing principal formulas for cond are finite.
From the associated equational program we obtain:

fUǫ
(~x) = fU1

(0, ~x)
fU1

(x, ~x) = fU11
(fG(x, ~x), x, ~x)

fU11
(0, x, ~x) = x

fU11
(s0z, x, ~x) = fU1

(fS(x), ~x) z 6= 0
fU11

(s1z, x, ~x) = fU1
(fS(x), ~x)

Which searches for the least x ≥ 0 such that g(x, ~x) = 0. Hence, fUǫ
(~x) = fU (~x) =

f(~x).

B.2. Other proofs for Section 3.

Proof of Theorem 22. First, by Proposition 20 we can neglect modalities in B−-
coderivations (and semicolons in the corresponding semantics). The left-right im-
plication thus follows from the natural inclusion of our system into CT0 and [Das21,
Corollary 80].

Concerning the right-left implication, we employ a formulation T1(~a) of the
type 1 functions of T1 over oracles ~a as follows. T1(~a) is defined just like the
primitive recursive functions, including oracles ~a as initial functions, and by adding
the following version of type 1 recursion:

• if g(~x) ∈ T1(~a) and h(a)(x, ~x) ∈ T1(a,~a), then the f(x, ~x) given by,

f(0, ~x) = g(~x)
f(six, ~x) = hi(λ~u.f(x, ~u))(x, ~x)

is in T1(~a).

It is not hard to see that the type 1 functions of T1 are precisely those of T1(∅).
We then conclude by showing how to define the above scheme by regular and
progressing B−-coderivations.

Given a function f(~x) ∈ T1(~a), we construct a regular progressing coderivation
of B−,

{

ai

~N ⇒ N

}

i

Df (~a)

~N ⇒ N

computing f(~x) over ~a, by induction on the definition of f(~x).
If f(~x) is an initial function, an oracle, or f(~x) = h(g(~x), ~x) then the construction

is easy (see, e.g., the proof of Theorem 52).
Let us consider the case of recursion (which subsumes usual primitive recursion

at type 0). Suppose f(x, ~x) ∈ T1(~a) where,

f(0, ~x) = g(~x)
f(s0x, ~x) = h0(λ~u.f(x, ~u))(x, ~x)
f(s1x, ~x) = h1(λ~u.f(x, ~u))(x, ~x)
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where Dg(~a) and Dh(a,~a) are already obtained by the inductive hypothesis. We
define Df (~a) as follows:

Dg(~a)

~N ⇒ N

...
•

N, ~N ⇒ N

N,Dh0
(Df (~a),~a)

N, ~N ⇒ N

...
•

N, ~N ⇒ N

N,Dh1
(Df (~a),~a)

N, ~N ⇒ N
cond •

N, ~N ⇒ N

Note that the existence of the second and third coderivations above the conditional
is given by a similar construction to that of Lemma 51 (see also [Das21, Lemma
42]). �

B.3. Argument for Remark 35.

We show that any safe B−-coderivation with contraction rules is progressing
whenever its infinite branches cross infinitely many cond�-steps. First, notice that
due to explicit contraction there can be distinct threads contained in a branch B
that start with the same modal formula. For this reason, instead of considering
threads, we shall consider graphs of immediate ancestry (see Definition 13 and Def-
inition 14), which collect many threads. Given an infinite branch B, by safety
there exists a node ν of B such that any sequent above ν is not the conclusion of
a cut�-step. Now, by inspecting the rules of B− \ {cut�} we observe that:

• given a modal formula in the context of the sequent at ν there is a unique
ancestry tree in B that starts at ν and contains that modal formula;

• any ancestry tree in B starting from a node above ν can be extended to a
one starting at ν.

Hence, B contains k ancestry trees T1, . . . , Tk, where k is the number of modal
formulas in the context of the sequent at ν. Now, any such ancestry tree Ti induces
a tree T ′

i such that:

• a node T ′
i is either the root of Ti or a node of Ti that is principal formula

of a cond�-step.
• an edge of T ′

i from ν to µ exists if there is a path in Ti from ν to µ.

each T ′
i is clearly finitely branching. Since B contains infinitely many cond�-steps,

by the Infinite Pigeonhole Principle we conclude that some i ≤ k exists such that
T ′
i is infinite. By König lemma we conclude that T ′

i contains an infinite branch,
and so Ti contains a thread crossing infinitely many cond�-steps. This shows that
any infinite branch contains a progressing thread.

Appendix C. Proofs of Section 6

In this section we prove Corollary 48. To begin with, we recall the definition of
the class FELEMENTARY:

Definition 62. FELEMENTARY is the smallest set of functions containing:

• 0() := 0 ∈ N,
• πn

i (x1, . . . , xn) := xj , whenever 1 ≤ j ≤ n;
• s(x) := x+ 1;
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• the function E2 defined as follows:

E1(x) = x2 + 2

E2(0) = 2

E2(x+ 1) = E1(E2(x))

and closed under the following:

• (Composition) If f(~x, x), g(~x) ∈ FELEMENTARY then so is f(~x, g(~x));
• (Bounded recursion) If g(~x), h(x, ~x, y), j(x, ~x) ∈ FELEMENTARY then
so is f(x, ~x) given by:

f(0, ~x) := g(~x)

f(x+ 1, ~x) := h(x, ~x, f(x, ~x))

provided that f(x, ~x) ≤ j(x, ~x).

Proposition 63 ([Ros84]). Let f ∈ FELEMENTARY be a k-ary function.
Then, there exists an integer m such that:

f(~x) ≤ Em
2 (max

k
(~x))

where E0
2(x) = x and Em+1

2 (x) = E2(E
m
2 (x)).

For our purposes we shall consider a formulation of this class in binary notation,
that we call FELEMENTARY0,1.

Definition 64. FELEMENTARY0,1 is the smallest set of functions containing:

• 0() := 0 ∈ N,
• πn

i (x1, . . . , xn) := xj , whenever 1 ≤ j ≤ n;
• si(x) := 2x+ i, for i ∈ {0, 1}
• the function ε(x, y) defined as follows:

ε(0, y) := s0(y)

ε(six, y) := ε(x, ε(x, y))

and closed under the following:

• (Composition) If f(~x, x), g(~x) ∈ FELEMENTARY0,1 then so is f(~x, g(~x));
• (Bounded recursion on notation) If g(~x), h0(x, ~x, y), h1(x, ~x, y), j(x, ~x) ∈
FELEMENTARY0,1 then so is f(x, ~x) given by:

f(0, ~x) := g(~x)

f(six, ~x) := hi(x, ~x, f(x, ~x))

provided that f(x, ~x) ≤ j(x, ~x).

It is easy to show that the unary and the binary definition of the class of el-
ementary time computable functions coincide. To see this, we first define εn(x)
as

(19)
ε1(x) := ε(x, 1)

εm+1(x) := ε1(εm(x))

which allows us to prove that εn(x) plays the role of rate growth function as the
function En

2 (x) (see Proposition 63).

Proposition 65.

(1) FELEMENTARY = FELEMENTARY0,1;
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(2) for any f ∈ FELEMENTARY0,1 k-ary function there is an integer m
such that:

f(~x) ≤ εm(max
k

(~x))

Proof. Let us first prove point 1. For the ⊇ direction we show that for any f ∈
FELEMENTARY0,1 there exists n such that:

(20) |f(~x)| ≤ 2n(
∑

|~x|)

where 20(x) = x and 2n+1(x) = 22n(x). Since |x| = ⌈log2(x + 1)⌉, from the above
inequation we would have that, for some m:

f(~x) ≤ 2n+m(
∑

~x)

which allows us to conclude f ∈ FELEMENTARY, as the elementary time com-
putable functions are exactly the elementary space ones. The inequation (20) can
be proved by induction on f , noticing that |ε(x, y)| = 2|x| + |y|. Concerning the
⊆ direction, we prove by induction on f ∈ FELEMENTARY that there exists a

function f̂ ∈ FELEMENTARY0,1 such that, for all ~x = x1, . . . , xn:

f(~x) = |f̂(sx1

1 (0), . . . , sxn

1 (0))|

where sm1 (0) = s1( m. . .s1(0)). Since the functions |·| and x 7→ sx1(0) are both in
FELEMENTARY0,1, we are able to conclude f ∈ FELEMENTARY0,1. The
case f = 0 is trivial. As for the cases f = s and f = πn

i , we first notice that
|sx1(0)| = x. Then, we have:

s(x) = |s
s(x)
1 (0)|

πn
i (~x) = xi = |sxi

1 (0)| = |πn
i (s

x1

1 (0), . . . , sxn

1 (0))|

Concerning the case of E2(x), we first notice that the following property holds for
any m and some k:

(21) Em
2 (x) ≤ εm+k(x)

where εn(x) is as in (19). Moreover, the function E2(x) can be defined by two
applications of bounded recursion proceeding from the successor and the projection
functions, where each recursion can be bounded by E2(x), and hence by εk(x) for
some k. This means that the case of E2(x) can be reduced to the case of bounded

recursion. Suppose now that f(~x) = h(~x, g(~x)). We define f̂(~x) = ĥ(~x, ĝ(~x)) so
that, by induction hypothesis:

f(~x) = h(~x, g(~x))

= |ĥ(sx1

1 (0), . . . , sxn

1 (0), s
g(~x)
1 (0))|

= |ĥ(sx1

1 (0), . . . , sxn

1 (0), s
|ĝ(s

x1

1
(0),...,sxn

1
(0))|

1 (0))|

= |ĥ(sx1

1 (0), . . . , sxn

1 (0), ĝ(sx1

1 (0), . . . , sxn

1 (0)))|

= |f̂(~x)| = |ĥ(~x, ĝ(~x))|

Last, suppose that f has been obtained by bounded recursion from h, g, j, i.e.

f(0, ~x) = g(~x)

f(y + 1, ~x) = h(y, ~x, f(y, ~x))
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provided that f(y, ~x) ≤ j(y, ~x). We define f̂ as follows:

f̂(0, ~x) = ĝ(~x)

f̂(siy, ~x) = ĥ(y, ~x, f̂(y, ~x))

We show by induction on y that:

f(y, ~x) = |f̂(sy1(0), s
x1

1 (0), . . . , sxn

1 (0))|

We have:

f(0, ~x) = g(~x) = |ĝ(sx1

1 (0), . . . , sxn

1 (0))| = |f̂(s01(0), s
x1

1 (0), . . . , sxn

1 (0))|

f(y + 1, ~x) = h(y, ~x, f(y, ~x))

= |ĥ(sy1(0), s
x1

1 (0), . . . , sxn

1 (0), s
f(y,~x)
1 (0))|

= |ĥ(sy1(0), s
x1

1 (0), . . . , sxn

1 (0), s
|f̂(sy

1
(0),s

x1

1
(0),...,sxn

1
(0))|

1 (0))|

= |ĥ(sy1(0), s
x1

1 (0), . . . , sxn

1 (0), f̂(sy1(0), s
x1

1 (0), . . . , sxn

1 (0))|

= |f̂(sy+1
1 (0), sx1

1 (0), . . . , sxn

1 (0))|

since f(y, ~x) ≤ j(y, ~x) and j(y, ~x) = |ĵ(sy1(0), s
x1

1 (0), . . . , sxn

1 (0))| by induction hy-
pothesis, we are done.

Point 2 follows by point 1, Proposition 63 and (21).
�

Completeness for NB relies on a standard technique (see [BC92]), which has been
adapted to the case of FELEMENTARY by [WW99].

Lemma 66. For any f(~x) ∈ FELEMENTARY0,1 there are a function f∗(x; ~x) ∈
NB and a monotone function ef ∈ FELEMENTARY0,1 such that for all integers
~x and all w ≥ ef (~x) we have f∗(w; ~x) = f(~x).

Proof. The proof is by induction on the definition of f . If f is the zero, successor
or projection function then f∗ ∈ NB. In this case we choose ef = 0. The function
ε has a definition by one application of bounded recursion on notation, proceeding
from the successors and the projection functions, where each recursion is bounded
by ε. Since the treatment of bounded recursion does not make use of the induction
hypothesis for the bounding function, we can use this method to get functions
ε∗ ∈ NB and eε ∈ FELEMENTARY0,1 with the required properties. If f(~x) =
h(~x, g(~x)) then we set f∗(w; ~x) = h∗(w; ~x, g∗(w; ~x)), which is in NB. Since the
function g∗ is clearly bounded by a monotone function b ∈ FELEMENTARY0,1,
we set ef (~x) = eh(~x, b(~x)) + eg(~x), which is monotone. By applying the induction
hypothesis, if w ≥ ef (~x) then:

f∗(w; ~x) = h∗(w; ~x, g∗(w; ~x)) = h∗(w; ~x, g(~x)) = h(~x, g(~x))
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Let us finally suppose that f(x, ~y) is defined by bounded recursion on notation from
g(~y), hi(x, ~y, f(x, ~y)) and j(x, ~y). By applying the induction hypothesis we set:

f̂(0, w;x, ~y) = g∗(w; ~y)

f̂(si(x), w;x, ~y) = cond(;W (si(v), w;x), g
∗(w; ~y),

h∗
i (w;W (v, w;x), ~y, f∗(v, w;x, ~y)))

f∗(w;x, ~y) = f̂(w,w;x, ~y)

where W (v, w;x) = −̇(−̇(v;w);x) and −̇(x; y) is the truncated subtraction, which
is in B, and hence in NB. We can easily show that f∗(w;x, ~y) ∈ NB. We define
ef(x, ~y) = eg(~y)+

∑

i ehi
(x, ~y, j(x, ~y)), where j is the bounding function. Assuming

j to be monotone, ef is monotone too. We now show by induction on u that,
whenever w ≥ ef(x, ~y) and w − x ≤ u ≤ w:

(22) f̂(u,w;x, ~y) = f(x− (w − u), ~y)

If u = w − x then we have two cases:

• if u = 0 then f̂(0, w;x, ~y) = g∗(w; ~y);

• if u = si(v) then, since W (si(v), w;x) = 0, we have f̂(si(v), w;x, ~y) =
g∗(w; ~y).

Hence, in any case:

f̂(u,w;x, ~y) = g∗(w; ~y) = g(~y) = f(0; ~y) = f(x− (w − u), ~y)

Let us now suppose that w − x < u ≤ w. This means that u = si(v) and
W (si(v), w;x) > 0. Moreover, by monotonicity of ef and definition of j:

w ≥ ef(x, ~y) ≥ ef(x− (w − si(v)), ~y) ≥ ef (x− (w − v), ~y)

≥ ehi
(x− (w − v), ~y, j(x− (w − v), ~y))

≥ ehi
(x− (w − v), ~y, f(x− (w − v), ~y))

By applying the induction hypothesis:

f̂(si(v), w;x, ~y) = h∗
i (w;W (v, w;x), ~y, f̂(v, w;x, ~y))

= h∗
i (w;W (v, w;x), ~y, f(x− (w − v), ~y))

= h∗
i (w;x − (w − v), ~y, f(x− (w − v), ~y))

= hi(x− (w − v), ~y, f(x− (w − v), ~y))

= f(si((x− (w − v))), ~y) = f((x− (w − si(v))), ~y)

Now, by (22), for all w ≥ ef (x, ~y) we have:

f∗(w;x, ~y) = f̂(w,w;x, ~y) = f(x, ~y)

and this concludes the proof. �

Proof of Theorem 47. First, given the function ex(x; y) in (4), we construct the
function exm(x; ) by induction on m:

ex1(x; ) = ex(x; 1)

exm+1(x; ) = exm(ex1(x; ); )

Hence εm(x) = exm(x; ), for all m ≥ 1. Now, let f(~x) ∈ FELEMENTARY.
By Proposition 65.1, f(~x) ∈ FELEMENTARY0,1. By Lemma 66, there exist



48 CYCLIC IMPLICIT COMPLEXITY

f∗(w; ~x) ∈ NB and a monotone function ef ∈ FELEMENTARY0,1 such that, for
all w, ~x with w ≥ ef(~x), it holds that f∗(w; ~x) = f(~x). By Proposition 65.2 there
exists m ≥ 1 such that:

ef (~x) ≤ exm(max
♯~x

(~x; ); )

where max♯~x(~x; ) is the k-ary maximum function, which is in B by Theorem 2, and
hence in NB. Therefore:

f(~x; ) = f∗(exm(max
♯~x

(~x; ); ); ~x) ∈ NB

�

Appendix D. Proofs of Section 7

Proofs of Proposition 55. By definition of cycle nf, each path from RD(ν) to ν in
〈D, RD〉 is contained in a branch of D such that each rule instance in the former
appears infinitely many times in the latter. Hence:

(i) if D is progressing, the path contains the conclusion of an instance of
cond�N ;

(ii) if D is safe, the path cannot contain the conclusion of a cut�N rule;
(iii) if D is left-leaning, the path cannot contain the rightmost premise of a cutN

rule.

This shows point 1. Let us consider point 2. By point (ii), if D is safe then, going
from a node µ of the path to each of its children µ′, the number of modal formulas
in the context of the corresponding sequents cannot increase. Moreover, the only
cases where this number strictly decreases is when µ is the conclusion of �l, w�N ,
or when µ′ is the leftmost premise of cond�N . Since RD(ν) and ν must be labelled
with the same sequent, all such cases are impossible. As for point 3 we notice that,
by point (iii) and the above reasoning, if D is safe and left-leaning then, going from
a node µ of the path to each of its children µ′, the number of non-modal formulas
in the context of the corresponding sequents cannot increase. Moreover, the only
cases where this number strictly decreases is when µ is the conclusion of wN , or
when µ′ is the leftmost premise of condN . Since RD(ν) and ν must be labelled with
the same sequent, all such cases are impossible. �

Proof of Lemma 57. Points 1 and 2 are proven by simultaneous induction on the
longest distance of ν0 from a leaf of TD. Notice that in the following situations only
point 1 applies:

• ν is the conclusion of an instance of id or 0;
• ν is the conclusion of an instance of w�, �l and cut�N ;
• ν is the conclusion of an instance of wN and D is a CB-coderivation.

In particular, the last two cases hold by Proposition 55.2-3, as it must be that
Oν′ = ∅ for any premise ν′ of ν0. Let us discuss the case where ν0 is the conclu-
sion of a cut� rule with premises ν1 and ν2. By induction on point 1 we have
fDν1

(~x; ~y), fDν2
(~x, x; ~y) ∈ NB⊂. Since the conclusion of Dν1 has modal succe-

dent, by Proposition 18 there must be a coderivation D∗ such that fD∗(~x; ) =
fDν1

(~x; ~y) ∈ NB⊂. Moreover, by Proposition 31, if Dν1 is a CB-coderivation then

D∗ is. Hence, we define fDν0
(~x; ~y) = fDν2

(~x, fD∗(~x; ); ~y) ∈ NB⊂. If moreover D is a

CB-coderivation then, by applying the induction hypothesis, we obtain fDν0
∈ B⊂.
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Let us now consider point 2. If ν0 is the conclusion of a bud then Oν0 = {ν0},
Cν0 = ∅, and all points hold trivially. The cases where ν0 is an instance of wN ,
eN , e�, �r, s0 or s1 are straightforward. Suppose that ν0 is the conclusion of a
cond� step with premises ν′, ν1, and ν2, and let us assume Oν1 6= ∅, Oν2 6= ∅. By
Proposition 55.2 we have Oν′ = ∅, so that fDν′ ∈ NB⊂ by induction hypothesis on
point 1. By definition, Oν0 = Oν1 ∪Oν2 and Cν0 = Cν1 ∪ Cν2 . Then, we set:

fDν0
(x, ~x; ~y) = cond(;x, fDν′ (~x; ~y), fDν1

(p(x; ), ~x; ~y), fDν2
(p(x; ), ~x; ~y))

where p(x; ) can be defined from p(;x) and projections. By induction hypothesis
on νi:

fDνi
(p(x; ), ~x; ~y) = hνi((λu, ~u ⊆ p(x; ), ~x, λ~v.fDµ

(u, ~u;~v))µ∈Cνi
∪Oνi

)(p(x; ), ~x; ~y)

= hνi((λu, ~u ⊂ x, ~x, λ~v.fDµ
(u, ~u;~v))µ∈Cνi

∪Oνi
)(p(x; ), ~x; ~y)

hence fDν0
(x, ~x; ~y) = hν0((λu, ~u ⊂ x, ~x, λ~v.fDµ

(u, ~u;~v))µ∈Cν0
∪Oν0

)(x, ~x; ~y), for some

hν0 . By applying the induction hypothesis, we have hν0 ∈ NB⊂((fDµ
)µ∈Oν0

, (aµ)µ∈Cν0
)

and fDν0
∈ NB⊂((fDµ

)µ∈Oν0
). This shows point 2a. Point 2b is trivial, and point 2c

holds by applying the induction hypothesis.
Let us now consider the case where ν0 is an instance of condN , assuming Oν1 6= ∅

and Oν2 6= ∅. The only interesting case is when D is a CB-coderivation. By
Proposition 55.3 we have Oν′ = ∅, so that fDν′ ∈ B⊂ by induction hypothesis on
point 1. By definition, Oν0 = Oν1 ∪Oν2 and Cν0 = Cν1 ∪ Cν2 . Then, we set:

fDν0
(~x; y, ~y) = cond(; y, fDν′ (~x; ~y), fDν1

(~x; p(; y), ~y), fDν2
(~x; p(; y), ~y))

By induction hypothesis on νi:

fDνi
(~x; p(; y), ~y) =

= hνi((λ~u ⊆ x, ~x, λv, ~v ⊆ p(; y), ~y.fDµ
(~u; v, ~v))µ∈Cνi

∪Oνi
)(~x; p(; y), ~y)

= hνi((λ~u ⊂ ~x, λv, ~v ⊂ y, ~y.fDµ
(~u; v, ~v))µ∈Cνi

∪Oνi
)(~x; p(; y), ~y)

hence fDν0
(~x; y, ~y) = hν0((λ~u ⊆ ~x, λv, ~v ⊂ y, ~y.fDµ

(~u; v, ~v))µ∈Cν0
∪Oν0

)(~x; y, ~y), for
some hν0 . This shows point 2c. Point 2a and 2b are given by the induction hy-
pothesis.

Let us now consider the case where ν0 is the conclusion of an instance of dis with
premise ν′, where X is the set of nodes labelling the rule. We have Oν0 = Oν′ \X
and Cν0 = Cν′ ∪ {ν0}. We want to find (hν)ν∈Cν∪{ν0} defining the equations for
(fDν

)ν∈Cν∪{ν0} in such a way that points 2a-2c hold. We shall start by defining
hν0 . First, note that, by definition of cycle nf, fDν0

(~x; ~y) = fDν′ (~x; ~y) = fDµ
(~x; ~y)

for all µ ∈ X . By induction hypothesis on ν′ there exists a family (gν)ν∈Cν′∪{ν′}

such that:

(23) fDν′ (~x; ~y) = gν′((λ~u ⊆ ~x, λ~v.fDµ
(~u;~v))µ∈Cν′∪Oν′ )(~x; ~y)

and, moreover, for all ν ∈ Cν′ :

(24) fDν
(~x; ~y) = gν((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν′∪Oν′ )(~x; ~y)

Since Oν′ = Oν0 ∪X and the path from ν′ to any µ ∈ X must cross an instance of
cond� by Proposition 55.1, the induction hypothesis on ν′ (point 2b) allows us to
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rewrite (23) as follows:

(25)

fDν′ (~x; ~y) = gν′((λ~u ⊆ ~x, λ~v.fDν
(~u;~v))ν∈Cν′ ,

(λ~u ⊆ ~x, λ~v.fDµ
(~u;~v))µ∈Oν0

,

(λ~u ⊂ ~x, λ~v.fDµ
(~u;~v))µ∈X)(~x; ~y)

On the other hand, for all ν ∈ Cν′ , for all ~u ⊆ ~x and ~v, the equation in (24) can be
rewritten as:

(26)

fDν
(~u;~v) = gν((λ~w ⊂ ~u, λ~v′.fDµ

(~u; ~v′))µ∈Cν′ ,

(λ~w ⊆ ~u, λ~v′.fDµ
(~w; ~v′))µ∈Oν0

,

(λ~w ⊆ ~u, λ~v′.fDµ
(~w; ~v′))µ∈X)(~u;~v)

and so, for all ν ∈ Cν′ :

(27)

λ~u ⊆ ~x, λv.fDν
(~u;~v) = λ~u ⊆ ~x, λv.gν((λ~w ⊂ ~x, λ~v′.fDµ

(~u; ~v′))µ∈Cν′ ,

(λ~w ⊆ ~x, λ~v′.fDµ
(~w; ~v′))µ∈Oν0

,

(λ~w ⊆ ~x, λ~v′.fDµ
(~w; ~v′))µ∈X)(~u;~v)

Now, since the paths from ν′ to any µ ∈ X in D must contain an instance of cond�,
for all ν ∈ Cν′ and all µ ∈ X , we have that either the path from ν′ to ν contains
an instance of cond� or the path from ν to µ does. By applying the induction
hypothesis on ν′ (point 2b), given ν ∈ Cν′ and µ ∈ X , either λ~u ⊆ ~x, λ~v.fDν

(~u;~v)

in (25) is such that ~u ⊂ ~x, or λ~w ⊆ ~u, λ~v′.fDµ
(~w; ~v′) in (26) is such that ~w ⊂ ~u. This

means that, for any µ ∈ X , λ~w ⊆ ~x, λ~v′.fDµ
(~w; ~v′) in (27) is such that ~w ⊂ ~x. For

each ν ∈ Cν′ , by rewriting λ~u ⊆ ~x, λ~v.fDν
(~u;~v) in (25) according to the equation

in (27) we obtain:

fDν0
(~x; ~y) = tν0((λ~u ⊂ ~x, λ~v.fDµ

(~u;~v))µ∈Cν′∪X , (λ~u ⊆ ~x, λ~v.fDµ
(~u;~v))µ∈Oν0

)(~x; ~y)

for some tν0 . Since fDµ
= fDν0

for all µ ∈ X , and since Cν0 = Cν′ ∪{ν0}, by setting
hν0 := tν0 the above equation gives us the following:

(28) fDν0
(~x; ~y) = hν0((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν0
∪Oν0

)(~x; ~y)

which satisfies point 2b. From (28) we are able to find the functions (hν)ν∈Cν

defining the equations for (fDν
)ν∈Cν

. Indeed, the induction hypothesis on ν′ gives
us (24) for any ν ∈ Cν′ . We rewrite in each such equation any λ~u ⊆ ~x, λ~v.fDµ

(~u;~v)
such that µ ∈ X according to equation (28), as fDµ

= fDν0
for any µ ∈ X . We

obtain the following equation for any ν ∈ Cν′ :

fDν
(~x; ~y) = tν((λ~u ⊂ ~x, λ~v.fDµ

(~u;~v))µ∈Cν′∪{ν0}, (λ~u ⊆ ~x, λ~v.fDµ
(~u;~v))µ∈Oν0

)(~x; ~y)

for some tν . Since Cν0 = Cν′ ∪ {ν0} and the above equation satisfies point 2b, we
set hν := tν and we obtain, for all ν ∈ Cν0 :

(29) fDν
(~x; ~y) = hν((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν0
∪Oν0

)(~x; ~y)

It remains to show that (28) and (29) satisfy points 2a and 2c. Concerning point 2a,
on the one hand for all ν ∈ Cν0 we have hν ∈ NB⊂((fDµ

)µ∈Oν0
, (aµ)µ∈Cν0

), with

(aµ)µ∈Cν0
oracle functions. On the other hand, by applying the induction hypoth-

esis, we have fDν0
= fDν′ ∈ NB⊂((fDµ

)µ∈Oν′ ) and fDν
∈ NB⊂((fDµ

)µ∈Oν′ ), for
all ν ∈ Cν0 . Since Oν′ = Oν0 ∪ X and fDν0

= fDµ
for all µ ∈ X , we have both

fDν0
∈ NB⊂((fDµ

)µ∈Oν0
) and fDν

∈ NB⊂((fDµ
)µ∈Oν0

, fDν0
) for all ν ∈ Cν0 , and
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hence fDν
∈ NB⊂((fDµ

)µ∈Oν0
), for all ν ∈ Cν0 . Point 2c follows by applying the

induction hypothesis, as the construction does not affect the safe arguments.
Last, suppose that ν0 is the conclusion of an instance of cutN with premises

ν1 and ν2. We shall only consider the case where Oνi 6= ∅ for i = 1, 2. Then,
Oν0 = Oν1 ∪Oν2 and Cν0 = Cν1 ∪Cν2 . We have:

fDν0
(~x; ~y) = fDν2

(~x; fDν1
(~x; ~y), ~y)

By induction hypothesis on ν1 and ν2:

fDν1
(~x; ~y) = hν1((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν1
∪Oν1

)(~x; ~y)

fDν2
(~x; y, ~y) = hν2((λ~u ⊆ ~x, λv, ~v.fDµ

(~u; v, ~v))µ∈Cν2
∪Oν2

)(~x; y, ~y)

So that:

fDν0
(~x; ~y) = hν0((λ~u ⊆ ~x, λ~v.fDµ

(~u;~v))µ∈Cν0
∪Oν0

)(~x; ~y)

Points 2a and 2b hold by applying the induction hypothesis. Concerning point 2c,
notice that if D is a CB-coderivation then Oν2 = ∅ by Proposition 55.3. By
applying the induction hypothesis on ν1 and ν2, we have fDν2

(~x; y, ~y) ∈ B⊂ and
fDν1

(~x; ~y) = hν1((λ~u ⊆ ~x, λ~v ⊆ ~y.fDµ
(~u;~v))µ∈Cν1

∪Oν1
)(~x; ~y), so that:

fDν0
(~x; ~y) = hν0((λ~u ⊆ ~x, λ~v ⊆ ~y.fDµ

(~u;~v))µ∈Cν0
∪Oν0

)(~x; ~y)

for some hν0 . �

Appendix E. Further examples

Example 67 (Predecessor). The unary predecessor function can be defined by the
following coderivation P

0
⇒ N

...
cond�N •

�N ⇒ N
�r

�N ⇒ �N

id

N ⇒ N
s1
N ⇒ N

�l

�N ⇒ N
cut�N

�N ⇒ N

id

N ⇒ N
s0
N ⇒ N

�l

�N ⇒ N
cond�N •

�N ⇒ N

The equational program associated with the above coderivation can be written as
follows:

fPǫ
(0; ) = 0

fPǫ
(s0x; y) = s1fPǫ

(x; ) x 6= 0
fPǫ

(s1x; y) = s0x

Example 68 (Sum of lengths). The function returning the sum of the binary
lengths of two natural numbers can be defined by the following coderivation L:

id

N ⇒ N

...
cond�N •

�N,N ⇒ N

id

N ⇒ N
s1
N ⇒ N

cutN
�N,N ⇒ N

cond�N •
�N,N ⇒ N
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where we identified the sub-coderivations corresponding to the second and the third
premises of the conditional rule. We obtain the following equational program:

fLǫ
(0; y) = y

fLǫ
(s0x; y) = s1fLǫ

(x; y) x 6= 0
fLǫ

(s1x; y) = s1fLǫ
(x; y)

Example 69 (Binary to unary). The function converting n into s1
n. . .s10 can be

defined by the following coderivation N :

0

⇒ N

.

.

.

cond�N •

�N ⇒ N
�r

�N ⇒ �N

.

.

.

cond�N •

�N ⇒ N

L

�N,N ⇒ N
cutN

�N,�N ⇒ N
cut�N ◦

�N ⇒ N

cut
�N ◦

�N ⇒ N
s1
�N ⇒ N

cond
�N •

�N ⇒ N

where L is the coderivation in Example 68, and ◦ indicates roots of identical sub-
coderivations. The equational program associated to the above coderivation is the
following:

fNǫ
(0; ) = 0

fNǫ
(s0x; ) = fL(fNǫ

(x; ); fNǫ
(x; )) x 6= 0

fNǫ
(s1x; ) = s1(fL(fNǫ

(x; ); fNǫ
(x; )))

Example 70 (Polynomially bounded search). Let f(x; ) be a 0-1-valued function
(say, in B), and let ∨(;x, y) be the function cond(;x, y, y, 1). Then, polynomially
bounded search can be defined by the coderivation B using parallel cut (see Sec-
tion 8):

f

�N ⇒ N

.

.

.

s0
N ⇒ N

�l
�N ⇒ N

�r
�N ⇒ �N

.

.

.

s1
N ⇒ N

�l
�N ⇒ N

�r
�N ⇒ �N

.

.

.

cond
�

•
�N,�N ⇒ N

.

.

.

cond
�

•
�N,�N ⇒ N

∨
N,N ⇒ N

pcut
�N,�N,�N ⇒ N

cut
� �N,�N ⇒ N

cond
�

•
�N,�N ⇒ N

where we identified the sub-coderivations corresponding to the second and the third
premise of the conditional step, and double line means multiple application of the
same rule. The equational program can be rewritten as follows:

fBǫ
(0, y; ) = f(y; )

fBǫ
(s0x, y; ) = ∨(; fBǫ

(x, s0y; ), fBǫ
(x, s1y; )) x 6= 0

fBǫ
(s1x, y; ) = ∨(; fBǫ

(x, s0y; ), fBǫ
(x, s1y; ))

Example 71 (Counterexample to a weaker safety condition). Consider the follow-
ing coderivation E ′ of CNB:

id

N ⇒ N
�l

�N ⇒ N

D

�N ⇒ N
�r

�N ⇒ �N

...
cond� •

�N,�N ⇒ N
cut�

�N,�N ⇒ N
cond� •

�N,�N ⇒ N
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where fD(x; ) = ex(x; 1) (see Example 27) and we identified the sub-coderivations
corresponding to the second and the third premise of the conditional step. The
associated equational program can be rewritten as follows:

fE′
ǫ
(0, y; ) = y

fE′
ǫ
(s0x, y; ) = fE′

ǫ
(x, fD(y; ); ) x 6= 0

fE′
ǫ
(s1x, y; ) = fE′

ǫ
(x, fD(y; ); )

It is not hard to see that the above program is not bounded by any elementary
function. This example and Example 19 illustrate that allowing loops to cross the
rightmost (resp. leftmost) premise of a cut� produce non-elementary computable
functions. Therefore, the safety condition cannot be relaxed.
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