
ar
X

iv
:2

10
6.

02
94

7v
1

 [
cs

.C
C

]
 5

 J
un

 2
02

1

COMPLEXITY OF MODULAR CIRCUITS

PAWE L M. IDZIAK, PIOTR KAWA LEK

Department of Theoretical Computer Science, Jagiellonian University, Kraków, Poland

JACEK KRZACZKOWSKI

Department of Computer Science, Maria Curie-Sk lodowska University, Lublin, Poland

Abstract. We study how the complexity of modular circuits computing AND depends on the
depth of the circuits and the prime factorization of the modulus they use. In particular our
construction of subexponential circuits of depth 2 for AND helps us to classify (modulo Expo-
nential Time Hypothesis) modular circuits with respect to the complexity of their satisfiability.
We also study a precise correlation between this complexity and the sizes of modular circuits
realizing AND. In particular we use the superlinear lower bound from [7] to check satisfiability

of CC
0 circuits in probabilistic 2O(n/ε(n)) time, where ε is some extremely slowly increasing

function. Moreover we show that AND can be computed by a polynomial size modular circuit
of depth 2 (with O(log n) random bits) providing a probabilistic computational model that can
not be derandomized.

We apply our methods to determine (modulo ETH) the complexity of solving equations over
groups of symmetries of regular polygons with an odd number of sides. These groups form a
paradigm for some of the remaining cases in characterizing finite groups with respect to the
complexity of their equation solving.

E-mail addresses: pawel.idziak@uj.edu.pl, piotr.kawalek@doctoral.uj.edu.pl,

krzacz@poczta.umcs.lublin.pl .
Key words and phrases. modular circuits, circuit complexity, circuit satisfiability .
The project is partially supported by Polish NCN Grant # 2014/14/A/ST6/00138.

1

http://arxiv.org/abs/2106.02947v1

2 COMPLEXITY OF MODULAR CIRCUITS

1. Introduction

Due to the pioneering work of Cook satisfiability of Boolean circuits is among the most
celebrated problems in computer science. Although the problem itself is NP-complete, it becomes
solvable in PTIME when restricted to circuits of special kinds, like monotone circuits or circuits
with linear gates only. Here by linear gate we mean XOR of unbounded fan-in. Such a gate
simply checks the parity of the sum of inputs. This has been generalized to the gates MOD

A
m

that check if the sum of inputs, taken modulo m belongs to the set A ⊆ {0, . . . ,m− 1}. Note
here that traditionally only the sets A = {0} (or dually, only A = {1, . . . ,m− 1}) are allowed.

We will however always consider generalized modular gates, i.e. MOD
A
m with arbitrary A and

multiple wires between gates (including input gates). These gates are to be used to build
modular circuits of bounded depth. More precisely for depth h and modulus m by CCh[m] we

mean a class of circuits built of gates MOD
A
m, possibly with different A for each gate. In Section

4 we also discuss modular circuits with possibly different moduli on different levels. Thus a
CC[m1; . . . ;mh]-circuit admits only gates of the type MOD

A
mi

on the i-th level.
Our results start with the following full characterization of parameters h and m for which

satisfiability of CCh[m]-circuits (CCh[m]-SAT for short) is in PTIME. In what follows, for a
positive integer m by ω(m) we denote the number of different prime factors of m.

Theorem 1.1. Let h and m be positive integers. Then under the assumption of ETH the
problem of satisfiability for CCh[m]-circuits is in PTIME iff m = 1 or ω(m) = 1.

Our nonpolynomial lower bounds are based on the construction of relatively small CC2[m]-

circuits computing ANDn, i.e. of size 2O(ω
√
n logn), where ω = ω(m). This construction improves

the one of Barrington, Beigel and Rudich [1] where 3 levels were used. From the papers [2, 19]

we know that for p being a prime, CC
[
m; pk

]
-circuits expressing AND need at least 2Ω(n) gates.

But the general case of CC2[m] has been opened.
It is also worth to notice here that the expressive power of modular circuits with 2 levels is

also very sensitive to the sets A used in MOD
A
m. Indeed in [6] Caussinus shows the very same

lower bound 2Ω(n) for AND if on the second level only the set A = {1, . . . ,m− 1} is allowed.

Next we show that not only the width of the modulus m, i.e. ω(m), but also the circuit depth
may substantially contribute to reduce the size of CCh[m]-circuits realizing AND. Surprisingly
also the number ̟(m) of large prime factors of m plays some role. By a large prime divisor of
m we mean each one that is at least ω(m).

Theorem 1.2. For h > 3 and a positive integer m with ω = ω(m) > 2 and ̟ = ̟(m) there

are CCh[m]-circuits of size 2O(n1/((ω−1)(h−2)+̟) logn), computing n-ary AND.

Although the only known lower bound for the size of modular circuits computing AND is
slightly better than linear (see [7]), Barrington, Straubing and Thérien [2] conjectured that it

has to be exponential. In fact, after the paper [1], the bound 2Ω(nδ) with some δ > 0 is a popular
belief. In contrast to this conjecture there are constructions [10, 11] of (quasi)polynomial size
probabilistic modular circuits computing AND. The construction in [10] is of quasipolynomial
size and uses polylog(n) random bits. The one from [11] fixes the depth to be constant (but a
substantial one), reduces the size to be polynomial and cuts down the number of random bits to
O(log n). Our techniques applied in the proof of Theorem 1.2 have proved to be useful also in
this probabilistic setting. First, while keeping only O(log n) random bits, we reduce the depth
of the circuits realizing AND to be only 2. Moreover our construction is more transparent, as it
makes no use of expanders or universal hashing functions.

Theorem 1.3. For the modulus m with ω(m) > 2 the n-ary AND functions can be realized by
CC2[m]-circuits of polynomial size with O(log n) random bits. In fact the realization is done by
CC[p, q]-circuits, where p, q are different primes.

COMPLEXITY OF MODULAR CIRCUITS 3

Again, the mentioned lower bound 2Ω(n) for the size of deterministic CC[p, q]-circuits comput-
ing AND, blocks any derandomization here. Thus to confirm the suggestion made in [11] that
AND can be computed by small CC0 circuits one would need to increase the depth.

We also show how superpolynomial lower bounds for sizes of modular circuits computing
AND would give rise to subexponential algorithms checking satisfiability (or equivalence) of
such circuits. In fact this connection, as well as the converse one, (due to their technicality) is
presented only in Section 6, in particular in Theorem 6.1. As a result of these considerations we
obtain (see Theorem 6.4) an upper bound for satisfiability of CC0-circuits that is asymptotically
lower than the one ETH permits for AC0-circuits.

Our methods proved themselves to be powerful enough to be applied in some other contexts.
In particular in Theorem 7.1 we give a characterization of dihedral groups D2k+1, i.e. groups
of symmetries of regular polygon with odd number of sides, for which the problem of solving
equation is tractable. In fact for odd m we show that this happens only if ω(m) = 1, or ETH
fails. This result partially fills the small gap that remains, after the paper [16], in characterizing
finite groups with polynomial time algorithms for solving equations.

Another, in fact pretty similar, application of our methods is done for satisfiability of multi-
valued circuits, as defined in [12].

2. Shallow or narrow may apply

In this section we analyze the expressive power of CCh[m]-circuits with h = 1 or ω(m) = 1.
We start with stating that in such realm CCh[m]-circuits can compute AND only of bounded
arity. Although one can find proofs of very similar statements in the literature (e.g [2, 3]), we
have decided to sketch the proof in Section 8.

Proposition 2.1. For positive integers m,h, k and a prime p, the arity of AND computable by

• CC1[m]-circuits is bounded by m− 1,
• CCh

[
pk
]
-circuits is bounded by a constant depending only on h and m = pk. ✷

From the above bound we can infer one implication in Theorem 1.1. To do this an easy
observation is required, that we can simulate CCh[m] circuit with some inputs fixed to be
constant, just by slightly modifying the structure of the circuit, without inflating its size. For
this reason, in the following, we simply allow some inputs to be constant

Corollary 2.2. Satisfiability of CCh[m]-circuits is in PTIME whenever h = 1 or ω(m) = 1.

Proof. The only property of CC1[m] and CCh

[
pk
]

circuits we are going to use is that they have
a bound, say c, for the arity of AND they can express. This bound allows us to reduce our
search for an n-tuple a in the large set {0, 1}n satisfying the circuit Γ to a smaller subset of size
at most nc containing only tuples with at most c ones. Indeed, let a be a satisfying tuple with
minimal possible

∣∣a−1 (1)
∣∣. By this minimality we know that Γ with all the inputs with indices

outside a−1 (1) set to 0 behaves like the
∣∣a−1 (1)

∣∣-ary AND. Thus
∣∣a−1 (1)

∣∣ 6 c, so that the tuple
a has at most c ones, as claimed. �

The function ANDn is an example of a nonconstant extremely unbalanced boolean function,
i.e, one value is taken exactly once. Our next goal is to show that shallow or narrow modular
circuits can compute functions with rather balanced piles, i.e. preimages f−1 (0) and f−1 (1).
Formally the balance of the n-ary boolean function f is defined to be

bal (f) = 1 −
∣∣∣∣f−1 (0)

∣∣−
∣∣f−1 (1)

∣∣∣∣
2n

.

Constant functions have balance 0. The functions ANDn and ORn have the smallest possible
non-zero balance 21−n. In fact each n-ary function f with one element smaller pile, denoted

4 COMPLEXITY OF MODULAR CIRCUITS

later D (f), has balance 21−n and is to be called a spike. An obvious calculation shows that
|D (f)| = 2n−1bal (f).

Remark 2.3. Each nonconstant n-ary boolean function f can be turned to be (n− k)-ary spike
by fixing its k 6 log |D (f)| variables to be constant from {0, 1}.

Proof. To fix the notation we use the symbol f [xi/c] for the function obtained from f by fixing
the variable xi to be c ∈ {0, 1}.

Now, as long as |D (f)| > 2 we iteratively reduce the size of D (f) at least twice, by fix-
ing the value of one of the variables without making f constant. Thus we start with pick-
ing a0, a1 ∈ D (f) = f−1 (b) and a coordinate i so that a0i = 0 and a1i = 1. Obviously∣∣f−1 (b)

∣∣ =
∣∣∣f [xi/0]−1 (b)

∣∣∣ +
∣∣∣f [xi/1]−1 (b)

∣∣∣ and we pick c ∈ {0, 1} so that
∣∣∣f [xi/c]

−1 (b)
∣∣∣ 6∣∣∣f [xi/1 − c]−1 (b)

∣∣∣. Thus we have |D (f [xi/c])| 6 |D (f)| /2, as required. To see that f [xi/c]

is not constant, note that ac, with its i-th coordinate removed, belongs to D (f [xi/c]) so that
1 6 |D (f [xi/c])| 6 |D (f)| /2 < 2n/2 = 2n−1. �

We note here that all spikes (of the same arity) are interdefinable. Indeed, if δεa denotes the
spike which takes the value ε ∈ {0, 1} only on the tuple a ∈ {0, 1}n then

• δ1−ε
a (x) = 1 − δεa(x),

• δε
b
(x1, . . . , xn) = δεa(x1 + a1 − b1, . . . , xn + an − bn).

This interdefinability can be realized by modifying only the sets A in the gates MOD
A
m on the

last and/or first level, so that the sizes of the corresponding circuits remain unchanged.
Now, if the arity of spikes computable by CCh[m]-circuits is bounded, like in Proposition

2.1, we use Remark 2.3 to turn the circuit into the one computing a spike with arity at least
n− log |D (f)| = n− (n − 1) log bal (f). This gives the following lower bound on the balance of
CCh[m]-circuits independently of its arity and size.

Corollary 2.4. For h = 1 or ω(m) = 1 the balance of non-constant functions computable by
CCh[m]-circuits is at least 21−c, where c bounds the arity of CCh[m]-computable conjunctions.

From Corollary 2.4 we immediately get the following.

Corollary 2.5. Let L ⊆ {0, 1}∗ be a language recognizable by CCh[m] circuits, where h = 1 or
ω(m) = 1. Then the number of words in L of the length n is either 0 or is rather large, i.e. at
least 2n−c, where c bounds the arity of CCh[m]-computable conjunctions.

3. Deep or wide need not apply

In this section we will show the converse to Corollary 2.2 but under the assumption of the
Exponential Time Hypothesis. As we have already noted this is done by constructing conjunction
of subexponential size. The next Proposition formulates this fact in more details.

Proposition 3.1. For a positive integer m with exactly ω different prime divisors we have:

(1) for each 3-CNF-SAT formula Φ with ℓ clauses there is a CC2[m] circuit of size at most

2O(ω√ℓ log ℓ) representing Φ,
(2) in particular unbounded fan-in AND can be computed by CC2[m] circuits of size 2O(ω

√
n logn),

where n is the number of variables (input gates).

The above bounds on the circuits size also bound the time needed to obtain them.

Combining this Proposition with Exponential Time Hypothesis (and Sparsification Lemma)
we immediately get the following Corollary.

Corollary 3.2. If h > 2 and ω(m) > 2 then satisfiability for CCh[m]-circuits is not in PTIME,
unless ETH fails.

COMPLEXITY OF MODULAR CIRCUITS 5

As we have mentioned in the Introduction our proof of Proposition 3.1 is modelled after the
idea of Barrington, Beigel and Rudich [1] where the ANDn had been shown to be computable
by modular circuits of the same subexponential size as described in Proposition 3.1(2) but on 3
levels. In squeezing this to 2 levels we need the concepts of Z [p, q]-expressions and the circuits
realizing them.

In the papers [13, 14] we have been studied action of the group Zp on the group Zq via the
function b : Zp −→ Zq defined by b(0) = 0 and b(x) = 1 for all other x ∈ Zp. With the
help of this action we define Z [p, q]-expression to be the n-ary expression over the variables
x = (x1, . . . , xn):

t(x) =
∑

β∈Zn
p

c∈Zp

αβ,c · b
(

n∑

i=1

βixi + c

)
,

where the αβ,c ∈ Zq while β = (β1, . . . , βn) ∈ Zn
p and c ∈ Zp, the outer sum and the mul-

tiplications by the αβ,c’s are taken modulo q, while the inner sum and the multiplications
by the βi’s are taken modulo p. Obviously the Z [p, q]-expression t(x) is determined by the
sequence

〈
αβ,c : β ∈ Zn

p , c ∈ Zp

〉
of coefficients from Zq. This sequence may have the exponen-

tial size pn+1. However only the nonzero αβ,c’s contribute to the length of t(x) and conse-
quently to the size of a circuit that models t(x). In fact, if t(x) returns always boolean values
on boolean inputs x, t(x) may be realized by a circuit, called Γ(t), of size 1 + |L(t)|, where
L(t) =

{
(β, c) ∈ Zn

q × Zq : αβ,c 6= 0
}

. Indeed, the subexpression b (
∑n

i=1 βixi + c) can be real-

ized by a single MOD
Zp−{−c}
p gate (denoted Γβ,c(t)), and then combining the outputs of all the

Γβ,c(t) (with (β, c) ranging over L(t)) by the MODq-like gate. For this reason by the size of the
circuit Γ(t), as well as of the Z [p, q]-expression t(x), we simply mean 1 + |L(t)|.

In our further consideration we will also use the bunch Θ(t) = {Γβ,c}(β,c)∈L(t) of the above

gates with |L(t)| outputs. These outputs are going to be treated as a single bundle (without
ordering, but with copying the output of each Γβ,c(t) the corresponding, i.e. αβ,c, number of
times) as they always will be used as inputs to other MOD-gates, so that they will be summed
up first. To keep track of the modulus used to sum up this bundle we will say that the bundle
is of type q and that the bunch Θ(t) is of type [p, q].

The importance of the Z [p, q]-expressions lies in the next Fact that has been originally shown

is [13] as Lemma 3.1 (but with b(x) replaced by b̂(x) = 1 − b(1 − x)).

Fact 3.3. With two different primes p, q we can represent every n-ary function g : Zn
p −→ Zq

by a Z [p, q]-expression of length and size bounded by 2O(n). ✷

The next fact is borrowed from [1], but we include its more transparent proof in Section 8.

Fact 3.4. Let p be a prime and k > 1 be an integer. Then there is a polynomial w(x) ∈ Zp[x]

of degree at most pk − 1, such that for x ∈ {0, 1}n we have

w(x) =

{
0, if

∣∣x−1 (0)
∣∣ ≡ 0 modulo pk,

1, else.

With the help of Facts 3.3 and 3.4 we can represent 3-CNF formulas by a relatively short
Z [p, q]-expressions in the following sense:

Lemma 3.5. Let p, q be two different primes and ν > 1 be an integer. Then for each 3-CNF-
SAT formula Φ(x) with n variables x = (x1, . . . , xn) and ℓ clauses there is a Z [p, q]-expression
tΦp,q(x) of size at most 2O(qν ·log ℓ) such that for all a ∈ {0, 1}n we have

tΦp,q(a) =

{
0, if the number of unsatisfied (by a) clauses in Φ is divisible by qν

1, else.

6 COMPLEXITY OF MODULAR CIRCUITS

Proof. To fix our notation let Φ(x) =
∧ℓ

i=1Ci be a 3-CNF formula with the clauses Ci =
Ci(z

1
i , z

2
i , z

3
i). Fact 3.4 supplies us with an ℓ-ary polynomial w(c1, . . . , cℓ) ∈ GF (q)[c] of degree

at most qν − 1. We want to feed up the polynomial w by substituting Ci(z
1
i , z

2
i , z

3
i) for the

variable ci to get a total function w∗ : Zn
p −→ Zq. In order to do that we first extend each clause

Ci to be a total function Z3
p −→ Zq (instead of {0, 1}3 −→ {0, 1}) by putting arbitrary values

on the set Z3
p − {0, 1}3. Now the function

w∗(z) = w
(
C1(z

1
1 , z

2
1 , z

3
1), . . . , Cℓ(z

1
ℓ , z

2
ℓ , z

3
ℓ)
)

behaves on the boolean values exactly as we need, i.e. for a ∈ {0, 1}n we have

w∗(a) =

{
0, if the number of unsatisfied (by a) clauses in Φ is divisible by qν

1, else.

All we need is to turn w∗ into a relatively short Z [p, q]-expression. Instead of applying Fact 3.3
directly to w∗ we will do it for each its monomial separately. Note that the monomials of w,
after our substitution of the Ci’s for ci’s have the form

Ci1(z1i1 , z
2
i1 , z

3
i1) · . . . · Cis(z

1
is , z

2
is , z

3
is) with s < qν ,

so that there are at most 3qν variables involved into each such “monomial”. Because of that,
Fact 3.3 allows us to represent each summand in w∗ by a Z [p, q]-expression of size O(2cq

ν
). Since

ℓq
ν

bounds the number of monomials of degree at most qν − 1 it also bounds the number of
summands in w∗, so that we end up with the bound O

(
2cq

ν · ℓqν
)
6 2O(qν log ℓ) for our Z [p, q]-

expression representing w∗. �

Our Claim shows also that for p, q, ν as above we also have a relatively short Z [p, q]-expression

tp,q(x1, . . . , xn) that behaves almost like an n-ary AND. That is, its size is at most 2O(qν ·logn)

and for all a ∈ {0, 1}n we have

tp,q(a) =

{
0, if the number of zeros among the ai’s is divisible by qν ,
1, else.

(1)

We will also use the symbols Γp,q,Γ
Φ
p,q to denote the circuits Γ(tp,q),Γ(tΦp,q) computing the Z [p, q]-

expressions tp,q and tΦp,q, respectively. Also the symbols Θp,q,Θ
Φ
p,q will be used to denote the

bunch of initial MODp-gates in the circuits Γp,q,Γ
Φ
p,q.

Now we are ready to prove Proposition 3.1.

Proof. To start we let m = pα1
1 · . . . pαω

ω be the prime decomposition of m. Each of the groups
Zpj ’s can be identified with a subgroup of Zm generated by m

pj
, by simply sending z to m

pj
· z.

After such identification we know that the sum
∑ω

j=1
m
pj

· Zpj is in fact a direct sum, so that

each element of this sum has a unique decomposition.
To construct a CC2[m] circuit computing the 3-CNF formula Φ with ℓ clauses we first fix

integers ν1, . . . , νω to satisfy p
νj−1
j 6

ω
√
ℓ < p

νj
j . Also, for convenience we identify the index 0

with ω so that we can refer to the indices of the primes pj’s cyclically. Now, for each j = 1, . . . , ω,

Lemma 3.5 supplies us with a Z [pj−1, pj]-expression tΦj (x) of the length at most O(2cj ·
ω√
ℓ·log ℓ)

so that for a ∈ {0, 1}n we have

tΦj (a) =

{
0, if the number of unsatisfied (by a) clauses in Φ is divisible by p

νj
j

1, else.

COMPLEXITY OF MODULAR CIRCUITS 7

Our identification of the direct sum
⊕ω

j=1
m
pj

· Zpj with a subgroup of Zm allows us to sum up

(modulo m) all the tΦj to get

(2) TΦ(a) =

ω∑

j=1

m

pj
· tΦj (a).

We argue now that for a ∈ {0, 1}n

TΦ(a) = 0 iff Φ is satisfied by a.

Indeed, to see the ‘if’ direction note that the number ℓ0 of unsatisfied (by a) clauses is zero
so that Lemma 3.5 gives that each of the tΦj (a)’s, and consequently the sum TΦ(a), is zero.

Conversely, if a does not satisfy Φ then 1 6 ℓ0, which together with ℓ0 6 ℓ < pν11 · . . . · pνωω
gives that at least one of the p

νj
j ’s does not divide ℓ0. Thus for this j the summand m

pj
· tΦj (a) is

non-zero and – by the unique decomposition – the entire sum TΦ(a) 6= 0.
Now, the circuit required in Proposition 3.1(1) is not supposed to calculate separately each

of the Γ(tΦj)’s by summing up the subexpressions b (
∑n

i=1 βixi + c) of tΦj . Instead, each such

subexpression is calculated by the gate Γβ,c(t
Φ
j) and then sent to MOD

{0}
m -gate

(
m
pj

· αβ,c

)
-times.

Due to the properties of TΦ, this last gate, after collecting all the bundles Θ(tΦj)’s, calculates

the boolean value of Φ(a). Moreover the entire circuit consists of 1 +
∑r

j=1 |L(tj)| gates:

• the final gate MOD
{0}
m ,

• the gates Γβ,c(t
Φ
j) of the form MOD

Zpj−{−c}
pj , one for each (β, c) ∈ L(tj).

From Lemma 3.5 we know that the sizes of the tj ’s (and therefore of the Θ(tΦj)’s) can be uniformly

bounded by O(2c
ω√ℓ log ℓ). Thus this also bounds the size of the circuit. �

Note here that in our construction of subexponential size CC2[m]-circuit computing AND the

final gate is MOD
{0}
m . This contrasts the result of Caussinus [6] where the lower bound 2Ω(n) is

shown if the final gate is MOD
{1,...,m−1}
m .

4. Making the circuits smaller

We start with observing that composing CC2[m] circuits by using 2 separate groups of 2 levels

we can keep the size 2O(k1/ω log k) to compute ANDk2 . Indeed we can simply feed the k inputs
of the last two levels computing ANDk by the outputs of k-ary independent conjunctions built
on the 2 starting levels. Repeating this recursively ⌊h/2⌋-many times on h levels we get the
following Proposition.

Proposition 4.1. For h > 2 and a positive integer m with ω = ω(m) > 2 there are CCh[m]-

circuits of size 2O(n1/(ω⌊h/2⌋) logn)), computing n-ary AND.

Our next step is to use both the depth h of the circuit and the width ω(m) of the modulus to
make our CCh[m]-circuits for AND much smaller. But before doing that we warm up with the
following easy observation. The idea of its proof has been already explored in [14, 20, 16].

Proposition 4.2. For h > 2 and a sequence of alternating primes p1 6= p2 6= p3 6= . . . 6= ph
there are CC[p1; . . . ; ph]-circuits of size 2O(n1/(h−1)), computing n-ary AND.

Proof. Obviously we may assume that n = kh−1 for some k. For each j = 1, . . . , h − 1 Fact 3.3

supplies us with a k-ary Z[pj, pj+1]-expression Cj of size 2O(k) that on a ∈ {0, 1}k ⊆ Z
k
pj behaves

as ANDk. On the starting level of our circuit we group n = kh−1 inputs into n/k groups of k
inputs each. Then each group is passed through the bunch Θ(C1) so that we end up with n/k

8 COMPLEXITY OF MODULAR CIRCUITS

bundles Bi. Note that if Bi was passed through MOD
{1}
p2 gate we would get the conjunction of k

inputs of Bi. Instead we again group the bundles B1, . . . , Bn/k into n/k2 groups with k bundles

each and pass each such a group through the bunch Θ(C2). Again, the sum of each of the n/k2

resulting bundle (modulo p3) coincide with AND of k2 on the initial inputs that fall into that
bundle. After repeating this h − 1 times we end up with a single bundle of type ph. At this

point we actually use MOD
{1}
ph gate to sum this bundle up and get AND of all the inputs.

It should be clear that the size of the entire circuit is bounded by 2O(k) = 2O(n1/(h−1)). �

Now we are in a position to prove Theorem 1.2. However we will start with its slightly weaker
version.

Proposition 4.3. For h > 3 and a positive integer m with ω = ω(m) > 2 and ̟ = ̟(m) there

are CCh[m]-circuits of size 2O(n1/((ω−1)(h−2)+(̟−1)) logn), computing n-ary AND.

Proof. As in the proof of Proposition 3.1 we start with the prime decomposition m = pα1
1 · . . . pαω

ω

and assume that p1 > . . . > p̟ > ω > p̟+1 > . . . > pω. Moreover, without loss of generality
we assume that n = k(ω−1)(h−2)+(̟−1) for some integer k and put kω = (ω − 1)kω−1 and k̟ =
(ω − 1)k̟−1. Finally we pick integers

ν1, . . . , νω satisfying p
νj−1
j 6 k

1/(ω−1)
ω < p

νj
j , so that

∏
j 6=i p

νj
j > kω, for i = 1, . . . , ω,

ν1, . . . , ν̟ satisfying p
νj−1
j 6 k

1/(̟−1)
̟ < p

νj
j , so that

∏
j 6=i p

νj
j > k̟, for i = 1, . . . ,̟.

Also for two different prime divisors p, q of m we modify kω-ary and k̟-ary Z [p, q]-expressions
of the form tpq that satisfy (1) to t′pq = 1 − tpq with the arity that later should be clear from
the context. Note here that, except their arities, the tpipj ’s depend not only on the primes pi, pj
but also on the integers νj (or νj, whatever applies).

By Γ′
pq and Θ′

pq we denote the circuit Γ(t′pq) and the bunch Θ(t′pq) of type [p, q], respectively.
Note that for fixed pi and z1, . . . , zkω ∈ {0, 1} we have

(3) AND

{
t′pipj(z1, . . . , zkω) : j 6= i

}
= AND{z1, . . . , zkω}.

Indeed, Lemma 3.5 assure us that the left hand side in the above display is 1 if and only if for
all j 6= i the number of zeros among the z’s is divisible by p

νj
j . This in turn means that the

number of zeros among the z’s is divisible by
∏

j 6=i p
νj
j >

∏
j 6=i k

1/(ω−1)
ω = kω. But there are only

kω places for such zeros so that there are no zeros among the z’s at all.

Now for each h′ = 0, 1, 2, . . . , h− 2 we recursively built a circuit ∇h′ of depth h′

(i) with n inputs x1, . . . , xn, (repeated ω(ω − 1) times by ∇0)

(ii) and with bh′ = ω(ω − 1)·n/k(ω−1)h′
= ω(ω − 1)·k(ω−1)(h−2−h′)+(̟−1) bundles of outputs.

For h′ > 0 each bundle mentioned in (ii) is the result of some bunch of the form Θpq. Thus each
bundle has one of the types p1, . . . , pω and all the bundles are evenly divided into these types so
that

(iii) there are bh′/ω = (ω − 1) · k(ω−1)(h−2−h′)+(ω−1) bundles of each type.

Moreover enlarging ∇h′ to ∇h′+1 we will keep the following properties:

(iv) summing up (modulo q) a bundle B of type q (to get sB(x)) only the boolean values 0
or 1 may appear,

(v) the conjunction of all bh′ values sB(x) (i.e. with B ranging over all bundles produced by
∇h′) coincides with AND(x1, . . . , xn).

We start with artificially adding level 0 just to multiply variables so that it does not contribute
to the depth of our circuits. In fact this starting circuit ∇0 (of depth 0) takes n inputs x1, . . . , xn
and makes b0 = ω(ω − 1) · n bundles, each of which consisting of one typed variable, i.e. each

COMPLEXITY OF MODULAR CIRCUITS 9

variable xi is repeated ω − 1 times in each type. It should be (more than) obvious that (i)-(v)
hold.

Now to go from ∇h′ to ∇h′+1 we first group
bh′
ω bundles of a given type, say p, into

bh′
ωkω

groups

of size kω (i.e. each such a group consists of kω bundles of type p). Next, all kω bundles in one
group are passed through ω−1 bunches Θ′

pq, one for each q 6= p, to produce ω−1 bundles, again

one for each type q 6= p. Thus bh′ bundles (that go to the gates on level h′ + 1) are replaced by

bh′+1 = (ω − 1)
bh′
kω

=
bh′

kω−1 new bundles, as required in (i)-(iii). To pass the kω-element group

B1, . . . , Bkω of bundles through the bunch Θ′
pq of gates we inflate each single input (say the s-th

one) of Θ′
pq into the number of outputs in Bs so that in fact Θ′

pq is fed by sB1 , . . . , sBkω
.

To see (iv), say for a bundle B of type q, note that sB(x) = t′pq(sB1(x), . . . , sBkω
(x)), where

B1, . . . , Bkω form the kω element group of bundles (of type p) that were passed through Θ′
pq.

Since t′pq returns boolean values on boolean arguments, we get (iv).
To prove (v) let C1, . . . , Cω−1 be the bundles resulting from passing the kω-element group

B1, . . . , Bkω of bundles of type p through ω−1 bunches Θ′
pq (with q 6= p). If Cs is of type q then

sCs(x) = t′pq(sB1(x), . . . , sBkω
(x)) and consequently

AND(sC1(x), . . . , sCω−1(x)) = AND
{
t′pq(sB1(x), . . . , sBkω

(x)) : q 6= p
}
.

Due to the equation (3) the last conjunction is equal to AND(sB1(x), . . . , sBkω
(x)). Thus the

two conjunctions of all the sums of the form sB(x): one before processing the bundles through
a given level and the other one after processing them, are equal. This shows (v).

After arriving at the level h − 2, our circuit ∇h−2 produces bh−2 = ω(ω − 1) · k̟−1 = ωk̟
bundles, i.e. k̟ bundles in each type. Now we put all these k̟ bundles of one type, say p, into
one group and proceed this group through ̟ − 1 bunches Θ′

pq with q ranging over some ̟ − 1
element subset Qp ⊆ {q 6= p : q > ω}. Again, as in the proof of invariant (v), we argue that
AND(sC1(x), . . . , sC̟−1(x)) = AND(sB1(x), . . . , sBk̟

(x)) where C1, . . . , C̟−1 are the bundles
resulting from passing k̟-element group B1, . . . , Bk̟ of bundles of type p through the bunches
Θ′

pq with q ∈ Qp. The output of the (h− 1)-th level consists of ω(̟ − 1) bundles, as each of the
ω groups is passed through ̟−1 bunches Θ′

pq with large primes q. On the other hand for a fixed

large q at most ω − 1 primes p 6= q may contribute to the bunches Θ′
pq that are actually used

on level h − 1. To distinguish those primes we put Zj =
{
i : Θ′

pipj is used on level h− 1
}

for

j 6 ̟. Note that {1, . . . ,̟}−{j} ⊆ Zj ⊆ {1, . . . , ω}−{j}, i.e. in particular |Zj | 6 ω− 1 < pj .
In this notation we enumerate all the |Z1| + . . . + |Z̟| bundles resulting from level h − 1

by C1
1 , . . . , C

|Z1|
1 , C1

2 , . . . , C
|Z2|
2 , , C1

̟, . . . , C
|Z̟|
̟ . Denoting sCi

j
(x) simply by sij(x) we now

express the property (v) as

(4) AND(x1, . . . , xn) = AND
{
sij(x) : j 6 ̟ and i ∈ Zj

}
.

Now, at the very last level we put all |Z1|+ . . .+ |Z̟| bundles, with Ci
j being repeated m

pj
times,

into the gate MOD
{σ}
m , where σ =

∑
j6̟

m
pj

· |Zj | mod m. This gate computes (modulo m) the
sum

S(x) =
∑

j6̟

∑

i∈Zj

m

pj
· sij(x)

and turns it to 1 if S(x) = σ and to 0 otherwise. Thus, due to (4), we are left with showing
that S(x) = σ iff sij(x) = 1 for all j 6 ̟ and i ∈ Zj. Obviously if all the sij(x)’s are 1

then the sum S(x) is σ. Conversely, as in the proof of Proposition 3.1, we first identify the
direct sum

⊕̟
j=1

m
pj

· Zpj with a subgroup of Zm. Then the assumption that σ = S(x) =
∑

j6̟
m
pj

·∑i∈Zj
sij(x) together with the fact that 0 6

∑
i∈Zj

sij(x) 6 |Zj| 6 ω − 1 < pj gives,

10 COMPLEXITY OF MODULAR CIRCUITS

by the unique decomposition in the direct sum, that for each j 6 ̟ we have
∑

i∈Zj
sij(x) = |Zj |

mod pj. But now sij(x) ∈ {0, 1} and |Zj | < pj yield that all the sij(x)’s are 1.

It remains to calculate the size of the entire circuit. Each of the first h−2 levels has 2O(p
νi
i log kω)

gates in each bunch of type pi. There are at most O(n) bunches of each type. Using pνii 6

pik
1/(ω−1)
ω ∈ O(k) we bound the size of each bunch by 2O(k log k). The same holds on the level h−1.

Summing up we bound the size of entire circuit by 2O(k logn) 6 2O(n1/((ω−1)(h−2)+(̟−1)) logn). �

Now we are ready to show Theorem 1.2 that, in comparison to Proposition 4.3, increases the
degree of the root just by one.

Proof. Our circuits here are based on those from the proof of Proposition 4.3 by modifying only
two levels: ∇0 and ∇1. This time we start with assuming that n = k(ω−1)(h−2)+̟ for some
integer k. Also, additionally to the νj’s and the νj’s (exactly as in the proof of Proposition 4.3)

we pick ν0j to satisfy p
ν0j−1

j 6 k < p
ν0j
j for all the j’s. The starting circuit ∇0 takes n inputs

x1, . . . , xn and makes b0 = ω · n bundles, each of which consisting of one typed variable, so that
there are exactly n bundles in each type. To proceed these bundles through the gates of ∇1 we
will group n bundles in each type into groups of size k0 = kω, but in a synchronized way. By
this synchronization we mean that first the set {1, . . . , n} is split into n/k0 groups Gi of size k0
and then in each type, say p, we form a group of bundles Gp

i = {xj : j ∈ Gi}. Next, each such
group Gp

i is passed though all the Θ′
pq’s (with q 6= p) to get the bundles Θ′

pq(G
p
i). As previously

we want to have that AND(x1, . . . , xn) coincides with the conjunction of all the sB(x)’s with B
ranging over all the bundles produced by ∇1, i.e. that:

AND(x1, . . . , xn) = AND

{
sΘpq(G

p
i)

(x) : p 6= q, i = 1, . . . , n/k0

}
.

We get this by observing that AND(Gp
i) can be replaced by the conjunction of sB(x) for (at

least ω) bundles B of all ω different types p1, . . . , pω. This however is witnessed by

AND(Gp
i) = AND

({
sΘpq(G

p
i)

(x) : q 6= p
}
∪
{
sΘqp(G

q
i)

(x) : q 6= p
})

,

due to the fact that for a fixed i our synchronization spans the sets Gp
i and Gq

i on the very same
variables.

In this process ∇1 replaces each group of k0 = kω bundles by ω− 1 new bundles. This means
that ∇1 produces b1 = (ω − 1) · b0

kω = (ω − 1)ω · k(ω−1)(h−3)+(̟−1) bundles, which is exactly the
number of bundles produced by ∇1 in the proof of Proposition 4.3. This allows us to put these
bundles into the consecutive levels of the circuit described in that proof.

As previously our choice of k0, kω, k̟ (for determining the sizes of the groups of bundles)

yields that, on each level, the sizes of the bunches used in our circuit are bounded by 2O(k log k).
Combining this with the fact that on each level at most O(n) bunches are used and with

n = k(ω−1)(h−2)+̟ we get that our circuit has the size bounded by 2O(n1/((ω−1)(h−2)+̟) logn). �

5. Probabilistic circuits

In this section we prove Theorem 1.3, i.e. we construct polynomial size CC[p; q]-circuits Γn

computing ANDn with the help of l = 6 + log n additional random bits. This means that Γn has

n + l inputs and for each n-tuple a ∈ {0, 1}n for at least 2
3 possible tuples b ∈ {0, 1}l we have

Γn(a, b) = ANDn(a). These circuits will be based on O(l)-ary special Z [p, q]-expressions so that

we can control their size to be polynomial in n, i.e. 2O(l).

COMPLEXITY OF MODULAR CIRCUITS 11

To start our construction define Λ to be the set of all tuples λ = (λc,j)
c∈{0,1}l
j=1,...,p∗l of length

2lp∗l, where p∗ = ⌈log p
p−1

2⌉ and each λc,j is an GF (p)-affine combination of the xi’s satisfying

λc,j(1, . . . , 1) = 1. Define b′(z) = 1 − b(z) so that for λ ∈ Λ we put

tλ(x, b) =
∑

c∈{0,1}l

l∏

i=1

b
′(bi − ci) ·

p∗l∏

j=1

b(λc,j(x)),

to show that

• each tλ(x, b) can be turned into Z [p, q]-expression with 2O(l) summands (corresponding
to the number of gates in the circuits realizing this expression),

• for at least one λ ∈ Λ the expression tλ(x, b) calculates ANDn(x) for at least 2
3 of the b’s

in {0, 1}l.
For the first item note that each summand in tλ(x, b) can be obtained by an appropriate substi-

tution in a (l+p∗l)-ary function Z l
p×Zp∗l

p ∋ (u, z) 7−→ b′(u1) · . . . ·b′(ul) ·b(z1) · . . . ·b(zp∗l) ∈ Zq.

By Fact 3.3 such function can be represented by a Z [p, q]-expression with O(p(p
∗+1)l) sum-

mands. Now, summing up (modulo q) over the c’s we end up with a Z [p, q]-expression with

O(2lp(p
∗+1)l) = 2O(l) = poly(n) summands.

Before showing the second item note that for fixed b ∈ {0, 1}l the expression tλ(x, b) reduces

to only one summand, namely
∏p∗l

j=1 b(λb,j(x)). Now, for a fixed a ∈ {0, 1}n and b ∈ {0, 1}l

the random variable Xa,b checks for a particular tuple (λb,j)j=1,...,p∗l if the value
∏p∗l

j=1 b(λb,j(a))

coincides with ANDn(a). Thus the sum Xa =
∑

b∈{0,1}l Xa,b, defined now on entire Λ, simply

counts the number of the b’s for which tλ(a, b) = ANDn(a). We conclude our argument with

showing that Pr
[∧

a∈{0,1}n Xa > 2
3 · 2l

]
6= 0. Note that for fixed a 6= 1 and randomly chosen

λc,j we have Pr [λc,j(a) 6= 0] = p−1
p so that Pr

[
Xa,b = 0

]
=
(
p−1
p

)p∗l
= 2−l and E(Xa,b) =

1 − 2−l. Consequently E(Xa) = 2l(1 − 2−l) = 2l − 1. Fixing δ so that (1 − δ)E(Xa) = 2
3 · 2l

we apply Chernoff’s inequality for the lower tail to get Pr
[
Xa 6 2

3 · 2l
]
6 exp

(
−E(Xa)·δ2

2

)
6

exp
(
−64n−1

32

)
< 2−n. Consequently probability of the fact that no λ ∈ Λ leads to tλ with desired

property is bounded by Pr
[∨

a∈{0,1}n Xa 6 2
32l
]
< 2n · 2−n = 1, as required.

6. Algorithms

In Sections 3 and 4 we have seen how to construct subexponential conjunctions and how it
helps to encode 3-CNF SAT in satisfiability of modular circuits. Obviously better upper bounds
for the size of circuits realizing AND (and consequently 3-CNF formulas) give rise to higher
complexity of CCh[m]-SAT. In particular a polynomial upper bound for the size of AND would
show NP-completeness of CCh[m]-SAT. Although, in Section 5 we have shown that AND can
be realized by a probabilistic CCh[m]-circuits of polynomial size (provided h, ω(m) > 2), we
strongly believe that this cannot be done without those random bits.

In this section we analyze how the lower (superpolynomial) bound for the size of circuits
realizing AND can be used to (subexponentially) bound the complexity of CCh[m]-SAT from
above.

To this end for fixed depth h and modulus m by γh,m(n) we denote the size of the smallest
possible CCh[m]-circuit computing ANDn. Note first that (according to Proposition 2.1) if h = 1
or ω(m) = 1 the values γh,m(n) are defined only for finitely many first integers n. However,
independently of h and m, Fact 3.3 ensures us that γh,m is at most exponentially large and
therefore computable in 2-EXPTIME. In our considerations we need much better bound for

12 COMPLEXITY OF MODULAR CIRCUITS

the time needed to compute γh,m(n). Note that the functions bounding sizes of the circuit

constructed in Propositions 3.1(2), 4.2, 4.1, 4.3 and Theorem 1.2 are of the form 2O(n1/δ logn)

and can be computed in PTIME. Although we cannot guarantee that γh,m is PTIME-computable,
it would be enough for us to bound it from below by such a function (which is still close enough
to γh,m).

Now we provide two algorithms for satisfiability of CCh[m]-circuits, a deterministic one and
a slightly faster randomized one with running times depending on the growth rate of γh,m, or
rather it inverse. For a partial increasing function f : N −→ N by f−1 (k) we mean the largest
n with f(n) 6 k.

Theorem 6.1. Suppose that γh,m has PTIME-computable increasing lower bound f . Then there
are two algorithms for checking if an n-ary CCh[m]-circuit is satisfiable:

• a deterministic one with the running time O
(
poly |Γ| + 2f

−1|Γ|·logn · |Γ|
)

,

• a randomized one with the running time O
(
poly |Γ| + 2f

−1|Γ| · |Γ|
)

.

Proof. Our deterministic algorithm is based on a brute-force search for a satisfying tuple in a

relatively small set S of size nf−1|Γ| consisting of all the tuples a ∈ {0, 1}n with at most f−1|Γ|
ones. To determine this set we first need to know the value f−1|Γ|. But since f is PTIME-
computable this can be done in poly |Γ| steps. This together with checking whether S contains

a satisfying tuple takes poly |Γ| + O
(
|Γ| · nf−1|Γ|

)
steps, as claimed.

Since γ−1
h,m 6 f−1 we are left with showing that if Γ is satisfiable then it can be satisfied by

a tuple a ∈ {0, 1}n with
∣∣a−1 (1)

∣∣ 6 γ−1
h,m|Γ|. Suppose then that a is a non-zero satisfying tuple

with the minimal number of ones. By this minimality we know that Γ with all the inputs with
indices outside a−1 (1) set to 0 behaves like the

∣∣a−1 (1)
∣∣-ary AND. Thus γh,m

∣∣a−1 (1)
∣∣ 6 |Γ| so

that the tuple a has at most γ−1
h,m|Γ| ones.

On the other hand our second algorithm, the probabilistic one, is based on randomly choosing
sufficiently many inputs so that the probability of having a satisfying one among them exceeds

1/2, if there is any such satisfying tuple at all. We claim that 2γ
−1
h,m|Γ| samples suffices. Indeed,

if Γ is constant then any single sample witnesses its (un)satisfiability. Remark 2.3 allows us to
modify a nonconstant circuit Γ to get (n − k)-ary spike circuit Γ′ for some k 6 log |D (Γ)|, so
that |Γ′| > γh,m(n − k). Consequently |Γ| > |Γ′| > γh,m(n − log |D (Γ)|), which together with∣∣Γ−1 (1)

∣∣ > |D (Γ)| gives
∣∣Γ−1 (1)

∣∣/2n > 2−γ−1
h,m|Γ|. This simply means that we will find a tuple

from Γ−1 (1) among 2γ
−1
h,m|Γ| samples. But again, to calculate how long we need to sample we

increase 2γ
−1
h,m|Γ| to 2f

−1|Γ| and use the fact that f is PTIME-computable. �

From our proof of Theorem 6.1 we get the following generalization of Corollary 2.4.

Corollary 6.2. The balance of a CCh[m]-circuit Γ is at least 21−γ−1
h,m|Γ|.

Observe here, that like in Corollary 2.5, we can use the function γh,m to bound from below
the number of words (of a given length) in a language recognizable by polynomial size CCh[m]-

circuits. In particular the suspected lower bound for γh,m of the form 2Ω(nδ) translates into the

bound 2n−O(log1/δ n).
Although our random sampling algorithm RanSam described in the proof of Theorem 6.1 is

not involved, the proof itself tells that a bigger lower bound for γh,m allows us to reduce the
number of samples in RanSam. Below we show that this connection is two-sided.

Proposition 6.3. If RanSam works (with probability at least 1/2) with at most 2f |Γ| samples
for some increasing computable function f , then f−1 (n) 6 γh,m(n + 1).

COMPLEXITY OF MODULAR CIRCUITS 13

Proof. We run RanSam on the circuit ANDn with 2fγh,m(n) samples, so that the expected number
of satisfying tuples is 2fγh,m(n)/2n. This procedure however has to find, with probability at least

1/2 the unique satisfying tuple. Thus, Markov inequality yields 2fγh,m(n)/2n > 1/2 so that
f−1 (n− 1) 6 γh,m(n). �

Combining Theorem 6.1 and Proposition 6.3 we get that the suspected lower bound 2Ω(nδ) 6

γh,m is equivalent to the upper bound 2O(log1/δ|Γ|) for the running time of RanSam. Actually
any superpolynomial lower bound for γh,m mutually translates into substantially subexponential

(i.e. at most 2|Γ|
o(1)

) number of samples.
As for now only slightly superlinear lower bounds Ω(n · ε(n)) for γh,m are known, as ε(n) is

an extremely slowly increasing function (see [7]). Although the functions ε(n) depend on h and
m, a careful inspection of their description shows that the inverse to n · ε(n) is always bounded
by O(n/ε(n)). This, together with Theorem 6.1 shows the following result.

Theorem 6.4. Satisfiability of CCh[m]-circuits Γ is solvable in probabilistic 2O(|Γ|/ε(|Γ|) time.

This Theorem stays in a big contrast to the lower bound 2Ω(|Γ|) (provided by the randomized
version of ETH [5]) for probabilistic algorithms for satisfiability of AC0-circuits.

We conclude this section with arguing that (under some additional assumption about effective
coding of 3-CNF formulas by modular circuits) the running time of RanSam is hard to beat. Our
heuristic assumption simply says that there is a PTIME algorithm that turns 3-CNF formulas Φ
with ℓ clauses into CCh[m]-circuits of size bounded by O(γh,m(cℓ)). Assuming also that γh,m (or

some of its Θ-equivalents) is PTIME-computable we know that RamSam runs with 2O(γ−1
h,m|Γ|)

samples. On the other hand ETH, applied to the circuit Γ produced from 3-CNF formula by
the algorithm supplied by our heuristic assumption, gives an integer d > 0 so that CCh[m]-SAT

cannot be solved in O(2
1
d
γ−1
h,m|Γ|). Thus the best imaginable algorithm solving CCh[m]-SAT has

the running time bounded by a polynomial applied to the running time of RanSam.

7. Concluding remarks and applications

In view of the results in Section 4, in particular a spectacular role played by ̟(m), as well
as the easiness of increasing the degree of the root just by 1, it seems to be really hard to state
reasonable conjectures for the asymptotic behaviour of the γh,m’s. As for now, for h = 2 the
degree of the root (occurring in the exponent) is at least ω(m) (Proposition 3.1) and for h > 3
at least (ω − 1)(h− 2) +̟ (Theorem 1.2). However for the ‘majority’ of potential moduli m we
know that ̟(m) is pretty close to ω(m), so that this degree is almost (ω − 1)(h − 1) + 1 (and
coincides with ω(m), whenever h = 2). Due to the fact that prime factorization (i.e. the number
ω(m)) may contribute fully into this degree and the depth h contributes by the factor h− 1, it

seems natural to suspect that the bound for log γh,m(n) could be of the form n1/(ω(h−1)) log n.
Another remark we want to make here is the difference between the circuits of the form

CCh[p; q; p; q; . . .] (with p 6= q) and CCh[p · q]. In the later case we have ̟ = ω = 2 so that the
bound for the considered degree is h, while Proposition 4.2 gives degree h− 1 in the first case.
Moreover, it seems that there is no room for improving this h− 1 in this case.

This difference in locations of primes on different levels is even more striking for CC2[p;m]
and CC2[m; p], whenever m has r > 2 prime divisors except p. In the first case we can actually

argue, as in the proof of Proposition 3.1, to get the upper bound 2n
1/r logn for γh,m, while [2, 19]

give 2Ω(n) lower bound in case of CC2[m; p].

The technique we have developed for proving Proposition 3.1 can be used to determine (mod-
ulo ETH) the complexity of solving equations over the dihedral groups D2k+1, i.e. groups of

14 COMPLEXITY OF MODULAR CIRCUITS

symmetries of regular polygons with odd number of sides. Some of the variables in these equa-
tions are already preevaluated (as otherwise every equation has a trivial solution with all the
variables set to the neutral element of the group). This is equivalent to consider polynomials
(instead of terms) over groups. The decision version of this problem for the group G is denoted
by PolSat(G). Analogously by PolEqv(G) we mean the problem of deciding whether two
polynomials over G define the same function. Note here that from the paper [9] of Goldmann
and Russell we know that PolSat is NP-complete for nonsolvable groups and in PTIME for
nilpotent groups. Moreover the paper [16] partially fills this gap by showing that (modulo ETH)
PolSat(G) is not in PTIME unless G has Fitting length at most 2, i.e. G is a wreath product
of two nilpotent groups. This paper refutes a long standing belief that PolSat for all solv-
able groups is in PTIME. The conjecture was based on many examples of groups that are in
fact 2-nilpotent. The very recent paper of Földvári and Horváth [8] summarizes most of these
examples by showing that PolSat(G) is in PTIME whenever G is a semidirect product of a
p-group and an abelian group. Note here that the dihedral groups Dpk , with prime p, fall into
this realm. On the other hand our characterization below dismisses such a speculation about
tractability of PolSat for groups of Fitting length 2 (unless ETH fails).

Theorem 7.1. If ETH holds then for each odd integer m > 3 the problem PolSat(Dm) is in
PTIME iff ω(m) = 1.

Proof. Remind that the dihedral group Dm is generated by two elements, a rotation ρ (with
angle 2π/m) and a reflection σ satisfying ρm = 1, σ2 = 1 and σρ = ρ−1σ. This means that Dm

has 2m elements: m rotations ρ0, ρ1, ρ2, . . . , ρm−1 and m reflections σ, σρ, σρ2, . . . , σρm−1.
If ω(m) = 1 then we have already noted that [8] puts PolSat(Dm) into PTIME.
Now suppose m = pα1

1 · . . . pαω
ω , where the pj’s are pairwise different odd primes and ω > 2.

Since the rotations form a cyclic group isomorphic to Zm for each j = 1, . . . , ω there is a rotation,
say ρj , generating a cyclic subgroup of order pj.

Define unary polynomials (with j = 1, . . . , ω) by putting e(x) = σ(σxm)m, ej(x) = x2m/pj and

bj(x) = (ρje(x)ρ−1
j e(x)−1)

m+1
2 and observe that the range of e is {1, σ}, i.e. the group isomorphic

to Z2, while ej maps the group Dm onto its cyclic subgroup
{

1, ρj , ρ
2
j , . . . , ρ

pj−1
j

}
isomorphic

to Zpj . Moreover the polynomial bj maps the group {1, σ} onto {1, ρj} ⊆
{

1, ρj , ρ
2
j , . . . , ρ

pj−1
j

}

and therefore bj can be used to build Z[2, pj]-expressions as polynomials of Dm.
Now we adapt the proof of Proposition 3.1(1) to our setting. For a 3-CNF formula Φ we

borrow the Z[2, pj]-expressions by putting tΦj = tΦ2,pj to build the polynomial TΦ, but we modify

the original definition (2) to be read

TΦ(x1, . . . , xn) =
ω∑

j=1

tΦj (x1, . . . , xn)

where the sum is computed in the direct sum
⊕ω

j=1 Zpj identified with a subgroup of the group

Zm of all rotations. Now we simply transform 3-CNF formula Φ into the equation TΦ(x) = 0,
with 0 being the neutral element of both Zm and Dm. To see that Φ is satisfiable iff the
corresponding equation has a solution in Dm, we simply go back and forth between the boolean
values and the elements of Dm by identifying the rotations, i.e. elements of e

−1
0 (1) with the

boolean value true and the reflections, i.e. elements of e−1
0 (σ) with the boolean value false.

Obviously, as previously, the length of TΦ is bounded by 2O(
ω√
ℓ log ℓ) where ℓ is the number of

clauses in Φ. Thus ETH yields that PolSat(Dm) cannot be in PTIME. �

COMPLEXITY OF MODULAR CIRCUITS 15

An analysis of the complexity for PolSat over all dihedral groups Dm is postponed to our
paper [15]. In particular our method used in Theorem 7.1 is applied to a more subtle situation
where m is even but has at least two different odd prime divisors.

Another feature of the dihedral groups Dm is that PolEqv(Dm) is in PTIME for all m, see
[4]. Thus Theorem 7.1 provides the first examples of finite groups with tractable PolEqv and
untractable PolSat (modulo ETH). Note here that every group with tractable PolSat has
tractable PolEqv, as to decide whether two polynomials t, s are equal we simply check that
none of the |G| − 1 equations of the form ts−1 = a (with a ranging over G−{1}) has a solution.

Almost the same argument can be used in the setting of multivalued circuit satisfiability
CSat and circuit equivalence CEqv, as defined in [12]. Such multivalued circuits are built
over a fixed finite algebra A so that the gates here simply compute the basic operations of
the algebra. The paper [12] initiated a systematic project of characterizing finite algebras A

with CSat(A) in PTIME and provided a partial characterization for algebras from congruence
modular varieties. However a somehow similar (to PolSat for groups) gap was left open, namely
the unsolved complexity of CSat and CEqv for nilpotent but not supernilpotent algebras.
In paper [14] we constructed algebras D[p1, . . . , ph] built over the alternating chain of primes
p1 6= p2 6= p3 6= . . . 6= ph with CSat and CEqv outside PTIME, provided h > 3 and ETH holds.
Later the paper [18] developed these methods to actually force nilpotent algebras with CSat

or CEqv in PTIME to be wreath products of two supernilpotent algebras. On the other hand
[13] provides examples of such wreath products (that are actually 2-nilpotent) with CSat and
CEqv in PTIME. Although CEqv for all 2-nilpotent algebras has been confirmed [17] to be in
PTIME, an analogue for CSat is blocked by the following example, the proof of which simply
repeats the argument for Theorem 7.1.

Example 7.2. CSat for the following 2-nilpotent algebras is outside PTIME, modulo ETH:
For any sequence p0, p1, p2, . . . , pω of pairwise different primes the algebra D[p0; p1 · . . . · pω] is
the group Zp0 × Zp1 × . . .× Zpω endowed with 2ω + 1 unary operations

ej(x0, x1, . . . , xω) = (0, . . . , 0, xj , 0, . . . , 0), for j = 0, 1, . . . , ω,
bj(x0, x1, . . . , xω) = (0, . . . , 0, b∗j (x0), 0, . . . , 0), for j = 1, . . . , ω,

where b∗j : Zp0 −→ Zpj is the function given by b∗j(0) = 0 and b∗j (a) = 1 otherwise. ✷

8. Easy stuff

Proof of Proposition 2.1. To warm up, note that for any modulus m and n > m each sequence
α1, . . . , αn of integers contains a nonempty subsequence αi1 , . . . , αik that modulo m sums up to
0. Indeed, either there is 0 among the sums α1, α1 +α2, . . . , α1 + . . .+αn or at least two of them
are equal, making their difference , i.e. a shorter nonempty sum, to be 0.

Now, the only (say n-ary) gate MOD
A
m in the CC1[m]-circuit (that takes αi times the input xi),

after checking if
∑n

i=1 αixi belongs to A, returns the very same value on the constant sequence
x1 = . . . = xn = 1 and its modification obtained by switching xi1 , . . . , xik to 0. This destroys

the possibility for MOD
A
m with n > m inputs to serve as ANDn.

For CCh

[
pk
]
-circuits we induct on h to show how from a particular circuit Γ pass to a

polynomial wΓ(x) over GF (p) so that this polynomial:

• computes the circuit Γ,
• is presented in its sparse representation,
• contains monomials of degree dh for some constant d depending on pk only.

Having done that, we pick a monomial in wΓ(x) of minimal degree and evaluating all the xi’s
occurring in this monomial by 1 and the other xi’s by 0, we know that wΓ(x) 6= 0. However

16 COMPLEXITY OF MODULAR CIRCUITS

n > dh ensures us that at least one of the xi’s is 0, contrary to the fact that Γ is supposed to
compute ANDn.

To start our induction for h = 1 we refer to the paper [3] of Beigel and Tarui, where Lemma
2.1 supplies us with a polynomial r0(x1, . . . , xn) over GF (p) that on the boolean values of the

xi’s behaves as the gate MOD
{0}
pk

. In fact in the proof of that Lemma it is shown that the

polynomial

r0(x1, . . . , xn) =

k−1∏

j=1

1 −

 ∑

I⊆{1,...,n},|I|=pj

∏

i∈I
xi

p−1

does the job. It is easy to see that the degree d0 of r0(x1, . . . , xn) is bounded by pk+1, indepen-
dently of n. Since on the boolean values of the xi’s the polynomial r0(x) can be represented
as

r0(x1, . . . , xn) =
k−1∏

j=1

(
1 −

(∑n
i=1 xi
pj

)p−1
)

we get that rc(x1, . . . , xn) = r0(x1 − c, x2, . . . , xn) computes the gate MOD
{c}
pk

. Consequently

rA(x) = 1 −
∏

c∈A (1 − rc(x)) computes MOD
A
pk . The degree of the polynomial r(x) is bounded

by d = |A| · d0 6 p2k+1.

Now assume that a CCh

[
pk
]
-circuit Γ composes on the final level CCh−1

[
pk
]
-circuits Γ1, . . . ,Γm

by the gate MOD
A
pk . To get the required polynomial wΓ(x) we simply plug into m-ary rA(y1, . . . , ym)

the polynomials wΓ1 , . . . , wΓm . Obviously the degree of wΓ(x) is bounded by the maximal degree
of the wΓj ’s (i.e. by dh−1) multiplied by the degree of rA(y) (i.e. by d) which gives the required

bound of dh. ✷

Proof of Fact 3.4. For an n-tuple of variables x = (x1, . . . , xn) we define

vj(x) =
∑

16i1<i2<...<ij6n

xi1 . . . xij

to be the sum of all j-linear monomials over the variables x. In particular v0(x) = 1. We will
concentrate on their behaviour only for the boolean values 0, 1, so that we put v′j : {0, 1}n −→ Zp

to be the appropriate restriction of vj .
First observe that v′0, v

′
1, . . . , v

′
n are linearly independent members of the vector space Z

2n
p .

Indeed, if
∑n

j=0 αjv
′
j = 0 then evaluating at x = (0, . . . , 0) we get α0 = 0. Moreover inducting

on j we evaluate on x ∈ {0, 1}n with 1 ocurring exactly j times to get αj = 0.

Now, fix n > m = pk and concentrate on the m dimensional subspace Vm of the 2n dimensional
space Z

2n
p spanned over v′0, . . . , v

′
m−1. One can easily see that each v′j, and therefore each v ∈ Vm

is fully symmetric, i.e. v(x1, . . . , xn) = v(xσ1, . . . , xσn) for all permutation σ. This symmetry
allows us to define v[i] to be v(1, . . . , 1, 0, . . . , 0) with exactly i ones.

Slightly more effort is required to show that each v′j (and therefore each v ∈ Vm) is m-periodic,

i.e. v[i + m] = v[i]. This reduces to show that
(i+pk

j

)
=
(i
j

)
modulo p, or in other words, that

the prefixes of length pk of the i-th and i + pk-th rows of Pascal triangle coincide modulo p.
However due to the fact that an entry in the j + 1-th row depends only on the two values in
j-th row, we are left with noticing that the mentioned coincidence holds for i = 0, or in other
words that (

pk

j

)
p≡
{

1, for j = 0,
0, for j = 1, . . . , pk − 1.

COMPLEXITY OF MODULAR CIRCUITS 17

To see that Vm actually consists of all fully symmetric m-periodic functions {0, 1}n −→ Zp,
first note that each such a function can be obtained as a linear combination (over Zp) of
w0, w1, . . . , wm−1, where

wj[i] =

{
1, for i ≡ j mod pk,
0, else.

This shows that the vector space of all fully symmetric m-periodic functions has dimension at
most m so that it has to coincide with Vm.

This observation allows us to represent the function w′ : {0, 1}n −→ Zp, that behaves as w in
the statement of the Fact, as a linear combination of the the v′j’s. This can be used to represent

w itself as the very same linear combination of the vj ’s (with j = 0, 1, . . . ,m− 1) showing that

the degree of w can be kept below pk. ✷

References

[1] D. A. M. Barrington, R. Beigel and S. Rudich, Representing boolean functions as polynomials modulo
composite numbers, Computational Complexity, 4(1994), 367–382.

[2] D. A. M. Barrington, H. Straubing and D. Thérien, Non-uniform automata over groups, Information and
Computation, 89(1990), 109–132.

[3] R. Beigel and J. Tarui, On ACC, Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’91), pp. 783—792.

[4] S. Burris and J. Lawrence, Results on the equivalence problem for finite groups, Algebra Universalis, 52(2005),
495–500.

[5] Ch. Calabro, R. Impagliazzo and R. Paturi, The Complexity of Satisfiability of Small Depth Circuits 4th
International Workshop on Parameterized and Exact Computation (IWPEC’09), pp. 75—85.

[6] H. Caussinus, A Note on a Theorem of Barrington, Straubing and Thérien, Information Processing Letters,
58(1996), 31–33.

[7] A. Chattopadhyay, N. Goyal, P. Pudlak, and D. Thérien, Lower bounds for circuits with MODm gates, Proc.
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 709—718.

[8] A. Földvári and G. Horváth, The complexity of the equation solvability and equivalence problems over finite
groups, International Journal of Algebra and Computation, 30(2020), 1–17.

[9] M. Goldmann and A. Russell. The complexity of solving equations over finite groups. Proceedings of the 14th
Annual IEEE Conference on Computational Complexity (CCC’99), pp. 80–86.

[10] K. A. Hansen, Constant width planar branching programs characterize ACC
0 in quasipolynomial size, Pro-

ceedings of the 23rd Annual IEEE Conference on Computational Complexity (CCC’08), pp. 92—99.
[11] K. A. Hansen and M. Koucký, A New Characterization of ACC

0 and Probabilistic CC
0, 24th Annual IEEE

Conference on Computational Complexity (CCC’09), pp. 27–34.
[12] P. M. Idziak and J. Krzaczkowski, Satisfiability in multi-valued circuits, 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS’18), pp. 550–558.
[13] P. M. Idziak, P. Kawa lek and J. Krzaczkowski, Expressive power, satisfiability and equivalence of circuits

over nilpotent algebras, 43rd International Symposium on Mathematical Foundations of Computer Science
(MFCS’18), pp. 17:1–17:15.

[14] P. M. Idziak, P. Kawa lek and J. Krzaczkowski, Intermediate Problems in Modular Circuits Satisfiability 35th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’20), pp. 578-–590.

[15] P. M. Idziak, P. Kawa lek and J. Krzaczkowski, Solving equations over dihedral groups, manuscript 2021.
[16] P. Idziak, P. Kawa lek, J. Krzaczkowski and A. Weiß, Equation satisfiability in solvable groups, preprint,

arXiv:2010.11788 (2020).
[17] P. Kawa lek, M. Kompatscher and J. Krzaczkowski, Circuit equivalence in 2-nilpotent algebras, preprint,

arXiv:1909.12256 (2019).
[18] M. Kompatscher, CSAT and CEQV for nilpotent Maltsev algebras of Fitting length > 2, preprint,

arXiv:2105.00689 (2021).
[19] H. Straubing and D. Thérien, A note on MODp–MODm circuits, Theory of Computing Systems, 39(2006),

699–706.
[20] A. Weiß, Hardness of Equations over Finite Solvable Groups Under the Exponential Time Hypothesis, 47th

International Colloquium on Automata, Languages and Programming (ICALP’20), pp. 102:1–102:19.

http://arxiv.org/abs/2010.11788
http://arxiv.org/abs/1909.12256
http://arxiv.org/abs/2105.00689

	1. Introduction
	2. Shallow or narrow may apply
	3. Deep or wide need not apply
	4. Making the circuits smaller
	5. Probabilistic circuits
	6. Algorithms
	7. Concluding remarks and applications
	8. Easy stuff
	References

