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Abstract

We study concrete sheaf models for a call-by-value higher-
order language with recursion. Our family of sheaf models is
a generalization of many examples from the literature, such
as models for probabilistic and differentiable programming,
and fully abstract logical relations models. We treat recursion
in the spirit of synthetic domain theory. We provide a gen-
eral construction of a lifting monad starting from a class of
admissible monomorphisms in the site of the sheaf category.
In this way, we obtain a family of models parametrized by a
concrete site and a class of monomorphisms, for which we
prove a general computational adequacy theorem.

CCSConcepts: •Theory of computation→Denotational

semantics; Categorical semantics.

Keywords: category, concrete sheaves, domains, higher-order,
logical relations, recursion, synthetic domain theory

1 Introduction

This paper is about semantic models of functional program-
ming languages. A widely accepted model involves interpret-
ing types as chain-complete partial orders and programs as
continuous maps. Since programs involving recursion might
not terminate, it is more accurate to say that programs are in-
terpreted as continuous partialmapswith admissible domain.
While this is a useful interpretation, in many circumstances
the literature suggests a more refined characterization of the
kinds of partial map that we use to interpret programs. For
example,
• In the quest for a fully abstract semantics, we would
like to focus on partial maps that are definable [34, 38,
41].
• In probabilistic programming, we would like to inter-
pret programs as partial maps that are Borel and with
Borel domain, so that we can use Lebesgue integration
to find expected values (e.g. [53]).
• In differentiable programming and automatic differ-
entiation, we would focus on partial maps that are
smooth and with domain an open set, so that we can
calculate gradients [52].
• In a more sophisticated setting, we might insist on
smoothness except for a well-behaved collection of
discontinuities [30].

There are further examples: in some circumstances we might
require functions to be sequentially continuous on a spe-
cified domain (e.g. [5]), in quantum programming we would
require functions between spaces of density matrices to be
completely positive, and so on.
Note that these kinds of question are non-trivial. If we

are only interested in, say, programming smooth functions
real → real, we might still use higher order functions and
recursion as part of our program, and so the challenge is to
show that despite these other language features, the definable
functions still amount to smooth maps. In this paper we give
a general framework for exploring these kinds of problem,
which explains this prior work on developing models for
the above application domains and suggests new application
domains too (§2.2,3.3).
We emphasise that each of these application domains

comes with important specific issues not covered by the gen-
eral framework. For example, in probabilistic programming
one would have extra features for Monte Carlo simulation, in
differentiable programming one would find automatic differ-
entiation macros, and so on. The point of our work is that we
elicit a uniform foundation for building the semantic models
used in all of these different applications.

In the remainder of this introduction, we summarize the
main development of our paper at a high level. The key
idea is that we use methods from synthetic domain theory
to find elementary and convenient notions of partial maps
(§1.2) in concrete categories of sheaves (§1.1), so as to obtain
a general framework that provides an adequacy theorem
(Thms. 4.1,7.7) for these different application domains.

1.1 Concrete categories and sheaves

The basic setting of this paper is that we interpret each type
of our programming language as a set with structure, and
each typed program as a function with certain properties.
The theory of concrete categories (Def. 2.1) is a general form-
alization of this situation of sets with structure and functions
between them. A concrete category C comprises a collection
of objects, with each object 𝑐 associated to a set |𝑐 |, and then
we specify which functions |𝑐 | → |𝑑 | are allowed as morph-
isms 𝑐 → 𝑑 . For example, we have a concrete category of
chain complete partial orders.
Concreteness connects with the idea of extensionality

in programming language semantics. If two programs are
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interpreted as different morphisms then these morphisms
are actually different functions between sets and so we can
distinguish them by simply applying them to different values.

Our focus in this work is on themethod of concrete sheaves,
which is a method for building concrete categories that sup-
port function types and so are convenient for programming
language semantics. If the reader is familiar with logical re-
lations, concrete sheaves can be regarded as, roughly, reflex-
ive logical relations of varying arity. Categories of concrete
sheaves are determined by sites (Def. 2.1). A first example,
corresponding to a particularly simple site, is the category of
sets |𝑋 | equippedwith reflexive binary relations𝑅 ⊆ |𝑋 |×|𝑋 |
(Ex. 2.4). For a more elaborate example, we consider diffeolo-
gical spaces, a general model of smoothness (Ex. 2.6). These
are sets |𝑋 | equipped with a family of relations 𝑅𝑈 ⊆ [𝑈 →
|𝑋 |], one for each open subset𝑈 of each Euclidean space R𝑛 .
Note that the arity of these relations is typically uncountable.
For example, the tuples in 𝑅R ⊆ [R→ |𝑋 |] are thought of
as the ‘smooth curves’ R → |𝑋 |. The terminology ‘sheaf’
refers to a gluing condition, which says for example that
if we have a function 𝑓 : R → |𝑋 | such that the restric-
tions 𝑓 | (−∞,1) : (−∞, 1) → |𝑋 | and 𝑓 | (0,∞) : (0,∞) → |𝑋 |
are smooth curves in 𝑅 (−∞,1) and 𝑅 (0,∞) respectively, then
𝑓 itself must be regarded as smooth curve in 𝑅R (Def. 2.3).
This sheaf condition constrains the colimit structure in the
category, which in turn affects the interpretation of colimit
types such as the natural numbers.

Categories of concrete sheaves are convenient for higher
order languages because we can interpret the base types
(such as real and nat) and then the function spaces are well
behaved and straightforward to calculate (§4.2).

1.2 Partiality, lifting and admissible monos

The main novelty of our paper is in our general treatment of
partiality and recursion in categories of concrete sheaves. To
obtain this in a canonical way, we pass to the very general
framework of ‘synthetic domain theory’, building on a long
tradition (e.g. [32, 42]), and then bring this to bear on cat-
egories of concrete sheaves, extracting elementary criteria
for adequate models (connecting to e.g. [15, 47]).

Dominances and completeness. Synthetic domain the-
ory can be thought of as taking place within a model of
intuitionistic set theory (formally, a topos). For the approach
to recursion in our development there are two key steps.
First, we should identify a dominance, which is (informally
for now) an object of semi-decidable truth values (§5.1). This
dominance induces a notion of partial function and a notion
of lifting (−)⊥, so that to give a partial map 𝑋 ⇀ 𝑌 is to
give a total map 𝑋 → 𝑌⊥. Lifting forms a monad, so we
can interpret programs involving partiality using Moggi’s
method [35].
Second, from the dominance we build two objects which

can be thought of as chains: 𝜔 and 𝜔 (§6). Intuitively, 𝜔 is

an internal object describing the vertical natural numbers
{0 ≤ 1 ≤ 2 ≤ . . . }, and 𝜔 is the completed vertical natural
numbers {0 ≤ 1 ≤ 2 ≤ . . .∞}. We say that an object 𝑋
is complete, informally, if every chain 𝜔 → 𝑋 can be con-
verted to a completed chain 𝜔 → 𝑋 (Def. 6.3). We have a
general treatment of recursion for complete objects, based
on Tarski’s fixed point theorem (Thm. 6.4). We can then give
an interpretation for a programming language, provided all
type constructions are interpreted as complete objects.

Fromconcrete sheaves to synthetic domain theory. The
general framework of synthetic domain theory works well
in a topos, in particular in a category of sheaves, and more
generally we can restrict to just the concrete sheaves. As
a recipe for building such categories with sufficient supply
of complete objects, we follow [17, 18] in considering spe-
cifically the partial order V = {0 ≤ 1 ≤ · · · ≤ ∞}. (This is
not to be confused with 𝜔 , which is an internal construc-
tion.) We consider a specific category of concrete sheaves,
concrete v-sets, which are sets |𝑋 | equipped with a given set
𝑅 ⊆ [V→ |𝑋 |] of chains with least upper bounds (satisfy-
ing conditions, see §6.3). For example, any chain-complete
partial order determines a concrete v-set, and the relation-
preserving maps are continuous functions. Tarski’s fixed
point theorem for chain-complete partial orders can be re-
garded as actually a fixed point theorem for concrete v-sets
that are complete in the sense of synthetic domain theory.
We can then straightforwardly combine this siteV for chain-
complete partial orders with any other site C (Lem. 7.3),
such as the site for probabilistic programming, or the site for
differentiable programming, or the site for full definability.

To interpret recursion, all that remains is to find a domin-
ance for this combined site. It turns out that from the view
of concrete sheaves, a dominance is more-or-less a class of
morphismsM on the site. We extract from this general set-
ting a simple way of generating such a dominance, via a class
M of ‘admissible’ monomorphisms in the siteC. For instance,
in probabilistic programming, we would letM be generated
by the Borel subsets, or for differentiable programming,M
would be generated by the open subsets: these monomorph-
isms determine the notion of good domain for a partial func-
tion which is to be extended into the category of concrete
sheaves (§3.4). The synthetic domain theory foundation sug-
gests elementary conditions that ensure that this classM
combines well with the dominance of v-sets (Def. 3.2).
These conditions for a good notion of admissible mono-

morphism apply to all the examples from the literature we
have considered so far. So we have a general framework
for building models of functional programming languages
with recursion and higher order functions: this is spelt out
in §4.2. We emphasise the quality of these models with gen-
eral soundness and adequacy theorems (Thms. 4.1, 7.7), con-
necting the interpretation in these models with operational
semantics.
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Part I: Concrete sheaf models of PCF

This paper is split in two parts. This first part is a self-
contained exposition of 𝜔-concrete sheaves (§3) as adequate
models of our language (§4). The second part explains why
our constructions are canonical, by reference to synthetic
domain theory (§5).

2 Categories of concrete sheaves

In this section we recall the definitions of concrete sites and
concrete sheaves (§2.1), and examples of these constructions
from the literature (§2.2).

In brief, a concrete sheaf is a set together with a collection
of relations of different arities. In this way, concrete sheaves
are very close to logical relations models. A site specifies the
number of these relations, what their arities are, and how the
different relations should be connected. This is made precise
by giving a category and a coverage on it. Later (§3) we will
also require a class of admissible monos in the site to capture
notions of partiality.

2.1 Concrete sites and sheaves

Definition 2.1. A concrete category is a category C with a
terminal object ★ such that the functor C(★,−) : C→ Set
is faithful. This means that morphisms 𝑐 → 𝑑 can identified
with certain functions |𝑐 | → |𝑑 | where |𝑐 | def= C(★, 𝑐) is the
set of points. In particular, |★| is the singleton set and each
map ℎ : 𝑑 → 𝑐 is identified with a function |ℎ | : |𝑑 | → |𝑐 |.

A concrete site (C, 𝐽 ) is a small concrete categoryCwith an
initial object 0, together with a coverage 𝐽 , which specifies for
each object 𝑐 a set 𝐽 (𝑐) of families of maps with codomain 𝑐 .
We call such a family {𝑓𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 ∈ 𝐽 (𝑐) a covering
family and say that it covers 𝑐 . The coverage must satisfy the
following five axioms.
(C) For every mapℎ : 𝑑 → 𝑐 inC, if {𝑓𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 covers

𝑐 , then there is a covering family {𝑔 𝑗 : 𝑑 𝑗 → 𝑑} 𝑗 ∈𝐼 ′ of 𝑑
such that every ℎ ◦ 𝑔 𝑗 factors through some 𝑓𝑖 .

(★) If {𝑓𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 covers 𝑐 , then
⋃

𝑖∈𝐼 Im( |𝑓𝑖 |) = |𝑐 |
(every covering family on 𝑐 contains all of its points).

(0) The initial object 0 is covered by the empty set.
(M) The identity is always covering: {1𝑐 : 𝑐 → 𝑐} ∈ 𝐽 (𝑐).
(L) If {𝑓𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 ∈ 𝐽 (𝑐) and {𝑔𝑖 𝑗 : 𝑐𝑖 𝑗 → 𝑐𝑖 } 𝑗 ∈𝐽𝑖 ∈

𝐽 (𝑐𝑖 ) for each 𝑖 , then {𝑓𝑖 ◦ 𝑔𝑖 𝑗 : 𝑐𝑖 𝑗 → 𝑐}𝑖∈𝐼 , 𝑗 ∈𝐽𝑖 ∈ 𝐽 (𝑐).

Remark 2.2. The more usual definition of ‘concrete site’ [4,
9] would not require C to have an initial object and would
only require axioms (C) and (★) for 𝐽 . Since the same possible
categories of concrete sheaves (Def. 2.3) can be presented, the
restriction is inessential, but it does simplify our presentation
especially regarding Definition 3.2.

Definition 2.3. A concrete sheaf 𝑋 on a concrete site (C, 𝐽 )
is a set |𝑋 |, together with, for each object 𝑐 ∈ C, a set 𝑅𝑐

𝑋
of

functions of type |𝑐 | → |𝑋 |, such that:
• Each 𝑅𝑐

𝑋
contains all the constant functions.

• For any map ℎ : 𝑑 → 𝑐 ∈ C, and any 𝑔 ∈ 𝑅𝑐
𝑋
, the

composite function 𝑔 ◦ |ℎ | : |𝑑 | → |𝑋 | is in 𝑅𝑑
𝑋
.

• For each function 𝑔 : |𝑐 | → |𝑋 | and each covering
family {𝑓𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 , if each 𝑔 ◦ |𝑓𝑖 | ∈ 𝑅

𝑐𝑖
𝑋
, then

𝑔 : |𝑐 | → |𝑋 | ∈ 𝑅𝑐
𝑋
.

A morphism 𝛼 : 𝑋 → 𝑌 between concrete sheaves is a
function 𝛼 : |𝑋 | → |𝑌 | that preserves the structure, namely
if 𝑔 ∈ 𝑅𝑐

𝑋
, then 𝛼 ◦ 𝑔 ∈ 𝑅𝑐

𝑌
.

The concrete sheaves on a concrete site (C, 𝐽 ) form a
category Conc(C, 𝐽 ) which is cartesian closed and has cop-
roducts, so it can interpret simply-typed lambda-calculus
with sums.

2.2 Examples

Example 2.4 (Reflexive relations). Consider the category
whose objects are sets |𝑋 | equipped with a binary relation
𝑅𝑋 ⊆ |𝑋 |2 such that (𝑥, 𝑥) ∈ 𝑅𝑋 for all 𝑥 , and where the
morphisms are functions |𝑋 | → |𝑌 | that preserve the relation
((𝑥, 𝑥 ′) ∈ 𝑅𝑋 =⇒ (𝑓 (𝑥), 𝑓 (𝑥 ′)) ∈ 𝑅𝑌 ). This is a model
that might be used in a simple logical relations argument
(e.g. [39]). This category is a category of concrete sheaves.
For the site, take the category generated by three objects
0,★, 2 and two morphisms ★⇒ 2 all such that 0 and ★ are
initial and terminal respectively. Then |2| has two elements,
and we can regard 𝑅2

𝑋
⊆ [|2| → |𝑋 |] � |𝑋 |2 as a binary

relation. The coverage 𝐽 is the trivial one, where 2 and★ are
covered by identities and 0 by the empty set.

Example 2.5 (Probability andmeasure [20, 53]). Quasi-Borel
spaces are a setting that incorporates probability theory
and higher order functions. A quasi-Borel space is a set
𝑋 together with a set 𝑅R

𝑋
⊆ [R → 𝑋 ] of admissible ran-

dom elements in 𝑋 , satisfying some conditions. These are
quite widely used (e.g. [2, 29, 44, 46]). As is well known,
the category of quasi-Borel spaces Qbs can be regarded as
the category of concrete sheaves on a site (Sbs, 𝐽Sbs). Here
the category Sbs has as objects the Borel subsets of R with
morphisms all the measurable functions between these ob-
jects. The coverage 𝐽Sbs (𝑈 ) contains the countable sets of
inclusion functions {𝑈𝑖 ↩→ 𝑈 }𝑖∈𝐼 such that𝑈 =

⋃
𝑖∈𝐼 𝑈𝑖 and

the𝑈𝑖 ’s are disjoint.

Example 2.6 (Smoothness [22, 51]). Diffeological spaces
are a setting that incorporates smoothness with higher order
functions [24]. A diffeological space is a set 𝑋 together with
a set 𝑅𝑈

𝑋
⊆ [𝑈 → 𝑋 ] of admissible plots from each open

subspace𝑈 of a Euclidean space, satisfying some conditions.
As is well known, the category of diffeological spaces Diff
can be regarded as the category of concrete sheaves on a site
(Cart, 𝐽Cart) [4, 49]. Here, the objects of Cart are the open
subsets 𝑈 ⊆ R𝑛 for any 𝑛 ∈ N, and morphisms are smooth
maps. The coverage 𝐽Cart (𝑈 ) contains the countable sets of
inclusion functions {𝑈𝑖 ↩→ 𝑈 }𝑖∈𝐼 such that𝑈 =

⋃
𝑖∈𝐼 𝑈𝑖 .
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Example 2.7 (Piecewise smoothness and PAP [30]). Re-
cently a variation on diffeological spaces has been proposed
that allows a controlled degree of non-smoothness. The idea
is to consider sets of plots 𝑅𝑈

𝑋
⊆ [𝑈 → 𝑋 ] that are indexed

by ‘c-analytic’ sets, rather than Euclidean open sets: these
are sets 𝑈 ⊆ R𝑛 for some 𝑛 that are countable unions of
analytic subsets. The resulting ‘PAP-sets’ can be regarded as
the category of sheaves on the site (PAP, 𝐽PAP), where the
objects are c-analytic subsets, and morphisms are PAP func-
tions between them [27, 55]. The coverage 𝐽PAP(𝑈 ) contains
countable sets of inclusion functions {𝐴𝑖 ↩→ 𝑈 }𝑖∈𝐼 where
(𝐴𝑖 )𝑖 are disjoint c-analytic sets such that𝑈 =

⋃
𝑖∈𝐼 𝐴𝑖 . The

category of concrete sheaves on (PAP, 𝐽PAP) models the
fragment without recursion of the differentiable language
from [30].

Example 2.8 (Topological examples). Arguably the earliest
examples of concrete sheaves arose from finding conveni-
ent categories of topological spaces. For example, a ‘sub-
sequential space’ is a set |𝑋 | together with a set of conver-
gent sequences in 𝑋 equipped with their limits, i.e. a set of
functions 𝑅 |𝑋 | ⊆ [N ∪ {∞} → |𝑋 |] satisfying some condi-
tions [25]. A ‘sequentially continuous function’ is a function
that preserves this sequence structure. As discussed in [25],
subsequential spaces can be viewed as concrete sheaves on
the site whose objects are 0, ★ and N ∪ {∞}, and whose
morphisms are continuous functions.

There are several related categories. For example, C-spaces
[12] arise in a similar way but replacing (N∪ {∞}) with the
Cantor space 2N. In Section 6.3 we will replace (N ∪ {∞})
with the vertical natural numbers equipped with the Scott
topology, following [18].

Example 2.9 (Quantum sets). The construction of concrete
sheaves can be considered whenever we have a concrete
category modelling some computational phenomena. For
example, to model quantum computation, consider the cat-
egory whose objects are natural numbers 𝑛 regarded as
sets DM𝑛 of density matrices, i.e. 𝑛 × 𝑛 complex matrices
that are positive, semidefinite and with trace 1. The morph-
isms are quantum channels, i.e. completely positive trace-
preserving maps [37]. This is a concrete category, and 0
is initial and 1 is terminal. We can thus consider concrete
sheaves on this category with the trivial coverage (i.e. con-
crete presheaves). These are sets |𝑋 | equipped with sets of
maps 𝑅𝑛

𝑋
⊆ [DM𝑛 → |𝑋 |], regarded as the admissible

quantum channels into |𝑋 |. This example is a concrete vari-
ation on the presheaf models of quantum computation con-
sidered in e.g. [31, 33].

There are many other examples of categories of concrete
sheaves across computer science and mathematics (e.g. [9,
10, 43]). Here we have focused on examples for which the
methods in the following section are useful in modelling
recursion in programming language semantics.

3 Concrete sheaves with recursion

In this section we introduce the new general idea: to get
a model of call-by-value PCF we extend our attention to
concrete sheaves with an 𝜔cpo structure, and discover a
well-behaved notion of partiality and lifting via classes of
admissible monos.

3.1 𝜔-Concrete sheaves

Recall that an 𝜔cpo is a partially ordered set closed under
least upper bounds of countable chains. A continuous func-
tion between 𝜔cpo’s is a monotone function that preserves
least upper bounds (e.g. [54]).

Definition 3.1. An 𝜔-concrete sheaf on a site (C, 𝐽 ) is a
concrete sheaf 𝑋 together with an ordering ≤𝑋 on |𝑋 | that
gives |𝑋 | the structure of an𝜔cpo, such that each𝑅𝑐

𝑋
is closed

under pointwise suprema of countable chains with respect
to the pointwise ordering.
A morphism 𝛼 : 𝑋 → 𝑌 of 𝜔-concrete sheaves is a con-

tinuous function between 𝜔cpo’s, 𝛼 : |𝑋 | → |𝑌 |, that is also
a morphism of concrete sheaves. 𝜔-concrete sheaves form a
category 𝜔Conc(C, 𝐽 ), which is a cartesian closed category
with binary coproducts.

3.2 Admissible monos, a lifting monad, & partiality

To model recursion we first need to define a (strong) lift-
ing monad 𝐿 on 𝜔Conc(C, 𝐽 ). Recall that a monad [35] is a
triple (𝐿, {[𝑋 : 𝑋 → 𝐿𝑋 }𝑋 , {`𝑋 : 𝐿𝐿𝑋 → 𝐿𝑋 }𝑋 ) satisfying
some identity and associativity equations. Furthermore, 𝐿
is strong if there is a family of maps {st𝑋,𝑌 : 𝑋 × 𝐿𝑌 →
𝐿(𝑋 × 𝑌 )}𝑋,𝑌 satisfying some conditions; in a concrete cat-
egory, if the strength exists, it is determined uniquely by 𝐿

and the cartesian structure of the category [35, Prop. 3.4].
For an𝜔-concrete sheaf𝑋 , we can define the lifting monad

𝐿 to have underlying 𝜔cpo |𝐿𝑋 | = |𝑋 | ⊎ {⊥}, just like in the
case of the lifting monad in the 𝜔cpo-model of call-by-value
PCF. However, it is not immediately apparent how to define
𝑅𝑐
𝐿𝑋
⊆ [|𝑐 | → |𝑋 | ⊎ {⊥}], there are many choices. For this

reason we parametrize the definition of the lifting monad
by a classM of monomorphisms from the site (C, 𝐽 ), which
we call admissible monos. The intuition is that the admissible
monos 𝑐 ′↣ 𝑐 are the possible domains of partial functions
|𝑐 | → |𝑋 | from 𝑅𝑐

𝐿𝑋
.

Recall that, in any category, monos with the same codo-
main are preordered: if𝑚 : 𝑑 ↣ 𝑐,𝑚′ : 𝑑 ′↣ 𝑐 then𝑚 ≤ 𝑚′
iff there exists 𝑓 : 𝑑 → 𝑑 ′ with𝑚′ ◦ 𝑓 =𝑚. We write Sub(𝑐)
for the poset quotient of the set of monos with codomain
𝑐 . For any classM of monos in C, we write SubM (𝑐) for
the poset ofM-subobjects, i.e. the full subposet of Sub(𝑐)
whose elements have representatives inM. If, moreover, we
suppose that all pullbacks of maps inM exist (along any
map in C) and are again inM, then SubM can be viewed
as a functor Cop → Poset. If (C, 𝐽 ) is a concrete site, then
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there is a natural transformation 𝛼 :

𝛼𝑐 : SubM (𝑐) → Set( |𝑐 |, {0, 1})
where𝑚 : 𝑐 ′↣ 𝑐 is taken to the function sending 𝑝 : ★→ 𝑐

to 1 if 𝑝 factors through𝑚 and 0 otherwise. Naturality means
that pullback along 𝑓 : 𝑐 ′→ 𝑐 becomes precomposition by
|𝑓 | : |𝑐 ′ | → |𝑐 |, and indeed each component of the transform-
ation is a monotone map for the obvious pointwise ordering
on Set( |𝑐 |, {0, 1}).

Definition 3.2. A classM of admissible monos from (C, 𝐽 )
consists of, for each object 𝑐 ∈ C, a set of monosM(𝑐) with
codomain 𝑐 satisfying the following conditions.

1. For all 𝑐 ∈ C, 0 !−→ 𝑐 ∈ M(𝑐).
2. M contains all isomorphisms.
3. M is closed under composition: if 𝑓 : 𝑐 ′′ ↣ 𝑐 ′ ∈
M(𝑐 ′) and 𝑔 : 𝑐 ′↣ 𝑐 ∈ M(𝑐), then 𝑔 ◦ 𝑓 ∈ M(𝑐).

4. All pullbacks ofM-maps exist and are again inM.
(This makes SubM a functor Cop → Poset.)

5. For each 𝑐 , the function𝛼𝑐 : SubM (𝑐) → Set( |𝑐 |, {0, 1})
is componentwise injective and order-reflecting, and
the image of SubM (𝑐) is closed under suprema of 𝜔-
chains.

6. Given an increasing chain inM(𝑐), (𝑐𝑛 ↣ 𝑐)𝑛∈N, de-
note its least upper bound by 𝑐∞↣ 𝑐 . Then the closure
under precomposition (with any morphism) of the set
{𝑐𝑛 ↣ 𝑐∞}𝑛∈N contains a covering family of 𝑐∞.

To spell this definition out a little: whenM is a class of
admissible monos,M-subobjects𝑚 : 𝑐 ′ ↣ 𝑐 of 𝑐 ∈ C are
determined by the induced inclusions of sets im( |𝑚 |) ⊆ |𝑐 |,
and the order relation is given by 𝑚 ≤ 𝑚′ iff im( |𝑚 |) ⊆
im( |𝑚′ |). In particular, SubM (★) has at most two elements,
corresponding to the two subsets of the one-element set
|★|. Since in a concrete site 0 has an empty cover and ★

does not, they are not isomorphic and hence we actually see
that |SubM (★) | = 2. Moreover, the suprema of an 𝜔-chain
{𝑚0 ≤ 𝑚1 ≤ . . .} ∈ SubM (𝑐) exists and is given by the
unique𝑚∞ ∈ SubM (𝑐) such that im( |𝑚∞ |) =

⋃
𝑛 im( |𝑚𝑛 |).

Definition 3.3. We can define the (strong) lifting monad
𝐿M associated to the class of admissible monosM as:

|𝐿M𝑋 | = |𝑋 | ⊎ {⊥}
∀𝑥 ∈ |𝑋 |.⊥ ≤𝐿M𝑋 𝑥, ∀𝑥, 𝑥 ′ ∈ |𝑋 |.𝑥 ≤𝐿M𝑋 𝑥 ′ iff 𝑥 ≤𝑋 𝑥 ′

𝑅𝑐𝐿M𝑋 =
{
𝑔 : |𝑐 | → |𝑋 | ⊎ {⊥}

�� ∃𝑐 ′↣ 𝑐 ∈ M(𝑐) s.t.

𝑔−1 ( |𝑋 |) = Im( |𝑐 ′ |) and 𝑔|Im( |𝑐′ |) ∈ 𝑅𝑐
′

𝑋

}
The strongmonad structure is exactly the same as the ‘maybe’
monad on Set [35], which one can check preserves all the
structure. Here |[𝑋 | : |𝑋 | → |𝐿M𝑋 |, |`𝑋 | : |𝐿M𝐿M𝑋 | →
|𝐿M𝑋 |, |st𝑋,𝑌 | : |𝑋 | × |𝐿M𝑌 | → |𝐿M (𝑋 × 𝑌 ) |:
|[𝑋 | (𝑥) = 𝑥 |`𝑋 | (𝑥) = 𝑥, |`𝑋 | (⊥1) = |`𝑋 | (⊥2) = ⊥,
|st𝑋,𝑌 | (𝑥,𝑦) = (𝑥,𝑦), |st𝑋,𝑌 | (𝑥,⊥) = ⊥.

The lifting monad induces a notion of partial map. Recall
that to give a total function |𝑋 | → |𝑌 | ⊎ {⊥} is to give a
partial function |𝑋 | ⇀ |𝑌 |.

Proposition 3.4. A partial function 𝑓 : |𝑋 | ⇀ |𝑌 | between
𝜔-concrete sheaves corresponds to a morphism 𝑋 → 𝐿M𝑌 if
and only if it is continuous, its domain is Scott-open (i.e. the
characteristic function of the domain into the preorder {0 ≤ 1}
is continuous), and for any 𝑔 : |𝑐 | → |𝑋 | ∈ 𝑅𝑐

𝑋
, the domain

of the partial function 𝑓 ◦ |𝑔| : |𝑐 | ⇀ |𝑌 | is determined by an
M-subobject 𝑐 ′↣ 𝑐 , and (𝑓 ◦ |𝑔|) |Im( |𝑐′ |) ∈ 𝑅𝑐

′

𝑌
.

Proof note. By expanding the definitions. □

Proposition 3.5. There is a fixed point combinator, a morph-
ism ((𝐿M𝑌 )𝑋 ⇒ (𝐿M𝑌 )𝑋 ) → (𝐿M𝑌 )𝑋 , in 𝜔Conc(C, 𝐽 ).

Proof notes. A candidate fixed point can be constructed just
like in the 𝜔cpo model of PCFv, using the 𝜔cpo structure
of |𝑋 | and |𝐿𝑌 | and Tarski’s fixed point theorem. It then
remains to show this candidate fixed point preserves the
structure of concrete sheaves; this is where the last property
in the definition ofM is needed. See also Section 7. □

3.3 Examples

Example 3.6 (Probability and measure ctd.). The category
of𝜔-concrete sheaves on (Sbs, 𝐽Sbs) is equivalent to𝜔Qbs [53].
If we choose the admissiblemonomorphisms such thatMSbs (𝑈 )
contains all the monos with codomain𝑈 , then the induced
lifting monad is the one used in [53] to model recursion.

Example 3.7 (Smoothness ctd.). The category of𝜔-concrete
sheaves on (Cart, 𝐽Cart) is equivalent to 𝜔Diff [51]. Con-
sider the class of admissible monos such that MCart (𝑈 )
contains the open inclusion maps into𝑈 , then the induced
lifting monad is the one used to model recursion in [51].

Example 3.8 (Piecewise smoothness and PAP ctd.). The
category of 𝜔-concrete sheaves on (PAP, 𝐽PAP) is equival-
ent to the category used in [30] to model a higher-order
differentiable language with recursion. Choose the class of
admissible monosMPAP to contain at 𝑈 the c-analytic sub-
sets 𝑈 ′ ↩→ 𝑈 . The induced lifting monad gives the same
notion of partial map as the one used in [30].

Example 3.9 (Fully abstract models of PCF [34, 41]). In [34]
we present a fully abstract sheaf model G, on a concrete site,
for call-by-value PCF (explained further in Example 7.6). The
lifting monad we use there is obtained from a dominance
which is actually equivalent to an class of admissible monos.
In fact, the interpretation of PCF lies in the subcategory of𝜔-
concrete sheaves of G. This category of 𝜔-concrete sheaves
is very similar to the logical relations (fully abstract) FPC
model proposed by Riecke and Sandholm [41], where an
object is roughly a cpo equipped with relations of varying
arity.
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We can also consider admissible monos on other sites. For
example, Example 2.8 suggests a candidate semantic model
for the local continuity in [5, §6].
Here and in Section 2.2 we have focused on the models

of these kinds of phenomena that are based on 𝜔-concrete
sheaves. Of course, there are other ways to give semantic
models of higher order recursion, including for probabilistic
programming [3, 7, 8, 11, 19, 21], differentiable program-
ming [6], and full abstraction [1, 23, 45].

3.4 Conservativity results

One major application of 𝜔-concrete sheaves is in giving
conservativity results for a programming language over a
particular class of functions. For example, suppose we write
programs in a language with higher order recursion and
a type real of real numbers. If all the primitive functions
are continuous, does that mean that the definable functions
real→ real are all continuous?
In general, suppose we have some set 𝑋 and a class 𝒞

of operations over it. If we write programs over 𝑋 in a lan-
guage with higher order recursion, are the definable func-
tions 𝑋 → 𝑋 in the class 𝒞? In a language with recursion,
the definable functions need not terminate and so might
be partial. Thus more precisely, we should investigate the
definable partial functions 𝑋 → 𝑋 . We would characterize
these partial functions, and their domains of definition. For
example, if all the primitive operations are continuous, then
we might prove that the definable functions real→ real are
partial continuous functions whose domain is an open set.
The theory of 𝜔-concrete sheaves is a good setting for this.

Definition 3.10. A concrete site (C, 𝐽 ) is subcanonical if for
all 𝑐 ∈ C the relations

(
𝑅𝑑𝑐 =

{
|𝑓 | : |𝑑 | → |𝑐 |

�� 𝑓 : 𝑑 → 𝑐
})

𝑑∈C
form a concrete sheaf over |𝑐 |.

All the examples in Section 2.2 are subcanonical. (The site
for full abstraction in Ex. 7.6 is not subcanonical, though.)
For a subcanonical site, we have a functor 𝑌 : C →

𝜔Conc(C, 𝐽 ) given by 𝑌 (𝑐) = 𝑐 with the discrete order, and
with 𝑌 (𝑓 ) = |𝑓 |. (This is the Yoneda embedding, which is
particularly simple for concrete sheaves.)
For a subcanonical site, we can also define a category of

partial maps. Recall the following quite general construction.

Definition 3.11. Let C be any category andM any class
of monos containing the isomorphisms, closed under com-
position, and all of whose pullbacks exist and are again in
M. Then pCM , the category ofM-partial maps in C, has the
same objects as C but morphisms 𝑐 → 𝑏 are equivalence
classes of pairs (𝑚 : 𝑑 ↣ 𝑐, 𝑓 : 𝑑 → 𝑏) with𝑚 ∈ M, where
(𝑚 : 𝑑 ↣ 𝑐, 𝑓 : 𝑑 → 𝑏) is equivalent to (𝑚′ : 𝑑 ′ ↣ 𝑐, 𝑓 ′ :
𝑑 ′ → 𝑏) iff there exists an isomorphism 𝑡 : 𝑑 → 𝑑 ′ with
𝑚′ ◦ 𝑡 =𝑚 and 𝑓 ′ ◦ 𝑡 = 𝑓 . This really is a category: one uses
the pullback-stability ofM to compose partial maps.

For our concrete site (C, 𝐽 ), we can describe partial maps
pCM (𝑐, 𝑑) as partial functions 𝑓 : |𝑐 | ⇀ |𝑑 | such that there
is a monomorphism𝑚 : 𝑐 ′↣ 𝑐 inM with im( |𝑚 |) = dom 𝑓

and a morphism ℎ : 𝑐 ′→ 𝑑 in C such that |ℎ | = 𝑓 ◦ |𝑚 |.
We relate this category pCM of partial maps to the cat-

egory of partial maps between 𝜔-concrete sheaves, which is
the Kleisli category of 𝐿. There is a functor 𝑍 : pCM →
Kl(𝐿), given by 𝑍 (𝑐) = 𝑐 , and with 𝑍 (𝑓 ) (𝑥) = 𝑓 (𝑥) if
𝑥 ∈ dom(𝑓 ), and 𝑍 (𝑓 ) (𝑥) = ⊥ if 𝑥 ∉ dom(𝑓 ).

Theorem 3.12. If (C, 𝐽 ) is a subcanonical concrete site with
an admissible class of monosM, then the functors 𝑌 : C →
𝜔Conc(C, 𝐽 ) and 𝑍 : pCM → Kl(𝐿M) are full and faithful.

Thus themorphismsC(𝑐, 𝑑) are in bijectionwith themorph-
isms 𝜔Conc(C, 𝐽 ) (𝑐, 𝑑), and the partial maps pCM (𝑐, 𝑑) are
in bijectionwith the Kleisli mapsKl(𝐿) (𝑐, 𝑑). So𝜔Conc(C, 𝐽 )
has powerful structure for interpreting recursion (Prop. 3.5)
and higher order functions, but is conservative in that it
agrees with C on morphisms and partial maps.

Proof notes for Thm. 3.12. This is a Yoneda argument, but can
also be checked directly by expanding the definitions, using
Prop. 3.4. □

Although this conservativity result is new, it is reminiscent
of earlier representation results for partiality [36], axiomatic
domain theory [14], and computational effects [40].
This theorem generalizes some known useful facts, such

as, to give a partial measurable function R→ R with Borel
domain is to give a morphism R→ 𝐿(R) of 𝜔-quasi-Borel
spaces [53]; to give a partial smooth function R→ R with
open domain is to give a morphism R → 𝐿(R) between
𝜔-diffeological spaces [51]. On top of this, the functor 𝑌
always preserves limits that exist and the sheaf condition can
be understood as saying that 𝑌 preserves certain colimits.
For example, in 𝜔-quasi-Borel spaces, the coproduct N =

1+1+1+ . . . is such that the morphisms R→ N are the Borel
partitions of R.

4 A higher-order language with recursion

To illustrate the constructions in the previous section, we
discuss PCFv, a call-by-value simply typed lambda calculus
with recursion. We give an operational semantics (§4.1) and
a denotational semantics in𝜔-concrete sheaves (§4.2), which
we show to be adequate (Thm. 4.1). We allow the language to
be extended with new type constants (such as real) and func-
tions, inspired by the ability of concrete sheaves to provide
new models of higher-order recursion that incorporate other
constructions (§3.4).

4.1 PCF and its operational semantics

In our formulation of PCFv, there is a syntactic distinction
between values and computations, which means the calcu-
lus is fine-grained [28]. The grammars of types, values and
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computations are:

𝜏, 𝜏 ′ F nat | 𝜏 → 𝜏 ′ 𝑣,𝑤 F 𝑥 | 0 | S(𝑣) | rec 𝑓 𝑥 . 𝑡
𝑡 F 𝑣 𝑤 | return 𝑣 | let𝑥 = 𝑡 in 𝑡 ′ | case 𝑣 of {0�𝑡, S(𝑥)�𝑡 ′}

The value (rec 𝑓 𝑥 . 𝑡) is a recursive function definition, which
can be thought of as 𝑓 (𝑥) = 𝑡 . When 𝑓 does not appear in 𝑡 ,
we can write _𝑥. 𝑡 . The computation let𝑥 = 𝑡 in 𝑡 ′ sequences
computations 𝑡 and 𝑡 ′.

There are two typing relations, one for values, ⊢v, and one
for computations, ⊢c.

Γ, 𝑓 : 𝜏 → 𝜏 ′, 𝑥 : 𝜏 ⊢c 𝑡 : 𝜏 ′

Γ ⊢v rec 𝑓 𝑥 . 𝑡 : 𝜏 → 𝜏 ′
Γ ⊢v 𝑣 : 𝜏 → 𝜏 ′ Γ ⊢v 𝑤 : 𝜏

Γ ⊢c 𝑣 𝑤 : 𝜏 ′

Γ ⊢v 𝑣 : 𝜏

Γ ⊢c return 𝑣 : 𝜏

Γ ⊢c 𝑡 : 𝜏 Γ, 𝑥 : 𝜏 ⊢c 𝑡 : 𝜏 ′

Γ ⊢c let𝑥 = 𝑡 in 𝑡 ′ : 𝜏 ′

−
Γ, 𝑥 : 𝜏, Γ′ ⊢v 𝑥 : 𝜏

−
Γ ⊢v 0 : nat

Γ ⊢v 𝑣 : nat

Γ ⊢v S(𝑣) : nat

Γ ⊢v 𝑣 : nat Γ ⊢c 𝑡 : 𝜏 Γ, 𝑥 : nat ⊢c 𝑡 ′ : 𝜏
Γ ⊢c case 𝑣 of {0�𝑡, S(𝑥)�𝑡 ′} : 𝜏

The big-step operational semantics of PCFv is a relation
between closed computations and closed values. It is the
least relation closed under the rules below:

return 𝑣 ⇓ 𝑣
𝑡 [(rec 𝑓 𝑥 . 𝑡)/𝑓 , 𝑣/𝑥] ⇓ 𝑤
(rec 𝑓 𝑥 . 𝑡) 𝑣 ⇓ 𝑤

𝑡 ⇓ 𝑣 𝑡 ′[𝑣/𝑥] ⇓ 𝑤
let𝑥 = 𝑡 in 𝑡 ′ ⇓ 𝑤

𝑡 ⇓ 𝑤
case 0 of {0�𝑡, S(𝑥)�𝑡 ′} ⇓ 𝑤

𝑡 ′[𝑣/𝑥] ⇓ 𝑤
case S(𝑣) of {0�𝑡, S(𝑥)�𝑡 ′} ⇓ 𝑤

By induction on the structure of typing derivations, if
⊢c 𝑡 : 𝜏 and 𝑡 ⇓ 𝑣 then ⊢v 𝑣 : 𝜏 .
This calculus is chosen to be simple enough to illustrate

the key ideas. We can further add sum and product types, as
outlined in Appendix A.
We can extend our calculus further: let 𝛼, 𝛽 denote new

type constants which we want to add, or nat (i.e. ground
types). We can then add term constant 𝑓 : 𝛼 → 𝛽 . For
example, with an eye to several of the examples in Section 2.2,
we might add a new type constant real for real numbers.
Depending on the application, we could add term constants
such as sin, arctan : real→ real, or a non-smooth function
such asmax(0,−) : real→ real, or a discontinuous function
such as rounding real→ nat.
To extend the operational semantics, we suppose that

every new type constant 𝛼 is associated with a set Val𝛼
of values. For example, we would likely put Valreal = R.
This extends the basic language which has Valnat � N. We
then require that every new term constant 𝑓 : 𝛼 → 𝛽 is
associated with a partial function Val𝛼 → Val𝛽 . Then we
add all the elements of these sets as values, and implement a

straightforward operational semantics:

−
⊢v 𝑓 : 𝛼 → 𝛽

−
⊢v 𝑐 : 𝛼

(𝑐 ∈ Val𝛼 )
−

𝑓 𝑣 ⇓ 𝑤
(𝑓 (𝑣) = 𝑤)

4.2 Denotational semantics for PCFv

Given a concrete site with an admissible class of monos,
(C, 𝐽 ,M), we can interpret PCFv types using the structure
of the category 𝜔Conc(C, 𝐽 ) of 𝜔-concrete sheaves as:

JnatK =
∑∞

0 1 = 1 + 1 + . . . J𝜏 → 𝜏 ′K = J𝜏K⇒ 𝐿MJ𝜏 ′K

whose explicit description is given in Figure 1. A value Γ ⊢v
𝑣 : 𝜏 is interpreted as a map JΓK→ J𝜏K and a computation
Γ ⊢c 𝑡 : 𝜏 as a map JΓK → 𝐿MJ𝜏K. The interpretation of
both values and computations is standard [35]; to interpret
(rec 𝑓 𝑥 . 𝑡) we use the fixed point from Proposition 3.5.
We can extend the interpretation to the setting with new

type constants (such as real) and term constants. Given the
set of values Val𝛼 of a type constants 𝛼 , we must equip Val𝛼
with the structure of an 𝜔-concrete sheaf J𝛼K. The interpret-
ation works as long as the function corresponding to each
term constant 𝑓 : Val𝛼 → Val𝛽 is in fact a partial morphism
J𝛼K → J𝛽K of concrete sheaves (i.e. J𝑓 K : J𝛼K → 𝐿MJ𝛽K,
via Prop. 3.4). Several of the examples in Section 2.2 ad-
mit different structures for real. In each case, the underly-
ing set is R, but we can equip this with the structure of all
Borel morphisms (Ex. 2.5, admitting almost all term constants
of interest), all smooth plots (Ex. 2.6, forbidding functions
like max(0,−)), plots that are piecewise smooth under ana-
lytic partition (Ex. 2.7), or sequentially continuous functions
(Ex. 2.8, forbidding rounding real→ nat). More generally, if
one is faced with a new class of type and term constants, the
methods of Section 3.4 could be used to generate a site for
suitable 𝜔-concrete sheaves.

Theorem 4.1. The model (in 𝜔Conc(C, 𝐽 )) of PCFv presen-
ted by (C, 𝐽 ,M) is sound and adequate. That is, for closed
terms ⊢c 𝑡 : 𝜏 and ⊢v 𝑣 : 𝜏 :

• Soundness: 𝑡 ⇓ 𝑣 =⇒ J𝑡K = Jreturn 𝑣K ∈ 𝐿MJ𝜏K.
• Adequacy: if 𝜏 is a ground type (nat or a type constant
𝛼), then J𝑡K = Jreturn 𝑣K =⇒ 𝑡 ⇓ 𝑣 .

The proof of this theorem is deferred to Section 7. It still
holds when we add product and sum types, as in Appendix A.

Part II: Understanding models through

synthetic domain theory

In this second part of the paper, we explain why our re-
quirements on the class of admissible monos (Def. 3.2) are
canonical, by demonstrating how they arise generally from
synthetic domain theory. We treat partiality (§5) and recur-
sion (§6) separately, before explaining 𝜔-concrete sheaves
from this perspective (§7).
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|JnatK| = N, with the discrete order |J𝜏 → 𝜏 ′K| = 𝜔Conc(J𝜏K, 𝐿MJ𝜏 ′K), with the pointwise order
𝑅𝑐JnatK =

{
𝑓 : |𝑐 | → N

�� ∃ {𝑔𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 ∈ 𝐽 (𝑐) s.t. each 𝑓 ◦ 𝑔𝑖 is constant
}

𝑅𝑐J𝜏→𝜏 ′K =
{
𝑓 : |𝑐 | → 𝜔Conc(J𝜏K, 𝐿MJ𝜏 ′K)

�� ∀ℎ : 𝑑 → 𝑐 ∈ C, ∀𝑔 : |𝑑 | → |J𝜏K| ∈ 𝑅𝑑J𝜏K . _𝑥 ∈ |𝑑 |.
(
𝑓 (ℎ(𝑥)) 𝑔(𝑥)

)
∈ 𝑅𝑑

𝐿MJ𝜏 ′K

}
Figure 1. Interpretation of types in 𝜔Conc(C, 𝐽 )

5 Partiality in categories of sheaves via

dominances and pre-admissible monos

We recall how dominances give rise to partiality and lifting
in general (§5.1), before specializing the constructions to
categories of sheaves (§5.2) to connect dominances to classes
of pre-admissible monos (§5.3).

5.1 Dominances and lifting in general

The construction of the lifting monad in Section 3.2 is actu-
ally a special case of a more general construction. We recall
the following definition originally from [42] but given amore
general formulation as in [16].

Definition 5.1. Let E be a category with a terminal object 1.
A dominance is a monomorphism ⊤ : 1↣ Δ in E such that

1. all pullbacks of ⊤ exist, and
2. for all 𝐴 ∈ E the function E(𝐴,Δ) → Sub(𝐴) given

by pullback along ⊤ is an injection.

Remark 5.2. The traditional setting for a dominance is a
topos, wherein the first condition in the definition above is
redundant. Moreover, in any topos E, the subobject classifier
⊤ : 1↣ Ω is an example of a dominance, and the classifying
map Δ→ Ω of any other dominance ⊤Δ : 1↣ Δ is monic,
allowing a characterization of Δ as a special kind of subobject
of Ω.

The terminology reflects the fact that a dominance can be
used to give a class of domains for partial maps. LettingMΔ

be the class of morphisms in E which arise as a pullback of⊤ :
1↣ Δ, we see thatMΔ consists entirely of monomorphisms,
and all pullbacks ofMΔ-maps exist and are again inMΔ.
Thus the construction of Definition 3.11 applies to give a
category pEMΔ ofMΔ-partial maps.
A particularly convenient setting is one where the pull-

back functor ⊤∗ : E/Δ→ E/1 ≃ E between slice categories
admits a right adjoint Π⊤ : E → E/Δ. In this case, writing
ΣΔ : E/Δ→ E for the functor sending 𝑓 : 𝐴→ Δ to 𝐴, we
define 𝐿Δ : E → E as the composite 𝐿Δ B ΣΔ ◦ Π⊤.

Lemma 5.3 ([36], Thm. 2.4). In this setting, the functor 𝐿Δ
underlies a strong monad on E such that Kl(𝐿Δ) ≃ pEMΔ .

In fact, the lifting monad 𝐿Δ determines the dominance
Δ, since Δ � 𝐿Δ1 and ⊤ : 1↣ Δ is the unit [1 : 1 → 𝐿Δ1.
In our applications, E has an initial object and the initial
subobject 0↣ 𝑋 is to be classifed by the dominance.

Proposition 5.4. Let E be a category with an initial object 0
and a dominance ⊤ : 1↣ Δ. The following are equivalent.

1. There is a map ⊥ : 1↣ Δ whose pullback with ⊤ is 0.
2. Every map 0→ 𝑋 is classified by Δ.
3. There exists a natural transformation ⊥ : 1→ 𝐿Δ from

the constant functor with value 1 to the lifting monad.

5.2 Categories of sheaves on a site

The notions of concrete site and concrete sheaf defined above
in Section 2.1 are just special cases of the more general no-
tions of site and sheaf. The definitions and propositions in
this subsection are standard (e.g. [26]).
Definition 5.5. For any small category C, the category of
presheaves is PSh(C) B [Cop, Set], the category of contrav-
ariant Set-valued functors on C and all natural transform-
ations between them. The Yoneda embedding is denoted
𝑦 : C→ PSh(C).
Definition 5.6. A site (C, 𝐽 ) is a small category C with a
coverage 𝐽 . A coverage consists of, for every object 𝑐 ∈ C, a
set 𝐽 (𝑐) of covering families {𝑓𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 satisfying the
axiom (C) from Definition 2.1.
A concrete site (from Definition 2.1) is a site (C, 𝐽 ) such

that C is a concrete category with terminal object ★ and
initial object 0, and 𝐽 satisfies (★), (0), (M), and (L) (but see
Remark 2.2). As in Section 2.1, in a concrete site we define
|𝑐 | = C(★, 𝑐) and we can identify maps 𝑓 : 𝑐 → 𝑑 with their
action on points |𝑓 | : |𝑐 | → |𝑑 |.
Given a site (C, 𝐽 ), a covering family {𝑓𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 ∈

𝐽 (𝑐), and a presheaf 𝐹 ∈ PSh(C), a matching family is a set
{𝑠𝑖 ∈ 𝐹 (𝑐𝑖 )}𝑖∈𝐼 such that for all 𝑖, 𝑗 ∈ 𝐼 ,𝑑 ∈ C,𝑔 : 𝑑 → 𝑐𝑖 , and
ℎ : 𝑑 → 𝑐 𝑗 with 𝑓𝑖 ◦ 𝑔 = 𝑓𝑗 ◦ ℎ, we have 𝐹 (𝑔) (𝑠𝑖 ) = 𝐹 (ℎ) (𝑠 𝑗 ).
Definition 5.7. Let (C, 𝐽 ) be a site. A sheaf on (C, 𝐽 ) (or 𝐽 -
sheaf ) is a presheaf 𝐹 ∈ PSh(C) such that for every covering
family {𝑓𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 and every matching family {𝑠𝑖 ∈
𝐹 (𝑐𝑖 )}𝑖∈𝐼 there is a unique amalgamation 𝑠 ∈ 𝐹 (𝑐) such that
𝐹 (𝑓𝑖 ) (𝑠) = 𝑠𝑖 for all 𝑖 ∈ 𝐼 . The full subcategory of PSh(C)
whose objects are 𝐽 -sheaves is denoted by Sh(C, 𝐽 ).
Proposition 5.8 (e.g. [26], A4.1.8). The embedding Sh(C, 𝐽 ) →
PSh(C) has a left adjoint 𝑎 : PSh(C) → Sh(C, 𝐽 ) which pre-
serves finite limits. Sh(C, 𝐽 ) is a Grothendieck topos.

The left adjoint 𝑎 is called sheafification.
Remark 5.9. In general, the representable functors 𝑦 (𝑐) for
𝑐 ∈ C are not sheaves (if the site is not subcanonical), so we
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instead use the sheafified representables 𝑎𝑦 (𝑐). To describe
these, first note that, for any 𝑐 ∈ C, the presheaf Set( | − |, |𝑐 |)
is a sheaf and 𝑦 (𝑐) ↩→ Set( | − |, |𝑐 |) is a subfunctor, where
the component 𝑦 (𝑐) (★) → Set( | ★ |, |𝑐 |) is a bijection. Since
sheafification preserves monos, the sheafification of 𝑦 (𝑐)
is therefore given by closing the image of 𝑦 (𝑐) (★) under
amalgations in Set( | − |, |𝑐 |). Using the (M) and (L) axioms,
we can write

𝑎𝑦 (𝑐) (𝑑) �
{
𝜙 ∈ Set( |𝑑 |, |𝑐 |)

�� ∃{𝑓𝑖 : 𝑑𝑖 → 𝑑} ∈ 𝐽 (𝑑).
∀𝑖 .𝜙 ◦ |𝑓𝑖 | ∈ im

(
𝑦 (𝑐) (𝑑𝑖 ) ↩→ Set( |𝑑𝑖 |, |𝑐 |)

)}
,

i.e. 𝑎𝑦 (𝑐) (𝑑) is isomorphic to the set of functions |𝑑 | → |𝑐 |
which are 𝐽 -locally given by morphisms into 𝑐 in C.

Definition 5.10. Let (C, 𝐽 ) be a concrete site. A concrete
presheaf is a presheaf 𝐹 : PSh(C) such that, for every 𝑐 ∈ C,
the function ⟨𝐹 (𝑥 : ★→ 𝑐)⟩𝑥 ∈ |𝑐 | : 𝐹 (𝑐) → Set( |𝑐 |, 𝐹 (★)) is
injective.

Proposition 5.11 (e.g. [4, 9]). Let (C, 𝐽 ) be a concrete site
and 𝐹 a concrete presheaf which is also a sheaf. The functor that
sends 𝐹 to the concrete sheaf 𝑋 (in the sense of Definition 2.3)
given by the set |𝑋 | = 𝐹 (★) with𝑅𝑐

𝑋
= Im(⟨𝐹 (𝑥 : ★→ 𝑐)⟩𝑥 ∈ |𝑐 |)

is an equivalence.

Remark 5.12. The argument in Remark 5.9 shows that rep-
resentable functors on a concrete site are concrete presheaves,
and that the sheafified representables are still concrete. By a
similar argument, the sheafification functor sends any con-
crete presheaf to a concrete sheaf.

For a presheaf 𝑋 ∈ PSh(C) write |𝑋 | for C(★, 𝑋 ). We can
think of a concrete presheaf 𝑋 as being the set |𝑋 | together
with a set of functions |𝑐 | → |𝑋 | for each 𝑐 ∈ C. A natural
transformation 𝛼 : 𝑌 → 𝑋 from a presheaf 𝑌 to a concrete
presheaf 𝑋 is determined by the function 𝛼★ : |𝑌 | → |𝑋 |.

Remark 5.13. The category of concrete sheavesConc(C, 𝐽 )
forms a (Grothendieck) quasitopos. It is still cartesian closed.

Proposition 5.14 (e.g. [26], §C2.2; [4]). Let (C, 𝐽 ) be a con-
crete site. The full inclusion Conc(C, 𝐽 ) → Sh(C, 𝐽 ) preserves
all limits, exponentials, and coproducts, and has a left adjoint.

5.3 Dominances and pre-admissible monos on a site

Let (C, 𝐽 ) be a site, not necessarily concrete. There is a more
general version of Definition 3.2, as follows. SupposeM is a
class of monomorphisms in C satisfying the following.

1. M contains all the isomorphisms and is closed under
composition.

2. All pullbacks ofM-maps exist and are again inM.
Then there is a presheaf ΔM ∈ PSh(C) given by ΔM (𝑐) B
SubM (𝑐), the set of isomorphism classes ofM-subobjects,
with functorial action ΔM (𝑓 : 𝑎 → 𝑐) : ΔM (𝑐) → ΔM (𝑎)
given by pullback.

Definition 5.15. M is a class of pre-admissiblemonomorph-
isms in C (for (C, 𝐽 )) if it satisfies the two conditions above
and the ΔM is a 𝐽 -sheaf.

There is a map ⊤ : 1 ↣ ΔM given by ⊤𝑐 (★) = [1𝑐 ] ∈
SubM (𝑐). The following generalizes Theorem 2.6 of [36],
which covers only the case where 𝐽 is a trivial coverage.

Theorem 5.16. Let (C, 𝐽 ) be a site withM a class of pre-
admissible monos. Then the map ⊤ : 1→ ΔM is a dominance
in Sh(C, 𝐽 ), and Sh(C, 𝐽 ) (𝑎𝑦 (𝑐),ΔM) � SubM (𝑐).

Proof. Since ΔM is a sheaf we have Sh(C, 𝐽 ) (𝑎𝑦 (𝑐),Δ𝑀 ) �
[Cop, Set] (𝑦 (𝑐),Δ𝑀 ) � Δ𝑀 (𝑐) � SubM (𝑐). Moreover, if
𝜒 : 𝑎𝑦 (𝑐) → ΔM corresponds to anM-subobject𝑚 : 𝑐 ′↣
𝑐 , then the pullback of ⊤ : 1 ↣ ΔM along 𝜒 is 𝑎𝑦 (𝑚) :
𝑎𝑦 (𝑐 ′) → 𝑎𝑦 (𝑐), since the sheafification 𝑎 preserves finite
limits.
It is easy to see that a subobject𝑚 : 𝑋 ′ ↣ 𝑋 arises as a

pullback of ⊤ : 1↣ ΔM along some map 𝑋 → ΔM iff𝑚 is
‘representably inM’, meaning that the pullback of𝑚 along
any map 𝑎𝑦 (𝑐) → 𝑋 from a (sheafified) representable has
the form 𝑎𝑦 (𝑚′) : 𝑎𝑦 (𝑐 ′) → 𝑎𝑦 (𝑐) for some𝑚′ ∈ SubM (𝑐).
From this description it follows easily that the subobjects
classified by ΔM are closed under composition, as required.

□

We can spell out the formula from Section 5.1 for the
lifting monad in this case for 𝑋 ∈ Sh(C, 𝐽 ):

𝐿M (𝑋 ) (𝑐) =
∐

(𝑚:𝑐′↣𝑐) ∈SubM (𝑐)
𝑋 (𝑐 ′)

where the sum is over isomorphism classes ofM-subobjects
of 𝑐 .

5.3.1 Concreteness. LetM be a class of pre-admissible
monos in a concrete site (C, 𝐽 ). We are interested in the case
where the dominance ΔM is a concrete sheaf.

This means eachM-subobject (𝑚 : 𝑐 ′↣ 𝑐) of each 𝑐 ∈ C
is determined by the subset |𝑚 | ⊆ |𝑐 | of points of 𝑐 that
factorize through them. It is straightforward to see that the
order-relation𝑚 ≤ 𝑚′ betweenM-subobjects is now also
reflected by the relation |𝑚 | ⊆ |𝑚′ |. Notice that in this case,
ΔM looks like the class of admissible monos from Section 3.2
but without the 𝜔-cpo structure.
Assume further that every map in 0→ 𝑐 is inM. In this

case, it can be shown that because ΔM is concrete, ΔM (★)
has exactly two elements, [1★] and [0→ ★]. Therefore, the
lifting of a sheaf 𝑋 ∈ Sh(C, 𝐽 ), 𝐿M𝑋 , has the set of points:

|𝐿M (𝑋 ) | �
∐

(𝑐↣★) ∈SubM (★)
𝑋 (𝑐) � 𝑋 (★) + 𝑋 (0) � |𝑋 | + 1

Since 𝑋 (0) � 1 because 𝑋 is a sheaf. Notice that this is the
same underlying set of points as that of the lifting monad
from Section 3.2.
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Lemma 5.17. Let (C, 𝐽 ) be a concrete site with a classM
of pre-admissible monos such that all maps 0 → 𝑐 are in
M, and ΔM is concrete. Then the lifting monad 𝐿M preserves
concreteness.

This result will be used in the proof of Theorem 7.7.

Proposition 5.18. Let (C, 𝐽 ) be a concrete site with a class
M of pre-admissible monos, such that all maps 0→ 𝑐 are in
M. Then the dominance ΔM classifies the subobject 0 → 1
from Sh(C, 𝐽 ).

It then follows from Proposition 5.4 that the monad 𝐿M
has a point i.e. a natural transformation ⊥ : 1→ 𝐿M . This
fact will be used in the next section.

6 Recursion in categories of sheaves

We now recall how recursion can be understood once par-
tiality is set up (as in §5). We do this by specializing some
general ideas from synthetic domain theory to sheaf categor-
ies, following e.g. [34].

Let us consider any small site (C, 𝐽 ) with a terminal object
★ and initial object 0 covered by the empty family, with a
class of pre-admissible monomorphismsM such that every
map ! : 0 → 𝑐 is inM(𝑐). It is interesting to note that for
each sheaf 𝑋 ∈ Sh(C, 𝐽 ) the points of 𝑋 carry an intrinsic
information ordering, given by the image of

Nat(ΔM, 𝑋 ) → Set( |ΔM |, |𝑋 |) → Set({⊥,⊤}, |𝑋 |) → |𝑋 |2,

where we are using the fact that the assumptions on (C, 𝐽 )
andM provide that ΔM has at least two points, classify-
ing the bottom and top elements of Sub(★). This relation
is necessarily reflexive, but there is no reason for it to be
transitive or antisymmetric in general.
It is common in denotational semantics for a recursively

defined term to denote a limit or supremum of an ascending
sequence of approximations. In the absence of transitivity,
it makes sense to consider intrinsic notions of ‘increasing
sequence’ and ‘limit of an increasing sequence’. The approach
given here is essentially a variation on that of [16].

Let 𝜔M = 𝜔 be the colimit in Sh(C, 𝐽 ) of the diagram

1
⊥1−−→ 𝐿1

𝐿 (⊥1)−−−−→ 𝐿𝐿1
𝐿𝐿 (⊥1)−−−−−−→ . . . (1)

and 𝜔M = 𝜔 the limit in Sh(C, 𝐽 ) of the diagram

1
!←− 𝐿1

𝐿!←− 𝐿𝐿1
𝐿𝐿!←−− . . . . (2)

There is an evident comparison map 𝑖 : 𝜔 → 𝜔 .

Lemma 6.1. |𝑖 | : |𝜔 | → |𝜔 | is given by N ↩→ N ∪ {∞}, and
all maps 𝜔 → 𝑋 or 𝜔 → 𝑋 are monotone from the natural
order on N ∪ {∞} to the intrinsic information order on 𝑋 .

It is also straightforward to construct maps succ𝜔 : 𝜔 →
𝜔 , succ𝜔 : 𝜔 → 𝜔 and∞ : 1→ 𝜔 with the obvious action on
points such that (𝑖 ◦ succ𝜔 = succ𝜔 ◦𝑖) and (succ𝜔 ◦∞ = ∞).

6.1 Completeness and fixed points

In synthetic domain theory, one restricts to a subcategory
of ‘complete’ objects where fixed point operators can be
defined. If we think of a morphism 𝜔 → 𝑋 as a chain in
𝑋 , completeness implies that such a chain has a least upper
bound.
Recall that an object 𝑋 is said to be right-orthogonal to a

morphism 𝑓 : 𝐴→ 𝐵 if every map 𝐴→ 𝑋 factors uniquely
through 𝑓 . In this situation we write 𝑓 ⊥ 𝑋 .

Denote by𝜔P the colimit of diagram (1) in PSh(C). Notice
that in general 𝜔P is not a 𝐽 -sheaf. The limit of diagram (2)
in PSh(C) is the same as in sheaves, i.e. 𝜔 . As before, let 𝑖P :
𝜔P → 𝜔 be the evident comparison map. The equivalence
between 1 and 2 below is quite standard, see e.g. [16].
Lemma 6.2. Let 𝑋 ∈ Sh(C, 𝐽 ). The following are equivalent.

1. The map 𝑋 𝑖 : 𝑋𝜔 → 𝑋𝜔 is an isomorphism.
2. For all 𝐴 ∈ Sh(C, 𝐽 ), (𝑖 × 1𝐴 : 𝜔 ×𝐴→ 𝜔 ×𝐴) ⊥ 𝑋 .
3. For all 𝑐 ∈ C, (𝑖P × 1𝑦 (𝑐) : 𝜔P ×𝑦 (𝑐) → 𝜔 ×𝑦 (𝑐)) ⊥ 𝑋 .

Definition 6.3. Consider a site (C, 𝐽 ) with a class of pre-
admissible monosM. A sheaf 𝑋 ∈ Sh(C, 𝐽 ) is:
• 𝐿M-complete if𝑋 satisfies the conditions of Lemma 6.2,
• well-complete if 𝐿M𝑋 is 𝐿M-complete.

The present abstract setting admits the following fixed
point theorem. The theorem is about well-complete objects
with respect to 𝐿M , that are moreover 𝐿M-algebras (i.e. ob-
jects 𝑋 equipped with a morphism 𝐿M (𝑋 ) → 𝑋 satisfying
conditions).
Theorem 6.4 ([34]). Let 𝑋 ∈ Sh(C, 𝐽 ) be a well-complete
object that is also an 𝐿M-algebra . Then for any map 𝑔 : Γ ×
𝑋 → 𝑋 we can construct a fixed point 𝜙𝑔 : Γ → 𝑋 such that
𝜙𝑔 (𝜌) = 𝑔(𝜌, 𝜙𝑔 (𝜌)).
Corollary 6.5 ([34]). Consider objects Γ, 𝐴, 𝐵 in Sh(C, 𝐽 )
such that (𝐿M𝐵)𝐴 is a well-complete object. Then there is a
fixed point combinator

(
(𝐿M𝐵)𝐴 ⇒ (𝐿M𝐵)𝐴

)
→ (𝐿M𝐵)𝐴.

We will use Corollary 6.5 to interpret fixed points suitable
for call-by-value.

6.2 The subcategory of well-complete objects

We now explore conditions on ΔM that guarantee a supply
of 𝐿M-complete objects sufficient to model PCFv using Co-
rollary 6.5. Later in Section 7.1 we will translate conditions
to the site (C, 𝐽 ) and classM of pre-admissible monos.
As in [34], we consider a slight strengthening of the 𝐿M-

completeness condition, which roughly says that an object
is 𝐿M-complete with respect to partial maps.
Definition 6.6. Let OM be the class of maps in Sh(C, 𝐽 )
which are pullbacks of maps 𝑖 × 1𝐴 : 𝜔M × 𝐴 → 𝜔M × 𝐴
along subobjects of 𝜔M ×𝐴 classified by ΔM . Write O�

M for
the class of objects right orthogonal to every map in OM .

The following facts and proposition are explained in [34]:
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• OM is closed under the operations (−)×1𝐴, and under
pullback along subobjects classified by ΔM .
• O�

M is contained in the class of 𝐿M-complete objects.
• O�

M is a reflective subcategory of Sh(C, 𝐽 ), is closed
under limits in Sh(C, 𝐽 ), and is an exponential ideal.

Proposition 6.7. Suppose that ΔM is 𝐿M-complete.

• ΔM is in O�
M , and for 𝐴 ∈ Sh(C, 𝐽 ), 𝐴 ∈ O�

M iff 𝐴 is
well-complete iff 𝐿M𝐴 ∈ O�

M .
• O�

M is closed under 𝐿M and contains 0.
• O�

M is closed under 𝐼 -indexed coproducts iff
∑

𝐼 ′ 1 ∈ O�
M

for some set 𝐼 ′ with |𝐼 | ≤ |𝐼 ′ |.

We will use Prop. 6.7 in §7, to give an interpretation of
PCFv. In Propositon 7.4, we explore properties ofM that
will allow us to deduce the 𝐿M-completeness of ΔM .

6.3 The vertical natural numbers

Here we recall the ‘canonical’ example of a site with pre-
admissible monos such that ΔM is 𝐿M-complete. This is
essentially the same as the category H considered in [18]
as a model of synthetic domain theory, except we omit their
coverage which plays no role for us.

Definition 6.8. Let V ∈ 𝜔CPO be the ordinal 𝜔 + 1 � N ∪
{∞} considered as an 𝜔CPO. Let V be the full subcategory
of 𝜔CPO with just the object V. We define vSet B PSh(V).

Although this is the most convenient description of vSet
as a plain category, it is necessary to extend the site a little
in order to get the correct class of pre-admissible monos. Let
V0 be the full subcategory of 𝜔CPO whose objects are V,
the terminal object ★, and the intial object 0. Let 𝐽V be the
coverage with

𝐽V (V) = {{1V}} 𝐽V (★) = {{1★}} 𝐽V (0) = {∅, {10}}.

Then it is easy to see that Sh(V0, 𝐽V) ≃ vSet. Explicitly, the
equivalence sends 𝑋 ∈ PSh(V) to the sheaf 𝑋 where

𝑋 (V) = 𝑋 (V) 𝑋 (0) � 1 𝑋 (★) = PSh(V) (1, 𝑋 )

and the obvious functorial action. Now consider the follow-
ing classMV of monomorphisms in V0.

MV (V) = {(_𝑥 .𝑥 + 𝑛) ∈ V0 (V,V) | 𝑛 ∈ N} ∪ {! : 0→ V}

MV (0) = {! : 0→ 0}

MV (★) = {1★ : 1→ 1, ! : 0→ 1}

Lemma 6.9. (V0, 𝐽V) is a concrete site, andMV is a class of
pre-admissible monos.

Writing ΔV for ΔMV
and 𝐿V for 𝐿MV

, our main interest
in vSet is the following, which allows us to apply Prop. 6.7.

Proposition 6.10 ([34], Lemma 5.3). ΔV is 𝐿V-complete.

7 Sheaf models of PCF with adequacy

In this final section we explain when a concrete site (C, 𝐽 )
together with a class of admissible monos (Def. 3.2) gives
an adequate sheaf model of PCFv (Thm. 7.7). We do this by
combining the siteCwith the site of vertical natural numbers
from (§6.3). We also connect this sheaf-based model back to
the 𝜔-concrete sheaves of Section 3 (Prop. 7.5).

7.1 Combining sites and admissible monos

Proposition 7.1. Consider a concrete site (C, 𝐽 ). A class of
pre-admissible monosM is a class of admissible monos (in
the sense of Definition 3.2) if:

1. Every map 0→ 𝑐 is inM.
2. ΔM is concrete. We saw in Section 5.3.1 that this means
M-subobjects (𝑚 : 𝑐 ′↣ 𝑐) are determined by the set of
points of 𝑐 that factorize through them, |𝑚 | ⊆ |𝑐 |, and
the order𝑚 ≤ 𝑚′ is given by inclusion |𝑚 | ⊆ |𝑚′ |.

3. For every increasing chain of monos on 𝑐 , (𝑚𝑛 : 𝑐𝑛 ↣
𝑐)𝑛∈N ∈ M, the subobject𝑚∞ : 𝑐∞↣ 𝑐 determined by
the set of points

⋃
𝑛∈N |𝑚𝑛 | is inM.

4. Given an increasing chain ofmonos (𝑚𝑛 : 𝑐𝑛 ↣ 𝑐)𝑛∈N ∈
M, the closure under precomposition (with any morph-
ism) of the set {𝑚𝑛 : 𝑐𝑛 ↣ 𝑐∞}𝑛∈N contains a covering
family of 𝑐∞.

Example 7.2. The class of pre-admissible monosMV from
(V0, 𝐽V) is a class of admissible monos.

Lemma 7.3. Let (C1, 𝐽1,M1) and (C2, 𝐽2,M2) be two con-
crete sites with classes of admissible monos. Let C1 +C2 be the
category obtained fromC1 andC2 by identifying the respective
terminal objects and the respective initial objects, and adding
all constant maps between all objects. Then (C1 + C2, 𝐽1 ∪
𝐽2,M1 ∪M2) is also a concrete site with a class of admissible
monos.

In order to model recursion, we want to find a sheaf cat-
egory where ΔM and 𝐿M (

∑∞
0 1) are 𝐿M-complete objects.

The next proposition shows that using the siteV0 and a class
of admissible monos we can obtain such a sheaf category:

Proposition 7.4. Let (C, 𝐽 ,M) be a concrete site with a class
of admissible monos. In the sheaf category Sh(C + V0, 𝐽 ∪
𝐽V) the dominance ΔM∪MV

and 𝐿M∪MV
(∑∞0 1) are 𝐿M∪MV

-
complete objects.

Proof sketch. First show that ΔM∪MV
is right-orthogonal to

𝑖P : 𝜔P → 𝜔 . From Lemma 5.17, the lifting monad 𝐿M∪MV

preserves concreteness so 𝐿M∪MV
(1) (★) � ΔM∪MV

(★) �
{0 ≤ 1}. Using the fact that V is part of the site, and the
colimit description of 𝜔P, we can show that the maps 𝑓 :
𝜔P → ΔM∪MV

are the infinite monotone binary sequences.
This gives a candidate extension of 𝑓 to 𝑓 : 𝜔 → ΔM∪MV

which we show is natural and unique. For uniqueness use
the fact that 𝜔 is a limit and that V is part of the site.
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From Lemma 6.2, to show ΔM∪MV
is 𝐿M∪MV

-complete
it is enough to show that every map 𝑓 : 𝜔P ×𝑦𝑐 → ΔM∪MV

can be extended to 𝜔 × 𝑦𝑐 for any object 𝑐 in C + V0. Using
the Yoneda lemma we can describe maps 𝑓 : 𝜔P × 𝑦𝑐 →
ΔM∪MV

as increasing chains of (M ∪MV)-subobjects of 𝑐 .
Condition (3) in the definition of class of admissible monos
ensures there is a sup for the chain 𝑓 , which we can show
defines a natural extension 𝑓 . For uniqueness we use the fact
that each 𝑓 (−, 𝑥) : 𝜔P → ΔM∪MV

has a unique extension.
Following the same pattern, we first show 𝑓 : 𝜔P →

𝐿M∪MV
(∑∞0 1) has a unique extension, using the fact that

each map 𝜔P → 𝐿M∪MV
(∑∞0 1) or 𝜔 → 𝐿M∪MV

(∑∞0 1)
factors through some 𝐿M∪MV

(1)↣ 𝐿M∪MV
(∑∞0 1).

Next, notice that maps 𝑓 : 𝜔P ×𝑦𝑐 → 𝐿M∪MV
(∑∞0 1) can

be described as an increasing chain of (M∪MV)-subobjects
of 𝑐 , (𝑐𝑛 ↣ 𝑐)𝑛∈N, together with a chain of functions (𝑔𝑛 :
|𝑐𝑛 | → N)𝑛∈N (each extending the previous one), such that
for each𝑛 there is a cover of 𝑐𝑛 onwhich𝑔𝑛 is locally constant.
Condition (4) in the definition of class of admissible monos
and axiom (L) of 𝐽 ∪ 𝐽V guarantee that 𝑔∞ =

⋃
𝑛∈N 𝑔𝑛 :

|𝑐∞ | → N is locally constant on a cover of 𝑐∞.
Thus we have a candidate extension 𝑓 of type 𝜔 × 𝑦𝑐 →

𝐿M∪MV
(∑∞0 1). To show naturality we prove that 𝑓 factors

through the map 𝐿M∪MV
(1) × 𝑦𝑐 → 𝐿M∪MV

(∑∞0 1) given
at★ by the function𝜙 : {0 ≤ 1}×|𝑐 | → N+{⊥},𝜙 (0, 𝑥) = ⊥,
𝜙 (1, 𝑥) = 𝑔∞ (𝑥) if 𝑥 ∈ |𝑐∞ | or ⊥ otherwise, which we can
show is natural directly. □

The model of PCFv from Section 4.2 is closely related to
the category of sheaves Sh(C + V0, 𝐽 ∪ 𝐽V):

Proposition 7.5. Let (C, 𝐽 ,M) be a concrete site with a class
of admissible monos. There is a functor 𝐹 : 𝜔Conc(C, 𝐽 ) →
Sh(C + V0, 𝐽 ∪ 𝐽V) which is full, faithful, preserves products,
coproducts and exponentials, and commutes with the lifting
monad i.e. 𝐹𝐿M = 𝐿M∪MV

𝐹 . Moreover, for every 𝜔-concrete
sheaf 𝑋 , 𝐹𝑋 is a concrete 𝐿M∪MV

-complete sheaf.

Proof notes. The interesting part in the definition of 𝐹 is:
(𝐹𝑋 ) (V) =

{
𝑓 : |V| → |𝑋 |

�� 𝑓 an 𝜔-chain with sup, in |𝑋 |
}
.

Otherwise, 𝐹 leaves 𝑋 unchanged. □

Given the embedding from Prop. 7.5 we can deduce the
fixed point construction from Prop. 3.5, using Corollary 6.5.

Example 7.6 (Fully abstract model of PCFv [34]). The fully
abstract model of PCFv from [34] is presented by a concrete
site with a class of admissible monos (C, 𝐽 ,M).

Roughly speaking, to construct (C, 𝐽 ,M) start from a con-
crete site and a class of admissible monos (SSP, 𝐽SSP,MSSP)
whose definition we omit. Intuitively SSP is chosen to en-
code PCFv-definable functions between ground types. As
explained in Definition 3.11, there is a category of partial
maps, SSP⊥, with domains inMSSP. For every faithful func-
tor 𝐹 : C → SSP⊥, we can construct another concrete site
(IC,𝐹 , 𝐽C,𝐹 ,MC,𝐹 ) where the objects are pairs (𝑐 ∈ C, 𝑈 ↣

𝐹𝑐 ∈ MSSP); a (total) morphism (𝑐, 𝑈 ↣ 𝐹𝑐) → (𝑐 ′, 𝑈 ′↣
𝐹𝑐 ′) is either constant or comes from a partial map 𝐹𝜙 with
domain 𝑈 . Thus IC,𝐹 is a “totalization” of 𝐹 : C → SSP⊥,
where each partial map is represented by a total one. The
coverage 𝐽C,𝐹 and class of monosMC,𝐹 are obtained by re-
stricting 𝐽SSP andMSSP appropriately.

By combining the (IC,𝐹 , 𝐽C,𝐹 ,MC,𝐹 ) sites for all 𝐹 : C →
SSP⊥ using Lemma 7.3 we obtain (C, 𝐽 ,M). Then the sheaf
category Sh(C+V0, 𝐽 ∪ 𝐽V) is exactly the model G from [34],
andM ∪MV induces the same lifting monad .

7.2 Adequacy

Given the concrete site (C, 𝐽 ,M), we interpret PCFv in the
sheaf category Sh(C + V0, 𝐽 ∪ 𝐽V) using the lifting monad
𝐿M∪MV

obtained from the class of admissible monosM ∪
MV. The type nat is interpreted using the infinitary cop-
roduct

∑∞
0 1; the other type constants 𝛼 are interpreted by

concrete sheaves J𝛼K. The rest of the interpretation is defined
using the structure of the category, similarly to Section 4.2.
Assuming that the type constants J𝛼K are well-complete,

Proposition 7.4 and Proposition 6.7, and its preceding dis-
cussion imply that all PCFv types are 𝐿M-complete objects.
Hence, we can use the construction of fixed points from Co-
rollary 6.5 to interpret (rec 𝑓 𝑥 . 𝑡). We are now able to state
and prove the main theorem of the paper:

Theorem 7.7 (Adequacy). A concrete site with a class of
admissible monos, (C, 𝐽 ,M), presents a sound and adequate
model, in Sh(C + V0, 𝐽 ∪ 𝐽V), and in Conc(C + V0, 𝐽 ∪ 𝐽V),
of PCFv.

Proof sketch. The ground types nat and 𝛼 are interpreted as
concrete sheaves,𝐿M∪MV

preserves concreteness (Lemma 5.17),
and the concrete sheaves are an exponential ideal (Propos-
ition 5.14). So all types are concrete sheaves. Therefore,
morphisms between them are determined by the underlying
function at★. This means that both soundness and adequacy
can be proved following the same strategy as in the cpo
model of PCFv (e.g. [54, Lemma 11.14]). Soundness is proved
by induction on the definition of ⇓.

For adequacy, we define a logical relation using the set of
points of each value and computation: ⊳v𝜏 ⊆ |J𝜏K| × Val𝜏 and
⊳c𝜏 ⊆ |𝐿MJ𝜏K| × Comp𝜏 . (Where Val𝜏 is the set of values of
type 𝜏 , and similarly for computations.)
⊳v𝜏→𝜏′ =

{
(𝑑, 𝑣)

�� ∀𝑎∈|J𝜏K|, 𝑤 ∈ Val𝜏 . 𝑎 ⊳v𝜏 𝑤 ⇒ (𝑑 𝑎) ⊳c𝜏 ′ (𝑣 𝑤)
}

⊳c𝜏 =
{
(𝑑, 𝑡)

�� (𝑑 = |[J𝜏K | ◦ 𝑑 ′
)
=⇒ ∃𝑤. 𝑡 ⇓ 𝑤, 𝑑 ′ ⊳v𝜏 𝑤

}
and for a type constant ⊳v𝛼 the identity relation. The relation
specifies when a term is approximated by an element of the
model.
The ‘fundamental property’ is proved by induction on

terms. For the rec case we prove by induction on types that
all subobjects of the form {(−) ⊳c

𝜏′′ 𝑡
′′} are closed under sups

of chains. (Here a chain is a map 𝜔 → 𝐿M∪MV
J𝜏 ′′K, and

a chain with a lub is 𝜔 → 𝐿M∪MV
J𝜏 ′′K.) This replaces the
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proof from cpo’s that the logical relation is an admissible
subset. The let case works the same as in cpo because the
lifting monad acts on the underlying sets in the same way
(see Section 3). □

The adequacy proof above extends easily when we add
product and sum types as in Appendix A.
Given the embedding from Proposition 7.5 we can fi-

nally deduce the adequacy result for 𝜔Conc(C, 𝐽 ) from The-
orem 4.1, using Theorem 7.7.

7.3 Connection to synthetic domain theory

The general adequacy theorem (Thm. 7.7) connects to the
synthetic/axiomatic domain theory literature on general ad-
equacy theorems, for example by Fiore and Plotkin [13, 15]
and Simpson [47, 48]. In particular, our model in the sheaf
topos Sh(C + V0, 𝐽 ∪ 𝐽V) is an instance of Simpson’s more
general natural model of synthetic domain theory [47], that is,
an elementary topos with a dominance and a natural num-
bers object which is well-complete, and our adequacy result
(Thm. 7.7) follows from [47, Thm. 2]. To see this, notice that
any non-trivial Grothendieck topos is 1-consistent; the dom-
inance there is used to construct a lifting monad in the same
way as we do in Section 5.1; the initial algebra I and final
coalgebra F there play the role of 𝜔 and 𝜔 ; completeness is
defined similarly and is used to prove a fixed point theorem
[47, Prop. 2] corresponding to our Theorem 6.4. Thus from
this perspective, our contribution here is a method for ob-
taining a topos with a dominance (via the concrete site and
the class of admissible monos, Def. 3.2) such that the natural
numbers object is necessarily well-complete (Prop. 7.4).
We also note that Sterling and Harper have developed

another interesting perspective on adequacy for sheaf-based
models, e.g. in [50], and we expect that our adequacy proof
could be rephrased to fit into their framework.

8 Summary

In Part I, we presented an elementary framework for build-
ing semantic models of functional programming languages.
The key ingredients are a concrete site (Def. 2.1) and a class
of admissible monos (Def. 3.2). In Part II, we explained how
our requirements on the class of admissible monos are ca-
nonical in that they connect to general constructions from
synthetic domain theory. Such a semantic model is necessar-
ily adequate (Thms 4.1,7.7). The framework covers numerous
examples from the literature (§ 2.2,3.3).
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Appendices

A PCFv extended with products and sums

In this appendix we provide a type system, an operational
semantics, and a denotational semantics for the PCFv lan-
guage extended with product and sum types, as referred to
in §4. The grammars of types, values and computations are:

𝜏 F 0 | 1 | nat | 𝜏 + 𝜏 | 𝜏 × 𝜏 | 𝜏 → 𝜏

𝑣,𝑤 F 𝑥 | ★ | inl 𝑣 | inr 𝑣 | (𝑣, 𝑣) | 0 | S(𝑣) | _𝑥. 𝑡 | rec 𝑓 𝑥 . 𝑡
𝑡 F return 𝑣 | case 𝑣 of {inl𝑥 → 𝑡, inr𝑦 → 𝑡 ′} | 𝜋1𝑣 | 𝜋2𝑣
| 𝑣 𝑤 | case 𝑣 of {0�𝑡, S(𝑥)�𝑡 ′} | let𝑥 = 𝑡 in 𝑡 ′

Figure 2 provides the typing rules, operational semantics
and spells out the interpretation of types for this extended

language. The big-step operational semantics of PCFv is the
relation ⇓ between closed computations and closed values
that is the least closed under the rules. The interpretation
of PCFv types in 𝜔Conc(C, 𝐽 ) uses the structure of the cat-
egory:
JnatK = 1 + 1 + . . . J0K = 0 J1K = 1 J𝜏 + 𝜏 ′K = J𝜏K + J𝜏 ′K

J𝜏 × 𝜏 ′K = J𝜏K × J𝜏 ′K J𝜏 → 𝜏 ′K = J𝜏K⇒ 𝐿MJ𝜏 ′K

The interpretation of terms uses the categorical structure in
a standard way (e.g. [35]).

Typing rules:

Γ ⊢v ★ : 1

Γ ⊢v 𝑣 : 𝜏

Γ ⊢v inl 𝑣 : 𝜏 + 𝜏 ′
Γ ⊢v 𝑣 : 𝜏 ′

Γ ⊢v inr 𝑣 : 𝜏 + 𝜏 ′

Γ, 𝑥 : 𝜏, Γ′ ⊢v 𝑥 : 𝜏 Γ ⊢v 0 : nat

Γ ⊢v 𝑣 : nat

Γ ⊢v S(𝑣) : nat

Γ, 𝑥 : 𝜏 ⊢c 𝑡 : 𝜏 ′

Γ ⊢v _𝑥 . 𝑡 : 𝜏 → 𝜏 ′
Γ, 𝑓 : 𝜏 → 𝜏 ′, 𝑥 : 𝜏 ⊢c 𝑡 : 𝜏 ′

Γ ⊢v rec 𝑓 𝑥 . 𝑡 : 𝜏 → 𝜏 ′

Γ ⊢v 𝑣 : 𝜏 Γ ⊢v 𝑣 ′ : 𝜏 ′

Γ ⊢v (𝑣, 𝑣 ′) : 𝜏 × 𝜏 ′
Γ ⊢v 𝑣 : 𝜏 × 𝜏 ′

Γ ⊢c 𝜋1𝑣 : 𝜏

Γ ⊢v 𝑣 : 𝜏 × 𝜏 ′

Γ ⊢c 𝜋2𝑣 : 𝜏 ′

Γ ⊢v 𝑣 : 𝜏 + 𝜏 ′ Γ, 𝑥 : 𝜏 ⊢c 𝑡 : 𝜎 Γ, 𝑦 : 𝜏 ′ ⊢c 𝑡 ′ : 𝜎
Γ ⊢c case 𝑣 of {inl𝑥 → 𝑡, inr𝑦 → 𝑡 ′} : 𝜎

Γ ⊢v 𝑣 : 0

Γ ⊢c case 𝑣 of {} : 𝜏
Γ ⊢v 𝑣 : 𝜏 → 𝜏 ′ Γ ⊢v 𝑤 : 𝜏

Γ ⊢c 𝑣 𝑤 : 𝜏 ′

Γ ⊢v 𝑣 : nat Γ ⊢c 𝑡 : 𝜏 Γ, 𝑥 : nat ⊢c 𝑡 ′ : 𝜏
Γ ⊢c case 𝑣 of {0�𝑡, S(𝑥)�𝑡 ′} : 𝜏

Γ ⊢v 𝑣 : 𝜏

Γ ⊢c return 𝑣 : 𝜏

Γ ⊢c 𝑡 : 𝜏 Γ, 𝑥 : 𝜏 ⊢c 𝑡 : 𝜏 ′

Γ ⊢c let𝑥 = 𝑡 in 𝑡 ′ : 𝜏 ′

Operational semantics:

return 𝑣 ⇓ 𝑣 𝜋1 (𝑣, 𝑣 ′) ⇓ 𝑣 𝜋2 (𝑣, 𝑣 ′) ⇓ 𝑣 ′

𝑡 [𝑣/𝑥] ⇓ 𝑤
case inl 𝑣 of {inl𝑥 → 𝑡, inr𝑦 → 𝑡 ′} ⇓ 𝑤

𝑡 ′[𝑣/𝑥] ⇓ 𝑤
case inr 𝑣 of {inl𝑥 → 𝑡, inr𝑦 → 𝑡 ′} ⇓ 𝑤

𝑡 [(rec 𝑓 𝑥 . 𝑡)/𝑓 , 𝑣/𝑥] ⇓ 𝑤
(rec 𝑓 𝑥 . 𝑡) 𝑣 ⇓ 𝑤

𝑡 [𝑣/𝑥] ⇓ 𝑤
(_𝑥 . 𝑡) 𝑣 ⇓ 𝑤

𝑡 ⇓ 𝑣 𝑡 ′[𝑣/𝑥] ⇓ 𝑤
let𝑥 = 𝑡 in 𝑡 ′ ⇓ 𝑤

𝑡 ⇓ 𝑤
case 0 of {0�𝑡, S(𝑥)�𝑡 ′} ⇓ 𝑤

𝑡 ′[𝑣/𝑥] ⇓ 𝑤
case S(𝑣) of {0�𝑡, S(𝑥)�𝑡 ′} ⇓ 𝑤

Denotational semantics of types:

|JnatK| = N, with the discrete order |J𝜏 → 𝜏 ′K| = 𝜔Conc(J𝜏K, 𝐿MJ𝜏 ′K), with the pointwise order
𝑅𝑐JnatK =

{
𝑓 : |𝑐 | → N

�� ∃ {𝑔𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 ∈ 𝐽 (𝑐) s.t. each 𝑓 ◦ 𝑔𝑖 is constant
}

𝑅𝑐J𝜏→𝜏′K =
{
𝑓 : |𝑐 | → 𝜔Conc(J𝜏K, 𝐿MJ𝜏 ′K)

�� ∀ℎ : 𝑑 → 𝑐 ∈ C, ∀𝑔 : |𝑑 | → |J𝜏K| ∈ 𝑅𝑑J𝜏K. _𝑥 ∈ |𝑑 |.
(
𝑓 (ℎ(𝑥)) 𝑔(𝑥)

)
∈ 𝑅𝑑

𝐿MJ𝜏′K

}
|J𝜏 × 𝜏 ′K| = |J𝜏K| × |J𝜏 ′K|, where (𝑥,𝑦) ≤ (𝑥 ′, 𝑦 ′) iff 𝑥 ≤J𝜏K 𝑥

′ and 𝑦 ≤J𝜏′K 𝑦
′

𝑅𝑐J𝜏×𝜏′K =
{
⟨𝑓 , 𝑔⟩ : |𝑐 | → |J𝜏K| × |J𝜏 ′K|

�� 𝑓 ∈ 𝑅𝑐J𝜏K, 𝑔 ∈ 𝑅
𝑐
J𝜏′K

}
|J𝜏 + 𝜏 ′K| = |J𝜏K| + |J𝜏 ′K|, where inl (𝑥) ≤ inl (𝑥 ′) iff 𝑥 ≤J𝜏K 𝑥

′ and similarly for inr

𝑅𝑐J𝜏+𝜏′K =
{
𝑓 : |𝑐 | → |J𝜏K| + |J𝜏 ′K|

�� ∃{𝑔𝑖 : 𝑐𝑖 → 𝑐}𝑖∈𝐼 ∈ 𝐽 (𝑐) s.t. for each 𝑖, (𝑓 ◦ 𝑔𝑖 ) ∈ 𝑅𝑐𝑖J𝜏K or (𝑓 ◦ 𝑔𝑖 ) ∈ 𝑅
𝑐𝑖
J𝜏 ′K

}
Figure 2. Typing rules, operational semantics, and denotational semantics, for PCFv.
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