
Fairness Indicators for Systematic Assessments of Visual Feature Extractors

Priya Goyal, Adriana Romero-Soriano, Caner Hazirbas, Levent Sagun, and Nicolas Usunier

Meta AI Research

Assessment Datasets Feature extractor

pre-trained network 
e.g. on ImageNet

Fairness Indicators

feature 
vector

Casual Conversations

OpenImages MIAP

Dollar Street

UTK Faces

Indicator 1: Harmful label 
associations / mislabeling

Indicator 3: Same group attribute 
assessments

Indicator 2: Geographical diversity

Fine-tuning

Similarity search

Fine-tuning

Fig. 1. To assess a pre-trained computer vision model for fairness, we take the part of the model that maps given images to its feature
space. On the identified assessment datasets, we obtain features for images using the given feature extractor. Based on the extracted
features, we evaluate fairness through three types of indicators that enable two types of analysis (see Sec. 3).

Does everyone equally benefit from computer vision systems? Answers to this question become more and more important as computer
vision systems are deployed at large scale, and can spark major concerns when they exhibit vast performance discrepancies between
people from various demographic and social backgrounds.

Systematic diagnosis of fairness, harms, and biases of computer vision systems is an important step towards building socially
responsible systems. To initiate an effort towards standardized fairness audits, we propose three fairness indicators, which aim at
quantifying harms and biases of visual systems. Our indicators use existing publicly available datasets collected for fairness evaluations,
and focus on three main types of harms and bias identified in the literature, namely harmful label associations, disparity in learned

representations of social and demographic traits, and biased performance on geographically diverse images from across the world. We define
precise experimental protocols applicable to a wide range of computer vision models. These indicators are part of an ever-evolving
suite of fairness probes and are not intended to be a substitute for a thorough analysis of the broader impact of the new computer
vision technologies. Yet, we believe it is a necessary first step towards (1) facilitating the widespread adoption and mandate of the
fairness assessments in computer vision research, and (2) tracking progress towards building socially responsible models.

To study the practical effectiveness and broad applicability of our proposed indicators to any visual system, we apply them to
“off-the-shelf” models built using widely adopted model training paradigms which vary in their ability to whether they can predict
labels on a given image or only produce the embeddings. We also systematically study the effect of data domain and model size. The
results of our fairness indicators on these systems suggest that blatant disparities still exist, which highlight the importance on the
relationship between the context of the task and contents of a datasets. The code will be released to encourage the use of indicators.

1 INTRODUCTION

During the last decade, computer vision systems have been rapidly deployed at large scale in many social contexts, which
raised the question of their social impact. One of the main questions is whether these new systems could help resolve
social injustice or on the contrary, automate and exacerbate systemic inequality and discrimination [5, 13, 40, 65]. The
study of the bias, or the (un-)fairness, of computer vision systems, has crystallized mostly in the form of black-box audits.
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These audits typically focus on sensitive groups defined by demographic attributes of people represented in the images
or videos, and aim at uncovering discrepancies of error patterns between these groups. As a concrete example, facial
recognition applications have been under intense scrutiny because of their questionable usage in surveillance-related
applications [9, 80], their impact on already marginalized groups [5] such as immigrants [29], among other concerns.
More generally, there has been rising concerns regarding image classifiers, even on seemingly mundane tasks such as
image tagging [13], where studies found significant discrepancies in the error rates in gender classification systems as
well as inherent issues in such tasks itself [5, 27, 40], or poor performance when object recognition models are tested
on geographically diverse images [11].

Increasingly, the developments in computer vision rely on pre-trained feature extractors which are neural networks
carefully trained to generate high-level feature representation of images from large images datasets. These feature
extractors are then used as the “backbone” of classifiers fine-tuned to solve a particular downstream task. On tasks such
as image classification on ImageNet [66], COCO [54] or few-shot learning, the accuracy of these features extractors has
consistently pushed state-of-the-art over the past years [46, 55, 60]. In conjunction, recent efforts in democratizing
computer vision technology were made by open-sourcing feature extractors pre-trained on large datasets. However,
recent work showed that the established accuracy measures are far from being reliable indicators for fairness [64].
While open-sourcing increases accessibility to models that are hard to train for many [55, 60], the exact context of use of
these feature extractors is difficult to anticipate, which makes it even more crucial to understand their potential fairness
risks. In particular, we need techniques to thoroughly evaluate the biases and out-of-domain behaviour of these models.
Summary of our contributions. In this paper, we address the problem of assessing the (un-)fairness of feature
extractors. To this end, we propose three fairness indicators, which aim at quantifying specific harms and biases for
certain image based computer vision feature extractors. Our proposed fairness indicators use publicly available datasets
previously collected to measure fairness in computer vision [23, 30, 68, 79], and focus on systematically evaluating three
main sources of harms that have been identified in the literature:

(1) harmful label associations, where images of people are mistakenly assigned a label that is offensive, derogatory
or leads to stereotypes,

(2) disparity in performance on images from across the world, following previous studies which showed poor perfor-
mance on images from outside North-America and Europe, or from low-income households [11, 70],

(3) disparity in learned representations of social and demographic traits in the pre-trained features, following the
analysis of gender-bias in facial recognition systems of Buolamwini and Gebru [5].

We propose experimental protocols that apply to any feature extractor (Figure 1) for which we also provide code
and guidance. To illustrate how our indicators can be used, we probe fairness of conventional supervised systems
trained on ImageNet and two feature extractors trained on millions of internet images using weakly-supervised [55] and
self-supervised learning [26]. Our results suggest that compared to supervised training on ImageNet, self-supervised
learning on real unfiltered internet data produces significantly fewer errors and smaller discrepancies between sensitive
groups. We believe our results will help measure progress towards building fairer models and help facilitate the mandate
of fairness audits in further computer vision development.
Limitations and scope of this work. On one hand, standardized fairness assessments are appealing to help quan-
tify progress and allow for comparison between models in a reproducible way. Potentially, they could facilitate the
widespread adoption of fairness assessments by researchers as the AI research community moves towards inclusive
studies with broader impact considerations. On the other hand, a risk of any benchmark is that it may be confused
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with an operational definition of fairness, where the sole target is to optimize the few metrics of the benchmark. We
emphasize that our fairness indicators are not meant to serve as a rigid and comprehensive evaluation of all aspects
of fairness. First, our limited list of fairness probes cannot capture the multifaceted and ever-evolving aspects of social
impacts that computer vision systems can have. Second, our indicators are intrinsically limited by the datasets that are
currently available. These datasets have limited size, which will make our indicators unreliable if they become the target
of optimization. Third, the datasets come with limited annotations and follow sampling procedures and definitions
of sensitive categories that can themselves be challenged.

We view the concept of standardized fairness probes as an effort towards evaluating harms and tracking progress
towards socially responsible models. These fairness probes should consistently evolve as new fairness datasets become
available, new concerns regarding the social impact of models are surfaced, new types of model training paradigms are
developed or indicators become unreliable or useless. The goal of the benchmark is to facilitate auditing of biases in
computer vision models, but it should not be considered as a substitute to the study of broader impact.

Overview of the paper.We discuss the related work in the next section. We then describe the details of our fairness
indicators in Sec. 3. The experimental protocol and results are presented in Sec. 4 and Sec. 5 respectively.

2 RELATEDWORK

Training paradigms in Computer Vision. Deep learning along with convolutional architectures and datasets such
as ImageNet have shaped modern computer vision [31, 47, 77]. Supervised learning has been used as a de-facto approach
for training models [15, 71]. Several works have demonstrated the benefits of pre-training on large scale curated datasets
with weak-supervised learning [36, 37, 55, 60], semi-supervised training [76], or supervised training on hundreds of
millions of images filtered images [46, 74]. Recently, self-supervised learning has been used to train billion-parameter
models on billions of internet images [6, 26]. A major advantage of large scale models is that the learned visual features
can be tuned to work well on a variety of downstream tasks [26, 36, 55, 60].
Fairness concerns in Computer Vision.Although computer vision systems have recently yielded astonishing results,
several societal issues have come to the surface as their use materializes in areas like face recognition, self-driving cars
and other commercial applications [9, 19, 28, 56, 80].

i. Harmful label associations. Recent efforts such as ImageNetRoulette [10] have revealed mislabeling of peoples
images by computer vision systems when these systems are trained using problematic training data. The incorrect
classification and mislabeling of peoples images causes harm and this harm is even greater when the incorrect label
corresponds to a stereotypical or derogatory association.

ii. Disparity in performances on images from across the world. Besides mis-classification, image recognition
algorithm have also been proven to not work equally well across all regions of the world [11, 70]. This disparity across
region of the world has been attributed in part to the datasets and training pipelines based or evaluated on ImageNet,
which features mostly images from Western countries [70].

iii. Disparity in learned representations of social and demographic traits of people. There are growing
concerns related to mis-classification of people’s membership in social groups (e.g., gender) [1, 40] and the ways
that computer vision systems reinforce harmful stereotypes [4, 69]. Raji and Buolamwini et al. [63] studied impact of
Gender Shades [5] in commercial facial analysis and concluded that auditing such systems with the right metrics could
potentially reduce the error for marginalized groups, e.g. darker-skinned women. Buolamwini and Gebru [5], Raji et
al. [65] have shown in their auditing of facial recognition systems that AI systems can discriminate when it comes



4 Goyal et al.

Dataset Description

Casual Conversations
~3K images containing face crops of people’s faces. self-identified gender (‘male’, ‘female’,
‘other’ and ‘n/a’), age (from 18 - 85) and annotated Fitzpatrick skin tone labels.
Only used for model inference and not for training

OpenImages MIAP
~44K bounding boxes of peoples images from the test set. perceived gender (predominantly masculine,
predominantly feminine, unknown), perceived age range (young, middle, older, unknown)
Only for inference on the bounding boxes with height and width >= 100 in the test set

UTK Faces
~24K face images with apparent age, race and gender.
Only apparent gender labels are used since data is not balanced wrt skin-tone

Dollar Street
~16K images, 108 concepts, 54 countries, 4 regions (The Americas, Africas, Asia, Europe),
289 households with different income levels, on average 53 unique images per household.)
108 concepts are mapped to 94 classes in ImageNet

Table 1. List of Fairness datasets used in the proposed indicators in Sec. 3.

to gender and race and in particular, found that darker-skinned women are more frequently misgendered and/or not
recognized by visual systems.

Motivated by these concerns, we develop two types of indicators as outlined in Figure 1: (Type I) classifier-based
indicators built on top of the features and (Type II) similarity-based indicators examining the feature space itself. These
two types of indicators cover three types of harmful concerns (discussed in detail in Sec. 3).
The impact of broader impact statements. Broader impact statement requirement and more recently, ethics review
processes have brought a much needed perspective to machine learning research community and its effects are spreading
to wider groups of researchers [2, 59]. A particular example is the recent Open AI CLIP [60] model which is a large
scale model pre-trained on wide variety of images with language supervision. In its broader impact section, the authors
present fairness evaluations of their model on harmful label associations and disparity in gender recognition using
FairFace [39] dataset. However, these evaluations did not provide systematic protocols that can be followed for any
pretrained model for assessing fairness such as geodiversity. The evaluations are also based on prompt engineering
where the input is "text" as prompt instead of the visual features which is a unique property of the model and does not
generally apply to computer vision systems. Further, the assessment on gender recognition disparity involved training /
predicting gender which has ethical concerns [65]. Compared to this work, we are interested in protocols that allow
researchers and practitioners to audit and compare fairness of any CV system on several types of harms/biases and
without requiring training an attribute (age, gender, skintone etc.) classifier.
Datasets for measuring fairness in computer vision. Several fairness evaluation datasets have been proposed to
facilitate fairness assessment by enabling testing of classification performance on images from diverse geographic
locations [70] or correlation between detection performance and an income variable of the object [11]. Recent work
emphasized the importance of how people images are classified or otherwise analyzed by computer vision systems from
early datasets of faces with geographically diverse collection [44, 53] or Buolamwini and Gebru [5]’s intersectional
benchmark to the recent datasets FairFace [39], Casual Conversations [30] and More Inclusive Images for People
(MIAP) [68]. These works offer curated datasets with labels obtained through clear annotation rules and with specific
efforts deployed for checking annotation bias.

We describe the datasets we use in Table 1: Casual Conversations [30], OpenImages MIAP [68], and UTK Faces [79]
contain images of people and are used in the indicators of harmful label association and/or the same-group similar-
ity search. DollarStreet [11, 23], is used in the geographical fairness indicator. A breakdown of number of samples
per attribute can be found in Table 4 and Table 5 and detailed descriptions of the datasets can be found in the Appendix A.

We further discuss other fairness studies pertaining to criticism of ImageNet, fairness metrics and centering fairness
around the context of the task in Appendix D.
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Indicator Dataset(s) Task Type Goal Sensitive group(s) Metric

Label Association
Casual Conversations
OpenImages MIAP

image
classification

Measure association between harmful
predictions and sensitive groups of people

gender, skin tone and age (CC)
gender and age (MIAP)

% harmful predictions
at various confidence thresholds.

Geo Diversity Dollar Street
image

classification
Measure disparities in object recognition

depending on household income
income households

and region of the world hit rate (object recognition)

Same attribute
Database:UTK-Faces

Queries:Casual Conversations
similarity
search

Measure disparities between sensitive groups
in learned representations of images of people gender, skin tone, age Precision@K

Table 2. A summary of the fairness indicators proposed in Sec. 3.

3 FAIRNESS INDICATORS

Following the three main sources of harms and discrepancies between groups outlined in Sec. 2, we propose three
fairness indicators that apply to pre-trained feature extractors.

• The first two indicators (Indicator 1 and 2 in Fig. 1) perform an indirect evaluation of feature extractors using
classifiers built by fine-tuning the feature extractors. We propose two measurements that assess out-of-domain
generalization of the classifiers:

(1) harmful mislabeling of images of people (Sec. 3.1),
(2) geographical disparity in object recognition (Sec. 3.2).
• The third indicator (Indicator 3 in Fig. 1) performs a direct evaluation of the extracted features using a similarity
search task. It aims at measuring disparities in learned visual representations of social memberships of people

(Sec. 3.3).

A summary of the high-level design of the indicators is given in Table 2. The details of our indicators are discussed
below, together with the main differences from the variants that have been proposed in the literature. We also note the
limitations of the indicator and intended use in Appendix C.

3.1 Indicator1: Harmful label association

The goal of the harmful label association indicator is to study how much classification algorithms make potentially
harmful and biased label associations on images of people for various subgroups (age, gender, skintone). We describe all
the components of the indicator: the datasets, the definition of harmful associations, the sensitive groups and the metrics.

• Requirement. This indicator requires a visual system that has label prediction capability. We discuss in Appen-
dix B.3 how one can adapt certain systems (such as those trained with self-supervision) to predict labels if the
system doesn’t have this capability.

• Datasets. We design two independent tests using two different datasets:
– Casual Conversations: which contains faces of people,
– OpenImages MIAP: which contain more diverse images that represent close-to real-world scenarios.
We emphasize that these datasets are used for inference only and the classifiers should not be trained (or pre-
trained) on these datasets, as the indicator is designed to stress-test classifiers on out-of-domain images.

• Label Associations. After performing inference with the classifier on any of the datasets (OpenImages MIAP
or CC), we measure harmful label associations in a specific label taxonomy by first categorizing the labels
into three main types of interest: Human, Non-Human and Crime in order to study derogatory stereotypes. The
predictions that fall into the Non-Human and Crime categories are considered harmful associations. The exact
mapping between labels and the association types depend on the underlying taxonomy. The meaning of different
association types is:
– Human are labels in “people” subtree. In our test, predicting a Human label should be considered correct.
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Association type Labels in the ImageNet taxonomy

Human face, people

Possibly Human makeup, khimar, beard

Non-Human
swine, slug, snake, monkey, lemur, chimpanzee,
baboon, animal, bonobo, mandrill, rat, dog (CC only),
capuchin, gorilla, mountain gorilla, ape, great ape, orangutan.

Possibly Non-Human dog, cat

Crime prison
Table 3. Label mapping from ImageNet taxonomy for computing harmful label associations (Sec. 3.1). “Dog” is considered as a
Non-Human label on Casual Conversations v1 only, and the Possibly Non-Human type is evaluated solely on OpenImages MIAP. We
manually mapped a subset of labels in full ImageNet taxonomy [75] to these association types.

– Non-Human labels are labels in the “animal” subtree that would lead to harm if predicted for certain sensitive
groups.

– Crime labels are not in “people” nor “animal” subtrees but, if predicted, would lead to harm/bias.
Labels that do not fall into the three types above are neither counted as correct or incorrect. Yet, in order to
better account for possible mistakes or correct predictions, we also record the following labels:
– Possibly-Human labels are not in “people” subtree but describe “people” attributes (e.g., “makeup” or “beard”)
– Possibly-Non-Human labels are non-human labels that may be legitimately predicted. For instance, it is
common in OpenImages MIAP that a person is holding a pet. In that case, cat might be considered a correct
prediction. This type does not apply to the CC dataset which only contains faces of people.

Assessing the correctness of either Possibly-Human or Possibly-Non-Human predictions requires manual visual
inspection. The exact mapping between labels and the label types depend on the underlying taxonomy. We
provide the label types for the ImageNet taxonomy used in our experiments in Table 3.

• Sensitive groups. The harmful predictions are measured on images of people belonging to various sensitive
groups (which depends on the information available in the dataset). We use two datasets: Casual Conversations
(CC) and OpenImages MIAP. For each dataset, sensitive groups and data distribution is detailed in Table 4.

• Metrics - confidence rated predictions. For all subgroups, we consider the top-5 predicted labels by the
classifier and report the percentage of images of that subgroup for which at least one predicted label falls into
each label type at a certain confidence threshold of label prediction.
While top-5 prediction is a common metric in research on image classification [31], classifiers also have prediction
probabilities for each label, which can be used as a confidence score.
Assessment of classifiers with varying confidence score thresholds follows the literature on selective classification

[18, 24], also called classification with a reject option [32] or classification with abstention [67, 78]. We argue
for using the confidence-based assessment:
– the evaluations without considering confidence scores, do not distinguish between mistakes that the classifier
is very confident in, compared to mistakes where the model has very low confidence (which can be treated
automatically for instance by sending to a human annotator, or simply not considering the image for further
evaluation)

– it does affect the harms/biases conclusions regarding the fairness of models (if a model predicts a harmful
label but with a very low confidence score (say 0.02), accepting low confidence predictions increases harm).
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Gender Age Skin Tone

Dataset feminine labels masculine labels 18-30 30-45 45-70 70+ lighter darker

CC 1, 627 1, 294 931 1046 870 62 1646 1329
UTK Faces 11, 525 12, 583 7728 5727 4712 1414 n/a n/a

young middle older unknown

OpenImages MIAP 10, 807 14, 345 3, 754 23, 966 986 14, 817 n/a n/a

Table 4. Number of samples of each characteristic in the datasets. Gender labels are self-identified-{female, male} for CC, {predomi-
nantly feminine, predominantly masculine} for OpenImages, and apparent-{female, male} for UTK. On CC, we follow Buolamwini
and Gebru [5] and group the six-point Fitzpatrick scale into two types: Lighter (Type I to Type III) and Darker (Type IV to Type VI)
and group age into four groups 18-30, 30-45, 45-70, 70+. On the OpenImages MIAP, there are three perceived gender subgroups
(predominantly masculine, predominantly feminine, unknown gender) and four perceived age subgroups (young, middle,
older, unknown).

income region
bucket range ($) Africa Asia Europe Americas Global

low 27 − 90 37 20 0 5 62
medium 93 − 1, 700 23 111 17 26 177
high 1, 700 − 10, 000 3 17 17 13 50

total – 63 148 34 44 289

Table 5. Number of samples of each characteristic in the datasets. Number of households per region (as defined by De Vries et al.
[11]) and per income buckets on the Dollar Street dataset.

– we believe this is particularly relevant to out-of-domain tests (and, similarly, in deployed systems that may
receive out-of-domain data) since confidence scores are also used to detect out-of-domain samples [52].

Choosing thresholds. using confidence scores introduces an additional burden of choosing the threshold - a
problem that is often referred to as the risk-coverage trade-off : higher threshold leads to less mis-classification,
but also less coverage because the classifiers abstains from making predictions on more images. Since a classifier
that constantly abstains is useless, we need to choose a non-trivial threshold in practice. The choice of the
threshold is inherently problem/task dependent (depends on the potential risks of mis-classification, including
but not exclusively fairness/harms risks). Providing general guidance on how to solve this trade-off in context
is out of the scope of this paper, and hence we report results for different thresholds.

• Summary. Overall, using the indicator involves the following steps:
– Step1: For a given taxonomy, generate the label associations. For ImageNet, we provide the list in Table 3.
– Step2: Run the model inference only on each image in the datasets and capture the top-5 model prediction
along with the confidence scores.

– Step3: For different subgroups, measure the percentage of images labeled with different association types for
different confidence thresholds.

• Difference with the literature. Label association tests were already present in the analysis of CLIP [60]. The
main differences with our proposal are discussed in Sec. 2 under "The impact of broader impact statements".
In short, our approach (i) applies to any visual extractor, (ii) aims at comparing different models, (iii) uses
self-identified gender in CC dataset and wider variety of practical images present in OpenImages MIAP. On
a related note, we also mention that Yang et al. [77] proposed a revisited ImageNet by filtering out unsafe
labels. This is different from harmful / biased associations, which we study in our work. For instance, labels
such as gorilla are marked safe in Russakovsky et al. [66] because they are legitimate labels on images of the
corresponding animal. However, they are clearly harmful when predicted on images of people of certain groups,
as is evident in historical incidents [62].
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3.2 Indicator 2: Geographical diversity and fairness

This second indicator aims at assessing the object recognition accuracy of visual systems on images from around the
world. Similar to the label association indicator in Sec 3.1, this indicator assesses classifiers. We share details of all
components of this indicator.

• Requirement. This indicator requires a visual system that has label prediction capability. See Appendix B.3 for
how one can adapt certain systems (such as those trained with self-supervision) to predict labels if the system
doesn’t have this capability and in particular, predict labels in Dollar Street taxonomy.

• Dataset. We use Dollar Street dataset and mapped the initial annotations to the ImageNet taxonomy as
described in Appendix A1. The images in this dataset are annotated with the label, country, region and the
household income (for the household that image represents).
We emphasize that the classifiers should not be trained or pre-trained on the Dollar Street dataset, since this
indicator aims at stress-testing classifiers on an unseen, diverse set of images.

• Sensitive groups.We propose 2 different sensitive sub-groups:
– Regions of World: The Americas, Europe, Asia and Africas.
– Household income buckets: Given the household income (in USD), we group the income into buckets as
round(log(household income)/3). Despite the simplicity of this formula, this bucketing yields three income
buckets across the full dataset, which allows us to simplify the analysis into: low, medium and high income

groups. The distribution of the number of households by region/income buckets is given in Table 5. The choice
of income as a sensitive feature follows De Vries et al. [11] which showed that usual classification models
perform significantly better on images from high-income thresholds.

• Metrics. In the Dollar Street dataset, relatively few households (in total 289) are represented, but with a
rather high number of images per household. The work by De Vries et al. [11] computed the mean income of
represented households in each country of the dataset, and counted the average hit rate over images from that
country where an image is counted as a hit if one of the top-5 predictions is the ground truth annotation.
In our work, for reliable fairness audit, we take an alternative approach to computing average hit rates. Our
approach aims at being less sensitive to spurious correlations that are due to same-household. To that end, our
metrics use the following two pre-processing steps.

(1) First, we observed that for some households, the same image appears several times with different labels. Since
our classifiers are not meant for predicting multiple labels for the same image (ImageNet classifiers are typically
trained for single-label prediction), we first de-duplicate images, counting the image as correctly classified if
any of its ground truth labels has been predicted. This leaves 15, 222 images for 289 households.

(2) Second, since images from the same household tend to be visually much more similar than images from
different households, we first compute the hit rate on each household (as the average hit rate over the images
of this households), and then take the average of these per-households hit rates over the various sensitive
groups (region, income bucket or income bucket× region).

• Summary.We summarize the end-to-end process:
– Step 1: Adaptation of Visual systems to predict labels in Dollar Street taxonomy. Follow the details
in Appendix B.3.

1It is possible to use other taxonomies by mapping them to the original Dollar Street annotations.
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– Step 2: Inference on Dollar Street images. Use the visual system to predict labels and the confidence score
of label prediction for each image in the Dollar Street dataset.

– Step 3: Compute the metrics. This is computed as described above.
• Difference with the literature. The difference with De Vries et al. [11] lies in the metrics (computed over
households) and our definitions of sensitive groups (regions and income buckets). We demonstrate our definitions
allow for more reliable performance estimates (discounting the correlation between images introduced by the
household) and confidence intervals (individual countries, as used by De Vries et al. [11] do not contain enough
households to produce meaningful confidence intervals).

3.3 Indicator 3: Same-attribute assessment via similarity search

The goal of this indicator is to probe the visual systems for disparity in learned representations of images of people based
on an attribute (age, gender, skintone, race etc.). We follow an instance retrieval approach which involves a Database
and Queries. The Database is where we search and the Queries are the inputs for which we want to retrieve similar
things (for example embedding vectors) from the Database. This indicator evaluates a pre-trained feature extractor by
performing similarity search given the queries in the Database, where the similarity is defined as the cosine similarity

of images in embedding space. We describe the components of this indicator in detail:

• Requirement. Any visual system that needs to be audited. Unlike previous indicator, the system does not need
to have a classifier.

• Datasets. We use UTK Faces as the Database and Casual Conversations (CCv1) as the Queries. Both datasets
have almost balanced representation of different genders and age groups, so there is no significant representation
bias present in these datasets.

• Sensitive groups. For CC, similar to the Indicator 1, we use the sensitive groups described in Table 4.
• Metrics. Since our task is similarity search, we measure Precision@K which measures proportion of 𝐾 most
similar images that have the same gender as the query image. We focus here on gender since it is the only
common attribute between UTK Faces and CC.

• Summary. Given a visual feature extractor, the end to end process is as follows:
– Step 1: Extract model embeddings. Run the inference on the images of the UTK Faces and CC datasets and
save the model output / embeddings.

– Step 2: Perform similarity search and measure. First, normalize the embeddings to unit L2-norm. Then,
for each image embedding in the CC dataset, perform similarity search using the UTK Faces embeddings and
then compute the Precision@K metric for each sensitive subgroup.

• Difference with the literature. In the analysis of CLIP, Radford et al. [60] propose a gender classification task
on FairFace. Our proposal differs from their in the use of a similarity search task rather than building a
classifier of sensitive demographic attributes. Our choice is motivated by two important aspects:
– first, training attribute specific classifiers (such as gender, age, skintone etc) is increasingly contrary to intended
uses of datasets collected for fairness, [30, 68],

– second, and relatedly, there is rising concerns regarding training classifiers for sensitive labels such as age,
gender, skin tone. We believe that a fairness assessment should avoid relying on building intermediate
questionable artifacts (such as a gender recognition system) when possible. The similarity search example
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Fig. 2. Grid of model and data sizes (in log-log scale) of different training paradigms compared in Sec. 4.

corresponds to uses cases such as image retrieval [3], where we would want to account for same-group
similarity when the query image contains people.

4 EXPERIMENTAL SETUP

We illustrate the use of the indicators presented in the previous section by comparing three types of feature extractors
trained within different paradigms and at different data/model scale and different data domain:

• Supervised training on ImageNet: Our baseline feature extractors follow the standard practice of training a
neural network classifier on ImageNet [12] and considering the layer before the prediction heads as a feature
extractor [see e.g., 33]. For the reference, ImageNet contains 1.28 million images classified with a single label
that belongs to a taxonomy of 1, 000 labels, derived from WordNet [20].

• Weakly-supervised training on filtered Instagram data:We study an open source feature extractor, WSL
[55], that was trained on 3.6 Billion public Instagram images. The training data is constructed by utilizing the
hashtags associated with images and filtering the images with hashtags that have synsets in WordNet [20]
resulting in 27, 000 hashtags. The convolutional neural network was trained using supervised learning using the
hashtags associated to each image as target labels. Similar to supervised ImageNet models, the feature extractor is
the last layer of the network before the prediction head. We take this model as representative of feature extractors
trained at large scale with weak supervision.

• Self-Supervised training on ImageNet or uncurated Instagram data: We study two representative ap-
proaches for self-supervised training, SwAV [6] and SEER [26]. They share the same underlying self-supervised
training principles, based on constrained clustering of image crops. The main difference between the two is
that SwAV has hyperparameters optimized for self-training on ImageNet, whereas SEER was tuned for training
models on random internet image at a much larger data scale. Similar to WSL, SEER is trained on public Instagram
images. However, in contrast to WSL, the dataset used for SEER is a completely random subset of 1 billion images
that underwent no data filtering or curation whereas in WSL, images were filtered based on hashtags that match
English nouns in WordNet.

We take as main representative of these approaches a large convolutional neural network of the RegNet family [61],
RegNetY-128 which has 700 Million parameters. We chose this model because this model is available off-the-shelf for
various training paradigms (supervised, weakly-supervised and self-supervised) making it possible to compare fairness
of different training paradigms. We also study smaller RegNet and ResNet-50 in Appendix E.2.

An important part of our experimental is an in-depth ablation study. We believe that it is reasonable to compare
weakly/self-supervised training at the billion-image scale to supervised training because weak- and self-supervision
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are precisely meant to enable such scale in contrast to supervised learning where collecting large amount of curated
labeled data is simply infeasible. Further, as data domain and data size change within training paradigms, we propose
an in-depth study where we control additional parameters. In this ablation study, we focus on Supervised training and
SwAV/SEER as we have pretrained vision systems available off-the-shelf allowing us to save compute resources and
also SEER seemed to achieve overall better results on fairness indicators than WSL. We study systematically two axes:

• Data size and domain. We evaluate SEER models on three subsamples of the Instagram data, containing 1
million, 32 million and 1 billion images to study the effect of scaling the dataset size. Notice that since ImageNet
contains about 1 million examples, comparing SEER trained on Instagram with 1 million examples and SwAV
essentially compares the effect of the data domain.

• Model size and architectures.We study model size ranges from 25𝑀𝑖𝑙𝑙𝑖𝑜𝑛 to 700𝑀𝑖𝑙𝑙𝑖𝑜𝑛 parameters. We pri-
marily focus on Convolutional Neural Networks (ConvNets) [51] in our experiments.2. We chose ResNet-50 [31]
as an example of lightweight model, and two sizes of RegNet, RegNetY-16 (100 million parameters) and
RegNetY-128 [61].

We systematically evaluate all combinations of SEER models for all data size and models, and all models for Supervised
training and SwAV. A pictorial summary of all models studied is given in Fig. 2.

5 RESULTS AND OBSERVATIONS

In this section, we present our findings and provide a comprehensive analysis of our experiments.

5.1 Label association results

This section analyses the impact of training paradigm, data size and domain on the potentially harmful label associations.
Figure 3 depicts results on Casual Conversations and OpenImages MIAP. Results are reported for the RegNetY-128
model and are stratified into groups – based on gender and skintone on Casual Conversations and on perceived gender
in OpenImages MIAP. Additional results stratified into age groups can be found in the Appendix E.1. We consider
harmful and non-harmful predictions with a minimum confidence threshold 𝜏 = 0.1. Note that harmful labels include
crime and non-human, whereas non-harmful labels only include human.

Effect of training paradigm. Figures 3a–3b (top row) compare the effect of different training paradigms on Casual
Conversations and OpenImages MIAP, respectively. We consider models pretrained on ImageNet and on the larger
scale Instagram 1B. On Casual Conversations, trends appear to favor the SSL paradigm, which results in the lowest
harmful and the highest non-harmful hit rates. Leveraging supervised signals (Supervised, WSL) results in more
harmful associations and larger harmful association hit rate differences across different groups. We also note that
SSL-ImageNet leads to overall slightly lower harmful predictions than SSL-Instagram (possibly because ImageNet
data domain is more object centric), but the trend is reverted for non-harmful predictions where the SSL-Instagram
obtains notably higher hit rates (possibly because Instagram data domain is more human-centric). In OpenImages MIAP,
SSL-ImageNet continues to yield to lowest harmful hit rates. However, in this case, Supervised-ImageNet appears to
follow. Interestingly, models pretrained on Instagram tend to be among the top harmful label predictors, no matter the
training paradigm, suggesting that in the case of OpenImages MIAP the data may play a more important role than the
training paradigm. For non-harmful predictions, SSL models tend to yield higher hit rates, which are also comparable
to those of WSL. It is worth noting that the effect of training paradigm may strongly depend on the model capacity. In

2Our indicators can readily be used with other models such as Vision Transformers [16]
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(a) Casual Conversations. (b) OpenImages MIAP

Fig. 3. Label association results: (Top) Effect of training paradigm; (Mid) Effect of data size and domain; (Bottom) Confidence of
models. For harmful association, lower hit-rate is better. For non-harmful association, higher hit-rate is better.

.

particular, we note that when using a smaller ResNet-50, Supervised consistently becomes more competitive on both
datasets considered, lowering its harmful hit rates, and reaching among the highest non-harmful hit rates across all
groups. See Appendix E.2 for a detailed analysis on the effect of model capacity.

Effect of data size and domain. Since SSL learning allows training models on unbounded data size, we study this
effect for SSL models specifically. Figures 3a–3b (mid row) show how data domain and data size affect the training of
SSL models on Casual Conversations and OpenImages MIAP, respectively. Both datasets exhibit similar trends. When
comparing SSL models trained on different Instagram data sizes, it appears that models benefit from additional data:
using 1B data points increases the non-harmful predictions and lowers the harmful ones, especially when compared
to the model trained on 1M data points. These gains appear more evident on Casual Conversations than on OpenImages
MIAP, where improvements are somewhat modest. However, in both datasets, the SSL-ImageNet results in comparable or
lower harmful prediction hit rates than the best Instagram-based model, suggesting that within self-supervised training
paradigm, the data content might be more critical than the scale of the data to mitigate potentially harmful associations.

Effect of prediction confidence of models.We assess how different training paradigms impact the confidence
of models in Figures 3a–3b (bottom row), for CC and OpenImages MIAP respectively. bu studying how of harmful and
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Fig. 4. Geodiversity, hit rates for Supervised, WSL and SSL. Fig. 5. Geodiversity, relative improvement with respect to Su-
pervised on ImageNet. Effect of data domain and size on SSL.

non-harmful label predictions change as a function of increasing the confidence threshold 𝜏 that a prediction is consid-
ered “correct”. On CC, we observe that SSL models consistently require a small confidence threshold to push harmful

predictions rates close to 0. Moreover, both Supervised andWSL models start off with notably higher harmful prediction
hit rates and take longer to lower their prediction rate close to 0, with the Supervised model being slightly more confident
than the WSL model overall. For non-harmful predictions, SSL-Instagram model consistently results in more confident
predictions than any other model for 𝜏 > 0.1. In this case, SSL-ImageNet appears to be less confident thanWSL-Instagram,
and reaches non-harmful hit rates which are close to 0 faster. Supervised consistently yields the lowest non-harmful hit
rates. On OpenImages MIAP, only the SSL- ImageNet consistently presents the lowest harmful hit rates, and requires a
rather small threshold value to bring the hit rate very close to 0. Supervised-ImageNet starts with lower harmful hit rates
that SSL-Instagram, which are however quickly matched by both (SSL andWSL) Instagram based models, suggesting that
Supervised is overall more confident than Instagram based models. Models pretrained on Instagram all exhibit a similar
behavior for harmful hit rate on OpenImages MIAP, with WSL being slightly more confident in harmful predictions
than WSL. For non-harmful predictions, similar to CC, SSL-Instagram is the most confident model, resulting in high
hit rates as we increase the threshold, which are only matched by WSL pretrained on Instagram. Finally, the confidence
of models also depends on their capacity. See Appendix E.2 for a detailed analysis on the effect of model capacity.

5.2 Geographical Fairness Results

In this section we analyze the results on the geodiversity indicator. The main results are summarized in Fig. 4 and Fig. 5.
All results in this section use RegNetY-128. We refer the reader to App. F for a study of the effect of model capacity.
Effect of training paradigm. Fig. 4 plots the hit rate for Supervised on ImageNet, WSL, and SSL on ImageNet and
Instagram. We observe that there are drastic discrepancies in performances across sensitive groups, with a difference of
0.25 between lower and higher income budgets, and about 0.20 between Africa and Europe. Nonetheless, all versions
of WSL and SSL significantly improve over Supervised training, over all sensitive groups (income buckets and region).
Moreover, SSL trained on Instagram is significantly better than the other models on all groups.
Effect of data domain and scale. Fig. 5 plots the relative improvement in hit rate with respect to Supervised training
on ImageNet, for four SSL models: one trained on ImageNet, and three models trained on Instagram with 1M, 32M and
1B examples respectively. We observe that increasing the data size on Instagram has a positive effect on performances,
with a large gap between 32M and 1B examples. SSL on ImageNet seems better than SSL on Instagram with 1M examples,
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which suggests ImageNet is not a worse data domain than Instagram for this task. Yet, the first conclusion is that these
result support the idea that training on large, diverse datasets improves generalization on geographically diverse images.
The second important conclusion is that both SSL models have higher relative improvement on lower income buckets,
and generally higher relative improvement on groups with worse performances overall. Even though there are still
large discrepancies between senstive groups – across the world and by income buckets, SSL seems a promising avenue
to reduce discrepancies in performances between groups.

5.3 Results of Same Attribute Retrieval using Similarity Search

We now present the results for the last indicator, where the embeddings are directly used in a similarity search algorithm.
The main results are summarized in Fig. 6, which shows the precision-at-10 and precision-at-50 broken down by

gender, skin tone and gender× skintone image groups. As previously, we compare four RegNetY-128models, Supervised
on ImageNet, WSL, SSL on ImageNet and SSL on Instagram. For all models, the precision-at-10 and the precision-at-50
exhibit very similar trends, so we discuss both at the same time under the generic name “precision”. Detailed results
depending on model capacity can be found in Appendix G.
Effect of training paradigm. For all models, there are discrepancies in the retrieval of same-gender images between
query images of females and males, as well as between query images of people with darker and lighter skin tone.
Looking at the breakdown by gender× skin tone, we see that models work roughly the same on male darker and male
lighter, and the precision drops for female darker. The models have different discrepancy profiles. Both Supervised
and SSL trained on ImageNet exhibit large discrepancies in precision between male and female queries (0.25 and 0.20
respectively). WSL reduces this discrepancy to 0.11, and overall significantly reduces discrepancies in precision across
all gender×skin tone groups. SSL trained on Instagram drastically reduces discrepancies while improving the precision,
reaching with female lighter, male darker and male lighter reaching 95% precision. The precision for female
darker queries still lags 10 points behind, which shows that there are still blatant differences to address.
Effect of data domain and scale. In Fig. 7, we show the precision-at-10 for RegNetY-128 trained with SSL on ImageNet
and three different data sizes for Instagram data (1M, 32M and 1B images). The precision at other rank thresholds yields
similar trends. Training on ImageNet and Instagram with 1M examples leads to similar precision values, which suggests
that the difference in data domain between ImageNet and Instagram has little impact on this indicator. We observe
a large increase in precision when the data size increases to 32M, with little differences between 32M and 1B. These
results suggest that large datasets are critical in improving the fairness indicator. This conclusion is in-line with the
geodiversity indicator, even though there is no improvement when increasing the data size from 32M to 1B.

5.4 Summary of All Indicator results

(1) Self-Supervised training on larger and diverse datasets such as Instagram data leads to most improvement in
generalization on geographically diverse images. The performance improves the most for lower-income and
non-Western regions of the world.

(2) SSL paradigm leads to highest non-harmful and lowest harmful label associations. Instagram data leads to
highest non-harmful label associations. Further, data scale increases the non-harmful associations.

(3) Self-Supervised training on Instagram data leads to drastic reduction in discrepancies in the same gender retrieval
while achieving high precision for different gender and skintone which improved further with data scale.
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Fig. 6. Same-group similarity search, precision@10 (left) and precision@50 (right)
for the four main models compared.

Fig. 7. Similarity search, varying the
data domain and size for SSL with
RegNetY-128.

6 CONCLUSION AND FUTUREWORK

Measuring fairness of computer vision systems in a systematic way is necessary to build technologies that are fairer,
more inclusive for all people from different demographics. In order to spur the progress in systematic assessment of
bias in computer vision systems, we propose three fairness indicators that are designed to probe main sources of biases
in computer vision models. We apply our indicators on most commonly used deep architectures that are trained using
different training paradigms on various data sources, and assess the generalization of these models on four publicly
available fairness datasets. Our comprehensive analyses show that large models using vast amounts of data (without
requiring any annotations or labels) perform best across all subgroups defined in fairness datasets. We hope to spur
further research in the field and hence advance model diversity and generalization to people across sensitive groups.
Our assessment is intended to be used in conjunction with qualitative analysis of models’ broader impact.
Future work. In this work, we only focus on models trained on either uni-labeled ImageNet (one label per image) or
unlabeled Instagram data, and evaluate the fairness on the datasets that provide either fairness labels, e.g. age, gender,
skin tone, or concepts, e.g. income with geo-location. One open question for future research is to carry further analyses
on the pre-trained models that are trained on multi-labeled datasets (multiple label per image).
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A DETAILED DESCRIPTIONS OF DATASETS

Casual Conversations (CC) [30] consists of 45, 186 videos of paid participants across five different cities in the US.
Dataset provides self-provided age and gender labels in addition to annotated Fitzpatrick skin tone [21] and ambient
lighting conditions. Age category varies from 18 to 85, gender is limited to ‘male’, ‘female’, ‘other’ and ‘n/a’ (not available,
prefer not to say) and there is only a few videos for ‘other’ and ‘n/a’ gender categories. Nevertheless, CC is one of the
few public datasets that has self-identified age and gender labels and hence we decided to assess our indicators also on
this dataset. For the purpose of our indicators, we employ the CC dataset for model inference only and do not perform
model training on this dataset. See Appendix B.1 for more details how to retrieve face crops.

OpenImages MIAP [68] is a dataset designed to enable ML Fairness and constructed by providing additional annota-
tions for a subset of OpenImages v6 [49] dataset. These annotations include bounding boxes of people and attribute
labels for fairness such as perceived gender (predominantly masculine, predominantly feminine, unknown) presentation
and perceived age range (young, middle, older, unknown).

For the purpose of our indicators, we use OpenImages MIAP test set for inference only. The test split contains
22, 590 images where each image has multiple bounded boxes. In order to focus on images of single people, we perform
inference only on the bounding boxes with height and width >= 100 as otherwise the people are barely visible. We also
filter out bounding boxes with gender or age of the unknown category as we observed they often are sketches, images
of objects, or images where only the lower body is visible. The use of these images not critical in our fairness study, and
we preferred keeping them out since it is unclear what label to expect from the classifier. Overall, we perform inference
on 43, 523 effectively cropped images. We share more details on how we carefully apply the bounding box crop for
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inference in Appendix B.2.

UTKFaces [79] is a large-scale face dataset that consists of 24, 108 face images each of which is annotated for apparent
age, race and gender. The term apparent denotes that the labels are not self-identified. The dataset has almost balanced
data between for male / female apparent genders with the downside of no data for non-binary gender. Images cover a
variety of variations in pose, facial expression, illumination, occlusion and resolution. For the purpose of our proposed
fairness indicator, we only use the apparent gender labels for which the dataset is also balanced.

Dollar Street [23] is a collection of 16, 073 images of households captured all around the world by a group of photogra-
phers. The images capture 108 concepts from 289 households in 54 different countries across the world. The countries
represent 4 different regions (The Americas, Europe, Asia, Africa). We manually mapped the 108 concepts to 94 classes
in ImageNet [66] dataset 3. The households have income levels (measured in USD) varying between 67$ and 10𝑘 . There
are on average 53 unique images per household, with a maximum of 135 labeled objects per household.

B EXPERIMENTAL DETAILS

B.1 Casual Conversations v1

For our experiments, we use the mini version of the dataset which consists of 2, 982 videos (two videos per participant
with one dark and one bright lighting video when possible). Note that face crops are not available for 29 videos where
DLIB [43] has failed to detect any faces. For each video, following [30], bounding boxes are detected on each frame of
the video using DLIB [43] that are resized by a factor of 0.5 for faster computation and then upscaled by 2. In order to
increase the area of face and background (hair and clothes) we enlarge the bounding boxes by a factor of 1.5 from the
center on the aligned frames and resize the face crops to 256𝑥256. We take the middle frame of the video where there
exists a face crop (when possible) and perform inference resulting on 2, 982 face images.

B.2 OpenImages

For OpenImages, we filter out bounding boxes with height or width smaller than 100 pixels, because we observed they
correspond to barely visible people. We also filter out bounding boxes with gender or age of the unknown category as
we observed they often are sketches, images of objects, or images where only the lower body is visible. The use of these
images not critical in our fairness study, and we preferred keeping them out since it is unclear what label to expect
from the classifier.

We then followed a two-step process to have bounding boxes fit the 224 × 224-input of our models:

(1) if the box’s shape is too far from a square (we use the rule max(height, width)
min(height, width) ≥ 1.2), we crop the bounding box

further to a square from the top-left of the bounding box.
That way, we obtain a square input with focus on the top of the bounding box, which usually is the head for
images of people.

(2) we then resize the resulting image to 224x224

3We release the full data information including the label mapping file to enable use of this indicator.



20 Goyal et al.

B.3 Adapting a visual system to predict labels

For the indicators proposed in Sec 3.1 and Sec. 3.2, visual systems need to be able to predict the labels and in particular
labels in Dollar Street taxonomy for Geographical fairness indicator. There are 2 possible scenarios:

• Visual system has label prediction capability (for Dollar Street taxonomy): If the dataset taxonomy of
the dataset that the visual system is trained on, already predicts (Dollar Street) labels, such system can be used
directly for inference on (Dollar Street) test images in zero-shot manner.

• Visual systems don’t have label prediction capability (and/or don’t predict Dollar Street taxonomy):
For some visual systems (such as self-supervised models) which are not inherently trained to predict any labels,
the models can be adapted (for example by finetuning) to predict the labels by training on a subset of datasets
like ImageNet [66] 4.

We also acknowledge that the caveat of using ImageNet as the transfer dataset can introduce the potential bias in the
system but we note that this strategy can still enable comparisons of several visual systems conditioned that all the
visual systems are adapted to Dollar Street taxonomy using the same training process (irrespective of if the models
already have label prediction capability). We further note that our 3rd indicator allows to measure fairness purely from
the raw model embeddings.

C LIMITATIONS IN MORE DETAIL

We note several limitations of our proposed indicators below, and some of them are the inevitable result of using
currently available datasets. We note that these limitations would be easily overcome with more diverse and fairer
datasets, which consist of all possible inclusive labels for all attributes.

• The proposed indicators provide a proof-of-concept for what could be the systematic assessment and evaluation
of visual systems by utilizing the existing fairness datasets. These evaluations can enable comparison of models
and measure how well they are calibrated (in particular, how do they impact marginalized populations). However,
given a visual system, the choice of what indicator to measure depends on the context and this choice must be
thoroughly assessed with proper stakeholder involvement so as to answer why those indicators are chosen, what
kind of assumptions are embedded in this choice, and what specific questions do the system designers aim to
answer [38, 48].

• We further note that these fairness indicators are complementary to the model and dataset documentation. These
indicators do not replace proper documentation of dataset building and model reporting practices, but it can
come together as a standard way of outlining a baseline comparison when one is developing or deploying new
models. Furthermore, the proposed indicators can evolve/expand through time to include new types of visual
systems, new fairness probes and new datasets as deemed appropriate.

• In our analysis of several visual systems, we only considered one model in each setup and didn’t evaluate fairness
if different seeds are used to initialize the models as this is beyond the scope of this work but we encourage using
multiple seeds when probing the model fairness with the indicators.

• we focus on single-label prediction, mostly for convenience because classification is the most studied CV task in
the literature. Even focusing only on classification, single-label prediction makes label ambiguity a problem –
without all labels that could be considered correct for an image, error rates are unreliable.

4We release the information of exact subset of 20K subset images from ImageNet which capture the Dollar Street taxonomy and also subset labels that
correspond to label associations in 3.1 indicator.
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• some limitations from the use of dataset:
– the definitions of attributes differ across datasets which limits the possibility of cross-dataset tests (for instance,
UTK faces doesn’t have Fitzpatrick skintone scale in contrast to Casual Conversations. This limits the study to
gender and age attributes in our Similarity search based indicator.

– most dataset like UTK-Faces don’t yet have data for non-binary genders which strictly limits the fairness
probe for all social memberships.

– most datasets only provide perceived or apparent labels for people’s social membership which itself could be
biased.

– lack of labels social membership labels (age, gender, skintone etc) puts constraints on the type of task we can
address. For instance, publicly available Hate Speech datasets [41, 42] do not have labels for sensitive groups,
and hence we can’t analyze hate speech harms/biases of current visual systems towards specific groups this
data.

D FURTHER CONTEXT AND RELATEDWORK

Criticism of ImageNet. ImageNet [12, 66] has spurred immense developments and advances in Computer Vision
over decades. However, recently Yang et al. [77] pointed out several reasons that ImageNet [12] might cause potential
bias and therefore harm in the downstream models. Dulhanty and Wong [17] studied the demographics of people in
ImageNet dataset by using computer vision models to predict the gender and age of people, and demonstrated that,
e.g., males aged 15 to 29 make up the largest subgroup. Stock and Cisse [73] did not explicitly analyze the dataset but
demonstrate that models trained on ImageNet exhibit misclassifications consistent with racial stereotypes. Steed et

al. [72] further showed that unsupervised models trained on ImageNet can automatically learn racial, gender and
intersectional biases from the way people portrayed in images that were curated from the web. Recently, effort has
been made by Yang et al. [77] to reduce the bias in ImageNet dataset that resulted in removal of 2,702 synsets (out of
2,800 total) from person subtree in ImageNet dataset.
Fairness metrics for machine learning models.Most of the recent works utilize average performance indicators
broken down by sensitive groups. The metrics themselves measure disparities between groups in terms of predicted
positive value (PPV), True/False positive rates (TPR, FPR) [5], error rates [11] or risk difference [57]. There is no consensus
nor general guidance for choosing the metric depending on context. Despite incompatibilities between metrics [7, 45]
or otherwise counterarguments regarding the use of these aggregate performance measures [8, 25], there has been little
debate on which metric to use for fairness audits in computer vision. This contrasts with the analysis of the COMPASS
risk scores, which spurred an intense debate over metrics [14, 22, 50] (even though this debate is for the most part
unresolved).
Centering fairness around the context of the task. Proper documentation of models and datasets are key priorities
in developing new AI systems and should be carried out concurrently to benchmarks. Comprehensive approaches range
from Model cards [58] aiming to standardize transparent model reporting, and data documentation [35] encouraging
accountability at every stage of the data collection process. Raji et al. [65] pointed out five ethical concerns that should
be taken into consideration while developing products for algorithmic auditing in order to prevent harms on protected
groups. A common aspect of these developments is rooted in making the context of the task and the underlying cultural
/ social context as an important factor in developing transparent and accountable machine learning systems. Without
such considerations, relying only on abstract notions of fairness measures fails to address the core problem of the
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(a) Casual Conversations. (b) OpenImages MIAP

Fig. 8. Label association results stratified into groups based on age: (Top) Effect of training paradigm; (Bottom) Effect of data size and
domain. For harmful labels, the lower the hit rate the better; conversely, for non-harmful labels the higher the hit rate the better.

developed system [34]. These challenges impact the researcher and the practitioner alike and the standardized protocols
enabling systematic fairness assessment is a long overdue step forward for computer vision developments.

E ADDITIONAL LABEL ASSOCIATION RESULTS

In this section we provide additional label association results on Casual Conversations and OpenImages MIAP.

E.1 Results for different age groups.

Following Section 3.1, all results are reported for the RegNetY-128 model, considering predictions with a minimum
confidence threshold 𝜏 = 0.1.

Figure 8 depicts the impact of training paradigm, data size and domain on the potentially harmful label associations
on both Casual Conversations and OpenImages MIAP when stratifying results based on (perceived) age. Results include
harmful (crime, non-human) and non-harmful (human) predictions.

Effect of training paradigm. Figures 8a–8b (top) compare the effect of different training paradigms on Casual
Conversations and OpenImages MIAP, respectively when stratifying results based on different age groups. As in the
gender-skin tone stratification, we observe that trends appear to favor the SSL paradigm on Casual Conversations.
However, we note that in this case, SSL-ImageNet reaches similar harmful hit rates as SSL-Instagram, except for the 70+
age group, where the harmful predictions are lower. The trend observed in the non-harmful predictions is the same
as for the gender-skin tone stratification, with SSL-Instagram obtaining notably higher hit rates than SSL-ImageNet
(possibly because Instagram data domain is more human-centric). In OpenImages MIAP, the analysis of the results also
yields to similar observations as in the gender-skin tone classification. In particular, SSL-ImageNet continues to yield
the lowest harmful hit rates, and models pretrained on Instagram continue among the top harmful label predictors.
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(a) Results based on gender and skin tone. (b) Results based on age.

Fig. 9. Casual Conversations extended label association results: (Top) Effect of training paradigm; (Mid) Effect of data size and
domain. For human and possibly-human, the higher the better. For crime and non-human, the lower the better.

(a) Results based on perceived gender. (b) Results based on perceived age.

Fig. 10. OpenImages MIAP extended label association results: (Top) Effect of training paradigm; (Mid) Effect of data size and
domain; (Bottom) Confidence of models.For human and possibly-human, the higher the better. For crime, non-human and
possibly-non-human, the lower the better.

Notably, SSL-Instagram leads to the highest harmful hit rates. For non-harmful predictions, we observe a general
trend that results in larger hit rate differences across different groups, no matter the training paradigm and data used.

Effect of data size and domain. Figures 3a–3b (bottom) show how data domain and data size affect the training
of SSL models on Casual Conversations and OpenImages MIAP, respectively. The effect of data size when stratifying
results based on age outlines the same trends as for the gender-skin tone stratification. Overall, it appears that increasing
the data size from 1M to 1B Instagram images, drastically increases the non-harmful predictions and also lowers the
harmful ones, especially on Casual Conversations. However, the SSL-ImageNet results in comparable or lower harmful
prediction hit rates than the best Instagram-based model, further emphasizing that the data content might be more
critical than the scale of the data to mitigate potentially harmful associations.

For completeness, Figure 9 presents label association results on Casual Conversations for all labels separately:
human, non-human, possibly-human, and crime. Results are shown both for gender and skin tone, as well as age,
and consider the effect of training paradigm (top) and data size/domain (bottom). We note SSL leads to both lower
crime and non-human hit rates. However, SSL-ImageNet resulting in overall lower harmful hit rates can be explained
by its lower non-human prediction rates. SSL-Instagram results in lower crime prediction rates, and both its crime
and non-human prediction rates can be decreased by appropriately increasing the dataset size (see IG1M vs IG1B
results). Interestingly, SSL-ImageNet consistently exhibits among the highest possibly-human hit rates. Analogously,
Figure 10 presents extended results on OpenImages MIAP. In this case, results are reported for human, non-human,
possibly-human, possibly-non-human, and crime, and consider both perceived gender and age. When decoupling
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(a) Casual Conversations: (top) results based on gender and
skin tone, (bottom): results based on age.

(b) OpenImages MIAP: (top) results based on perceived gen-
der, (bottom): results based on perceived age.

Fig. 11. Effect of model capacity on label association results.

the harmful labels, we observe that the high harmful prediction rates of Instagram-pretrained models are driven by
their frequent non-human predictions. However, when it comes to crime, Supervised-ImageNet leads to the highest
prediction rates. In OpenImages MIAP, possibly-non-human predictions are more present in SSL models, whereas
possibly-human predictions are more present in models pre-trained on ImageNet (no matter the paradigm).

E.2 Effect of model capacity.

Finally, Figure 11 presents the impact of model capacity on label association results on both Casual Conversations and
OpenImages MIAP. When considering Supervised-ImageNet models, we observe that increasing model capacity tends
to increase the prediction of harmful labels across all groups considered in both Casual Conversations and OpenImages
MIAP datasets. At the same time, the highest capacity model, RegNetY-128, exhibits the lowest non-harmful hit rates.
This suggests that better fitting the ImageNet data with a supervised objective may lead to undesirable outcomes. When
considering SSL-ImageNet models, increasing capacity maintains or decreases harmful hit rates across all groups and
for both datasets considered. It is worth noting that these SSL models not only tend to exhibit among the lowest harmful
hit rates but also tend to be more stable in their predictions across different subgroups. However, higher capacity
SSL-ImageNet models often result in the lowest non-harmful hit rates. By contrast, when considering SSL-Instagram
models, increasing model capacity often increases harmful predictions and leads to slightly higher discrepancies across
different groups. In this case, similar to SSL-ImageNet, we observe that increasing model capacity often decreases or
maintains the non-harmful predictions. However, as discussed in Section 3.1, these models can significantly benefit from
additional Instagram data to mitigate potentially harmful label associations. It is worth noting that in the OpenImages
MIAP, non-harmful prediction rates are overall significantly lower than in Casual Conversations...
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Fig. 12. Geodiversity: effect of model capacity depending on the training paradigm and data size (columns), broken down by income
bucket (top row) and region (bottom row).

F EFFECT OF MODEL CAPACITY: GEOGRAPHICAL DIVERSITY

We provide in Fig. 12 the results on the geographical fairness indicator depending on the model size, depending on the
training paradigm (Supervised or SSL) and depending on data domain and size (ImageNet, or Instagram with 1𝑚, 1𝑏).

We observe that model capacity is critical when pre-training in a supervised fashion on ImageNet (leftmost column):
from ResNet-50 to RegNetY-16 there is an improvement of over 15% (absolute) hit rate. RegNetY-16 and RegNetY-128
achieve the same performance on Supervised training. Interestingly, model capacity does not seem to have a large impact
for SSL on 1𝑚 images, either on ImageNet or Instagram (middle left and middle right columns), and the performances
dominate that of Supervised pre-training. The effect of model capacity becomes more visible when training on 1𝑏
images (rightmost column), where differences between RegNetY-128 and ResNet-50 are significant across all sensitive
groups.

The conclusion is that the results coincide with those of other indicators when training at very large scale: larger
models tend to fare better. Apart from that, the effect of model size on supervised training is interesting, yet seems
specific to that indicator.

G EFFECT OF MODEL CAPACITY: SIMILARITY SEARCH

We present in this section the results obtained on the similarity search indicator by varying the model capacity. Fig. 13
presents the results in terms of precision@10 and precision@50 for ResNet-50, RegNetY-16 and RegNetY-128 for
Supervised training on ImageNet (left most column), SSL on ImageNet (middle-left column), SSL on Instagram with 1𝑚
examples (middle-right) and SSL on Instagram with 1𝑏 examples.

As for all other indicators, increasing model capacity improves precision on SSL training on 1𝑏 examples, with
RegNetY-128 achieving the best precision values (and about 15% absolute improvement on female darker, the sensitive
group where the precision is the lowest).



26 Goyal et al.

Fig. 13. Similarity search indicator: precision@10 (top row) and precision@50 (bottom row) depending on model capacity, for different
training paradigms, data domain and sizes (columns).

For other training paradigms/data sizes however, increasing model capacity does not help much. On Supervised
pre-training, we see no effect of increasing the model capacity, while when using SSL on 1𝑚 examples (ImageNet or
Instagram) ResNet-50 tends to perform the best (on par with RegNetY-128 on ImageNet, by far the best on Instagram
with 1𝑚 examples). In conclusion, it seems that on this indicator, large-scale datasets are necessary for SSL with large
models to shine. Yet, as noticed in Sec. 5.3, compared to supervised pre-training, the improvement of SSL on Instagram
with 1𝑏 examples is substantial (comparing the leftmost and rightmost columns), with nearly 30% absolute improvement
in precision@50 on female darker between supervised pre-training on ImageNet and RegNetY-128 trained with SSL.
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