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Recurrent Neural Networks (RNNs) are important tools for processing sequential data such as time-series or video. Interpretability
is defined as the ability to be understood by a person and is different from explainability, which is the ability to be explained in a
mathematical formulation. A key interpretability issue with RNNs is that it is not clear how each hidden state per time step contributes
to the decision-making process in a quantitative manner. We propose NeuroView-RNN as a family of new RNN architectures that
explains how all the time steps are used for the decision-making process. Each member of the family is derived from a standard RNN
architecture by concatenation of the hidden steps into a global linear classifier. The global linear classifier has all the hidden states as
the input, so the weights of the classifier have a linear mapping to the hidden states. Hence, from the weights, NeuroView-RNN can
quantify how important each time step is to a particular decision. As a bonus, NeuroView-RNN also offers higher accuracy in many
cases compared to the RNNs and their variants. We showcase the benefits of NeuroView-RNN by evaluating on a multitude of diverse
time-series datasets.
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1 INTRODUCTION

Recurrent neural networks (RNNs) [19] are ubiquitous in deep learning, because their design enables them to process
arbitrary length sequential data. For example, RNNs and their variants like the Gated Recurrent Unit (GRU) [9] and Long
Short-Term Memory (LSTM) [19] have been core components in numerous applications, such as machine translation
[8], image/video captioning [43, 46], and action recognition [14, 27]. There are other works in studying the dynamics of
generalization, learning, and initializations of RNNs using neural tangent kernels [1, 2]. However, even though RNNs
are powerful tools, they are challenging to interpret and explain.

From [15], they state that interpretability has many definitions. The definition of interpretability [15] that we will
use is the ability to be understood by a person. In addition, the term, explainability is different from interpretability and
will be defined as the ability to be explained in a mathematical formulation.
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Deep learning interpretability has become an important topic since RNNs and their variants have become useful in
several applications. The minimal amount of interpretability and explainability does not reveal why they have this
performance on their tasks. With more interpretability with these models, it can explain why they are performing well
on their respective tasks. Plus, if the model is not performing well, it is difficult to assess which specific parts of the
signal contribute to the final decision. Since the model is opaque and hard to interpret, this creates a black-box effort
for a practitioner.

There are works that have contributed to providing interpretability/explainability about how these RNNs perform.
For instance, the work from [18] explores the connection of the input variables to the RNN in order to interpret the
performance. Other works such as [17, 20, 23] focus on the interpretability of RNNs within their respective task, hence
limiting the ability to interpret other tasks. [13, 20, 31] create their own type of RNN in order to provide interpretability
in their application. The works of [3, 17, 23] use some metrics to provide interpretability with the RNN/LSTM that they
use for their application.

With the works that created an interpretable RNN ([13, 20, 31]), the main issue is that the definition of interpretability
is focused on their application, which would make it difficult to adapt to another application for interpretability.
For instance, [20] creates a finite-automaton RNN for text classification. This work would be hard to adapt to other
applications. Another issue is that with the works mentioned, they cannot provide a mathematical formulation that
explains the prediction with the hidden states.

Contributions. We propose NeuroView-RNN (NV-RNN) as a novel general framework that provides enhanced
interpretability and explainability to classification.

(1) We introduce the NV-RNN framework, which consists of a concatenation of all of the hidden states to be the
input to the linear classifier. This allows a linear mapping to all of the hidden states to the classes. This linear
mapping allows interpretability and explainability since the prediction for each class is in a dot product of the
weights from the linear classifier with the hidden states.

(2) Influenced from the work of [4], we provide interpretability and explainability defined in the Introduction to
showcase how NV-RNN, NV-GRU, and NV-LSTM can provide more understanding especially with applications
and architectures of RNNs, GRUs, and LSTMs. This is in stark contrast to the work of [4] that used convolutional
neural networks (CNNs) for image classification which cannot on its own be used in specific RNN architectures
like bidirectional RNNs or variable length input.

(3) We have better performance on most of the datasets from Table 1 to show why this NV-RNN framework should
be used. In addition, we have on par performance on some of the datasets from Table 1 and 2. The results show
that we have the accuracy performance compared to typical RNNs and are able to interpret and explain the
performance.

(4) We use numerous case studies about weight initialization, bidirectional GRUs, semantic analysis, video action
recognition, and counterfactuals to show the benefit of NV-RNN.
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2 BACKGROUND

2.1 Recurrent Neural Networks

Given an input sequence data 𝒙 = {𝒙𝑡 }𝑇𝑡=1 of length 𝑇 with data at time 𝑡 , 𝒙𝑡 ∈ R𝑚 , an RNN performs the following
recursive block computation at each time step 𝑡

𝒉(𝑡 ) (𝒙) = F𝜃 (𝒉(𝑡−1) (𝒙), 𝒙𝑡 ) ∈ R𝑛, (1)

where ℎ (0) (𝒙) = 0 and 𝑛 is the number of parameters for the hidden state. F𝜃 : R𝑛 ×R𝑚 → R𝑛 is the hidden time steps
mapping with time-agnostic parameters 𝜃 . Each recurrent architecture has a different F𝜃 . For a simple RNN [12] we
have this formulation,

F𝜃 (𝒉(𝑡−1) (𝒙), 𝒙𝑡 ) = 𝒉(𝑡 ) (𝒙) = 𝜙

(
𝑾𝒉(𝑡−1) (𝒙) + 𝑼𝒙𝑡 + 𝒃

)
, (2)

where 𝜙 : R → R is the activation function that act point-wise on a vector and 𝜃 = vect
[
{𝑾 , 𝑼 , 𝒃}

]
contains the

mapping parameters. In case of simple RNNs, we use the sigmoid function 𝜙 (𝛼) = 1
1+𝑒 (−𝛼 ) . Other RNNs variants such

as GRU [8] and LSTM [19] have a more complex mapping F𝜃 . See Supplementary Material Section A.1 for more details.
Bidirectional recurrent architectures [38], use two separated forward and reverse direction

𝒉(𝑡 )
𝑓

(𝒙) = F𝜃 𝑓 (𝒉
(𝑡−1)
𝑓

(𝒙), 𝒙𝑡 ) (3)

𝒉(𝑡 )𝑟 (𝒙) = F𝜃𝑟 (𝒉
(𝑡+1)
𝑟 (𝒙), 𝒙𝑡 ), (4)

where 𝜃 𝑓 and 𝜃𝑟 are independent of each other and together form the network parameters 𝜃 = {𝜃 𝑓 , 𝜃𝑟 }. The final
hidden state is obtained by concatenation of each direction hidden states,

𝒉(𝑡 ) (𝒙) =
[
𝒉(𝑡 )
𝑓

(𝒙)⊤,𝒉(𝑡 )𝑟 (𝒙)⊤
]⊤

∈ R2𝑛 . (5)

The output of a many to one recurrent architecture is generally a linear transform of the last hidden state 𝑇 :

𝑓𝜃 (𝒙) = 𝑽𝒉(𝑇 ) (𝒙) ∈ R𝑑 . (6)

Many-to-one recurrent architecture refers to when the input is a sequence of data but the output is decided at the
end. They are used in applications like sentiment analysis or time-series classification when the input is a sequence and
the output is to decide which class it is. For recurrent architectures with average pooling [40], the output is a linear
transform of the sum of all hidden states:

𝑓𝜃 (𝒙) =
𝑡∑︁

𝑡=1
𝑽𝒉(𝑡 ) (𝒙) ∈ R𝑑 . (7)

3 NV-RNN: INTERPRETABLE AND EXPLAINABLE RECURRENT NEURAL NETWORK

NV-RNN is inspired by the work in [4] except in that work the authors only focused on 2D CNNs. The work in [4]
focuses on the spatial filters of CNNs whereas our work is adapted to use for RNNs. This paper focuses on RNNs with
their variants and the hidden states per time. [4] could only be used for CNN architectures and we adapt it to the
RNN architecture which is different since CNNs focus on spatial features while RNNs focus on temporal features. In
addition, the applications to RNNs have not been explored to specific RNN architectures like bidirectional RNN or
varying input length which scenario is not present with CNNs and image classification. Therefore, adapting the work

3



FAccT ’22, June 21–24, 2021, South Korea

from [4] is non-trivial and brings merit into interpretability and explainability in the definitions that we denoted in the
introduction.

3.1 NV Architecture Description

Given the sequences of hidden states calculated in Equation 1 for any recurrent network, the output from NV-RNN is
obtained first by acquiring the hidden states for all time steps

𝒒 (𝑡 ) (𝒙) = ReLU
(
𝒉(𝑡 ) (𝒙)

)
, (8)

where ReLU(𝛼) = max(𝛼, 0). In the next step, the output is calculated using

𝑓𝜃 (𝒙) =
𝑇∑︁
𝑡=1

(
𝑽 (𝑡 )

)⊤
𝒒 (𝑡 ) (𝒙) =

𝑇∑︁
𝑡=1

𝑓 (𝑡 ) (𝒙) ∈ R𝑑 . (9)

This is equivalent to concatenate all the hidden states per time step into a large hidden state vector 𝑸 (𝒙), where

𝑸 (𝒙) =
[
𝒒 (1) (𝒙)⊤, 𝒒 (2) (𝒙)⊤, . . . , 𝒒 (𝑇 ) (𝒙)⊤

]⊤
∈ R𝑛𝑇 , (10)

and concatenate all linear output weights into one large matrix

𝑽 =

[
𝑽 (1) , 𝑽 (2) , . . . , 𝑽 (𝑇 )

]
∈ R𝑛𝑇×𝑑 . (11)

and calculate the output as the following

𝑓𝜃 (𝒙) = 𝑽⊤𝑸 (𝒙) ∈ R𝑑 . (12)

Where unlike commonly used recurrent architectures, the NV-RNN concatenates all of the hidden states as the input
to the linear classifier. This is different from a typical RNN where the last hidden state is the input to the linear classifier.
This concatenation does increase the size of the input but is needed for both interpretability/explainability and the
performance in Table 1.

Figure 1 depicts our NV-RNNwhere it displays how the hidden states are aggregated in order to provide a classification
decision. Note that this network is applied to many-to-one applications.

The use of new weights for the linear classifier at each time step limits the NV-RNN to datasets where all data
sequences have the same length. In the case where the data sequences have variable length, then zero padding will be
used. This interpretability especially in terms of which time steps are resonating with the class helps explain which time
steps are contributing the most. The entries of 𝑽 will state in a numeric manner how much each weight is contributing
to classification.

3.2 Interpretable and Explainable Linear Classifier

Recall that the final input to the linear classifier is the concatenation of the hidden states from all the time steps. When
training is complete, we look at the weights per class and since we have the linear relationship of the linear classifier
to all the hidden states, we have this ordered mapping of the weights to the hidden states. This ordering is done by
concatenating the first hidden state starting from the first time step and concluding with the final time step’s hidden
state. Hence, we inspect which of the hidden states per time are contributing to the decision-making process for every
class. Recall that from Equation 12 we have NV-RNN denoted in that form. Then we can substitute the right hand side
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𝑓 (2) (𝒙)𝑓 (1) (𝒙) 𝑓 (3) (𝒙)

𝒉 (2) (𝒙)𝒉 (1) (𝒙) 𝒉 (3) (𝒙)

𝑓 (4) (𝒙)

𝒉 (4) (𝒙)

𝒙4

𝑓 (5) (𝒙)

𝒉 (5) (𝒙)

𝒙5𝒙1 𝒙2 𝒙3

𝑓𝜃 (𝒙)++ + +

𝑽 (1) 𝑽 (2) 𝑽 (3) 𝑽 (4) 𝑽 (5)

Fig. 1. Depiction of the NV-RNN framework. Every RNN can be converted to a NV model by having every hidden state concatenated
to the linear classifier. The input to the linear classifier is the concatenation of all the hidden states. This provides a mapping to
evaluate which time steps are the most relevant to each class.

to have in it in this new form (Equation 9). The classification depends on the concatenation of all the hidden states, 𝑸 ,
and the weights from the linear classifier. For each class of the output we get

[𝑓𝜃 (𝒙)]𝑖 = 𝒗⊤𝑖 𝑸 (𝒙) ∈ R, ∀ 𝑖 ∈ [𝑑], (13)

where 𝒗𝑖 ∈ R𝑛𝑇 is the 𝑖th row of 𝑽 that corresponds to class 𝑖 . Since each class output is obtained by inner product of
𝑸 (𝒙) and 𝒗𝑖 , each class acquires a set of distinct learned 𝒗𝑖 weights and we can interpret their values for each class.
The goal is that in the training phase, the weights of 𝑽 are generalized well for a test set and we can inspect which time
steps are contributing the most by looking at the values. Each row of 𝑽 corresponds to a class, so for every input that is
sent, the softmax will choose the class with the highest score when each of the class’s weights are multiplied by the
time steps’ hidden state activations.

In addition to interpretability, we provide explainability of the classification. For each class, their 𝒗 explain the
classification since 𝑸 (𝒙) is constant for each class and the determining factor are each class’s 𝒗 since the highest dot
product from Equation 13 will determine which class is chosen.

This interpretability and explainability can provide more understanding of the training dynamics of NV-RNN. This
provides additional analysis to why some models perform better than others. In Figures 2, 4, 5, and 7 we can see which
time steps are critical based on their weight values from looking at each class’s 𝒗.

3.3 Experimental Setup

We demonstrate the performance of NV-RNN, NV-GRU and NV-LSTM against other RNN, GRU, and LSTM architectures
that are difficult to interpret/explain. The premise is that if we are on par or better than these models it is beneficial to
use. The RNN models that are used besides RNN are GRU and LSTM. Also we monitor the effect of average pooling
with RNNs, LSTMs, and GRUs in our comparison. The idea to benchmark against average pooling RNNs came from
these works, [21, 47], since they have better performance than the standalone RNNs, LSTMS, and GRUs. Datasets that
were used are the UCR repository [10], Large Movie Review [28], and UCF11 [25]. Do note that these tasks fall under
the many-to-one regime for RNN classification. The UCR datasets had the input of the same length while the Large
Movie Review dataset has varying input length. For UCF11, we use a sampler that we sample 50 sequential frames from
each video. For the UCR and Large Movie Review datasets, we choose the best accuracy from each model where we
vary the hidden state size to 32, 64, and 128. For UCF11, we use the hiddens state size of 32. All of the hyperparameters
for the experiments are detailed in the Supplementary Material Section in A.2.
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Table 1. The best performing NV-RNN, NV-GRU, and NV-LSTM models against the best performing RNN, GRU, and LSTM models.
For most of the datasets, the NV-RNN, NV-GRU, and NV-LSTM models outperform especially on datasets that have more time steps.

Data set RNN GRU LSTM RNN-AVG GRU-AVG LSTM-AVG NV-RNN NV-GRU NV-LSTM
Adiac 35.8% 37.08% 49.61% 10.23% 31.45% 16.87% 69.56% 68.28% 74.68%
BME 88.66% 94.66% 80% 84% 84.66% 84.66% 99.3% 98.66% 98.66%
CBF 60.66% 94.55% 90% 97.33% 98.66% 99.77% 97.77% 98.44% 98.55%
Chinatown 74.34% 97.37% 97.66% 98.83% 98.25% 98.54% 97.95% 97.08% 98.54%
Chlorine Concentration 58.17% 60.1% 57.73% 55.39% 57.05% 55.88% 83.95% 78.15% 72.39%
Fungi 49.46% 58.6% 68.81% 60.21% 58.6% 75.26% 96.77% 98.92% 99.46%
Ham 69.52% 68.57% 69.52% 74.28% 81.9% 80.95% 78.09% 80.95% 78.09%
Haptics 42.2% 41.55% 41.88% 33.76% 44.48% 41.88% 46.42% 46.1% 45.77%
Herring 67.18% 67.18% 68.75% 67.18% 65.62% 68.75% 68.75% 73.43% 68.75%
Insect Regular 100% 100% 100% 100% 100% 100% 100% 100% 100%
Insect Small 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectWingbeat 28.93% 49.34% 43.58% 28.48% 46.41% 39.94% 64.29% 64.54% 63.88%
Meat 48.33% 50% 50% 66.66% 86.66% 81.66% 96.66% 96.66% 96.66%
OliveOil 46.66% 50% 40% 40% 80% 40% 93.33% 93.33% 93.33%
Plane 89.52% 79.04% 95.23% 65.71% 98.09% 70.47% 99.04% 100% 99.04%
Rock 64% 74% 68% 56% 62% 60% 80% 76% 82%
SmoothSubspace 91.33% 89.33% 90.66% 90.66% 91.33% 86.66% 91.33% 96% 94%
Synthetic Control 99.66% 98.66% 98.33% 94.33% 95.66% 97.33% 99.66% 99.3% 99.3%
UMD 74.3% 99.3% 86.8% 75% 92.36% 72.22% 100% 100% 100%
Wine 59.25% 59.25% 62.96% 75.92% 79.62% 74.07% 100% 100% 100%

Table 2. The best performing NV-GRU models against the best performing non NV-GRU models with the Large Movie Review dataset.
The dataset has sentences of reviews of variable length. NV-GRU performs close to on par despite zero padding.

Data set Embedding GRU NV-GRU
Large Movie Review Word2Vec 91.87% 90.12%
Large Movie Review FastText 91.46% 89.56%
Large Movie Review GloVe 89.98% 87.76%

Table 3. The best performing NV-CNN-RNN, NV-CNN-GRU, and NV-CNN-LSTM models against the best performing CNN-RNN,
CNN-GRU, and CNN-LSTM models. The dataset is UCF11 where the task is video action recognition.

Data set NV-CNN-GRU NV-CNN-RNN NV-CNN-LSTM CNN-GRU CNN-RNN CNN-LSTM
UCF11 76.4% 74.3% 78.3% 69.3% 72.1% 72.4%

3.4 Results

We see from Table 1 that for most of the datasets, any of the NV-RNN, NV-GRU, and NV-LSTM models outperform the
traditional RNN, GRU, and LSTM and its variants. For the exact accuracies among the different hidden state sizes look
into the Supplementary Material Section A.3. It is interesting to note that with the datasets that have a smaller amount
of timesteps, the RNNs will perform better compared to their gating variants. In addition, with the Adiac dataset, the
results show that using average pooling on the hidden states is not the optimal solution. This is why NV-RNN was
developed to have the linear classifier learn which of the time steps should have higher positive or negative weight
values for the different classes. From Table 2 we apply NV-GRU to a dataset where the input has varying length and we
perform on par. The reason is that the maximum length we set is 1000 and any reviews under that maximum length
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will have zero padding. From Table 3, we outperform on another application called video action recognition. Note, that
in this application, we have to use CNN filter units and RNN hidden state units as input to the linear classifier.

With the great performance, there is a cost associated with it. The cost is that the input for the linear classifier greatly
increases. The input of the linear classifier size greatly increases since we concatenate all the hidden states from the
input. This is in stark contrast from the input being the last hidden state or the averaging of the hidden states. Yet, even
with the additional memory overhead, we can still run these NV-RNN, NV-GRU, and NV-LSTM models with an 8 GB
GPU.

4 NV-RNN TIME ANALYSIS

4.1 Interpreting the Time Steps

Now with the experimental results showing that the NV-RNN, NV-GRU, and NV-LSTM models outperform RNNs,
GRUs, and LSTMs among multiple datasets, the next step is to explain which time steps are pivotal for the classification
portion. This is something that is lacking with the models that we compared. The weights from the linear classifier
have a linear mapping between the different hidden states per time in order to directly observe which hidden states
are responsible for each class’s decision. Each class will have its own distribution of linear classifier weights. In the
following section, we will observe different classes’ linear weights for different datasets, different hidden state and
weight initializations, and other case studies.

This interpretation is lacking from RNNs and their variants since the input to the linear classifier is the last hidden
state. Then for the RNNs with average pooling, the notion of averaging the hidden states does not produce the best
results as shown. Hence, by having all the hidden states as the input for the linear classifier, we learn the weights for
each class to prioritize all the time steps. Each class will have a set of learnable weights that can be different from other
classes. Figures 2, 4, and 5 show the weights from different NV-RNN models for different classes.

One dataset from Table 1 is the Chinatown dataset that has 2 classes and the number of time steps is 24. Figure 2
shows the NV-GRU weights for both classes. The weights for each class are drastically different from each other. This
notion makes sense because for binary classification, the objective would be to have the weights drastically differ. The
positive weights for class 0 become the negative weights for class 1. Figure 3 shows the individual hidden state weights
for more granular information. Since this dataset only has 24 time steps, it is easy to view the individual weights for
every hidden state as opposed to other datasets. With the input size being one, there is not a lot of activity with the
hidden states for every time step. It is interesting that for every time step there seems to be a gradual change when
looking at the nearby hidden states at neighboring time steps.

Another dataset from Table 4 is the Fungi dataset that has 18 classes and the number of time steps is 201. This
dataset is very different from the Chinatown dataset, since we have multiple classes. Hence, one idea is to assess if
there are weights from one class that is similar to another class and if there are weights from one class that is dissimilar
to another class. To do this, we acquire the weights from each class and calculate the cosine similarity between all the
classes. The cosine similarity is defined as 𝑤⊤

1 𝑤2
| |𝑤1 | |2 | |𝑤2 | |2 where𝑤1 is the weights of one class and𝑤2 is the weights of

another class. In this scenario, class 5 is similar to class 16 while dissimilar to class 9. Figure 4 shows the weights for
each of these classes. Based on the cosine similarity, it is easier to perceive why class 5 and class 16 are similar. Plus, it
is easy to identify that class 5 and class 9 are dissimilar in their weights. Hence, if there is a prediction that was meant
for class 5 but went to class 9, this notion makes sense by looking at the weights.
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We show different weights from different classes of the same dataset, but now we want to assess if NV-RNN, NV-GRU,
and NV-LSTM prioritize on different time steps. This is done by using the Chlorine Concentration dataset, which has 3
classes and 166 time steps. From Table 1, each of these NV models had different test accuracies. Figure 5 shows the
different weights from these NV models for class 0. From Figure 5, all of these NV models have a similar positive
trend for the last few time steps. However, the middle time steps are where each of these NV models starts to differ
in prioritizing certain time steps. Hence, a benefit of the NV-RNN, NV-GRU, and NV-LSTM models is that you can
interpret which time steps are critical based on the weight value.

We use three datasets on how to interpret the NV-RNN models after they are trained. In addition, they can also
explain their predictions since for each class, the weight values are provided and linked to all of the hidden states.
Hence, with each NV-RNN model there is a formal manner to explain the predictions since we can acquire the hidden
state values for each time step and the weights for each class.

0 5 10 15 20

Time Step

0.06

0.04

0.02

0.00

0.02

M
ea

n 
W

ei
gh

t V
al

ue

Chinatown Class 0 Mean Weights

0 5 10 15 20

Time Step

0.02

0.00

0.02

0.04

0.06

M
ea

n 
W

ei
gh

t V
al

ue

Chinatown Class 1 Mean Weights

Fig. 2. (Left) NV-GRU weights for class 0. (Right) NV-GRU weights for class 1. For the Chinatown dataset, there are two classes and
the weights for each class are drastically different. Hence each class’s prediction focuses on different time steps. In regard to class 0,
the most important time steps are 4, 5, 6, and 7. In regard to class 1, the most important time steps are 0, 1, 2, and 3.
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Fig. 3. (Left) NV-GRU hidden state weights for class 0. (Right) NV-GRU hidden state weights for class 1. For the Chinatown dataset,
it has 24 time steps and the first hidden state starts at the top left and going from left to right where the last hidden state is in the
bottom right.

4.2 Case Studies

We provide different case studies on how to use NV-RNN to inspect which time steps are prioritized within the
application. With this insight, we observe how it provides additional understanding from the application.

DifferentWeight Initializations RNNs can be difficult to train. From [35], they state that early in the development
of RNNs they would experience the vanishing gradient or exploding gradient problems. This led to the advent of GRUs
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Fig. 4. (Left) NV-GRU weights for class 5. (Middle) NV-GRU weights for class 9. (Right) NV-GRU weights for class 16. For the Fungi
dataset, there are a total of 18 classes. Compared to class 5’s weights, class 9’s weights are one of the most different based on the
cosine similarity of the weights for each of these classes. For class 16, it is one of the most similar classes to class 5 based on the
cosine similarity of the classes. Inspecting the NV-GRU weights from the linear classifier can aid in interpreting which classes are
similar or dissimilar to each other.
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Fig. 5. (Left) NV-GRU weights for class 0. (Middle) NV-RNN weights for class 0. (Right) NV-LSTM weights for class 0. From Table 1,
each of the NV models had different test accuracies and by inspecting each of the models, the prioritization of the time steps
are different. The last time steps seem to have a similar trend for all of the NV models but the middle time steps have different
prioritizations.

and LSTMs. Even with the new gating architectures of GRUs and LSTMs, they can experience issues of learning. This
discovery leads others to figure out how to improve the performance. Others such as [22, 44] found that initializing the
𝑾 weight matrix of the RNN can help in performance. Hence, we can use NV-RNN to inspect what is happening with
the time step prioritization in regards to classification.

On the InsectWingbeat dataset, we perform an experiment to vary the weight initialization on the hidden-to-hidden
matrix. This matrix is different from the 𝑽 that is the linear classifier. We use the NV-GRU network to inspect how
that can affect the decision-making process. The three different weight initializations are orthogonal, identity, and
normal distributed. Figure 6 shows the three different weight initialization schemes and you can notice that the weight
initialization scheme using a normal distribution is focusing on different time steps compared to the same NV-GRU
model but with different weight initializations.

The two weight initializations, orthogonal and identity, look very similar in terms of time step prioritization with
Figure 7. In Figure 7, it is the default weight initialization for NV-RNN, NV-GRU, and NV-LSTM, which is uniform
initialization. Thus it is interesting that even with two different weight initializations, those weight initializations look
similar to each other. Yet, the normal initialization is vastly different in regard to the time step prioritization. Plus with
the NV-RNN model, it can explain why the performance is bad by looking at the time step weight prioritization. Hence,
even if the NV-RNN model is performing in a sub-optimal manner, we can inspect why it is performing in that manner.
Using a traditional RNN, GRU, or LSTM cannot provide this information.

Increasing the Depth (More Layers) [34] was one of the first works to take RNNs and make them deeper by
stacking RNNs to increase the depth. In [34], unfortunately in their work, they did not show any interpretation towards
how each depth aids in classification. There was one work [16] that used a deeper GRU for a chemical task. They
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Fig. 6. (Left) Orthogonal. (Middle) Identity. (Right) Normal. With the same NV-GRUmodel but having 3 different weight initializations
for𝑾 of the NV-GRU network. With different weight initializations, the distribution of the weights mapping to the time steps is
shown to be different. Hence weight initialization is important because even with similar performance, by looking inside of the linear
weights can provide insight into what the network is deciding for classification in regards to class 2.
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Fig. 7. (Left) NV-GRU weights across time. (Middle) NV-RNN weights across time. (Right) NV-LSTM weights across time. All three
different NV-RNN models display the weights of time to show for this class which time steps are the most significant. NV-GRU and
NV-LSTM seem to behave in a similar manner while NV-RNN has a different way of prioritizing the time steps.

provide interpretability through a mask but unfortunately it lacks sufficient detail in how each RNN in the deep RNN is
aiding in classification. This is where NV-RNN can aid and show how each RNN (layer) is prioritizing the time steps in
terms of classification.

From Table 1, we focused on one layer RNNs and NV-RNNs, but now we want to assess how increasing the depth of
an NV-GRU model will show which time steps are prioritized. The question to inspect is if for every layer, will the
time step prioritization be similar to the previous layers? Also, at a certain depth, will the time step prioritization be
different from the previous layers? We can do this by looking at the weights of a NV-RNN model. In this analysis, we
used the Rock dataset which has 2844 time steps and 4 classes. We have 4 different NV-GRU models where each one
has varying depth. The first one starts at a depth of one and each additional model increases by an additional depth.
Hence the last NV-GRU model has a depth of 4.

When comparing the test accuracy of the different depths of NV-GRU to GRU and average pooling GRU, the NV-GRU
models would outperform the GRU and average pooling GRU. When testing the performance among different hidden
states like 32, 64, and 128, NV-GRU would have a test performance of 76%, 76%, and 76% for the depths of 2,3,4. This
is the same performance as noted for a one-layer NV-GRU for the same dataset. For the GRU and average pooling
GRU, the best test performance for depths of 2, 3, and 4 were 68%, 72%, and 66%. Thus, for different depths, NV-GRU is
outperforming.

Figure 8 shows the time step weights for four different NV-GRU models with different depths. With NV-GRU, we can
answer that question in a quantitative manner if the time step prioritization is similar among the different layers of
the NV-GRU model. The answer is no and this makes sense since the input to the next layer is the previous layer’s
representation. For some time steps, there is some manner of consistency like with the NV-GRU models of 2, 3, or 4
layers where the beginning time steps are close to zero. Then the time step prioritization will vary towards the end of
the time steps.
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Bidirectional RNNs There are some RNNs that were developed that are bidirectional such that the RNN will learn
in two directions. One direction is in a causal manner (forward) going from the beginning of the input to the end of it.
While the other direction is in a non-causal manner (reverse) where it begins at the end of the input and ends at the
beginning of the input. Equation 5 details how an RNN will use both the forward and reverse hidden states. Thus the
aspect for NV-RNN is to adapt it to the bidirectional variant and to inspect the weights. By inspecting the weights, we
can assess how the time steps are prioritized in either direction. One question to answer is if the time steps of either
direction will be symmetrical to each other?

There are works from [26, 39] that have used bidirectional RNNs to aid performance in their respective task. For
interpretability, they use the attention weights to show how a given input is being classified. Yet in their interpretability,
they cannot provide how each direction in the RNN is aiding for the classification. This lack of directional interpretability
is where NV-RNN will help and can answer the questions mentioned above.

For the bidirectional analysis, we use an NV-GRU model that allows the bidirectional nature. We use the Rock dataset
which has 2844 time steps and 4 classes.

When comparing a bidirectional NV-GRU with a bidirectional GRU and average pooling GRU, the bidirectional
NV-GRU outperformed in test accuracy. Among the different hidden state sizes of 32, 64, and 128, the best test accuracy
for bidirectional NV-GRU is 76% while for GRU is 72% and average pooling GRU is 66%. Even for the bidirectional
variant, NV-GRU is outperforming.

Figure 9 shows the time step prioritizations for the bidirectional NV-GRU. With this NV-GRU model, we can assess if
the time steps prioritized from both directions will be symmetrical. The answer is that there is evidence that we do not
see this notion and we can see that in a visual and quantitative manner (Figure 9). Looking at the vertical columns for
each direction, each direction does not have the same prioritization.
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Fig. 8. (Top Left) NV-GRU weights for class 0. (Top Right) NV-GRU (2 Layers) weights for class 0. (Bottom Left) NV-GRU (3 Layers)
weights for class 0. (Bottom Right) NV-GRU (4 Layers) weights for class 0. By increasing the number of layers for the NV-GRU model,
the prioritization of time steps is not consistently the same among all the layers. Each vertical column is the weight value at that time
step.
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Fig. 9. (Left) NV-GRU weights for class 0. (Right) Bidirectional NV-GRU weights for class 0. The forward and reverse prioritizations of
time steps looks very similar. Each vertical column is the weight value at that time step.

Sentiment Analysis The previous datasets that were shown consisted of time-series data. Now we will use a movie
review dataset [28] with three embedding techniques, Word2Vec [30], Fasttext [6], and GloVe [36], to convert each word
into an embedding vector. Since NV-RNN is versatile, we can inspect how the weights for each class are prioritized for
text data. In this dataset, the task is sentiment classification where one class is positive sentiment and the second class
is negative sentiment.

Other works have provided different forms of understanding the differences of these embedding techniques. [41]
show the similarities of GloVe and a skip-gram Word2Vec in a mathematical manner. [33] use a couple of evaluation
tasks like correlation to show the differences or similarities of these embedding techniques. [42] uses eigenvector
analysis to compare the embedding vectors to assess how the words cluster together. Yet, all of these techniques cannot
link the time steps to the class, which is what NV-RNN will show.

Table 2 shows the performance and in this scenario, NV-GRU performs on par. Note that for this dataset, there are
reviews of variable length so for a GRU the last hidden state per review is the input to the linear classifier. However, for
NV-GRU, padding has to be applied since the input for the linear classifier has to be of fixed size. Hence, it does explain
the small drop in performance. As for padding, we only used the first 1,000 words of the review. With reviews that are
smaller than 1,000 words, zero padding would be applied. Hence, there can be a good parameter to pad the reviews.
Even with this disadvantage, NV-GRU is still on par and only loses one to two percent of test accuracy.

Figures 10, 11, and 12 display the weights for each class. Even though there are three different embedding techniques,
Word2Vec, FastText, and GloVe, it seems that the prioritization for the time steps in each embedding looks to be quite
similar in the broad general sense. For the negative sentiment class, it is interesting how with all the embedding inputs,
the last time steps are negative. This does make sense since FastText is a continuation of Word2Vec except for the case
that FastText will approximate words that are not in the dictionary of words that it had learned. It is interesting how
the GloVe embedding looks to have similar broad time step prioritization since it is a matrix factorization technique
compared to Word2Vec and FastText. There are very specific differences based on the magnitudes but in a general
manner all the embedding techniques for the input will result in the same general trend for each class in terms of the
weights.

From Figures 10 and 11, we provide another experiment to see which words are tied to the highest weights based on
the time step index. To reduce the amount of reviews, we only look at the top 5 reviews for each class based on the
pre-softmax score. In addition, we look at the top 10 weights per class. When inspecting the words for each class, we
find pronouns and prepositions. However, one particular notion we inspect is particular words for each class. For the
negative sentiment class, we observe the words, bad, dodgy, unpleasant, and pointless from the time steps with the
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highest weights. For the positive sentiment class, we observe the words, mature, happy, perfect, and top. We would
hope to observe this notion because if the class is centered around negative sentiments, then the words that should be
linked to the class would be bad words. The same notion applies to the positive sentiment class. Also, we did observe
that for the positive sentiment class, we did not notice any negative sentiment words like bad or terrible.
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Fig. 10. (Left) NV-GRU weights for class 0. (Right) NV-GRU weights for class 1. For the Movie Review dataset, there are two classes
and the weights for each class are drastically different. In addition, the input is the Word2Vec embedding of each word per time step.
Compared to continuous time-series data, the prioritization of time steps is not as smooth compared to datasets with continuous
data.
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Fig. 11. (Left) NV-GRU weights for class 0. (Right) NV-GRU weights for class 1. For the Movie Review dataset, there are two classes
and the weights for each class are drastically different. In addition, the input is the FastText embedding of each word per time step.
Compared to continuous time-series data, the prioritization of time steps is not as smooth compared to datasets with continuous
data.

Video Action Recognition In this application, the input to the network is a collection of images from a video. The
task is to predict which of the actions is presented in the video where the dataset is UCF11 [25]. In Table 3, we show
that the NV models are outperforming and we inspect the NV-CNN-GRU model. Note that in this scenario we are
concatenating both the CNN filter units and the GRU hidden states.

There have been works such as [11, 29] to provide interpretability with video action recognition with CNN-LSTM
models. Yet, one of the main issues is that they cannot explain which part, the CNN or LSTM is contributing to the
classification. This is where NV-CNN-GRU is able to provide both interpretability and explainability.

In Figure 13, we see that the mean positive weights are towards the CNN filter units as opposed to the GRU hidden
states. This is interesting to notice that most of the hidden state time step mean weights are negative. This does make
sense since the model is sequential and the NV-GRU is depending on the CNN’s features. In addition, the dataset sampler
is sampling 50 sequential frames and most of the videos contain more than 50 frames. Thus, the impression is that the
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Fig. 12. (Left) NV-GRU weights for class 0. (Right) NV-GRU weights for class 1. For the Movie Review dataset, there are two classes
and the weights for each class are drastically different. In addition, the input is the GloVe embedding of each word per time step.
Compared to continuous time-series data, the prioritization of time steps is not as smooth compared to datasets with continuous
data.

hidden states may not be providing as much useful information as the CNN. From this work, [24], there is evidence that
video action recognition datasets tend to have visual bias so it does make sense that with the NV-CNN-GRU model,
it has more positive weights towards the spatial information. Given this information, there could be future work to
mitigate the CNN/GRU prioritization while retaining the accuracy. Ideas from this work, [32], could aid in mitigating
the prioritization.
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Fig. 13. Time step prioritization and filter unit prioritization (Class 5) for the NV-CNN-GRU model for UCF11. For this model, the
positive mean weights are for the first layer of the CNN portion. Here the time step mean weights are negative.

Counterfactuals There have been works [5, 7, 37, 45] in using counterfactuals to understand how the RNN is
performing. [5, 7, 37] use the counterfactuals for regression applications with RNNs. While [45] uses the counterfactuals
for classification applications with RNNs.

From the interpretability and explainability that NV-RNN provides, we can create counterfactuals called Time Analysis.
With each class having a unique set of weights per time step, we look at the mean hidden state weights per time step
and set the topK time steps to zero. The idea is that the performance should drop if the information from the time-series
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Table 4. Performance of the model with Time Analysis. From NV-GRU we inspect which time steps contribute to each class by
their weight value. In the Chinatown dataset, we remove the top weights for each class and calculate the overall class accuracy.
Immediately, the test accuracy drops but then will come back up.

Network # of Time Steps Test Accuracy
NV-GRU 0 96.4
NV-GRU 1 72.7
NV-GRU 5 43.87
NV-GRU 10 89.5

data related to the time step is omitted. it will make it harder for the classifier to perform adequately. We set the top K
time steps to zero to evaluate the degradation of the per-class accuracy.

For Time Analysis, we utilize the information we learned from Figure 2, which shows that for each class there were
about 5 top positive time steps. In Table 4, this confirms that if we set those time steps to 0, then the class accuracy will
drop. The interesting aspect is that after we remove more time steps, the class accuracy will increase but never get to
the level of the original test accuracy. Note that this accuracy is for one of the NV-GRU models that did not achieve the
best accuracy listed in Table 1. The reason for this dip is that we are now eliminating the negative time steps so it will
affect the classification decision. Additional experiments are in the Supplementary Material Section in A.4 where there
are individual class performance results.

5 CONCLUSION

We propose a novel model, NV-RNN, as an alternative to traditional RNNs that has superior to on par performance
to RNNs under multiple datasets. NV-RNN can provide interpretability and explain the prediction in a mathematical
formulation. NV-RNN has the potential to be used in a wide array of different RNN applications. With its generic
framework, it is used to show the connection between all of the hidden states and the classification. Thus, there are
other scenarios within the scope of RNNs where it can provide additional understanding where typical RNNs are
unable to provide. Overall, this type of interpretability and explainability is helpful to understand what is happening.
In addition, with the concatenation of all the hidden states, it enables us to understand more and in most cases have
higher performance.
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A SUPPLEMENTARY MATERIAL

A.1 Architecture descriptions

In this section, we provide the recursive block computation of other recurrent architecture variants that has been used
in this paper. To convert each model to it’s NeuroView version, we concatenate all hidden states 𝒉(𝑡 ) (𝒙) and calculate
the output using as described in Equation 12.

A.1.1 Gated Recurrent Unit (GRU).

𝒓 (𝑡 ) (𝒙) = 𝜙 (𝑾𝑖𝑟𝒙𝑡 + 𝒃𝑖𝑟 +𝑾ℎ𝑟𝒉
(𝑡−1) (𝒙) + 𝒃ℎ𝑟 ) (14)

𝒛 (𝑡 ) (𝒙) = 𝜙 (𝑾𝑖𝑧𝒙𝑡 + 𝒃𝑖𝑧 +𝑾ℎ𝑧𝒉
(𝑡−1) (𝒙) + 𝒃ℎ𝑧) (15)

𝒏(𝑡 ) (𝒙) = tanh(𝑾𝑖𝑛𝒙𝑡 + 𝒃𝑖𝑛 + 𝒓 (𝑡 ) (𝒙) ⊙ (𝑾ℎ𝑛𝒉
(𝑡−1) (𝒙) + 𝒃ℎ𝑛)) (16)

𝒉(𝑡 ) (𝒙) = (1 − 𝒛 (𝑡 ) (𝒙)) ⊙ 𝒏(𝑡 ) (𝒙) + 𝒛 (𝑡 ) (𝒙) ⊙ 𝒛 (𝑡−1) (𝒙), (17)

where 𝜙 (𝛼) = 1
1+𝑒 (−𝛼 ) is the sigmoid function and ⊙ is the Hadamard product.

A.1.2 Long Short-Term Memory (LSTM) .

𝒊 (𝑡 ) (𝒙) = 𝜙 (𝑾𝑖𝑖𝒙𝑡 + 𝒃𝑖𝑖 +𝑾ℎ𝑖𝒉
(𝑡−1) (𝒙) + 𝒃ℎ𝑖 ) (18)

𝒇 (𝑡 ) (𝒙) = 𝜙 (𝑾𝑖 𝑓 𝒙𝑡 + 𝒃𝑖 𝑓 +𝑾ℎ𝑓 𝒉
(𝑡−1) (𝒙) + 𝒃ℎ𝑓 ) (19)

𝒈 (𝑡 ) (𝒙) = tanh(𝑾𝑖𝑔𝒙𝑡 + 𝒃𝑖𝑔 +𝑾ℎ𝑔𝒉
(𝑡−1) (𝒙) + 𝒃ℎ𝑔) (20)

𝒐 (𝑡 ) (𝒙) = 𝜙 (𝑾𝑖𝑜𝒙𝑡 + 𝒃𝑖𝑜 +𝑾ℎ𝑜𝒉
(𝑡−1) (𝒙) + 𝒃ℎ𝑜 ) (21)

𝒄 (𝑡 ) (𝒙) = 𝒇 (𝑡 ) ⊙ 𝒄 (𝑡−1) (𝒙) + 𝒊 (𝑡 ) ⊙ 𝒈 (𝑡 ) (𝒙) (22)

𝒉(𝑡 ) (𝒙) = 𝒐 (𝑡 ) (𝒙) ⊙ tanh(𝒄 (𝑡 ) (𝒙)) (23)

A.2 Hyperparameter Optimization

From Table 1, the results were taking the best model among different hidden states sizes which were 32, 64, and 128.
The optimizer used is Adam. The learning rate is 0.001. The number of epochs is 1000.

For Large Movie Review dataset, we first preprocess the text by converting it to lowercase, removing all numbers,
punctuation and special characters. Then for Word2Vec and Fasttext embedding method, we use dimensionality of 100
for word vectors. We count all words that appear at least once into our vocabulary, resulting in a vocabulary of size
122,762. Within the model training, the maximum distance between the current and predicted word within a sentence is
5. Both models are trained with the movie review dataset itself without any pre-training process. For GloVe embedding,
we use a pre-trained model GloVe.6B whose embedding is trained on Wikipedia 2014 and Gigaword 5th Edition corpora

with 6 billion word tokens and 400,000 vocabulary size. We use the word embedding dimension of 100 so that it is
consistent with other embedding methods.

In training the models in Table 2, the three different hidden state sizes used were 32, 64, and 128. The models were
trained for 20 epochs. The optimizer used is Adam. The learning rate is 0.001. The batch size is 100.

In training the models in Table 3, the hidden state size is set to 32. The number of epochs is 100. The learning rates for
NV-CNN-RNN, NV-CNN-GRU, and NV-CNN-LSTM were set to 0.001 while the learning rates for CNN-RNN, CNN-GRU,
and CNN-LSTM were set to 0.0001. The CNN architecture used was a 3 layer CNN with each CNN layer having a
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max-pooling layer placed after the CNN layer. The first CNN layer had an input of 3 channels and an output of 32
channels with a kernel size of 3 and padding of 1. The second CNN layer had an input of 32 channels and an output of
64 channels with a kernel size of 3 and a padding of 1. The third CNN layer had an input of 64 channels and an output
of 64 channels with a kernel size of 3 and padding of 1. The activation function used is a ReLU. Every max pooling
parameter would pool by a factor of 2. The input size for all the RNNs, GRUs, and LSTMs would be 28*28*64.

A.3 Ablation Studies

We conduct ablation studies for different hidden state dimension of 32, 64, 128 for all the models mentioned in Table 1.
The results can be found in Table 5, Table 6 and Table 7.

Table 5. An ablation study of NV-RNN, NV-GRU, and NV-LSTM models with hidden state sizes of 32, 64, 128.

Data set NV-GRU32 NV-GRU64 NV-GRU128 NV-RNN32 NV-RNN64 NV-RNN128 NV-LSTM32 NV-LSTM64 NV-LSTM128
Adiac 68.28% 64.45% 68.03% 68.79% 64.96% 69.56% 68.03% 71.35% 74.68%
BME 98.66% 98.66% 98.66% 98.66% 99.33% 98.66% 98.66% 98% 98.66%
CBF 95.66% 98% 98.44% 97.77% 96% 97.44% 98.11% 98.22% 98.55%
Chinatown 96.5% 97.08% 97.08% 97.95% 97.08% 97.95% 98.54% 98.54% 98.25%
Chlorine Concentration 74.58% 75.44% 78.15% 80.33% 82.21% 83.95% 68.82% 69.01% 72.39%
Fungi 98.92% 97.84% 96.23% 96.77% 96.23% 94.08% 98.92% 99.46% 98.38%
Ham 80.95% 78.09% 79.04% 78.09% 75.23% 78.09% 77.14% 77.14% 78.09%
Haptics 46.1% 45.77% 45.45% 47.07% 45.12% 46.42% 45.45% 45.77% 44.8%
Herring 71.87% 73.43% 68.75% 68.75% 68.75% 68.75% 68.75% 68.75% 67.18%
InsectRT 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectST 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectWingbeat 64.54% 64.39% 64.04% 63.98% 64.19% 64.29% 63.58% 63.88% 63.73%
Meat 91.66% 96.66% 95% 95% 93.33% 96.66% 96.66% 93.33% 93.33%
OliveOil 93.33% 93.33% 90% 90% 93.33% 93.33% 90% 93.33% 93.33%
Plane 98.09% 98.09% 100% 99.04% 98.09% 97.14% 97.14% 99.04% 99.04%
Rock 68% 70% 76% 76% 80% 72% 82% 74% 80%
SmoothSubspace 96% 94.66% 95.33% 90.66% 91.33% 90.66% 94% 90% 90%
Synthetic Control 99.33% 98.66% 98.66% 99.33% 98.33% 99.66% 99.33% 98.33% 99%
UMD 100% 100% 100% 100% 100% 100% 100% 100% 100%
Wine 100% 98.14% 100% 100% 100% 100% 100% 100% 96.29%

A.4 Additional Counterfactuals

Table 8 shows the results of using Time Analysis on the test dataset. By focusing on one class at a time, we can
quantitatively assess how perturbing the time steps within the data can affect the performance. With one time step
modified, the accuracy dropped by one percent. When we started to set more of the input data at certain time steps to
zero, the accuracy would continue to drop.

One interesting observation is to see which time steps have a negative mean value and to set the most negative
weights to zero. Table 9 displays the test accuracy for the negative Time Analysis. The test accuracy will remain the same,
but when ten input data time steps are set to zero the test accuracy of that class has increased. Hence the interpretability
of this model can provide these insights and practitioners can develop test cases for their data to understand what
happens if you perturb the data to certain degrees.
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Table 6. An ablation study of RNN, GRU, and LSTM models with hidden state sizes of 32, 64, 128.

Data set GRU32 GRU64 GRU128 RNN32 RNN64 RNN128 LSTM32 LSTM64 LSTM128
Adiac 30.69% 36.82% 37.08% 31.2% 35.8% 33.75% 39.13% 49.61% 48.33%
BME 93.33% 94.66% 92.66% 77.33% 88.66% 74% 80% 76.66% 78%
CBF 76.44% 81.66% 94.55% 60.66% 56.66% 57.22% 90% 87.11% 84.55%
Chinatown 96.79% 97.37% 97.37% 74.34% 72.59% 72.01% 97.66% 97.66% 97.66%
Chlorine Concentration 58.07% 60.1% 59.74% 56.48% 57.16% 58.17% 56.71% 57.31% 57.73%
Fungi 43.54% 50.53% 58.6% 49.46% 47.31% 46.23% 45.16% 67.2% 68.81%
Ham 68.57% 67.61% 68.57% 68.57% 69.52% 69.52% 69.52% 69.52% 67.61%
Haptics 41.23% 41.55% 40.25% 37.33% 40.58% 42.2% 38.31% 41.23% 41.88%
Herring 65.62% 65.62% 67.18% 65.62% 67.18% 67.18% 68.75% 65.62% 67.18%
InsectRT 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectST 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectWingbeat 44.34% 48.98% 49.34% 26.61% 28.93% 27.87% 38.68% 43.58% 28.73%
Meat 45% 45% 50% 48.33% 48.33% 45% 50% 46.66% 41.66%
OliveOil 50% 40% 40% 46.66% 40% 40% 40% 40% 40%
Plane 68.57% 67.61% 79.04% 59.04% 62.85% 89.52% 87.61% 91.42% 95.23%
Rock 68% 74% 64% 64% 62% 60% 62% 68% 66%
SmoothSubspace 89.33% 89.33% 89.33% 91.33% 90.66% 90.66% 88.66% 90% 90.66%
Synthetic Control 98% 98.66% 97.33% 79% 98% 99.66% 96.33% 98.33% 98.33%
UMD 66.66% 88.88% 99.3% 74.3% 65.97% 66.66% 65.27% 86.8% 67.36%
Wine 59.25% 55.55% 55.55% 57.4% 59.25% 50% 62.96% 53.7% 59.25%

Table 7. An ablation study of RNN-AVG, GRU-AVG, and LSTM-AVG models with hidden state sizes of 32, 64, 128.

Data set GRU-AVG32 GRU-AVG64 GRU-AVG128 RNN-AVG32 RNN-AVG64 RNN-AVG128 LSTM-AVG32 LSTM-AVG64 LSTM-AVG128
Adiac 15.85% 19.18% 31.45% 10.23% 9.46% 7.92% 7.67% 16.87% 9.2%
BME 84% 84% 84.66% 84% 72% 81.33% 64% 84.66% 84%
CBF 98.33% 98.66% 97.66% 97.33% 96.22% 96.66% 98% 99.77% 97.44%
Chinatown 98.25% 97.66% 98.25% 98.54% 98.83% 98.83% 98.54% 98.54% 98.54%
Chlorine Concentration 56.38% 56.87% 57.05% 55.39% 55.44% 55.07% 55.65% 55.88% 55.2%
Fungi 39.78% 48.92% 58.6% 40.86% 46.23% 60.21% 58.6% 58.06% 75.26%
Ham 75.23% 81.9% 77.14% 74.28% 73.33% 71.42% 80.95% 75.23% 77.14%
Haptics 38.63% 42.53% 44.48% 32.79% 33.11% 33.76% 34.74% 41.88% 39.61%
Herring 62.5% 65.62% 65.62% 67.18% 64.06% 59.37% 60.93% 64.06% 68.75%
InsectRT 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectST 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectWingbeat 26.26% 46.41% 44.69% 28.48% 23.03% 26.16% 32.47% 32.72% 39.94%
Meat 66.66% 68.33% 86.66% 66.66% 66.66% 65% 81.66% 66.66% 65%
OliveOil 40% 40% 80% 40% 40% 40% 40% 40% 40%
Plane 65.71% 93.33% 98.09% 65.71% 59.04% 62.85% 69.52% 70.47% 68.57%
Rock 52% 54% 62% 52% 56% 50% 50% 56% 60%
SmoothSubspace 91.33% 88% 88% 89.33% 90% 90.66% 86.66% 84% 86%
Synthetic Control 94.66% 92.33% 95.66% 88% 85.33% 94.33% 96% 95.66% 97.33%
UMD 66.66% 84.72% 92.36% 66.66% 75% 72.91% 70.83% 72.22% 72.22%
Wine 79.62% 72.22% 66.66% 75.92% 61.11% 66.66% 74.07% 72.22% 66.66%
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Table 8. Performance of the model with Time Analysis with the Insect Wingbeat dataset. From NV-LSTM we inspect which time
steps correspond to the most significant positive weights. From there we set the input data at those time steps to zero. As we set
more of the time indices to zero, the test performance will start to decrease more and more.

Network Class # of Time Steps Per Class Accuracy
NV-LSTM 0th 0 81.1
NV-LSTM 0th 1 80.0
NV-LSTM 0th 5 77.2
NV-LSTM 0th 10 70.0
NV-LSTM 0th 15 70.0
NV-LSTM 0th 20 68.3
NV-LSTM 0th 25 65.5
NV-LSTM 0th 30 61.1

Table 9. Performance of the model with Time Analysis with the Insect Wingbeat dataset. From NV-LSTM we inspect which time
steps correspond to negative weights we can set the input data to those indices to zero. When we set at least 10 of them, we see that
the class’s test accuracy increases. From the previous table, setting the time indices from the positive weights would decrease the
performance, but here we see the opposite effect.

Network Class # of Time Steps Per Class Accuracy
NV-LSTM 0th 0 81.1
NV-LSTM 0th 1 81.1
NV-LSTM 0th 5 81.1
NV-LSTM 0th 10 82.2
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