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Progressive visual analytics allows users to interact with early, partial results of long-running computations
on large datasets. In this context, computational steering is often brought up as a means to prioritize the
progressive computation. This is meant to focus computational resources on data subspaces of interest so as
to ensure their computation is completed before all others. Yet, current approaches to select a region of the
view space and then to prioritize its corresponding data subspace either require a one-to-one mapping be-
tween view and data space, or they need to establish and maintain computationally costly index structures to
trace complex mappings between view and data space. We present steering-by-example, a novel interactive
steering approach for progressive visual analytics, which allows prioritizing data subspaces for the progres-
sion by generating a relaxed query from a set of selected data items. Our approach works independently of
the particular visualization technique and without additional index structures. First benchmark results show
that steering-by-example considerably improves Precision and Recall for prioritizing unprocessed data for a
selected view region, clearly outperforming random uniform sampling.
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1 INTRODUCTION

Progressive visual analytics (PVA) is a way to bring the user into the loop of long-running
computations by visualizing intermediate results well before the final result is available [3]. This
is particularly helpful when the dataset under analysis is very large, the computation run over that
data is very complex, or, even worse, when both are true, in short, whenever running the entire
analysis would take too long. PVA allows not only monitoring the running computation but also
canceling it ahead of time once a good-enough result is shown [16], which user evaluations have
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shown to significantly outperform using “blocking,” non-progressive systems in terms of insights
gathered [34]. One of the most promising uses of PVA is for computational steering where the
intermediate results are used by an analyst to identify subspaces of interest on which to focus the
computational resources so as to prioritize their computation [19, 26].

From early on when computational steering was proposed, it was inherently tied to direct ma-
nipulation [27, 30]. Yet when wanting to use direct manipulation to steer a running computation in
a PVA scenario, one quickly discovers a problem: Say, for example, we want to steer the computa-
tion by brushing a region in the still unfinished visualization of all computation results. Brushing
that region would then mean to prioritize the data items inside so as to focus computational re-
sources on that region and to complete the processing and rendering of the data items inside before
all other parts of the visualization. Yet to give them this preferential treatment, we already would
need to know which data items will in the end be mapped into that region, i.e., we would need the
visualization already to be completed to determine those data items.

Existing computational steering approaches for PVA deal with this conundrum either by cir-
cumventing it using a one-to-one mapping between data space and view space, or they maintain
a spatial index structure over the data to perform such a reverse-lookup from view space region
to data subspace. A one-to-one mapping is used by the Sherpa system [9] that limits itself to chart
types, which employ data attributes as axes, e.g., scatterplots and line charts, whereas the spatial
index is used for progressive multidimensional scaling [29]. The index structure provides a bin-
ning of data items—those that are already rendered are binned based on their position in view
space and those not yet rendered are binned based on their distance to the already rendered items
in data space. Every now and then, a rebinning occurs that (1) updates the bins of newly ren-
dered data items based on their now available position in view space, (2) subdivides overcrowded
bins into smaller ones, and (3) recomputes the binning of the remaining unrendered data items
based on these changes. As the bins are defined in view space, they can be overlaid as a gridlike
structure on the projection, and the user can select individual bins to prioritize their associated,
unrendered data items in the progression. Both of these approaches pose considerable limits: The
one-to-one mapping greatly reduces the visualization possibilities to only those visual represen-
tations that use data dimensions as visual dimensions, whereas spatial indexing requires periodic
updates to keep current with respect to any newly rendered data. As each of these updates incurs
a full pass over the data, this limits the applicability of this approach to only moderately sized
datasets.

In this article, we propose a third approach to this problem that can be utilized for progressive
computations over multivariate, numerical data whenever other steering approaches fail, i.e., when
no one-to-one mapping between view and data space exists and when the dataset is too large for
periodic updates. This third approach relies on the idea of “query by example,” where we use
the data items already inside a selected region to find those that are similar and thus likely to
be drawn in the selected region as well. To that end, we make use of decision tree classifiers,
which have already proven useful for estimating user interest in data subspaces in non-progressive
scenarios [10, 12]. The main idea is to train a decision tree that discerns between those data items
already rendered inside the selected region and those outside of it. We then use the tree’s decision
rules to form SQL queries that return more, unrendered items of the “inside” case. To this end, we
make the following contributions to the field of PVA:

e We introduce steering-by-example as an application of query-by-example for prioritiz-
ing data subspaces of interest based on selections in view space during incremental
computations.
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e We present a quantitative validation of steering-by-example in a series of benchmarks, show-
ing that it significantly outperforms random uniform sampling in retrieving data for a given
selected region in view space.

e We present ProSteer, an experimental visual environment for exploring steering-by-example,
which is available as open source.

2 RELATED WORK

PVA divides long-running computations into small steps. As a result, analysts using PVA can in-
teract with this ongoing process and adjust it while it is still running, facilitating progressive data
exploration. According to Mithlbacher et al. [19], such interactions with an ongoing computation
can be distinguished into two groups: result control (what the computation does) and execution
control (how the computation does it).

Result control is defined as any “interaction with the ongoing computation to steer the final re-
sult” [19]. This encompasses, for example, the early validation of a result being computed and a
potential reparametrization of the computation if the result does not meet the analyst’s expecta-
tions. One type of result control is the inner result control, which is based on partial results being
generated by an ongoing computation that can then be adjusted on the fly. The existing literature
in PVA has particularly looked at the implications for UI design incurred by adjusting the param-
eters of a computation while it is running [5]. Complementary to this type of result control, there
can also be outer result control, which is based on final results generated by multiple computations.
Instances of this type are TPFlow [15] and the work by Xie et al. [31], which gradually lead ana-
lysts from a computation that produces an overview visualization toward computations that bring
out increasingly more detailed patterns in data subspaces.

Execution control is defined as “any kind of control of the execution of the ongoing computation
of the process as such” [19]. The first type of execution control and often cited benefit of PVA is
the ability to cancel the computation early on, once a good-enough result has been obtained. Early
cancellation has been an integral part of PVA from its inception [26] and has subsequently been
shown to increase analysts’ efficiency in the analysis [34]. Its main challenge is the potential to
cancel a computation too early while larger changes to the result are still inbound. PVA research
has thus looked at approaches to recover from such situations [13, 17]. A second type of execution
control is prioritization, which refers to adjusting the order in which data are processed by a
progressive computation. The idea is that data of higher interest to the user should be processed
before data of lesser interest, so that the generated partial results will reflect data of interest as
early as possible. This form of control is also called interactive steering. State-of-the-art steering
approaches include Sherpa [9] and MDSteer [29].

Outside the field of PVA, there exist some approaches to facilitate prioritization. ForeCache [6]
and IncVisage [23] are examples of interactive approaches for prioritizing data, while explore-
by-example [10] is used to steer queries in a progressive context. In particular, the latter is of
interest because of its general applicability: It extracts decision tree rules from a set of exem-
plars denoted by the user as being of interest. It then uses these rules to prioritize similar data
elements.

Putting our approach of steering-by-example in this context, it is a method for execution
control—specifically for prioritization of relevant data in the processing order. To do so in a generic
way that does not depend on the type of visual mapping (as Sherpa [9] does) or on the ability to
compute and maintain a spatial index (as MDSteer [29] does), our steering-by-example approach
follows the idea put forth in the explore-by-example approach [10] and employs decision trees for
prioritizing data items of interest.
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3 THE STEERING-BY-EXAMPLE APPROACH

Next, we present steering-by-example as an approach for prioritizing subspaces of data in pro-
gressive visualization based on selections in view space. The following sections first introduce
the scenario that steering-by-example addresses and then outline the algorithmic steps of our ap-
proach. Finally, some practical extensions to the general approach are discussed, which become
relevant when implementing steering-by-example in a PVA system.

3.1 The Steering-by-Example Scenario

In the following, we denote the situations that benefit from our approach. To that end, we assume
a function f that transforms a dataset D into D’ with D’ c R?. As we are specifically proposing
steering-by-example for PVA, the computation of f should be complex enough to warrant the use
of progression for a dataset of size |D|. Apart from this basic setup, steering-by-example makes no
further assumptions about f. This makes steering-by-example a good fit for scenarios in which
the details of f are either unknown due to the use of closed source software, or unspecified as
would be the case when implementing a generic PVA library that is to work with any conceivable
user-defined visualization technique. In its generality, the steering-by-example scenario specifi-
cally includes the following three cases:

(1) The dataset size |D| is too large to iterate over D multiple times, effectively prohibiting
its binning and re-binning into a spatial index, as it is done for the steerable, progressive
MDS [29].

(2) The function f~! : D’ — D is unknown or does not exist at all (for instance when f’s bijec-
tive property cannot be guaranteed due to dimensionality reduction), effectively prohibiting
the direct lookup of all data items in a selected region of interest of D’, as it is done for
one-to-one mappings [9].

(3) Thefunction f is governed by a set of changing query parameters {pi, . .., px}, e.g., user loca-
tion or date and time, that makes it impossible to precompute f for a wide range of possible
data values from D and store the results for a table-based, reverse look-up of D’ — D.

Steering-by-example is able to handle these scenarios by (1) touching each data item at most
once, (2) being agnostic about the used visualization, and (3) being computationally inexpensive
enough to be used for highly context-dependent, ad hoc analysis scenarios. Or even more suc-
cinctly: When all existing methods fail, steering-by-example is still applicable.

3.2 Description of the Approach

Next, we describe the steering-by-example method along its four phases. Each phase corresponds
to a distinct state of the underlying decision tree classifier that drives our approach. We use a
decision tree as underlying classification model, which work by Dimitriadou et al. [10] has shown
to perform well for data exploration, due to the following properties: (1) It can be trained quickly
for interactive use, (2) it produces sufficiently powerful classification models from relatively small
inputs, allowing its use early on during the progression, and most importantly, and (3) its model
can be easily translated into SQL rules. Other classification techniques like SVM or deep neural
networks do not fulfill these requirements, in particular the latter. A state diagram of the approach
is depicted in Figure 1. The four phases are as follows:

(1) The non-steering phase is the default phase in which the user has either not yet selected
a view region of interest or no further data items in the dataset D match the last steering

query.
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Fig. 1. State diagram depicting the four phases of steering-by-example and the transitions between them.

(2) The activation phase is when data items are labeled for training based on whether they are
located inside or outside a selected region of interest.

(3) The training phase is when the decision tree classifier is trained based on the labeled data
items.

(4) The steering phase, in which a query approximating the characteristics of data items inside
the selected view region is constructed from the decision tree rules and used to retrieve more
data items likely to fall into that region.

We describe these phases in more detail below, explaining the main goal of each phase and the
conditions for transitioning between them.

(1) Non-steering Phase: Initially, the PVA system does not have any indication by the user what
data is of interest, as no selection has been made in the view space.

The goal of this initial phase is thus to give the users a first look at the data, allowing them
to identify interesting regions that should be prioritized. Since the user interest is open at this
point, this phase of steering-by-example uses a default sampling method of the dataset D based
on the query parameters {py,...,pr} to retrieve the next chunk of data, and the retrieved data
items are not yet labeled as relevant or not. In our case, this default sampling method is random
uniform sampling. In addition to being the first phase a PVA system runs after launch, the non-
steering phase also functions as fallback for the steering phase, once all data items that match the
approximate steering query have been retrieved. Then, the system will continue to retrieve further
data items from D using default sampling. This “falling back” essentially resets the steering-by-
example algorithm.

(2) Activation Phase: Once the user selects a region of interest, the system enters the activation
phase. This selection can be made through any interaction in view space that identifies a region
that the user is interested in. In our case, we use brushing directly on a two-dimensional render-
ing pane, notwithstanding that the approach could also work for other selection methods nor for
higher dimensions, such as three-dimensional volumetric renderings provided a suitable brushing
mechanism [14, 32]. As the user can perform the selection at any time during the progression, this
phase can be reached from any other phase in the steering-by-example algorithm.

The goal of this phase is to gather a sufficient number of data the user is interested in, to guar-
antee an adequate quality of the classification model for steering later on. All newly retrieved data
items are thus labeled as relevant or not, based on whether they lie inside or outside the indicated
region of interest. In cases where data from previous iterations is still available, these data can also
be considered for labeling, yet the steering-by-example algorithm does not require any caching.
The system remains in this phase until sufficiently many data items are labeled as relevant. The
training of the classification model has not yet been started, thus the system continues to use
default sampling to retrieve the next chunk of data while in the activation phase.
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(3) Training Phase: Once enough data items have been labeled as relevant, the training phase
begins.

The goal of this phase is to produce a query representing the approximate inverse mapping
from the selected data items of interest to data properties they and only they have in common.
These properties are then to be used to query for more data having the same properties and pri-
oritizing their computation—thus effectively steering the progression toward other relevant data.
As these properties are still being established, the system continues to use its current query while
training. All data items newly retrieved during this phase continue to be labeled as relevant or
not. The system remains in this phase until the training of the classification model is completed.
In practice, the training phase lasts only for a short period of time, depending on the complexity
and size of the training dataset, due to the low computational complexity of training the decision
trees.

Note that the system can also enter this phase from the steering phase if enough new data items
are located inside the selection to trigger a refinement of the classification model based on that
newly available data. Re-entering the training phase is however optional, as rebuilding the model
often will lead to only marginal improvements of the steering quality once large portions of the
dataset are already computed.

(4) Steering Phase: Once the used classification model is constructed, the system enters the steer-
ing phase.

The goal in this phase is to provide the user with all relevant data items from the dataset D that
match the approximate query, by retrieving data items that will be likely plotted close to those
in the view selection. In contrast to all previous phases, the system thus uses the steering query
extracted from the decision tree to retrieve the next chunk of data, thus steering the progression
toward interesting data subspaces. For decision trees, an SQL query for steering is constructed
from the classification model as follows: Each path from the root to a leaf node in the decision
tree model represents a set of decision rules that must be satisfied in order for the decision tree
to classify it as relevant. Thus, the generated steering query is equal to the logical disjunction of
conjunctions of these sets of rules. During the steering phase, all retrieved data items continue to
be labeled as relevant.

The system exits the steering phase for two reasons: The first reason is that the data subspace
indicated by the approximate query is exhausted, in which case it falls back into the non-steering
phase. The second reason is that enough new data items from the steering query fell inside the
region of interest to trigger further refinement of the query, in which case the system returns to
the training phase.

3.3 Extension to the Basic Approach

The basic approach outlined above assumes that the user selection in view space (at some point
in time) contains sufficiently many data items to train the decision tree classifier. Yet, this is not
necessarily always the case. Specifically, there are two cases in which not enough relevant items
can be collected: Either the region is temporarily too sparse, but sufficiently many data items of
the data will land inside the selection in the future or the region will always be too sparse, even
when waiting until the progression completes.

One strategy for addressing this challenge is that the threshold for what counts as “sufficient”
could be a user-definable hyperparameter to the algorithm. Then, experienced users could lower
this value based on their particular use case and thus increase the chance of engaging the steer-
ing. However, this is always a tradeoff with the quality of the classification model, which usually
benefits from having a larger training dataset.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 6, Article 96. Publication date: September 2022.



Steering-by-example for Progressive Visual Analytics 96:7

An additional, automated strategy is to artificially increase the size of the user selection each
time no data item from the newest chunk of data falls into the selection, thus also considering
data outside the original selection for training. Intuitively, this approach is intended to “broaden”
the range of data that is considered interesting, thereby increasing the chance that sufficiently
many data items can be collected. Conceptually, this approach resembles a query relaxation of the
steering query [18]. The motivation here is that data inside this “broadened” selection remain at
least somewhat interesting to the user, as it is rendered close to the region of interest. However,
this approach will generally lead to a worse Precision during the steering phase compared to a
model trained without increasing the selection but nevertheless remains more beneficial to the
user’s analysis than random uniform sampling. The degree to which the extent of the selection
is increased is another hyperparameter to steering-by-example, for instance using a percentage-
based increase in size. One could also make the growth proportional to the number of chunks
that contained no data items located inside the selection. Then, the chance of “getting a hit” could
increase with every chunk without a data item inside the selection, as the selection grows at a
greater rate.

Another extension for this is to wait for a certain number of iterations before the size is increased,
instead of increasing the size with every “fruitless” iteration. The idea here is to avoid reducing
the steering quality for selections that only as an artifact of sampling remain empty for a single
iteration but generally are densely populated. The number of chunks before the box increases
would be an additional hyperparameter for steering-by-example.

4 BENCHMARKS

This section reports the results about the performance of steering-by-example for progressive vi-
sual analytics. To test the proposed solution, we defined a set of automatic test cases on which we
collected evaluation metrics. We first describe the overall obtained results and then we detail the
testing environment and the measures we collected with it.

4.1 Test Results

We evaluated steering-by-example on a sample of the AirBnB dataset for Paris that consists of
64,216 data items for listings of housing options, with each listing being described by 47 dimen-
sions, containing both numerical and categorical values. The dataset was obtained from Insid-
eAirBnB.! While this dataset is relatively small, the additional computations we run on each chunk
make the incremental use case worthwhile, as a full pass over the entire dataset could take up to
10 minutes.

We compared steering-by-example with random uniform sampling, in which the progression
is not steered and the data space is uniformly sampled, serving as the average case. While more
sophisticated sampling algorithms exist [33], we chose random uniform sampling as our baseline,
as it still remains the de-facto standard sampling approach in PVA literature, since it is widely
available across programming languages and frameworks, and performs reasonably well on large
datasets. We tested the two approaches on more than 1,000 test cases, evaluating the performances
with respect to Average-Precision and Recall metrics.

We measured a clear advantage of the steering-by-example approach over random uniform sam-
pling, both in terms of average Precision (ca. 10 times higher) and Recall (ca. 4 times higher). Ad-
ditionally, our results show independence of performance from chunk size and identify a good
threshold for starting the activation phase and obtaining good performances in just 20 items. We
show that the steering-by-example approach converges to the expected results much faster than

Ihttp://insideairbnb.com/get-the-data.html.
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Fig. 2. Left: Average Precision and Recall comparison for steering-by-example and random uniform sampling
on the full set of test cases. The figure shows that steering-by-example clearly outperforms random uniform
sampling for both metrics. Right: Recall results for medium cardinality group split by chunk size (100, 150,
and 50 items, respectively) and activation threshold (10, 20, 40, 60, 80, and 100 items, respectively). The figure
shows that chunk size has little to no effect on the Recall behavior. Conversely, activation threshold shows
that from 20 items value the results tend to saturate, with only 10 values showing a consistent decrease of
performance due to higher variability. Precision and Recall of the direct lookup approach are omitted, as
these are—given that all the data for the one-to-one mapping is precomputed—consistently at the maximum
values, performing better than steering-by-example.

random uniform sampling, similarly to the hypothetical, perfect performance of direct lookup,
with only negligible overhead with respect to both per-chunk computation time and overall time.
Finally, our benchmarks show how steering-by-example scales even to large datasets.

Figure 2 reports a summary of the whole experiment, showing the Average Precision and Recall
box-plots for steering-by-example and random uniform sampling, clearly showing how steering-
by-example outperforms random uniform sampling in both metrics.

4.2 Test Cases

To test the effectiveness of the steering-by-example solution in a systematic way, we instrumented
a fully automated benchmark with the goal of producing a large and significant set of test cases.
We use the following mapping function f for any given listing x in the AirBnB data: f(x) =
(priceSavings(x), walkingDistance(x)). This function thus produces a tuple, containing the price
difference to other listings and the walking distance to a fixed location of interest in the city. To
reduce the precomputation overhead of the first part, we limit the benchmarks to a subset of the
AirBnB data to include only listings within in a 60- to 90-Euro price range, limiting the total query
size to 25,922 items.

We evaluated steering-by-example against two baseline conditions. Random uniform sampling
forms the lower baseline condition, which retrieves the data in random order, regardless of the
selection. As upper baseline we use the state-of-the-art approach of direct lookup that is also im-
plemented by Sherpa [9] and that will behave like a perfect predictor: It always exclusively re-
trieves items inside the selection, until all data for the selection is processed. It should be noted
that, because direct lookup requires a one-to-one mapping between data and view space that is
not available for the mapping function we use in our scenario, we have to precompute all values
needed to build a one-to-one mapping w.r.t. the user selections used in the test (latitude, longi-
tude, min price, max price, and range of walking distance among alternative hotels). The time for
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precomputing these data for a single user test is about 15 minutes (on a quad core i7 and using
indexed relational tables in MySQL). Obviously, it is not possible to precompute all data for all
possible user selections of the five parameters of latitude, longitude, min price, max price, and
walking distance. Even partitioning the user’s selection domains in discrete intervals (e.g., select-
ing latitude and longitude in steps corresponding to 500 m, the price range in intervals of 5 US$
between 60 and 100, and the walking distance in a range of 100 m between 100 and 500) makes the
computation time not feasible (about 70 months if limited to a 15 X 15 km square region in Paris).
Moreover, the results of these precomputations must then be stored in a lookup table that allows
to directly retrieve the data items inside a selected screen region. The size of this additional data
is about 225,000 attributes per AirBnB listing.
We considered as parameters of this benchmark:

e Chunk size: the chunk size of the progressive process on three levels (50, 100, and 150 items
per iteration)

e Activation threshold: the minimum number of items that must be inside the selected view
region to trigger the training phase of steering-by-example (10, 20, 40, 60, 80, and 100 items
each)

o Query result cardinality. We split the test cases into three groups based on the cardinality of
each selected view region with respect to the full query:

— Low cardinality: This set is formed by selected view regions containing a number of items
ranging from 1% to 4.5% of the full query

— Medium cardinality: This set is formed by selected view regions containing a number of
items ranging from 4.5% to 22.5% of the full query

— High cardinality: This set is formed by selected view regions containing a number of items
ranging from 22.5% to 50% of the full query

The rationale behind this choice is to characterize the performance of steering-by-example

for different cardinalities. More in detail, we do not go over 50% of the query cardinality,

because at that point the probability to correctly identify a point as part of the actually

selected view region or not is equal (or higher) than chance, and results’ validity would be

affected. For this reason, even if the theoretical upper limit is 50%, the randomly generated

selected view regions have a maximum cardinality of ~40%. We randomly generated 20 view

selections per group without repetition. This results in 60 selected view regions tested that

cover in a good way the variability of the region size and position on the screen (details can

be found in the supplemental materials).

The combination of these benchmark parameters (3 chunk sizes, 6 thresholds) led to 18 runs per
selected view region, and given the 60 query cardinalities resulted in 1,080 runs for steering-by-
example and 1,080 for random uniform sampling. The data needed for the direct lookup approach
were precomputed one time for each <selected view region, chunk size> combination, given its
independence from any other parameter. We let each run execute until 100% Recall was obtained.
These test cases included selected view regions of different sizes, aspect ratios, and density of the
contained points to capture many different scenarios.

4.3 Detailed Measures

We tested the three approaches on all the test cases, evaluating the performances with respect to
Precision, Average Precision, and Recall metrics. These metrics were computed from the standard
binary classification variables with regards to whether an approach classifies or misclassifies a
data item as inside or outside the selected view region.
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Figure 2 reports the high-level comparison between steering-by-example and random uniform
sampling for Average Precision (Precision computed on average for a single run) and Recall: Specif-
ically, we collected those data at the iteration in which steering-by-example ends its effects (when
the system switches from Steering phase to Non-Steering phase), which can vary depending on
each run and on the cardinality of the tested query. For example, for the medium cardinality group,
we collected the statistical median at iteration 32. For steering-by-example, the median value of the
Recall is at 0.84 and the median value of Average Precision is at 0.77, both much higher than the re-
spective values for random uniform sampling (Avg-Precision median = 0.08, Recall median = 0.18).
While the Recall box for steering-by-example is very compact, showing that the effects of steering-
by-example are valid for the majority of the test cases, the Average Precision box is more spread.
This effect can be explained by runs in which the cardinality of items included in the selected view
region is lower (specifically for the low cardinality group). Additional charts showing the perfor-
mances split by query cardinality groups are present in the supplemental material. Even looking
at the split group performances confirms that the steering-by-example solution achieves results
much better than the random uniform sampling. Finally, the outliers present for the steering-by-
example Recall are all relative to configurations in which the query result cardinality is very low
(near 300 items), and the activation threshold is at the minimum (10).

Nonetheless, even for those “more difficult cases,” steering-by-example obtains better perfor-
mances than random uniform sampling in the same extent of the other cases, even if with overall
lower values for Recall. For those reasons, we claim that, independently from the query cardinality,
steering-by-example obtains much better results than random uniform sampling for both Average
Precision and Recall.

We then inspected the obtained results with respect to the chunk size and activation threshold.
Figure 2 shows Recall values for the medium cardinality group (the other groups’ performances are
reported in the supplemental material). We can observe that results do not show a significant effect
of chunk size: In fact, the box-plots show a similar trend with respect to the three chunk sizes with
which we experimented. This led us to discard this parameter for further analysis and consider it set
up by default at 100 items. The chunk size only affects the speed of the progressive process and not
its quality. However, the activation threshold shows a slight effect on both the median values and
the compactness of the resulting box-plot, with higher thresholds yielding slightly more compact
plots. Median values are meanwhile less affected, ranging (similarly) between values of 0.78 to
0.84, confirming what evidenced for the general case. On the lower end of the results, only test
cases with an activation threshold set to 10 show degradation of results, with a minimum slightly
below 0.4 for Recall. Even if those worst cases are still comparable to random uniform sampling
best cases, we suggest setting up the steering-by-example with an activation threshold greater
than 10 for maximizing the performances.

Having discussed all the parameters, we move on to comment on the temporal trends, consider-
ing the medium cardinality group and chunk size set at 100 items. For all the approaches, we report
for all the experiments the trends of Precision and Recall metrics per iteration. Figure 3 shows sta-
tistically aggregated results on the Precision metric. The median values trend for each curve is
reported with full color hue, while the alpha blended areas identify the variations between the up-
per and lower quartile values. In this way, the statistical variability is reported for all curves. Two
vertical black dashed lines report, respectively, the median value of the starting iteration and the
median value for the ending iteration for steering-by-example: Those lines identify the statistical
extension of the steering phase for steering-by-example.

We can observe how Precision values are consistently high in the Steering phase, with median
values just lower than 20% with respect to the flat line representing direct lookup. Additionally,
it shows how steering-by-example is consistently better than random uniform sampling. In the
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Fig. 3. Comparison of Precision trends for the direct lookup, steering-by-example, and the random uniform
sampling cases. Comparison of median values shows that steering-by-example outperforms random uniform
sampling for all the iterations belonging to the steering phase, with median at 0.8 less than 20% distant
from the perfect predictor. In the Non-steering phase, the Precision values are very similar, with random
uniform sampling slightly better due to a higher number of items left (resulting in a higher probability of
finding the remaining data items). Precision of the direct lookup approach is consistently at 1, provided that
the necessary one-to-one mapping has been precomputed.

Non-steering phase, the performance of steering-by-example becomes worse than random uni-
form sampling, even if at that moment both techniques are the same (random uniform sampling).
We explain this behavior due to a lower residual probability of finding the (few) items left in the
steering-by-example case.

The good performances of steering-by-example are confirmed by evaluating the Recall trend
reported in Figure 4 for direct lookup. It is interesting to note how the steering-by-example Recall
trend rises similarly to the perfect predictions of direct lookup, reaching very fast (a little more
than 20 iterations, eventually lower if the chunk size is raised) the 0.8 level of Recall. After that
point, the remaining 0.2 are achieved by reactivating random uniform sampling, which creates
the long tail that at some point (slightly before the random uniform sampling) converges to the
Recall 1.0. This slow convergence toward full Recall after the steering phase could be sped up by
executing a new training and steering phases immediately after the end of the previous steering
phase.

Overall, the benchmark demonstrated how steering-by-example outperforms the random uni-
form sampling with respect to Precision, Recall, and speed for all the tested cases. Full Benchmark
results are available in the supplemental materials.

4.4 Implementation Details

Here we briefly outline our implementation underlying the benchmarks. More details, as well as
source code of all components including the code used for benchmarking is publicly available as
open source on Github.?

Our implementation of steering-by-example is written in Python 3.8 around the scikit-learn
machine learning library [21] for its implementation of CART decision trees [8, ch. 2.3], as well
as the Pandas and numpy libraries [28]. The datasets we use in our benchmarks are stored and

Zhttps://vis-au.github.io/prosteer.
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Fig. 4. Comparison of Recall trends for the direct lookup, steering-by-example, and the random uniform
sampling cases. The figure shows how the steering-by-example Recall trends rise with similar speed to direct
lookup during the steering-phase and clearly outperforms the random uniform sampling with median = 0.77
for steering-by-example and median = 0.12 for random uniform sampling at the median iteration in which
the steering-phases end (iteration 32). The Recall of direct lookup (delimited by magenta dashed lines for
reference) is consistently better than steering-by-example, given that a suitable one-to-one mapping has
been precomputed.

accessed from a MySQL 8% database. All tests were run on an Intel Core i7 processor, running at
2.7 GHz, with 16 GByte of RAM. The data were stored on a 1-TByte SSD.

4.5 Threats to Validity of Benchmarks

Our benchmarks demonstrate the applicability of the steering-by-example approach under certain
assumptions. Here we want to explicitly state the particularities of our evaluation that need to be
taken into account when interpreting the results.

A first consideration is the data type used in the benchmarks. We have evaluated steering-by-
example on a dataset containing numerical dimensions. While decision trees can generally also
be trained on categorical data, we cannot make any conclusions about their performance for this
data type.

Another consideration is that our evaluation relied on rectangular selections in view space. This
design decision was made for consistency between benchmarks and to reduce the controlled vari-
ables in our testing, ensuring that all benchmarks use regularly shaped selection boundaries. Gen-
erally, steering-by-example does not rely on any particular selection mechanism. All the decision
tree requires for training is a set of data items labeled as relevant. In a series of informal primary
tests using the lasso selection tool in ProSteer, we also observed that our implementation can
handle more complex selection shapes. Nevertheless, our benchmarks cannot guarantee that the
performance of steering-by-example also applies to more complex selection boundary shapes.

A third consideration concerns the evaluation of computation time for the tested approaches.
Under our settings, processing a single chunk requires 0.4 seconds to complete for all three ap-
proaches. The steering-by-example approach is the only one that requires additional time to train
the decision tree classifier and extract from it the decision rules (training phase). To assess the
impact on the overall retrieval time, we conducted a series of experiments in which we measured

Shttps://www.mysql.com.
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Fig. 5. Testing the impact of the number of items used for training the decision tree classifier on average
training time and average time to extract the conditional rules, as well as the average Recall of the generated
query, based on N = 20 runs. The concrete values are shown on the left, and a visualization of that data on
the right. The results show that, while the time needed to extract an SQL query increases linearly with the
number of items, the Recall does not increase noticeably and remains at around 0.85.

the impact of the number of items on the time it takes to train the decision tree classifier, the time
it takes to extract the conditional rules in the training phase, and finally the Recall that the query
produces. Figure 5 gives an overview of the results. Our observations are in line with previous
work evaluating the impact of training dataset size on the performance of decision trees [20], in
that the size of the training dataset did not benefit performance, while increasing the complexity
of the tree structure. Overall, we conducted 20 runs for 9 different numbers of items, ranging from
100 to 500 in increments of 50. Average training times ranged from 2 ms for the 100 items cases
to 6 ms for 500 items. This makes the training time not significant with respect to the overall time
needed for both one iteration (400 ms) and the overall process length (220 iterations X 0.4 seconds =
1 minute and 28 seconds). Regarding the rule extraction time, we report 73 ms for 100 items. Again,
this time represents 18.25% of the iteration time, as it is “paid” only once when the steering phase
is activated, and 0.82% of the overall time. Therefore, the cost introduced by training the decision
tree is negligible in the scope of a full computation, with a progression using steering-by-example
terminating only imperceptibly later than a progression using random uniform sampling. Overall,
rather than being limited by long training times from selections on very dense data, these find-
ings suggest that we can keep training and extraction times of our approach consistently low, by
drawing a fixed-size sample from those selections, and still provide a good steering performance.

For reproducibility, we removed any dependency from computing and network communica-
tion performance by precomputing the walking distances from the actual user-selected location
in Paris to the relevant listings using Euclidean distance and simulating a call to the Google API
introducing a delay of 0.04 seconds for each call, as well as the saving opportunity for each, by com-
puting the difference between its price with listings within a radius of 300 m. The respective values
were stored as the Distance and Savings opportunity attributes for each listing in the database. As
the main design goal for our interactive environment was primarily benchmarking our approach,
it thus does not allow producing listings for any arbitrary place on a map. Yet, computing the
relevant listings for a single location on-demand can take hours, which was therefore not feasible
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Fig. 6. Screenshot of ProSteer. The center of the interface is split in half, showing the progression on the same
dataset in two views: The steering-by-example view @ shows the progression using our steering mechanism,
while the random sampling view @ shows the baseline case. A heatmap in the background encodes the
delta in the number of items that were retrieved in a grid cell of the view, and individual data points are
rendered on top of that, with recent points rendered larger to highlight new data inside and outside of the
selected region 3. Evaluation metrics @ show how steering-by-example performs over time in a line chart
based on the current phase, and histograms ® show the distribution of data inside vs. outside the selection.
Interface @ and progression @ can be controlled through widgets at the bottom.

to evaluate our method without precomputing the two measures. In addition to saving time, pre-
computation also isolates any potential fluctuations due to differing computation times from the
results.

5 PROSTEER: AN EXPERIMENTAL VISUAL ENVIRONMENT FOR
STEERING-BY-EXAMPLE

Here we present ProSteer, our interactive visual demonstrator for steering-by-example, which can
be used to experiment and test-drive our approach. ProSteer is a client module to steering-by-
example, in which the data are visualized and regions of interest can be defined in view space.
ProSteer is not intended as a stand-alone, general-purpose visual analytics tool, but is instead de-
signed for demonstrating steering-by-example. Thus, while the automated, “command-line” bench-
marks reported in the next section provide a numerical perspective for assessing the performance
of the approach, ProSteer can be used to illuminate the user perspective of utilizing steering-by-
example in visual analytics. More specifically, ProSteer is designed to support the following tasks:
(1) Compare the progression using steering-by-example with a progression using random uni-
form sampling, (2) make selections in view space, (3) explore the progression at one point in time,
(4) compare the progression at different phases of the algorithm, (5) compare data inside the selec-
tion with the remaining dataset. ProSteer is implemented using the D3 visualization library [7],
together with the React.* In the following, we will describe the interface of ProSteer along
these requirements, using the labels W-@ from the screenshot in Figure 6 to refer to its visual
components.

4https://reactjs.org and TypeScript frameworks.
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Fig. 7. Enlarged screenshot of the delta encoding in ProSteer (see @ and @ in Figure 6): Color values in a
heatmap encode the difference in the number of items between the progression using steering-by-example
and using random uniform sampling per grid cell. The darker the red tone, the more items lie in that cell
in this view, and the darker blue, the fewer data in that cell. If the number of items is equal, then grid cells
have a neutral gray tone. The number in the top left corner shows the absolute delta value per cell. On top
of each cell, individual data items are encoded as dots along axes of a scatterplot (X: price saving in the
neighborhood, Y: walking distance to a point of interest on the map), which are computed from the data
after they are retrieved from the database and thus cannot be directly used for building an SQL query.

5.1 Comparing Steered with Non-steered Progressions

The first question we want to answer in ProSteer is whether and by how much the user gets to
see interesting data faster using steering-by-example. ProSteer addresses this question through its
central view that takes up most of the screen space. Data items retrieved by the steered progres-
sion () are visualized in a side-by-side view with a non-steered progression (@) over the same
dataset. Through this juxtaposition, one can compare how steering-by-example affects the overall
distribution of individual data items across regions of the view space. Other visual encodings of
ProSteer rely on this side-by-side view to facilitate further comparisons.

For instance, as the changes in data layout become less apparent in later stages of the progres-
sion, when many data items are already plotted and new ones do not stick out as much, the latest
chunk of items retrieved from the computation module is additionally highlighted as larger, fully
opaque points. If a point is located inside the selection, then its fill color is either blue or black de-
pending on the view, and it is white otherwise. This encoding allows to assess qualitatively, how
the currently sampled region of the view space differs between the two progressions. In both views,
the selection in view space of a region of interest is shown, indicating the number of data items
contained in each. Additionally showing the numeric value of data items supports the quantitative
assessment of steering on the one progression compared to the unsteered progression.

In addition to showing individual data items, ProSteer renders a grid-based heatmap in the
background of the scatterplots (see Figure 7). Each cell of the heatmap encodes the difference in
the number of data items that are rendered inside the particular region of the view space compared
to the same position in the respective other view. A diverging color scale is used that encodes
negative values as blue, positive values as red, and the neutral point where both progressions are
equal as grey color hues. This encoding helps to get a quick impression about how much a region
in view space differs in the steered and non-steered progressions, for instance during the steering
phase. In addition to a qualitative assessment of the differences based on color, each cell in the
heatmap also shows the numeric value that it encodes in its top-left corner.

Implicitly, encoding the difference in this way also carries uncertainty information, i.e., it in-
forms the user that the fact that a region currently appears to be dense in the steered visualization
may indeed be an artifact of the steering, that could in later iterations “even out,” as more data
lands in other regions. Uncertainty about observed patterns in regions targeted by the steering is
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closely related to the general challenge of uncertainty caused by the progression that constitutes
a research challenge in its own right [13]. Our focus lies on testing algorithmic aspects of the
steering-by-example, so future work is necessary to evaluate whether our encoding is an effective
uncertainty encoding.

5.2 Make Selections in View Space

Another central design goal for ProSteer is the ability for user-driven selections of regions of
interest, to support an interactive, customized evaluation of steering-by-example beyond the pre-
defined test cases.

To this end, the interface supports direct brushing on the view space (®). ProSteer allows defin-
ing both rectangular selections like those used in the benchmarks as well as custom shapes using
a lasso tool. Alternatively, the exact selections used in the benchmarks can be recreated using
the dropdown menu in the top right. Moreover, ProSteer implements an extension to the basic
steering-by-example approach, in that the size of that selection is increased with every chunk for
which no data item was located inside the selection. As described in Section 3.3, one can define a
custom number of chunks that should be waited, before the size is increased, using the text box in
the bottom row of the interface.

5.3 Explore a Progression at One Point in Time

Another question for our benchmarks is how steering-by-example itself performs at a certain
point in time. The ways in which ProSteer supports this task visualizing the state of the progres-
sion, visualizing evaluation metrics, providing widgets for customizing the U, and controlling the
progression.

The state of the progression is shown both in terms of the phase of the steering-by-example
module and in terms of the progress of the computation. The phase for the latest chunk retrieved
is shown as a small “indicator light” in the bottom-left corner of the interface. A progress bar ()
in the bottom-right corner of the interface in turn shows the percentage of data that has so far
been processed by the progression. Next to that progress bar are widgets for temporarily pausing
and resuming, and for fully resetting the progression.

To support exploration with steering-by-example, three evaluation metrics (@) are shown in
small text boxes next to the indicator light: The number of retrieved items, the number of items
that are located inside the view selection, and the resulting Precision of the latest chunk. These
metrics give a quantitative view of the latest data chunk of the progression.

ProSteer also allows customizing the visual encoding for different analysis goals. Control wid-
gets in the bottom row of the interface (®) for this purpose allow changing the encoding of the
heatmap between absolute and delta values, toggling the side-by-side view on and off, and control-
ling how many data chunks without a data item from the selected region are permissible before
the user selection is automatically grown in size. The top row allows setting the dimensions that
are used for the visual encoding in the central view.

5.4 Comparing a Progression between Different Points in Time

Another question for our benchmarks is how the phases of steering-by-example affect performance
over the duration of the progression.

For qualitative comparison, the locations of data items from the latest chunk are highlighted as
opaque dots. In combination with the “indicator light,” one can monitor how the distribution of the
latest data items changes once the system goes in and out of the steering phase. Additionally, the
heatmap encoding that visualizes the difference to a non-steered progression shows how during
the steering phase, the sampling of the data gets skewed toward the selection in view space. As
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Fig. 8. Screenshot series showing how the heatmap that encodes the difference in regional data density goes
from cells in gray during the activation phase (1) to red cells around the selected region during the steering
phase (2-4). When entering the non-steering phase, the heatmap equalizes to gray again (5 and 6).
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Fig. 9. Enlarged screenshots from ProSteer’s evaluation metrics (see @ in Figure 6) visualizing the items
inside the user selection (a) and the Precision of retrieved items being located inside that selection (b). The
colored line below the line charts indicates the state of the steering module at a certain time.
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Fig. 10. Enlarged screenshot of histograms in ProSteer (see ® in Figure 6) showing the overall distribution
of the data compared to the data in the selected view region. The left pair shows the histograms after the
steering phase is completed and the right pair shows the data when the entire progression is completed.

the progression continues, one can also observe how regional differences between the two pro-
gressions equalize (see Figure 8).

For quantitative comparisons, the system records the evaluation metrics over time as well as
the phase of the algorithm that the system was in at each point. Line charts (@) that show the
evolution of the metrics can be toggled when clicking on either of the text labels in the bottom left
corner of the interface (see Figure 9). Below the line chart, colors indicate the phases of steering-by-
example for each measurement. When hovering the mouse cursor over the line chart, individual
values are shown in a tooltip.

5.5 Comparing Data Inside the Selection with the Rest of the Data

The last question we can address with ProSteer is how data items inside the selection differ from
the rest of the dataset.

To qualitatively answer this question, the top row of the interface contains histograms (®) that
can be created for each dimension of the data. Each bar in a histogram shows the percentage
of data items that lie inside the selection. Based on these histograms, one can compare whether
the selection is equally distributed across a dimension, which indicates a representative sample,
or whether the selection is skewed toward certain values (see Figure 10). The latter case is often
beneficial to a better performance of steering-by-example, as it allows the decision tree to better
separate the class of relevant data items from irrelevant data.
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Fig. 11. Screenshot from ProSteer, applying steering-by-example to the NYC taxis dataset. The X axis shows
the duration of the trip, the Y axis the ratio tip/ fare. The steering phase handled about 350,000 taxi trips,
showing a consistent Precision of about 0.82; the Recall is not available due to the time needed to precompute
the ground truth. At the end of the steering phase the steered approach (left side) shows about 280,000 items
in the user-selected area (yellow box) against the about 5,000 of the random approach (right side). Moreover,
the heat-map of the random sampling shows that, according to the actual sample size (about 400,000 random
items), the user-selected area has a very low density, making more evident the advantage of the steering
phase.

For quantitative comparisons, the view space selection shows the number of data items that
are currently located inside it. In combination with the “Points received” metric, one can compare
whether the sample contains large or small portions of the dataset.

6 USE CASES

In this section, we assess the generality of steering-by-example for two use cases, applying
the approach to a different, larger dataset and on a different visualization using dimensionality
reduction.

6.1 Steering-by-Example on Large Datasets

To assess scalability toward large datasets, i.e., considering the case in which the complex-
ity of the f function comes from the dataset size |D| (see Section 3.1) and not by the com-
putation, we have challenged ProSteer against the 112 million items dataset of the New
York City 2018 Yellow Taxi Trip.> As a mapping function for each ride x, we used f(x) =
(tripDuration(x), tipRatio(x)), investigating the relationship between the duration of the trip (i.e.,
tripDuration(x) = XendTime — XstartTime) and the amount of the tip with respect to the fare (i.e.,
tipRatio(x) = XtipAmount /Xtotal Amount)- The size of the dataset prohibits us from performing a full
benchmark on it: Processing the whole dataset to compute the ground truth for a single use case

Shttps://data.cityofnewyork.us/Transportation/2018- Yellow- Taxi- Trip-Data/t29m-gskq.
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Fig. 12. Screenshot from ProSteer, using steering-by-example with the RadViz dimensionality reduction tech-
nique, compared to the same progression that uses random uniform sampling for retrieval. The selected re-
gion on the left contains 976 points after the steering phase, while the same region in the plot on the right
contains only 595 points. The line chart in the foreground shows how the Precision metric increased during
the steering phase from about 0.1 on average to about 0.45.

requires 15 hours and replicating the full analysis done for AirBnB (about 1,000 configurations
explored) will require more than one year of computation. According to that, we just report on a
qualitative test of the system, showing a comparison between steering and random sampling and
terminating the analysis after the steering phase has been completed. Being the complexity of the
plotting only associated with the size of the data, we have used a chunk size of 10,000 whose elabo-
ration lasts about 5 seconds; processing the whole dataset requires about 15 hours. The results are
quite similar to those observed for the AirBnB dataset: The steering outperforms the random sam-
pling with a significantly higher Precision. Figure 11 shows an example of one of the qualitative
experiments we have performed with the system, after having plotted about 380,000 trips.

6.2 Steering-by-Example on Dimensionality Reductions

We further assessed the generality of steering-by-example regarding the visual encoding. While
the progressive visualization used for benchmarks placed the data along two computed axes, in
dimensionality reduction the 2D position of a data item is computed from multiple dimensions,
to make high-dimensional features of the data interpretable to the user [11]. In other words, the
mapping function f is implemented as a complex algorithm. In particular, we used the RadViz
dimensionality reduction method [1], which uses a spring-based model to compute the position
of items along n dimension in a radial layout. Using the NYC taxis dataset we introduced above
in Section 6.1 on a RadViz-viewer for ProSteer, we let the progression run under the same condi-
tions as in the benchmarks and selected a region of interest. We found that in comparison with
our benchmarks on the scatter plot, steering-by-example performed worse in terms of the average
Precision, yet still produced a noticeable increase in data in the selected region from a (subjective)
user perspective when compared to the baseline scenario. For instance, Figure 12 shows screen-
shots from an exemplar run after the steering phase ended, indicating how the progression using
steering-by-example produces almost double the number of items in the selected regions, with an
average Precision of around 0.45 during the steering phase. Nevertheless, these results are only a
preliminary indication of the utility of steering-by-example when combined with dimensionality
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reduction techniques, and further evaluations are necessary to measure (and improve) its perfor-
mance in that regard.

7 USER STUDY

To assess the usability of steering-by-example, we conducted a user study with VA experts to
evaluate how users would apply the approach to address an analysis goal and what their experience
is in doing so. Note that the purpose of this study was to collect expert feedback on steering-by-
example as a conceptual approach rather than to evaluate ProSteer as a practical visual analytics
tool. We first report on the setup and procedure used, followed by an evaluation of collected results.

7.1 Setup

We recruited five participants (three male and two female, aged between 24 and 33) from our de-
partments, who actively work in the research field of visual analytics as Ph.D. students, PostDocs,
and research assistants. On a 7-point Likert scale, participants reported strong expertise with PVA
(median: 6), a strong familiarity with data science (median: 6), and with visualization (median: 6).
Most were familiar with computational steering (median: 4). User studies lasted between 40 and
80 minutes and were conducted in a quiet environment, using either the participants’ or experi-
menters’ laptop computers.

7.2 Procedure

The experiment was split into four distinct phases:

Positioning questionnaire: In this phase, participants were tasked to read and sign a consent form,
followed by a questionnaire concerning their expertise on the subjects of steering-by-example.
The questionnaire consisted of three positioning questions (Age, Gender, and Role) and of five
questions for self-assessing their expertise, based on a 7-point Likert scale (Q4: “How familiar are
you with data analysis?,” Q5: “How familiar are you with visual analytics?,” Q6: “How familiar are
you with visualization?” Q7: “How familiar are you with what is called ‘progressive visual analytics’?”
and Q8: “How familiar are you with what is called ‘computational steering’?”). Participants had up
to 15 minutes to complete this phase.

Introduction to ProSteer: In this phase, participants followed a live demonstration of ProSteer.
We illustrated its main functionalities and the available user interactions. Participants were able
to interject at any moment and ask questions about any part of the approach and the software
prototype that remained unclear. The demonstration lasted from a minimum of 20 minutes up to
the time to which participants explicitly confirmed to have understood everything and did not
have additional questions.

Interactive usage of ProSteer: In this phase, we tasked participants to load ProSteer in their en-
vironment (participants were provided materials and assistance in setting up the ProSteer prior
to the user study), load the NYC taxi and AirBnB datasets, and solve the following task: “Find all
apartments that are close by, which in this neighborhood allow you to save as much money as
possible” This task and its intentionally vague formulation was designed to maximize exploration
of alternatives to find a potential solution, implicitly asking for steering support to explore these
alternatives faster. There was no fixed time span allotted to this phase, but a suggested time of
20 minutes was communicated to the participants. Participants could end this phase prior to this
limit if they found their analysis results to be sufficient.

Evaluation questionnaire: Finally, in this phase the participants were asked to fill out an eval-
uation questionnaire on their usage experience of ProSteer. The questionnaire was composed of
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eight open questions (Q9: “Do you understand what is going on in the interface? What questions
arise?” Q10: “Change blindness of new points arriving in the interface during progression. Is that
confusing to you?,” Q11: “Does focusing the progression on a certain region help?” Q12: “Do you
find it challenging that you do not fully understand the steering mechanism (i.e., that it is a black
box)?” Q13: “What are your considerations with respect to the shape of the selection? Is it good? Is
it enough?” Q14: “What are your considerations with respect to making multiple selections?,” Q15:
“Steering means biasing the progression toward a certain part of the data. What are your thoughts
on that, having used ProSteer for a bit?,” and Q16: “Can you see where this would fit into your data
analysis workflow? Is this helpful to you?” A final question (Q19) was asking for any additional
notes or comments from the participants. The time dedicated to this phase was 20 minutes.

7.3 Results

User Behavior: In terms of the usability of steering-by-example, all participants in our user study
successfully used our approach to steer the progression toward interesting data and were able to
complete the task. We generally observed an iterative interaction procedure: First, participants
monitored data arriving in the progressive visualization, then they identified a region of inter-
est, and afterward steered the progression toward that region by making a selection, returning
to the observation step. This procedure matches well with the states of our steering-by-example
approach, as discussed in Section 3. We did, however, also observe deviations from this general
procedure. For instance, sometimes participants (E1, E2) began at the second stage, selecting a
region of interest before any data had arrived and thereby skipping the initial non-steering phase
in our approach. Essentially, this behavior likens the steering based on a one-to-one mapping as
used by the state-of-the-art approaches we reported on in Section 2. This similarity suggests the
need for future experiments, to determine the impact of different steering methods on the user
experience, e.g., whether participants would actually notice that the steering mechanism differs
between analysis scenarios. Other deviations we observed were participants (E1, E2) trying to
make multiple selections corresponding to multiple regions of interest in the data. This behavior
is characteristic for PVA, as analysts at any point in time can choose to adjust the ongoing compu-
tation to new insights gained from the latest data [16]. Thus, to further improve the usability of
steering-by-example, future iterations on the approach should consider this flexibility as a design
goal. A challenge that needs to be considered is whether to treat items from different selections
together or separately during the training phase, i.e., whether to train one or multiple models. We
also observed participants being unsure about the current phase of the steering. For instance, E3 at
one point did not consider the steering phase indicator when looking at the interface, suggesting
to make the current phase of the approach more prominent in the user interface. One adjustment
to this end could be to adjust the visual style of the selection box, such that it changes color based
on the current phase and its border thickness based on the current Precision.

User Experience: All participants reported that they found steering helpful in general, and could
see the potential for long-running analyses that PVA is used for, in particular if users have a clear
goal in mind. Expert E2 for example stated that “it is intuitive to support steering if the user
has identified a region they are interested in” and E1 found it “helpful when you want to test a
hypothesis on a very large dataset,” while E4 noted that it might not be helpful for pure exploration
of the data without a clear goal. When prompted, participants stated that highlighting the most
recent points is useful for overcoming change blindness, and that the matrix in the background was
useful in indicating that steering affected the sampling of the data in that region. All participants
generally found ProSteer’s interface helpful and appropriate for understanding the impact that
steering has on the analysis. Some participants (E3, E4, E5) however noted that the encoding of
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recent points on the Taxi dataset could be improved, as points inside the selection became difficult
to identify at later stages, and they reported on the issue of overplotting. They also suggested
extending ProSteer to allow for adjusting the selected region during or after the steering phase to
refine the selected region (E1, E2, E5).

Overall, participants agreed that the steering-by-example approach could potentially be of use
for their own data analyses. These preliminary interviews provide a first impression of the utility
and accessibility of steering-by-example. While the results are generally positive, our interviews
can only serve as initial impressions and further evaluations are necessary to this end.

8 DISCUSSION

Steering-by-example allows prioritizing data subspaces for progressive computations for a variety
of use cases. In this section, we want to take a step back and discuss the generality of the approach,
looking at implicit assumptions and limitations.

8.1 Implicit Assumptions of Steering-by-Example

Selections are sensible: Steering-by-example requires a set of data items as input, which are
assumed to be of interest to the user. The underlying assumption here is that these items share
some characteristic in data space that makes them interesting compared to the rest of the data and
that steering-by-example can identify these characteristics and translate them into an SQL query.
Only if the selection of items is thus sensible can the query produced by steering-by-example
retrieve other items sharing these interesting characteristics. A challenge is that if the selection
is arbitrary, the decision tree would learn a similarly arbitrary set of decision rules that yields
items that are potentially not interesting to the user. That assumption is based on the idea that
an overarching goal of analyzing data through visualization is to use sensible mappings to encode
that data, such that similar values in data space are represented close to each other in view space.
Therefore, visualizations inherently support users when interactively creating sensible selections.
An exception to this rule is bubble charts, in which the position is decided purely based on a circle
packing algorithm, rather than the data. Beyond the visual encoding, we can also support the
user through statistical approaches like active learning [25], automatically suggesting rendered
items that may be of interest to the user based on data characteristics that distinguish them in
the dataset.

Selections are permanent: In addition to selections being sensible, another implicit assump-
tion to steering-by-example is that selections are permanent, i.e., an item of the data that lies inside
the selection will remain inside the selection until the steering phase concludes. This assumption
is based on the idea that users are expected to wait until the progressive visualization has stabi-
lized (i.e., the “quality” of the visualization is high enough [2]), before they form an interest in
the data. In our implementation and evaluation, this assumption manifests in that items do not
change their position in the scatter plot, since axis extents were known upfront, and thus items
are static, while the selection itself cannot be moved around by the user during steering. In some
progressive scenarios, item locations are, however, not stable and thus items move into and out
of the selection. For example, in progressive dimensionality reduction methods like incremental
PCA discussed by Ross et al. [24], the location of rendered items needs to be updated as the model
is trained on increments of the data, thus the computed axes change. Therefore, items that were
previously inside the selection are potentially located outside that selection after updating posi-
tions. To address this, we in essence need to monitor the selection’s “fluctuation” and retrain the
decision tree, once the number of items in the selection that changed reaches a threshold.
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8.2 Limitations of Steering-by-Example in PVA

Steering may cause control bias: A general challenge in PVA is appropriately representing the
uncertainty of the visualization data caused by the use of partial results. When also allowing users
to steer the computation—which causes some regions of the data to be more “certain” than others—
this representation becomes more complicated. When steering a progressive computation toward
a region of data the user selected as interesting using any steering mechanism, the visualization
is more “refined” in those regions, which can mislead users in their interpretation of the overall
data distribution. The visualization is no longer “evenly incomplete,” and so the visualized data
needs to be interpreted under consideration of that unevenness, which users need to be (made)
aware of. Micallef et al. call this phenomenon “control bias” [16]. Even though recent work by
Procopio et al. has shown that the effect of control bias in PVA through steering usually does not
affect users’ performance, but in fact increases their certainty in the conclusions they draw [22],
implementing steering mechanisms like steering-by-example into a visual analytics system nev-
ertheless requires careful consideration of how completeness is encoded. In ProSteer, we use the
heatmap in the background of the data to indicate the difference in sampling caused by steering,
to immediately inform users about these effects. Furthermore, by highlighting the location of the
latest data, changes in the data spread per chunk during steering become clearly noticeable.

Steering requires adequate data density: In order for steering-by-example to generate a
query that yields appropriate results, our approach needs a certain number of interesting repre-
sentatives as input. This number has both an upper and a lower bound. If the number of items in
the selection is too low and will never reach the threshold of items needed for training even if the
progression completes, then the decision tree cannot adequately capture the characteristics that
make data interesting, as evident in some test cases of our benchmarks with sparse selections (see
Section 4). Conversely, if the number of items is too high, then training the decision tree classifier
can take too long. A potential solution to the former challenge that we discuss in Section 3.3, is
to artificially increase the scope of the selection to also include neighboring regions. While this
reduces the accuracy of the steering query, it can nevertheless increase the overall relevance of the
retrieved items. For very sparse regions, however, even widening the scope of the selection in this
way may not be sufficient, meaning that steering-by-example simply cannot support the user. For
example, when users are interested in finding outliers and thus select a single item, extending that
selection may select enough other data to trigger the training, yet it is exactly those data that the
user was not interested in when selecting the outlier. Vice versa, a solution addressing selections
with too many items in them is to train the decision tree on a smaller sample. This can potentially
reduce the accuracy of the steering query, yet we can avoid training times becoming too long. Sup-
porting this approach, prior work [20] as well as our own tests (see Figure 5) suggest that decision
trees do not necessarily benefit from having more data in the training sets, and so sampling may
be sufficient.

9 CONCLUSION AND FUTURE WORK

In this article, we presented steering-by-example, a novel approach to prioritizing data subspaces
during progressive computations that are of interest to the user, based on a user selection in view
space. We evaluated our approach with a series of benchmarks, which show steering-by-example
significantly outperforming random uniform sampling in terms of Precision and Recall for relevant
items in the selected view region. To demonstrate steering-by-example, we provide the open source
visual benchmarking interface ProSteer.

Beyond extending the benchmarks toward more generalizable results (see Section 8), further
questions arise for further developing the steering-by-example approach conceptually.
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One field of future work is to use a continuous degree-of-interest function defined over
the items in a selection rather than a strictly binary distinction between inside/relevant and
outside/irrelevant. Steering-by-example currently expects that all data items inside the view se-
lection are of equal interest to the user. However, view space selections are usually made in a
fuzzy, approximate manner, rather than with surgical Precision. That means that the training data
for the decision tree contains both items that are of high interest to the user as well as items that
are of lesser interest. Yet, both contribute equally to the model. We want to address this in future
work, by defining a degree-of-interest function over the data inside a selection, which assigns a
continuous value to each data item instead of making a binary distinction. This function could for
example consider how close to the center and how close to the boundary of the selection a data
item lies. Then, we want to use regression trees [4] trained on these continuous values for building
the model of the approximate inverse mapping function from view to data space. By increasing the
expressivity of the model, the idea is that the performance of steering-by-example can be further
improved.

We see a second potential field for future work in adapting steering-by-example for iterative
progressions. In the introduction section, we have discussed PVA as a way for bringing the user
into the loop of long-running computations through iterative or incremental approaches. We pre-
sented steering-by-example for incremental computations, in which the result of the computation
progressively includes a larger subspace of a dataset, eventually ending up at the same result as
were the computation run on the entire dataset. This naturally begs the question, how to adapt
the approach for iterative computations such as node-link layouts or iterative clustering, where
a computation instead progressively refines the result computed over the entire dataset, even-
tually converging toward a stable output. One potential steering-by-example approach could be
described as focused refinement, i.e., instead of iterating over the entire dataset, the computa-
tion could prioritize subspaces similar to those selected by the user, producing a stable result first
for these spaces before refining the rest of the data. Another way to involve the user in itera-
tive computation is to let them provide examples of what they expect the final computation to
look like. For instance, in the case of clustering, such an approach could be utilized as initial-
ization of the computation: The user could manually define the clusters for a subset of the data
based on their domain knowledge, and the system could then transfer this to the entire dataset,
assigning similar data to similar clusters as in the user’s selection. For both adaptions of steering-
by-example, the research challenge lies in solving the inherent algorithmic and computational
challenges.

Finally, while for practical reasons our benchmark used only a single box as user selection shape,
it would be interesting to explore both multiple selections and other selection shapes like circles
and lassos. Indeed, while our approach is generally independent of the way in which data items
for the training phase are gathered, investigating not rectangular shapes or multiple selections
in view space could both confirm the result presented in this article for the box-based selector
and push for exploring different steering methods. That can lead to tailoring decision trees for
specific selection shapes or using multiple decision tree models, each trained on one selection
of the view space. Then, the steering query could be constructed by disjuncting the individual
predicates extracted from each tree. Yet, the implications and side-effects of these solutions need
to be further investigated.
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