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ABSTRACT
Controlled sharing is fundamental to distributed systems. We con-
sider a capability-based distributed authorization system where a
client receives capabilities (access tokens) from an authorization
server to access the resources of resource servers. Capability-based
authorization systems have been widely used on the Web, in mobile
applications and other distributed systems.

A common requirement of such systems is that the user uses
tokens of multiple servers in a particular order. A related require-
ment is the token may be used if certain environmental conditions
hold. We introduce a secure capability-based system that supports
“permission sequence” and “context”. This allows a finite sequence
of permissions to be enforced, each with their own specific context.
We prove the safety property of this system for these conditions
and integrate the system into OAuth 2.0 with proof-of-possession
tokens. We evaluate our implementation and compare it with plain
OAuth with respect to the average time for obtaining an authoriza-
tion token and acquiring access to the resource.
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• Security and privacy → Access control; Authorization; Se-
curity protocols.
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1 INTRODUCTION
Securing access to protected resources is one of the most fundamen-
tal challenges in today’s electronic world. Access control systems
ensure that only access requests that match the stated security
policies of the system are granted. Early access control systems
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considered centralized systems where a single computer system
mediated and controlled access to the resources. Such centralized
systems become a bottleneck today as the number of systems and
services being protected is rapidly increasing. The poor scaling of
centralized authorization systems stems from the manner in which
every access request to the protected resources has to go back to
the centralized system for access evaluation.

Distributed authorization systems overcome the requirement of
contacting the authorization system per request and thus provide
a better approach for protecting large-scale systems. Distributed
authorization in general, has two phases. In the first phase, a trusted
Authorization Server (AS) issues a capability that can be thought
of as a token to a client after authenticating and verifying the
request against the system policy, and in the second phase, the
client hands over the capability to a trusted Resource Server (RS)
that meditates the access to the protected resource. The capability
must be unforgeable to ensure secure access.

A capability in its basic form is a random character string with-
out any identifying information and so can be passed on to others,
allowing unauthorized access. The capability can also be stolen and
used without the RS noticing it. Gong [9] proposed an Identity-
Based Capability System (ICAP) that ties the capability to the iden-
tity of the user. The RS will verify the identity of the presenter
which results in the capability to fail the validity check. More re-
cent capability systems allow actions, permissions, and auxiliary
authorization information to be encoded in the capability and en-
ables RS to efficiently enforce complex authorization decision using
the capability itself, and without interacting with the AS. OAuth 2.0
[11] is a prominent example of such a capability system. OAuth uses
“tokens” to provide authentication and authorization in distributed
settings including mobile applications [4, 27] and web services
[8, 29]. In this paper, we use the notions of capability and token
interchangeably.

Besides the progress we have seen for capability-based systems
in recent years, existing systems do not offer control over order-
ings of permissions or limit the number of permission use. Thus
delegated permissions can be exercised with arbitrary order and
for unlimited number of times within a given period. In many ap-
plications, this presents a severe security problem. For example, in
decentralized business and financial systems, payment workflows
require approvals of different authorities in a particular order. Es-
crowing funds and seeking the correct approval order ensures that
the payment will be received by the intended recipient under the
correct sets of checks. As a second example, in the Industrial Con-
trol Systems (ICS), the ordering of permissions to operate electronic
equipment must conform to the workflow sequence [30]. We note
that not carefully controlled access to critical assets, even in a short
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window of time, can undermine security by allowing the attackers
to deploy more sophisticated attacks [2, 16].

We propose an efficient system that removes the above weak-
nesses using a unified problem that can be stated as enforcing a
finite sequence of permissions. We design capabilities that include
the finite permission sequence and demonstrate how it can be up-
dated in each step of showing the capability to an RS. The RS only
needs to maintain an internal counter that will be advanced each
time it receives a capability. We formally establish the security guar-
antees of the proposed system in the form of a safety property [17]
– a property stipulating that no violation of the sequence constraint
will occur. We further show that any protocol event that causes a
state change in the distributed system can be mapped to an event
that causes a state change in the centralized reference monitor.

In addition, our capability-based system includes the “context”
of access. The term context refers to any external conditions in
the policies [22]. Context information, including the state of the
environment (e.g., “turn on the home camera when the user is not
home”) adds significant expressibility to the access control system.
It enables a more refined expression of situations where access
can be granted. Our technique leverages lessons from Schuster et
al. [24], which implemented a context server called Environmental
Situational Oracle (ESO). An ESO encapsulates the implementation
of how a situation is sensed, inferred, or actuated [24]. The integra-
tion of ESOs with our capability-based system enables control over
any permission sequences with context. This allows a sequence of
permission to be enforced, each with their specific context. Our
security proof is still valid with the addition of context confinement.

We implement our capability system as an extension of OAuth
2.0, which shows our proposed system can strengthen OAuth to
enforce context-aware permission sequences in distributed finan-
cial systems. We evaluate our system and compare it with OAuth
2.0 in terms of the average response time for two requests – the
request for obtaining authorization from AS and the request for
accessing resources from RS. Our experiment shows that the over-
head necessary for authorization requests is at most 5% when using
the ECDSA token signature algorithm. However, the overhead is a
bit higher in the resource requests but remains a small constant.

This paper is organized as follows. In Section 2, we provide a high-
level overview of our system. We present the design for enabling
permission sequence in Section 3 and then show the extension that
supports context-awareness in Section 4. We discuss the limitations
of our approach in Section 5. We then describe the implementation
details and the use case in Section 6. We discuss the results of our
experiments in Section 7. We present related work in Section 8 and
conclude in Section 9.

2 SYSTEM DESCRIPTION
Protocol Participants. The proposed capability system consid-

ers the following entities ➊ Resource Owner (RO) which is the entity
owning an account in one or several resource servers. ➋ Resource
Server (RS) which is a server hosting RO’s resources and provid-
ing services. We consider multiple resource servers where each RS
hosts different resources. ➌ Clients which are the users who wish
to access the resource and/or invoke permissions hosted on an RS
by using software applications. ➍ Authorization Server (AS) which

Client

RS1
(p1, rs1)

RS2
(p2, rs2)

RS3
(p3, rs3)

AS

ESO1
C1

ESO2
C2

ESO3
C3

 1. requsr

 2. TAS

 2. TCon

 3. p 1
 , TA

S ,
 TCo

n

 4. TCon

5. valid/inv
6. TR

S1

7. p2 , TRS1 , TCon

9. valid/inv

13. valid/inv

 8. TCon

 12. TCon

10. TRS2

11. p3  , TRS2  , TCon

14. Inform AS

Figure 1: Generic flow diagram of the our system. The client
must invoke permissions in the ordering of p1, p2, p3 . Each
permission has its own context confinement. For the per-
mission 𝑝1, context C1 must be valid. For the permission 𝑝2,
context C2 must be valid. For the permission 𝑝3, context C3
must be valid. After one run-through of the sequence, the
AS is informed and it revokes TAS .

is a centralized entity that provides authentication and authoriza-
tion for the client access request. The AS issues capabilities to the
client, who presents them to an RS as the proof of authorization. ➎
Environmental Situation Oracle (ESO) which is a situation tracker
that encapsulates the tracking of one environmental condition by
processing raw data from the user devices. We consider multiple
ESOs where each one tracks a different environmental condition.
An RS contacts the ESOs to check the environmental conditions
before releasing the resource to the client. The ESOs evaluate the
situation and respond valid/invalid to the RS. Note that we focus
on the design of secure access to ESOs in this work, we do not
propose any underlying situational tracking methods.

Trust Assumptions. Our assumptions are ➊ Each entity has
a private key and a certified public key issued by the RO. ➋ Any
trusted entity can get other entities’ public keys if needed by some
suitable and trustworthy means. ➌ The AS, the resource servers,
and the ESOs are trusted entities. ESO adopts sufficient methods to
evaluate the state of the context correctly. ➍ Clients are malicious.
They attempt to gain unauthorized access to the resource servers.
We do not consider credential lending—the registered clients do
not share their private key with the others.

Solution approach. First, we briefly introduce the OAuth 2.0
protocol. The client initiates the protocol by authenticating them-
selves and sending a request to the AS for accessing some resource
that is controlled by an RS. The AS checks if the request is permitted
by checking the local policies or asking RO’s approval explicitly. If
the check passes, the server then computes a capability (t, tagk (t))
and sends it to the client, where tag is a digital signature signed by
AS’s private key, and 𝑡 is the data to be signed. The RS can verify
tag because they have the AS’s public key. An OAuth capability
usually contains assertions related to authorization, for example,
the granted permission, the expiration time of the capability, the
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issuer of the capability, the RS in which the capability should be
used, and the client’s identity. In this solution, permission sequence
enforcement is not supported. Some simple contexts are supported,
yet the conditions of the authorization can not be fully expressed.

To restrict the orderings in which the permissions are invoked,
we include an assertion that specifies the permission sequence,
and the associate resource servers in the capability. An example is
shown in step 2 of Figure 1, where 𝑇𝐴𝑆 includes those information
for a permission sequence p1, p2, p3 . The permission sequence can
include different permissions (in the case of controlling orderings),
or repeated permissions (in the case of limiting the number of ac-
cess). To enforce the sequence among multiple resource servers, we
introduce a new capability issued by an RS whenever a permission
has been invoked from that RS. The new capability includes a state
assertion, which asserts the next state (index) in the permission
sequence.

We give the following example to demonstrate the above process.
Initially, the state value in𝑇𝐴𝑆 is 0, meaning the client should invoke
the permission located at index 0 of the sequence. In step 3, the
client requests the permission 𝑝1 with𝑇𝐴𝑆 . If the request is allowed
(we will explain shortly on the process of verifying a request), 𝑅𝑆1
issues a capability 𝑇𝑅𝑆1 to the client. We advance the state value by
1 in 𝑇𝑅𝑆1 to represent the next index in the permission sequence.
Then, the client presents 𝑇𝑅𝑆1 to 𝑅𝑆2 in step 7 and gets another
capability 𝑇𝑅𝑆2 . The same interactions repeats until all permissions
in the sequence are visited in a correct order.

However, the above solution enables the client to replay these
capabilities generated in one session and rewind the system state.
The fundamental problem is that resource servers do not track any
access history. To resolve this issue, we let each RS keeps a local
variable. Whenever an RS issues a new capability, that RS advances
its local variable value to the new state. When the client presents
any old capabilities an RS has already seen, the RS can detect the
replay of capabilities by comparing the state value in the capability
with the local variable value in the RS. We show the protocol details
for enabling permission sequence constraint in Section 3.

To verify the environmental context attached with each permis-
sion, we use an external context tracker called ESO. The access to
the ESOs must be protected since it provides information related
to the user and his surrounding environment. We let the AS con-
trol the access to the ESOs. A natural approach is to present the
capability TAS to the ESOs as proof of authorization. This approach
has privacy concerns as the ESOs could gain information about the
permission sequence granted to the client. We resolve this issue by
introducing an ESO capability called 𝑇𝐶𝑜𝑛 , which is the proof of
authorization to access an ESO. A 𝑇𝐶𝑜𝑛 is issued in pair with the
𝑇𝐴𝑆 to the client. The policy in the 𝑇𝐴𝑆 is not included in the 𝑇𝐶𝑜𝑛 .
Upon receiving both capabilities, the RS queries the ESOs using the
ESO capability. The protocol details are discussed in Section 4.

Final note on the efficient capability revocation in our system.
All capabilities shown in Figure 1 are either cryptographic tied to,
or derived from 𝑇𝐴𝑆 (see Section 3 and 4 for more details). Hence,
revoking the 𝑇𝐴𝑆 will invalidate all descendant capabilities.

3 PERMISSION SEQUENCE
In this section, we present the design for enabling permission se-
quence constraint using two underlying primitives, hash function

and digital signatures. Then we formalize the protocol as a dis-
tributed state transition model. Further we prove that any protocol
event that causes a state change in the distributed system can be
mapped to a event that causes a corresponding state change in the
centralized reference monitor (Section 3.2).

Preliminaries. We use 𝐻 to denote a hash function. 𝐻 (𝑚) is
the digest of message𝑚.
𝑆𝐴 is a signing transformation for entity 𝐴 from the message

set 𝑀 to the signature set 𝑆 . The signature created by Entity 𝐴
for a message 𝑚 ∈ 𝑀 is denoted as 𝑆𝐴 (𝑚). 𝑉𝐴 is a verification
transformation for 𝐴’s signatures from the set 𝑀 × 𝑆 to the set
{true, false}. To verify 𝑆𝐴 (𝑚) is indeed created by 𝐴, entity 𝐵 com-
putes 𝑉𝐴 (𝑚, 𝑆𝐴 (𝑚)). The signature is accepted if the result is true,
otherwise rejected.

We use output ⊥ to denote any failure response. We use “,” for
concatenation.

3.1 Protocol Description
The protocol session starts when a client initiates a request to the
AS until to the point when the capability is revoked or expired.

The structures of capabilities. For each session, the capability
T is a set which is composed of two elements: TAS - a master
capability issued by the AS; TRS - a set of capabilities issued by
resource servers. We call TRS the state capability set. Below we
present the structure of each capability.
TAS

– TAS has the form of (𝑡, 𝑆𝐴𝑆 (𝑡)),
where t = (P,Cid , state = 0, sessionid , exp).

– P contains a finite sequence of permissions and the RS iden-
tifiers for each named permission. For the example in Figure
1, We could express P as

[(RS1, p1), (RS2, p2), (RS3, p3)] (1)

– Among the other assertions, 𝑇𝐴𝑆 includes the identity of the
client (𝐶𝑖𝑑 ), session id, the state value of 0 which indicates
that the permission at index 0 should be invoked next and
the expiration time after which the capability is not valid.

– 𝑆𝐴𝑆 (𝑡) is the signature created by the AS for message 𝑡 .
TRS

– The elements in this set are capabilities issued from the
resource servers. A capability issued by 𝑅𝑆𝑖𝑑 is denoted as
𝑇𝑅𝑆𝑖𝑑 .

– The elements in this set has the form of (𝑡, 𝑆𝑅𝑆𝑖𝑑 (𝑡)), where
t = (TAS, state, certRSid , exp).

– 𝑇𝑅𝑆𝑖𝑑 contains the master capability 𝑇𝐴𝑆 , certificate of 𝑅𝑆𝑖𝑑
assuming that the resource servers does not necessarily know
the other resource servers in the system.

– The state value indicates the index of the next permission in
P.

– The signature ensures the data authenticity (the RS is really
who they claimed to be), and integrity. Upon receipt of an
state capability TRSid , the next RS must verify that the sig-
nature of AS in 𝑇𝐴𝑆 is valid, and signature of 𝑅𝑆𝑖𝑑 is valid
using the certified public key.
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Algorithm 1 Procedure of Authorization at RS

Input: A client access request (Cid , p, T ) to 𝑅𝑆𝑚 .
Output: A new capability, or ⊥.
1: if T is null then
2: return ⊥
3: if T is TAS or T ∈ TRS then
4: if T is not issued for 𝐶𝑖𝑑 or T is expired or T is revoked or

T is not intended to use at the 𝑅𝑆𝑚 then
5: return ⊥
6: else if state ≥ rsm and invoking 𝑝 at 𝑅𝑆𝑚 is allowed by the

current state of P then
7: Invoke 𝑝
8: else
9: return ⊥
10: if 𝑝 is the last permission in P then
11: inform the AS
12: else
13: rsm ←− state + 1
14: return TRSm
15: else
16: return ⊥

RS Internal State. Each RS maintains a local variable 𝑟𝑠 for
each session. 𝑟𝑠 is updated whenever a permission that it holds is
invoked successfully. More specifically, rs←− state + 1, where state
value is from the capability presented to the RS. The initial value
of 𝑟𝑠 for each session is 0.

Obtaining Authorization from AS. A client authenticates to
the AS before he/she sends any authorization request. If the client
authenticates successfully and it is authorized to perform requested
permissions based on policies, the AS issues a capability 𝑇𝐴𝑆 to the
client. 𝑇𝐴𝑆 has the form of (𝑡, 𝑆𝐴𝑆 (𝑡)), where 𝑡 = (P,Cid , state = 0,
𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑑 , 𝑒𝑥𝑝).

Accessing Protected Resource from RS. Client attempts to ex-
ercise permission 𝑝 on 𝑅𝑆𝑚 by presenting a capability 𝑇 , where T
is either 𝑇𝐴𝑆 or from the set TRS . After verifying the identity of the
client, the RS runs Algorithm 1 to handle the request. The RS first
checks if the client presents a capability with access, and whether
the signature is valid (lines 1-3). In line 4, the RS checks the other
important assertions in the capability, including ➊ the identity of
the client matches the 𝐶𝑖𝑑 in the capability ➋ the capability is not
expired➌ the capability is not revoked by the AS, possibly by check-
ing the revocation list which contains all the revoked capabilities,
➍ The requested permission 𝑝 is associated with 𝑅𝑆𝑚 .

Only when all the checks above are passed, the RS starts to
consider if the client follows the restricted order of permissions.
In line 6, if the value of state in the capability is larger than or
equal to the value of 𝑟𝑠𝑚 and invoking permission 𝑝 on 𝑅𝑆𝑚 is
allowed by the current state of P, 𝑅𝑆𝑚 invokes the permission 𝑝 .
𝑅𝑆𝑚 then updates the 𝑟𝑠𝑚 to state + 1 and creates a new capabil-
ity 𝑇𝑅𝑆𝑚 (lines 13-14). 𝑇𝑅𝑆𝑚 has the form of (𝑡, 𝑆𝑅𝑆𝑚 (𝑡)), where
t = (TAS, state = rsm, certRSm , exp). The 𝑠𝑡𝑎𝑡𝑒 value in 𝑇𝑅𝑆𝑚 equals
to the updated 𝑟𝑠𝑚 value. By doing this, the latest state value is kept
by 𝑅𝑆𝑚 and carried by the capability to the next resource server.

Finally, if 𝑝 is the last permission, the RS informs the AS about the
complete run-through of the permissions in P. No new capability is
generated. Then AS revokes the master capability, all the state capa-
bilities will be invalid automatically since they contain the master
capability. All resource servers delete their internal variables for
this session.

3.2 Security Analysis
We provide security analysis for the following attacks:

Capability forgery and tampering. The attacker tries to forge
and/or tamper capabilities to gain unauthorized access. To prevent
this attack, we include a digital signature in every capability. The
private key is used to create signatures that prove ownership of
controlling access (AS) and resources (RS). Any forged/tampered
capability will be detected during signature validation.

Capability theft. The attacker may steal the capability in transit
if communication channels are not protected by TLS/DTLS. Nev-
ertheless, he can not use these stolen credentials because each
capability includes the identity of the possessor (client id). When
the client presents the capability to the RS, he must authenticate to
the RS by proving possession of the private key only known by the
possessor of the capability (e.g., by signing a protocol message with
a private key). Using any capability issued for others will be de-
tected by the server. We recommend using TLS for privacy reasons.
The capability is signed, but not encrypted. Although the attacker
can not use the stolen capability, he may infer the security policy
from the capability.

Client Impersonation. The attacker impersonates as client A
to obtain authorization from the AS. This attack is prevented by
public-key-based client authentication.

Replay attack is the main security concern here. During one
session, client receives a set of capabilities, including one master
capability and multiple state capabilities. Is it possible for the client
to reuse any old capabilities that an RS has already seen? Replaying
an old capability could lead to unauthorized access which violates
the permission sequence. We formalize our protocol in the following
and prove that replay attacks are not possible.

We model the sequence enforcement protocol as a state transi-
tion system. Each protocol state captures the states of the entire
distributed system, including states of the AS, resource servers,
and the client. We then list all protocol events that cause a state
transition in the distributed system. Next we model the state tran-
sition for enforcing permission sequence in a centralized reference
monitor. Finally, with the effective state (security property), we
show that the distributed system simulates the behavior of a cen-
tralized system in Theorem 1. We use |P | to denote the length of
permission sequence P.

Our state transition model abstracts away the following aspects
of the protocol: (1) Tickets forging is not modelled as we assume
that it is adequately prevented by signatures. (2) Themodel specifies
the behavior of one session only since each session is independent
from one another. (3) Each capability allows one permission to be
exercised at a time.

Definition 1 (Protocol States). A protocol state 𝛾 is a 3-tuple
(A, R,C), where the three components are defined as follows.
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– The authorization server state 𝐴 is a binary value 𝑏 that
represents whether the original capability𝑇0 has been issued
from the AS.

– The state of resource servers is represented by 𝑅, where 𝑅 is
a vector of counter values. 𝑅 = {𝑟𝑠𝑖 }𝑖∈[𝑛] , [𝑛] = 0, ..., 𝑛 − 1.

– The client state 𝐶 is the set of capabilities that have been
issued to the client throughout the protocol session. A capa-
bility T is of the form T (P, state), where P is a sequence of
permissions. Each permission is specified with the identity of
RS on which the permission should be invoked. The second
element state indicates the index of the next permission to
be invoked in P.

Let Γ be the set of all protocol states 𝛾 of the above form.

Initial state. The protocol is intended to begin at the initial state
𝛾0 = (A0, R0,C0) where 𝐴0 is the initial state of the authorizaton
server (𝐴0 = 𝑓 𝑎𝑙𝑠𝑒), 𝑅0 is the initial state of the resource servers
(∀i ∈ [n] rsi = 0), 𝐶0 is the initial set of capabilities that have been
issued to the client (𝐶0 = ∅).

State transition. A transition identifier _ identifies a protocol
event that causes a change to the protocol state:

_ ::=issue() | request (p, T , RSm) | last_request (p, T , RSm) (2)

where 𝑝 is a permission, 𝑇 is a capability, 𝑅𝑆𝑚 is the resource
server client attempts to visit, 𝑚 ∈ [𝑛]. Let Λ be the set of all
transition identifiers.

We specify a transition relation · ·−→ · ⊆ Γ × Λ × Γ. The re-
lation is specified in terms of transition rules, which identify

the conditions under which (A, R,C) _−→ (A′, R′,C′), where A = b,
𝑅 = {𝑟𝑠𝑖 }𝑖∈[𝑛] , A

′
= b

′
, 𝑅
′
= {𝑟𝑠′

𝑖
}𝑖∈[𝑛] . By default A

′
= A, R

′
= R,

C
′
= C, unless the rules explicitly say otherwise.

T-Iss The AS issues a capability to the client.
Precondition: _ = issue(), b = false.
Effect: (i) 𝑏

′
= 𝑡𝑟𝑢𝑒 . (ii) 𝐶

′
= 𝐶 ∪ {T0}, where

T0 = T {P, state = 0}.

T-Req The client requests to exercise a permission.
Precondition: _ = request (p, T , RSm), T ∈ C, T =T (P,
state), state ≥ rsm, p = P[state], state < |P − 1|, b = true.

Effect: (i) rs
′
m = state + 1, ∀𝑖 ∈ [𝑛] \ {𝑚} 𝑟𝑠′

𝑖
= 𝑟𝑠𝑖 . (ii)

C
′
= C ∪ {Tnew}, where Tnew = T (P, rs′m).

T-Com The RS informs the AS after client requesting the
last permission in P.
Precondition: _ = last_request (p, T ,RSm), T ∈ C, T =

T (P, state), state ≥ rsm, 𝑝 = P[state], state =|P − 1|,
b = true.
Effect: (i) R

′
= R0 . (ii) A

′
= A0 .

State invariants:
Inv-1: When 𝑏 is true, for any T ∈ C, and any resource server

𝑅𝑆𝑖 , one of the following two cases holds: (a) if 𝑅𝑆𝑖 does not match

with the identity of the RS who holds permission 𝑝 , then 𝑇 can not
be used at 𝑅𝑆𝑖 ; (b) if 𝑅𝑆𝑖 matches with the identity of the RS who
holds permission 𝑝 , the state value in T is always no less than the
value of 𝑟𝑠𝑖 in 𝑅𝑆𝑖 .

Inv-2: When 𝑏 is false, 𝑅
′
= 𝑅0, all capabilities in the session are

revoked.

Proposition 1 (State Invariants). The initial state 𝛾 satisfies
conditions Inv-1 to Inv-2. In addition, if 𝛾 satisfies conditions Inv-1

to Inv-2, and 𝛾
_−→ 𝛾

′
, then 𝛾

′
also satisfies those conditions.

The proof of Proposition 1 is provided in [18, Chapter 4, Section
2].

Security property. Consider a protocol state 𝛾 = (𝐴, 𝑅,𝐶), such
that 𝛾 satisfies the Inv-1 to Inv-2. The effective state of protocol
state 𝛾 , denoted eff (𝛾), is defined below:

eff (𝛾) =
{
0 if b = false
max (rsi)i∈[n] otherwise

(3)

Definition 2 (Centralized System States). A centralized sys-
tem state is the value of counter 𝑐𝑡𝑟 which indicates the index of
the current permission in the sequence P. The initial state of the
system is 𝑐𝑡𝑟 = 0. Let Γ

′
be the set of all states.

State transition. A transition identifier _
′
identifies a protocol

event that causes a change to the protocol change:

_
′
::= request

′
(p) | last_request

′
(p)

where 𝑝 is a permission. Let Λ
′
be the set of all transition identifiers.

We specify a transition relation · ·−→ · ⊆ Γ
′ × Λ

′ × Γ
′
. The

relation is specified in terms of transition rules, which identify

the conditions under which 𝑐𝑡𝑟
_
′

−−→ 𝑐𝑡𝑟
′
. By default 𝑐𝑡𝑟

′
= 𝑐𝑡𝑟 ,

unless the rules explicitly say otherwise.

T-CReq The client requests to exercise a permission.
Precondition: _

′
= request

′ (p)
Effect:: ctr

′
= ctr + 1

T-CCom The client requests to exercise the last permis-
sion in P.
Precondition: _

′
= 𝑙𝑎𝑠𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡

′ (𝑝) and 𝑐𝑡𝑟 =|P − 1|
Effect:: 𝑐𝑡𝑟

′
= 0

Theorem 1 (Safety). Suppose 𝛾 satisfies the state invariant from

Inv-1 to Inv-2, and 𝛾
_−→ 𝛾

′
. Then the following statements hold:

– if _ = request (p, T , RSm),

eff (𝛾)
where _

′
=request

′ (p)
−−−−−−−−−−−−−−−−−−−→ eff (𝛾 ′).

– if _ = last_request (p, T , RSm),

eff (𝛾)
_
′
=last_request′ (p)

−−−−−−−−−−−−−−−−−→ eff (𝛾 ′).
– if _ is not of the form request (_, _, _), or last_request (_, _, _),

eff (𝛾) = eff (𝛾 ′).
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Client AS RS ESO phone presence
sensor

Client AS RS ESO phone presence
sensor

Client Authentication

1. request with 
 client credentials

2. access token  
+ ESO token

Token Validation

3. request resource with both tokens

Granting Access

Token Generation

ESO Selection

4. get_state 
(state_request, ESO token)

5. active/inactive
6. If active, provide service/resource

Figure 2: Authorization enforcement process with context.

The theorem above states that any protocol event that causes a
state change in the distributed system can be mapped to a event
that causes state change in the centralized reference monitor. Proof
of Theorem 1 is provided in [18, Chapter 4, Section 2].

4 ENABLING CONTEXT-AWARENESS
In this section, we present the design for enabling context-awareness
with the same preliminaries defined in Section 3. Figure 2 shows the
complete flow with context-awareness. The notions of capability
and token are used interchangeably.

4.1 Protocol Description
The Structures of Capabilities. We introduce two new capa-

bilities in the capability set T defined in Section 3.1. The new
capabilities are TCon - a capability issued by the AS for accessing
the ESO and TC - a capability issued by the client for sending au-
thorization request to the AS. We update the structure of TAS to
enable the context feature. TRS keeps the same structure defined in
Section 3.1.
TAS

– TAS has the form of (𝑡,S𝐴𝑆 (𝑡)),
where t = (P,Cid , state = 0, sessionid , exp).

– P is an information structure specifies what are the autho-
rized permissions, where to invoke these permissions, and
what are the context associate with these permissions. Each
permission can be specified as the tuple of three elements

(RSid , p,Context (Cid , RSid , property)) (4)

Context (Cid , RSid , property) is a check/condition says that a
“property” must be satisfied by the client with the identity
Cid and the RS with the identity RSid . The property could be
as simple as when to invoke the permission or as complex
as requiring certain location of the user. Note that one per-
mission 𝑝 could possibly has several context constraints. We
give an example of P based on Figure 1. Suppose Context1,

Context2, Context3 are three different context property. We
could express P as

P = [(RS1, p1,Context1), (RS2, p2,Context2),
(RS3, p3,Context3), (RS1, p1,Context1)]

(5)

TCon
– TCon has the form of (𝑡, 𝑆𝐴𝑆 (𝑡)),
where t = (𝐻 (TAS), scope, exp).

– The 𝐻 (𝑇𝐴𝑆 ) ties the TCon with the TAS . The purpose is that
the client should not use the ESO capability without the
master capability, or use it with a different master capability
from another session.

– The scope is specified as the tuple of four elements,

(RSid , ESOid , p
′
,Context) (6)

ESOid indicates the identity of the ESO which tracks the
context. In the case of an URL is used for ESOid , there is no
need to map from the ESO identity to its URL. 𝑝

′
indicates

the authorized permission(s) on the ESO, which is usually
“read”.

TC
• TC has the form of (𝑡, S𝐶 (𝑡)),
where t =((Cid ), RSid , requested_scope).
• A request from the client is represented as a capability. The
requested_scope indicates the permission(s) requested by the
client. The requested_scope captures the rich semantics of
authorization requests.
• Because of the signature, the AS is able to authenticate the
client and check the integrity of the request.

Obtaining Authorization from AS. Client 𝐶𝑖𝑑 sends an au-
thorization request to the AS with a client claim capability𝑇𝐶 . This
capability includes the request information and the client’s signa-
ture for authentication. If the client authenticates successfully to
the AS and it is authorized to perform requested permissions, the
AS issues a master capability 𝑇𝐴𝑆 and an ESO capability 𝑇𝐶𝑜𝑛 to
the client.

The policies at AS should add ESO policies. One way of adding
the ESO policy to the access control policy is to hard-code the ESO
URL in policy rules, as specified in [24]. ESO registration can be
done by maintaining a database that stores the ESO description and
its URL at the AS - we present more details of installing an ESO
server in Section 6.

Accessing Protected Resource from RS. Client attempts to ex-
ercise permission 𝑝 on RSm by presenting (Cid , p, T , TCon), where
T is either 𝑇𝐴𝑆 or from the set TRS . After verifying the identity of
the client, the RS first checks if the client presents two unexpired
capabilities with access. Then, the RS verifies whether the ESO
capability 𝑇𝐶𝑜𝑛 is tied with the master capability 𝑇𝐴𝑆 . This can be
easily done if T is𝑇𝐴𝑆 . If T is from the set TRS , the RS needs to find
𝑇𝐴𝑆 within the capability.

After all the above checks have passed, the RS examines if the
client follows the restricted permission order as shown in lines 3 -
9 in Algorithm 1. The only modification is that before invoking the
permission 𝑝 in line 7, the RS queries the ESO server if a certain
context has to be satisfied. Before the RS interacts with the ESO
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server, the identity of the RS must be verified. RS calls get_state()
method of the ESO with TCon to query the state of the context.
When the ESO receives a request from the RS, it verifies that ➊ the
signature of TCon is valid using AS’s public key, ➋ the capability
is not expired, ➌ accessing rights are allowed by TCon. Finally, the
ESO returns active/inactive to the RS, which indicates the result of
the context evaluation. If the result is active, RS will invoke 𝑝 for
the client. Otherwise, RS returns ⊥. The rest of the steps follows
lines 10 - 14 in Algorithm 1.

4.2 Security Analysis
The context-aware permission sequence protocol prevents attacks
mentioned in section 3.2. Any violation of the permission sequence
by replaying the old token is impossible because adding the context-
aware protocol does not change the core functionality of the per-
mission sequence protocol. Having an ESO capability does not give
the attack any advantage in violating the permission sequence.
However, we discuss the following new attack scenario.

Client impersonates as RS. In our system design, the RS con-
tacts the ESOs to check the environmental conditions during policy
enforcement. In fact, the client should not have the right to obtain
the state of the context via ESOs. However, the malicious client may
query the context state from the ESOs by directly sending the ESO
capability. To prevent such attack, we require that an ESO must
authenticate the RS and verify that the RS is authorized to access
by checking the ESO capability. An RS can authenticate to an ESO
by proving the possession of the private key (e.g., Signing TCon and
sending the capability with its signature to the ESO).

Capabilities, server responses should be kept confidential in
transit (using TLS/DTLS), at least between the RS and ESO. Since
ESO responds sensitive data about the user’s activity.

5 LIMITATIONS

Storing additional state. The protocol requires the resource
servers to maintain an additional state for each client. The resource
servers also need sufficient computational power to verify the sig-
natures on the tokens and digitally sign the new ones. In IoT appli-
cations, this may be a problem if a resource-constrained resource
server must serve many users. This is likely not a problem in Web
applications where servers have access to storage and computing to
serve many users. Compared to HCAP [30] considers enforcement
of general history-based policies, the information that is stored on
the resource server is significantly reduced. The resource server
only needs to maintain an internal counter.

Reusability of tokens. The ubiquitous use of tokens is due to
its flexibility and ease of adoption. For example, tokens can be
reused to access protected resources. As discussed in Section 1,
reusing tokens, however, can pose a significant security risk. Our
proposal can be used to control the order and the number of token
use while maintaining the system’s security, and the price to pay is
that the AS needs to generate a new master token for each session.
To optimize the design in reducing the number of interactions with
the AS, all descendant tokens in the same session are derived from
the master token directly without contacting the AS again. HCAP
[30] already bounds tokens to sessions. Therefore, our proposal is

not making the efficiency worse when controlling the order and
the number of token use.

6 IMPLEMENTATION
We implement our proposed system based on the OAuth client
credential grant with proof of possession tokens. OAuth has two
token structures, bearer tokens and proof of possession (PoP) to-
kens. Unlike bearer tokens, PoP tokens are tied to a specific subject,
and the requesting party has to prove the possession of a secret
key only known to this subject, hence aligns with capabilities in
our system. Our theoretical system is not restricted to the use of
any specific access control model. To demonstrate the practical use
of our capability system, we implement ABAC [12] as the autho-
rization mechanism in AS. ABAC shows supremacy on scalability
because policies are defined for subject-object attribute combina-
tions. On the technical side, each server is developed using Node
with Express framework and MongoDB database.

We discuss the implemented components in Section 6.1 and 6.2.
We then present a use case that shows how the two features of
the proposed scheme are useful in distributed financial systems
(Section 6.3).

6.1 Authorization Server
The AS provides the authorization and token generation service.
We implement ABAC model [12] for authorization and JSON web
token [14] as the token format.

Policy Language Model Based on the theoretical design in
Sections 3 and 4. We define policies as the following model:
⟨Policy⟩ ::= ⟨Rule⟩|⟨Rule⟩⟨Policy⟩
⟨𝑅𝑢𝑙𝑒⟩ ::= ⟨subjectAttributes⟩⟨objectAttributes⟩⟨authorization⟩

⟨actionAttributes⟩⟨environmentContext⟩⟨Default⟩
The ⟨Policy⟩ consists of a set of ⟨Rule⟩s. A ⟨Rule⟩ must conform to
the following form:

– ⟨subjectAttributes⟩: Attributes of the clients.
⟨objectAttributes⟩: Attributes of the objects. The objects are
the resources or services protected by the resource servers.

– ⟨authorization⟩: The result of policy evaluation. Either “per-
mit” or “deny” .

– ⟨actionAttributes⟩ specifies permissions and their scope.
– ⟨environmentContext⟩ specifies any external context. Note
that we separate the environment context from the permis-
sion for easier demonstration. Evaluation of context is per-
formed by the resource server in conjunction with the en-
forcement of an authorization decision.

– ⟨Default⟩: Indicating the default decision if the attributes of
the requester or attributes of the object do not match with
the attributes in ⟨Rule⟩.

Policy Implementation The AS support any policy content
as long as it conforms to the policy language model. It stores the
policies as a collection of rules in MongoDB. We create Policy
Schema in MongoDB based on the policy language model. The
rules are implemented as JSON objects. We show a policy rule
example below and its implementation in Figure 3.

Example. Alice uses Application B that requires a paid member-
ship. Application B offers Alice the option to pay her membership
monthly using her credit card. Alice authorizes her credit card
company to pay the application fee under the following conditions.
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1 {

2 "type":"ABAC policy",

3 "name":" ApplicationServiceCharge",

4 "application":" Payment",

5 "rules":{

6 "subjectAttribute":{

7 "ApplicationID":["B"]

8 },

9 "objectAttribute":{

10 "resourceType":["balance"],

11 "resourceID": "Alice"

12 },

13 "authorization":" permit",

14 "actionAttribute":{

15 "actions":["charge"],

16 "amount": "$10",

17 "frequency": "monthly"

18 },

19 "environmentcontext":["used_within_two_months"],

20 "Default":{

21 "authorization":"deny"

22 }

23 }

24 }

Figure 3: Allowing one-time charge authorization with $10
when Alice has been using Application B for the past two
months.

Application B can make once a month $10 charge to Alice’s account,
under the condition that Alice has been using Application B for the
past two months. Thus a payment request will be rejected in the
following cases, ➊ Application B is requesting an amount different
from $10. ➋ Application B is charging $10 to Alice’s account for
the second time in the same month. ➌ Alice has stopped using
Application B, but she has not canceled her subscription. This last
case will be detected by monitoring access to the application.

Authorizaton Evaluation. The client is authenticated by sign-
ing the client claim token. Then, the AS decodes the client claim
token, gets the client identity, and queries the subject attribute
database with this identity. With the found subject attributes, the
AS evaluates it against all the available policies. More specifically,
the AS checks ➊ if the requester has all the attributes required in
⟨subjectAttributes⟩ ➋ if the requested object are allowed by the
⟨objectAttributes⟩ ➌ if the requested scopes/permissions are al-
lowed by the ⟨actionAttributes⟩. The AS adopts the permit-override
strategy. If there exists at least one permit, the AS will grant access
and generate a master token. To generate the master token, the AS
pulls out the relevant information in the policy and assembles them
in the token.

If any environmental context is required by the policy, the AS
will need to create an ESO token which is used to query a re-
sponsible ESO server. When an ESO server is introduced to the
AS, AS will record its description and URL in the known ESO
“list” . With this “list” , the AS can find the ESO server based on
the context from policy ⟨environmentContext⟩. For example, the
“used_within_two_months” in Figure 3 maps to the ESO that checks
if the user has used the app within the last two months.

6.2 Resource Server and ESO Server
Object attributes are bound to their objects through referencing,
by embedding them within the object. In our case, the resources

are objects, and they are stored together with their attributes. The
policy enforcement point is implemented in the RS. Upon receiving
the tokens from the client, the RS verifies the signatures of each
token, contents of each token, and checks if two tokens are bound. If
context validation is required, the RS sends an HTTPS post request
to fetch the internal state of the ESO.

1 {

2 "client_id":"B",

3 "issuer":" ApplicationB",

4 "application":" Payment",

5 "objectAttribute":{

6 "resourceType":["balance"],

7 "resourceID": "Alice"

8 },

9 "structured_scope":{

10 "actions":["charge"],

11 "amount": "$10"

12 }

13 }

Figure 4: Example of decoded client claim token

Once all these steps are successful, the RS may return the re-
sources, or provide services to the client. We wrap all the token
validations and context checking duties into an Express middle-
ware. Programmers can easily invoke this independent module
when writing any customized API for the RS.

We do not implement any underlining protocols for tracking
environment context as it is out of the scope of this work. After
successful validation of the ESO token and the RS signature, the
ESO server sends a response {“Contex” :“True” } or {“Contex” :“False”
} to the RS.

6.3 Use Case
Client authorization request. App B requests authorization

from Alice’s bank to charge her account $10 per month. App B
sends an HTTPS request with the following keys in the header to
the AS that the bank maintains. Figure 4 shows the decoded client
claim token in “client-assertion”.

“grant-type” :“client_credentials”,
“client-assertion-type” : “jwt-bearer”,
“client-assertion” :“eyJhbGciOiJFUzI1NiIsInR5cCI6IkpX
VCJ9...jgP0WPftkxaYg5LjVCS4Q2Dp6hQ”.

Authorization ServerResponse. Figure 5 shows the attributes
of App B. The authorization server evaluates the client request
against the policy and uses the rule that permits one-time charge
of $10 if the user has used the App in the last two months. In this
example, the AS issues both the master token and the ESO token.
Figure 6 shows the decoded master token, and Figure 7 shows the
decoded ESO token.

The master token contains the information of the token expira-
tion time, subject, audience (RS URL), issuer (AS endpoint), state,
actionAttributes, and the required environment context.
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1 {

2 "subject_id":"B",

3 "application":" Payment",

4 "subjectAttribute":{

5 "ApplicationID":["B"]

6 },

7 "name":" ApplicationB"

8 }

Figure 5: Example of client attributes

1 {

2 "expireIn":"1 day",

3 "subject_id":"B",

4 "audience":"https :// localhost :4990/ Alice/balance",

5 "issuer":"https :// localhost :5000/ authorization",

6 "state":"0",

7 "actionAttribute":{

8 "permission_sequences":["charge"],

9 "amount": "$10",

10 "frequency":" monthly"

11 },

12 "environmentcontext":["used_within_two_months"],

13 "iat":1567468693

14 }

Figure 6: Example of decoded master token

ESO token contains the hash of the master token (we use SHA256
implementation from CryptoJS library [21]), expiration date, sub-
ject, audience (ESO server URL), issuer (AS endpoint), and the
required environment context.

1 {

2 "expireIn":"1 day",

3 "hashAT":{

4 "words":[

5 1904756807,

6 -1499235065,

7 -860331953,

8 -1557528208,

9 -355723369,

10 -1355021346,

11 -70944964,

12 -653925533

13 ],

14 sigBytes":32

15 },

16 "subject":"https :// localhost:4990/Alice/balance",

17 "audience":"https :// localhost:4995/used_within_two_months",

18 "issuer":"https :// localhost:5000/authorization",

19 "action":["read"],

20 "userID": "Alice",

21 "environmentContext":["used_within_two_months"],

22 "iat":1567468693

23 }

Figure 7: Example of decoded ESO token

Resource Request. The client App B sends an HTTPS request
with the following keys in the HTTP headers to the RS endpoint
that manages customers’ accounts,

‘‘x-oauth-token” : “𝑒𝑦𝐽ℎ𝑏𝐺𝑐𝑖𝑂𝑖 𝐽 𝐹𝑈𝑧𝐼1𝑁𝑖𝐼𝑠𝐼𝑛𝑅5𝑐...𝑈𝑜𝑙𝑦
𝑘𝐻𝐾𝑒𝐽𝑈𝐻𝑐𝐺ℎ𝑜2𝐴”,
“x-eso-token” :“𝑒𝑦𝐽ℎ𝑏𝐺𝑐𝑖𝑂𝑖 𝐽 𝐹𝑈𝑧𝐼1𝑁𝑖𝐼𝑠𝐼𝑛𝑅5𝑐...𝑋𝐵𝐶𝑠𝑋𝐸
𝑗𝑔𝑞8𝑋𝑊𝑢𝐿𝑝𝑋𝑔”.

After all the checks have passed based onAlgorithm 1 , RS queries
the ESO that tracks Alice’s login history of App B in the past two
months . If the ESO server respond {“Context” :“True” }, the RS will
add $10 charge to her account. Finally, the RS will inform the AS
about the transaction. The AS will not issue any new token until
the next billing cycle.

7 PERFORMANCE EVALUATION
We evaluate the implemented system for two token signature al-
gorithms, RSA signature, and ECDSA signature. ECDSA signature
algorithm has a smaller key size compared to the RSA signature
algorithm for the same level of security. With the faster signing
process and smaller key storage, the ECDSA signature can be used
for constrained devices, such as IoT devices. The RSA operations
and elliptic curve operations related to the token generation and
verification are implemented using the jsonwebtoken library[1].
The key length in RSA signature is 3072 bits, and the curve in
ECDSA is P-256. Both of them provide 128 bits security[28]. The
hash functions are SHA-256.

To evaluate the performance, we implement various settings
described below. The experiments are run on a windows computer
with 4 Core(s) 8 Logical Processor(s) 3.60GHz Intel(R) Core(TM)
i7-7700 CPU and 8GB of RAM. We use Apache JMeter as the client
side to send https requests to the AS and the RS. Both servers
and the ESO server run on different ports of the same computer.
The client and the servers reside on the same computer with a
negligible round-trip latency (0.1-0.2ms). All communications are
TLS protected. The TLS version is TLSv1.2, and the cipher suite is
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256. We use X.509
certificates for TLS authentication.

The goal of the experiment is to answer the following ques-
tions. ➊ How does the number of simultaneous requests impact
the average response time? ➋ How long does it take to receive a
response from the server? ➌ Compared to OAuth 2.0, how much
enabling context and permission sequence constraints slows the
authorization process and access?

We address these questions in terms of two requests, the autho-
rization request to AS, and the resource request to RS. For each type
of requests, we first present the average response time for a vary-
ing number of simultaneous requests. Then we examine the time
breakdown for one request. Finally, we compare our system with
OAuth 2.0 and show the overhead based on the average response
time.

7.1 Authorization Requests
The average response time of simultaneous requests. We

report the average response time for up to 3000 simultaneous au-
thorization requests in Figure 8a. The reported result is an average
of 5 experiments. Figure 8a also shows the 95% confidence inter-
val calculated from 5 experiments. We use the request example in
Section 6.3 for all the requests and evaluates the request against 10
ABAC policies.

To ensure accuracy, we use the Apache JMeter to automate our
test. JMeter creates a new thread for each user created. Each user is
independent of another user. We configure 𝑛 users, and each user
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(a) Average response time (in milliseconds) for authorization re-
quest through our system with 95% confidence interval.
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(b) Average response time (in milliseconds) for the resource re-
quest through our system with 95% confidence interval.
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(c) Multiplicative overhead of the authorization request: average
response time in our system compared to OAuth.
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(d) Multiplicative overhead of the resource request: average re-
sponse time in our system compared to OAuth.

Figure 8: Performance of two requests in our system and their overhead compared with OAuth.

fires off one request. These 𝑛 requests are sent in series within one
second.

As shown in Figure 8a, the average response times in the ECDSA-
P256 setting are shorter, compared with RSA SHA-256 setting. This
is because creating RSA signature takes significantly more time.

Table 1: Runtime breakdown in an authorization request (in
milliseconds)

Operations RSA-Sig ECDSA-Sig
(time in ms) (time in ms)

TLS handshake 12 13.2
Client Authentication 0.7 0.942
Check Permissions 73.381 75.56

master token 4.318 0.508
ESO token 4.266 0.486

Estimated Total Time 94.665 90.696

Time breakdown of a single request. Table 1 gives the time
break down for the case of RSA-Sig and the ECDSA-Sig. We also

report the time duration of the TLS handshake. All numbers are
the average of over 1000 token requests.

In our experiments, most of the processing time is spent on
checking permissions, which includes the time for retrieving con-
text information to be able to take the access decision. The time of
checking permission is similar in the RSA-sig setting and ECDSA-
sig setting. This aligns with our implementation, as checking per-
missions does not include signature operations. The computation
time of creating the master token and ESO token is similar for the
same signature algorithm. On the other hand, the computation time
of creating a token with RSA-Sig is significantly more than creating
a token with ECDSA-Sig.

ComparisonwithOAuth 2.0 on authorization requests. We
implement the OAuth client credential grant for comparison. Com-
paring the average response time of authorization request in our
system and OAuth 2.0 presents the extra cost of enabling environ-
ment context on the AS side. We show the multiplicative overhead
of the average round trip time of the authorization request in Figure
8c. Different token signatures represent in different colors. The set
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of bars represents the overhead of our system compared to OAuth
for various number of requests. We evaluate the overhead up to
8000 requests.

In the AS, since the most-time consuming component is checking
permissions, the overhead of our system compared with OAuth is
fairly small. As shown in Figure 8c, the overhead is less than 5% in
the ECDSA-Sig setting and 12% in the RSA-Sig setting.

7.2 Resource Requests
The average response time of simultaneous requests. We

report the average round-trip return time for up to 3000 simul-
taneous resource requests in Figure 8b. The reported result is an
average of 5 experiments. Figure 8b also shows the 95% confidence
interval calculated from 5 experiments. We use the request example
in Section 6.3 for all the requests and evaluates the request against
60 user profiles.

The response time grows with the request 𝑛. The average re-
sponse times in the ECDSA-Sig setting is shorter compared with the
RSA-Sig setting. This is because when the RS checks the context
with the ESO server, it signs the ESO toke and sends the token
with the signature to the ESO server. As we know, creating RSA
signature takes significantly more time. This signature is necessary
as it prevents the client impersonation attack in Section 4.

Time breakdown of a single request. Similarly, we report the
time break down for one resource request. As shown in Table 2.
The time of checking the hash, token validation, resource query
are similar for different token signatures, since those operations do
not include any signature operations.

For the same signature algorithm, the computation time for
verifying the signature of the master token and the ESO token does
not vary. On the other hand, the computation time for verifying
the RSA signature is less than that of the ECDSA signature.

Table 2: Runtime breakdown in a resource request (in mil-
liseconds)

Operations RSA-Sig ECDSA-Sig
(time in ms) (time in ms)

TLS handshake 14.2 13.5
master token signature verify 0.36 0.49
ESO token signature verify 0.34 0.5

Check Hash 0.401 0.329
Token Validation 0.006 0.004
Context checking 20.9 15.0
Resource query 66.679 66.458

Estimated Total Time 102.886 96.281

Comparison with OAuth 2.0 on resource requests. We re-
moved the codes of ESO token signature validation, hash check and
context checking. The modified RS checks the signature and vali-
dates the master token. Then it invokes the resource query function.
Comparing the average response time of resource request in our
system and OAuth 2.0 presents the extra cost of enabling context
on the RS side. The multiplicative overhead of our system is shown
in Figure 8d. The overhead for RSA-Sig and ECDSA-Sig remains a
small constant.

8 RELATEDWORK
Our work is built upon a wealth of prior research in the field of dis-
tributed authorization. In this section, we discuss the most related
lines of work and present the key ideas involved in the design of
our capability system.

Capability-based mechanisms and credential-based mechanisms
are the two main approaches to solving the distributed authoriza-
tion problem [3, 5, 6, 9–11, 20, 25, 26]. The key concept in capability-
based based authorization is the capability, which is defined in [7] as
“token, ticket, or key that gives the possessor permission to access
an entity or object in a computer system”. The subject who wishes
to access the resource custodian sends a capability together with the
request. The notable examples of such system are OAuth 2.0 [11],
UMA[20] and ICAP[9]. In credential-based authorization, a target
service determines a subject’s authorization to invoke permission
by examining assertions encoded in verifiable digital credentials,
which are usually issued by different authorities. The notable exam-
ples are SPKI/SDSI [6] and Macaroons [3]. This work contributes
to the work of capability-based authorization.

For context constraints, several distributed capability system
supports enforcing local context, such as [10? ]. Popular authoriza-
tion protocols like OAuth 2.0 and UMA already support a common
library of contexts in their implementations, such as specifying
the expiration time and the client’s identity. To support complex
conditions, the adoption of structured_scope assertion in OAuth
token was proposed in [13, 19]. Structured_scope is a JSON object
which specifies the permissions with the conditions rather than a
plain string of permissions. However, this only works for the local
conditions, not for the environmental context.

In [24], the authors proposed a way to enforce environment
context in IoT. They introduced the Environmental Situational Or-
acle (ESO), which tracks the context and is entirely external to
any entity. The ESO exposes a simple interface that can be used
to determine whether the situation is true or not. They also pro-
posed a two-round OAuth flow, which allows the RS to verify the
context with the ESO. This paper uses the ESO but reduces the
protocol to only one round of OAuth 2.0 by using two capabili-
ties with different delegated permissions. Our proposed protocol
requires one less round of OAuth flows but keeps access to the
ESO protected. External context service providers have been pro-
posed to aid context-aware resource sharing in Cloud environment
[15] and Intelligent Transport Systems [23]. Compared to these two
works, we add one extra layer of protection to the context providers
by requiring tokens upon access, as they usually track sensitive
information about users.

On the other hand, in the credential-based authorization. Bir-
gisson et al. proposed Macaroons [3], which are credentials with
contextual confinement. The target service issues Macaroons to
the client, and then the client uses Macaroons and other necessary
claims to obtain access from the target service. The permissions
and their contextual confinement are embedded in the Macaroons.
Compared to [3], our capability system is compliant with the dis-
tribute setting (entities, message flows) considered by OAuth 2.0
and UMA. Hence, it is easier to extend these authorization protocols
with our system to have granular policies.
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The authorization frameworks mentioned above offer no control
over permission sequences constraints. In capability-based systems
such as ICAP and OAuth, capabilities may carry a list of granted
permissions. These permissions do not have any usage constraints.
Recent work in [30] presents a capability system (HCAP) that sup-
ports history-based access control. Compared to HCAP, our work
has several advantages when enforcing a finite permission sequence.
First, any communication between resource servers is not required.
Second, HCAP uses the timestamp to invalidate the old capability,
which requires a synchronized clock. We do not have this assump-
tion in our capability system. Third, HCAP capabilities carry part
of the request security automaton (a security automaton specifies
the enforceable security policy), and the RS is required to simu-
late the state transition in the security automaton. Our capabilities
carry the finite permission sequence, and the RS simply needs to
maintain an internal counter. The lightweight capabilities and fast
capability verification pave the way for faster deployment of our
capability-based system for ecosystems such as IoT. Finally, the
capability in HCAP includes a Message Authentication Code using
the shared secret. This security tag is only verifiable by the tar-
get resource server. In this work, the signatures in capabilities are
public-key-based thus are public-verifiable. It is worth noting that
HCAP does not support “context” of access.

9 CONCLUSION
The effectiveness of applying capability-based systems to access
control in many domains depends on its ability to enforce complex
policies, including orderings among permissions and environmen-
tal situations. However, efficient enforcement of these conditions
in a distributed capability system is challenging since policy de-
cision and enforcement are carried out in different entities. We
motivate this research to provide a capability-based system with
the fine-grained delegation of authority and efficient enforcement
of conditional constraints.

We described a capability-based system, which supports enforce-
ment of permission sequence and context constraints. Capabilities
in our model allow the resource owner to have control over or-
derings among permissions and specify any external conditions in
the policies. Cryptographic means in the capability system provide
advanced security features and efficient capability revocation. We
formally proved the safety property of the proposed system. We
integrated our system with OAuth 2.0 and demonstrated that the
performance of our system is competitive. Future work will focus
on enforcing the other history-based policies using minimum state.
Furthermore, we will consider an honest but curious RS and ensure
that the RS can not passively/actively learn more information about
the user and their surrounding environment.
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