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Abstract

Named-Data Networking (NDN), a prominent realization
of the Information-Centric Networking (ICN) vision, offers a
request-response communication model where data is iden-
tified based on application-defined names at the network
layer. This amplifies the ability of censoring authorities to
restrict user access to certain data/websites/applications and
monitor user requests. The majority of existing NDN-based
frameworks have focused on enabling users in a censoring
network to access data available outside of this network,
without considering how data producers in a censoring net-
work can make their data available to users outside of this
network. This problem becomes especially challenging, since
the NDN communication paths are symmetric, while produc-
ers are mandated to sign the data they generate and identify
their certificates. In this paper, we propose Harpocrates, an
NDN-based framework for anonymous data publication un-
der censorship conditions. Harpocrates enables producers in
censoring networks to produce and make their data available
to users outside of these networks while remaining anony-
mous to censoring authorities. Our evaluation demonstrates
that Harpocrates achieves anonymous data publication un-
der different settings, being able to identify and adapt to
censoring actions.

Keywords

Producer Anonymity, Censorship, Named-Data Network-
ing, Information-Centric Networking

1 Introduction

Preserving the anonymity of users that generate and share
data (e.g., pictures, videos, messages) with others is crucial
especially in scenarios where the safety and freedom of users
may be in danger (e.g., authoritarian regimes) [36]. In such
scenarios, authorities, such as governments, Internet Service
Providers (ISPs), and other organizations, may restrict access
to certain websites and block the operation of applications
that allow users to publish their data on the Internet [24].

This paper has been accepted by the ACM Symposium on Access Control
Models and Technologies (SACMAT) 2022. The definite version of this work
will be published by ACM as part of the SACMAT conference proceedings.

Reza Tourani
Saint Louis University
reza.tourani@slu.edu

Spyridon Mastorakis
University of Nebraska at Omaha
smastorakis@unomaha.edu

The ultimate goal of these authorities is to limit access to
data that they do not consider favorable and avoid having
non-favorable data (e.g., videos of protests, pictures of illegal
practices) be published by their users on the Internet. For
example, during protests in a certain country, protesters may
take pictures or videos that show law enforcement personnel
attempting to violently suppress these protests. The govern-
ment may restrict protesters from uploading this data to
popular hosting (e.g., YouTube and Vimeo), news (e.g., CNN
and BBC), and social media (e.g., Facebook and Instagram)
websites. Even in cases that users find ways to upload their
data on the Internet (e.g., on websites not blocked by the
government), the government in cooperation with local ISPs
may be able to identify the citizen(s) that uploaded the data
and imprison them. At the same time, hosting, news, and
social media websites have vested interest in verifying the
authenticity of the uploaded data before making it available
to their users without compromising the anonymity of the
data producer.

This scenario highlights the following fundamental ques-
tions when it comes to publishing data under censorship:
(i) how can citizens/users that produce data within oppressive
countries and organizations (censoring networks) publish this
data on the public Internet (non-censoring networks)? and (ii)
how can the produced data be published and authenticated
on the public Internet while its producers remain anonymous
to the oppressive countries and organizations, which could
threaten the producers’ safety and well-being? Solutions to
tackle these issues have been proposed in the context of the
IP-based network architecture [11, 22, 40, 44, 45, 48].

Over the last decade, the direction of Information-Centric
Networking (ICN) [3] and its prominent realization, Named-
Data Networking (NDN) [47], have attracted attention by
the research community. NDN features a request-response
communication model, where requests that identify the data
by application-defined names are forwarded towards data
producers. NDN possesses the privacy friendly features of
not containing specific source and destination addresses in its
packets. However, the use of semantically rich names at the
network layer amplifies the ability of censoring authorities
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to restrict access to non-favorable data and monitor what

data their users request.

Several solutions have been proposed to alleviate this is-
sue [5, 6, 10, 29, 42], focusing on how users in a censoring
network can access data available in an non-censoring net-
work. However, these solutions did not consider how pro-
ducers residing in a censoring network can make their data
available to users outside of this network. This problem in
NDN is especially challenging due to: (i) the retrieval pro-
cess, initiated by requests that carry the names of the data
to be retrieved, empowers censoring authorities to drop re-
quests for data produced within the censoring network at
the border of this network; (ii) the symmetry of the commu-
nication model (i.e., each response follows the same network
path back to a requester as the corresponding request) en-
ables censoring authorities to analyze requests and block
the corresponding data on the way back to the requester;
and (iii) as a by-product of (i), (ii), and the NDN semantically
meaningful naming, producers in censoring networks can-
not advertise the data they produce, since this would enable
censoring authorities to directly link the generated data to
them and cannot be reachable from outside of censoring net-
works, since censoring authorities can easily drop incoming
requests with non-favorable or unknown data names.

To tackle these challenges, we propose Harpocrates!, an
NDN-based framework for anonymous data publication, which
enables producers in censoring networks to produce, upload,
and make their data available to users outside of these net-
works while remaining anonymous to censoring authorities.
Harpocrates makes the following contributions:

o It takes advantage of communication channels and appli-
cations that operate legally within the censoring network
as well as a decoy routing approach [22] to publish data in
a peer-to-peer fashion, maximizing the collateral damage
for censoring authorities;

o It features mechanisms for producers to identify censoring
activities and adapt their data publication process to such
activities. This ensures that the data will be successfully
uploaded to a network of trusted proxies in order to be-
come available to users outside of the censoring network;

o It features a secure delegation mechanism between pro-
ducers and proxies, preventing censoring authorities from
being able to link the generated data back to producers.
As a result, proxies can make the data available outside of
the censoring network on behalf of producers while pre-
serving the producers’ anonymity and, at the same time,
enabling users to verify data authenticity.

To the best of our knowledge, Harpocrates is among the
first attempts in NDN/ICN environments to tackle the prob-
lem of making data generated within a censoring network
available outside of this network without compromising the
producer’s anonymity.

!Harpocrates was the god of secrets and confidentiality according to the
ancient Greek mythology.

2 Background and Prior Work

In this section, we give a brief background of the NDN ar-
chitecture and discuss related work in both IP and NDN/ICN
environments.

2.1 Named-Data Networking

NDN [47] features a receiver-driven model that lever-
ages application-defined semantically meaningful naming
for communication purposes. In NDN, consumer applications
send requests for data, called Interest packets. Interests are
forwarded based on their names towards data producer appli-
cations, which send Data packets that contain the requested
data back to consumers.

For the realization of the NDN communication model,
NDN routers maintain three data structures: (i) a Forward-
ing Information Base (FIB), which consists of name prefixes
along with a number of outgoing interfaces for each prefix
and is used for Interest forwarding; (ii) a Pending Interest
Table (PIT), which stores Interests that have been recently
forwarded but have not retrieved data yet; and (iii) a Content
Store (CS), where retrieved Data packets are cached to satisfy
future requests for the same data.

NDN is based on three fundamental principles: (i) identi-
fying network-layer packets through application-defined, se-
mantically meaningful names—NDN carries network-layer
packets that contain application-defined names; (ii) securing
data directly at the network layer—each network-layer Data
packet carries the signature of its producer, which crypto-
graphically binds the actual data to the packet’s name and
secures the data at rest and in transit across the network,
along with signature related information that specifies the
producer’s certificate or public key [39]; and (iii) a stateful
forwarding plane: forwarded Interests leave state at each
router, while Data packets follow the reverse path of the
corresponding Interests, consuming the state at each router.

2.2 Prior Work on Censorship
Circumvention and Anonymity

2.2.1 IP-based Censorship Circumvention and Anonymity
Tor [40] is the most popular anonymity network, which
uses an overlay of relays to provide identity anonymity and
unlinkability. Extensive research has been conducted on
various facets of Tor [11, 44, 45]. However, using layers
of encryption and decryption to secure the data imposes
considerable overhead and impacts communication latency.
Tor’s high latency and its vulnerability to active probing [13]
motivated the design of an alternative approach, decoy rout-
ing [22]. Decoy routing is an in-network censorship circum-
vention platform, where a set of decoy routers participate in
relaying the traffic outside of a censoring network. Several
flavors of decoy routing have been proposed to enhance the
seminal design through decoy placement optimizations [35]
routing optimizations based on game theory [31], mimicking
access patterns to non-censored websites [7], and routing
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asymmetries [30]. Another censorship evading direction
includes mimicking the traffic profiles of non-censored, in-
nocuous applications [15, 46]. The community has also in-
vestigated frameworks that utilize public Content Delivery
Networks (CDNs) to access censored data under the assump-
tion that blocking data hosted on these CDNs will cause
collateral damage, since innocuous data publishers will be
disrupted [48].

2.2.2  NDN/ICN-based Censorship Circumvention and Anonymity

The state-of-the-art in NDN/ICN censorship circumvention
and anonymous communication is categorized into proxy-
independent and proxy-based techniques [42]. In this realm,
the use of steganography, where data and a cover file need
to be combined before publication, was among the first pro-
posals [5]. Users obtain the necessary data decoding infor-
mation through a secure back channel. This scheme imposes
considerable communication overhead, which impacts its
scalability. Techniques, such as homomorphic encryption,
have been also proposed in a publish-subscribe design to
provide privacy for user requests [16].

Tor has inspired proxy-based solutions [10, 23], where

layers of encryption between users and a network of proxies
are used for anonymity. CoNaP [25] takes a similar approach,
where a user encrypts and signs the names of Interests for au-
thenticity. However, this signature reveals the user identity
and compromises its anonymity [32]. To reduce the cost of a
symmetric key cryptosystem, which needs to be carried on
a per-packet basis, lightweight coding techniques, including
random linear network coding [38] and Huffman coding [41],
have been proposed. PrivICN [6] is another proxy-based
scheme that enables cache utilization. By employing proxy
re-encryption, PrivICN enables cached data in the censor-
ing network to be used by multiple users. However, cache
hits in the censoring network introduce information leakage
and undermine user anonymity. A decoy routing approach
was also proposed for traffic redirection [29], where a user
informs a decoy router through a covert channel to redirect
its requests to the covert rather than the decoy destination.
Finally, an Attribute-Based Signature scheme for NDN was
proposed [32]. However, this scheme focuses on anonymiz-
ing a producer’s signatures, without considering any other
aspects of the anonymous data publication process.
How does Harpocrates differ from prior work? While
the majority of existing NDN/ICN approaches have focused
on enabling consumers within a censoring network to reach
producers in non-censored networks to download data, very
few designs have considered the problem of anonymous
data publication in NDN/ICN. Such designs primarily focus
on signature anonymization [32] or rely on onion routing,
which requires multiple, costly layers of encryption [23]. Our
work enables producers in a censoring network to publish
(upload) their data to consumers outside of this network in
an anonymous manner without the need for multiple layers
of encryption.

Table 1: Summary of notations.

Notation Description
P, O Big prime numbers such that P = 2Q + 1
Z*Q, Zp, Multiplicative groups of integers of order Q and P
respectively
Go,Gp Cyclic groups of order Q and P respectively
Gs Schnorr group (large prime-order subgroup of Z7,)
g Generator of a sub-group of Gp of order Q
ZQrand() Random number generator in Z*Q
(PKx, PRx) X’s public and private signing key pair

XY Symmetric key shared between X and Y
H():{0,1} - Z*Q Cryptographic hash function with digest € Z’Eg
w Warrant for proxy signature delegation

M Message to be signed

[ Concatenation operator

= Congruence operator

3 Model and Assumptions

In this section, we present our system and network model,
our design assumptions, our threat model, and the goals of
the Harpocrates design. Table 1 includes the notations we
use in the rest of this paper.

3.1 System and Network Model

We consider a censoring network and a set of proxies that
make data available to consumers outside of this network
(Fig. 1). Our system model consists of the following actors:

e Producer: An entity in the censoring network that wishes
to anonymously publish data (potentially consisting of sev-
eral network-layer Data packets) outside of this network.

e Consumer: An entity outside of the censoring network
interested in the data generated by the producer.

o Peers: Entities (in the censoring network) subscribed to
a peer-to-peer application that operates “legally” in the
censoring network. The producer is a peer running this
application.

e Collaborating peers: Peers selected by the producer to
help make the data generated by the producer available
outside of the censoring network.

e Censoring nodes: Entities deployed by ISPs, govern-
ments, or other stakeholders in the censoring network
to detect and block attempts to publish data outside of this
network.

o Selected proxy: A trusted entity outside of the censoring
network that collects, reconciles, and publishes the data
on behalf of the anonymous producer, so that consumers
outside of the censoring network can access this data.

e Collaborating proxies: Trusted entities outside of the
censoring network that receive censored data from the col-
laborating peers and send this data to the selected proxy.

We illustrate our system through a running example in
Fig. 1. The producer selects a set of collaborating peers (sub-
set of the overall peers) and shares with them pieces of the
generated data. However, these pieces can be intercepted and
blocked by censoring nodes on their way to the collaborating
peers. A collaborating peer receiving a data piece will send it
towards a collaborating proxy. Each collaborating proxy will
eventually forward the received data to the selected proxy.
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Figure 1: System model of Harpocrates: (1) the producer establishes
a covert channel with a selected proxy; (2) the producer shares pieces
of data with collaborating peers in a peer-to-peer fashion, while cen-
soring nodes may intercept these pieces; (3) collaborating peers push
the data towards collaborating proxies outside of the censoring net-
work in manners that prevent traffic analysis attacks; and (4) collab-
orating proxies share the data with the selected proxy that makes it
available to consumers outside of the censoring network.

3.2 Assumptions

We assume that producers in the censoring network do
not advertise their data to protect their anonymity. We also
assume that producers are not reachable from outside of the
censoring network, thus they cannot directly upload their
data to consumers outside of this network. This is a fair
assumption considering the symmetric, name-based nature
of NDN communication. This makes it trivial for censors
to block requests or responses for data produced in their
network and for entities within their network to ensure that
censored data does not become available to the outside world.

We consider rational attackers with bounded capabilities,
that is attackers who do not orchestrate large-scale brute
force attacks or block all the communication in the censoring
network. This is a fair assumption since pervasive blocking
causes collateral damage [48]. We assume that neither col-
laborating proxies nor collaborating peers (selected by the
producer) are malicious. This is a fair assumption since the
majority of censorship circumvention tools leverage trust
and reputation-based mechanisms to select entities playing
key roles. For instance, in Tor, only trustworthy relay nodes
can be selected as entry guards due to their importance in
protecting user anonymity [12]. We assume the existence of
an anonymous public-key certificate approach [20], which
preserves the privacy of the producers’ information in their
certificates. We discuss directions to further augment pro-
ducer anonymity in Section 8. Finally, we assume that sym-
metric and asymmetric cryptographic operations are secure.

3.3 Threat Model

In NDN, the use of names at the network layer can sim-
plify data filtering, censorship, and violate the consumer and
producer privacy. In this paper, we consider that a censoring
authority can deploy active attackers and passive eavesdrop-
pers across the censoring network to interrupt ongoing data
publications from this network to the outside world or com-
promise producer anonymity. An active attacker can capture

and modify transmitted packets, while a passive eavesdrop-
per can analyze the captured packets. Deployed attackers
may masquerade as different entities such as peers.

The primary objective of the censoring authority is to
prevent producers in the censoring network from publishing
data. Thus, the censoring authority may: (i) block the ISP’s
ingress Interests destined to producers; (ii) act as a man-in-
the-middle to collect the requested data from the producers,
compare it against a blacklist, and either drop the packets or
relay them to the requester; (iii) deploy censoring nodes to
interrupt the ongoing communication across peers by drop-
ping the Interest and/or Data packets; and (iv) masquerade
as a peer to interrupt the communication and compromise
the producer’s anonymity. We note that objectives (iii) and
(iv) are different in the sense that in the former one, the at-
tacker is an ISP node in the censoring network (e.g., a router),
while in the latter one, the attacker is one of the peers. While
the focus of this work is enabling anonymous data publica-
tion rather than coping with traffic analysis attacks, we will
briefly discuss potential traffic analysis countermeasures in
Section 8 to thwart this category of attacks.

3.4 Harpocrates Design Goals
Harpocrates offers data producers—whether in a censoring
network or not-to successfully publish their data (evade

censorship) while preserving their privacy and data integrity.
Harpocrates has the following goals:

e Anonymity and plausible deniability: Harpocrates should

preserve the producer’s anonymity in the presence of differ-
ent attackers. The attackers may interrupt the data publi-
cation, but should neither be able to reveal the producer’s
identity nor link the published data to the producer.

o Integrity guarantees: Harpocrates should guarantee the
integrity of the published data without revealing the pro-
ducer’s identity. This is important as the producer delegates
the publication of its data to a third party (selected proxy).
o Reasonable overhead: Harpocrates should incur reason-
able communication and computation overhead on the in-
volved actors. The cost of Harpocrates for the collaborating
peers should be viable, while the producer should be able to
publish its data with reasonably low latency.

4 Design Overview

In this section, we present an overview of Harpocrates
(Fig. 2). In Harpocrates, the producer will first reach and se-
curely delegate the data publication privilege to the selected
proxy that will help preserve the producer anonymity. After
the secure delegation phase, the producer will start the data
uploading phase through a peer-to-peer mechanism to: (i)
prevent the censoring authority from detecting abnormal
amounts of data from a single peer being sent outside of the
censoring network; and (ii) ensure that the data production
cannot be linked back to the producer.

These phases are facilitated through the use of decoy rout-
ing techniques [21], which we briefly discuss in the rest of
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Figure 2: Overview of the Harpocrates design.

this section and provide details in Sections 5 and 6. Different
than in IP, decoy routing in Harpocrates is realized through
decoy name prefixes (i.e., prefixes that allow Interests from
within the censoring network to be forwarded outside of this
network). Benign information encoded in names help prox-
ies identify Interests with decoy prefixes. Combined with
the fact that NDN routers have direct access to the names
of Interests, decoy routing in Harpocrates can be easily de-
ployed outside of the censoring network, without requiring
routers to search for signalling information at higher layers
of the protocol stack (e.g., transport or application layer) [21].
This makes the deployment of decoy routers flexible and sim-
ple, while decoy router assignments can change over time
(e.g., coordinated through routing protocols in non-censoring
networks and selected based on placement strategies that
maximize collateral damage [31]) to overcome known attacks
against decoy routing (e.g., routing around decoys [35]).

4.1 Secure Delegation Overview

In this phase, the producer employs decoy routing to select
and reach one of the collaborating proxies, who will act as
the selected proxy, outside of the censoring network. Subse-
quently, the producer securely provides delegation metadata
and instructions to the selected proxy for data publication.
The selected proxy, on receiving the metadata, accepts the
data publication by returning a signed commitment to prove
its involvement in data publication and enable the initiation
of the proxy signature process (Definition 4.1). We use a
warrant-based proxy signature [2] based on the difficulty of
the discrete logarithm problem.

Definition 4.1. [Proxy Signature] Proxy signature is a
cooperative digital signing scheme [27], in which an original
signer (data producer in our case) delegates its right of digi-
tally signing a message to a proxy. Such a delegation allows
verifiers (consumers in our case) with knowledge of the signer’s
and proxy’s public keys to validate signed messages. Proxy
signature schemes are categorized into full delegation, partial
delegation, and delegation by warrant. A warrant includes
metadata, such as delegation scope information to authorize
the proxy to sign on behalf of the original signer. O

The producer then generates the required credentials for
proxy signature and securely sends them to the selected
proxy for data signing and publication. In Harpocrates, we
use Schnorr group (Definition 4.2) and Schnorr signature [34].

Definition 4.2. [Schnorr Group] Given two large primes
Q and P, whereP = rQ+1,r € Z*Q andZ*Q is the multiplicative
group of integers mod Q, choose 1 < h < P, such that h” # 1
mod P, then g = h" generates a Schnorr group (Gs). Gs is a
subgroup of Z},, the multiplicative group of integers mod P of
order Q [34]. a

4.2 Anonymous Data Uploading Overview

Overall, the Harpocrates communication design consists
of two main steps: (i) evading the censoring network by send-
ing all producer’s Data packets to collaborating proxies out-
side of censoring network without compromising producer’s
anonymity; and (ii) gathering of all Data packets by the se-
lected proxy, reconstructing the original producer’s data,
and making this data available to consumers on the Internet.

To maximize collateral damage for the censoring author-
ity, Harpocrates features a peer-to-peer mechanism, where
the producer makes its data available through decoy routing
towards proxies outside of the censoring network. Subse-
quently, Internet users can fetch the uploaded data from
the proxies. The peer-to-peer mechanism leverages exist-
ing and allowed channels of communication (e.g., gaming
or local social media applications) in the censoring network.
These allowed applications and communication channels are
used to “hide” data transfers towards the collaborating peers,
spreading the data uploading traffic across these peers in
the censoring network. We note that having producers use
decoy routing to directly reach collaborating proxies would
result in significant volumes of traffic initiated by producers
and traffic anomalies that can be detected by censors.

In NDN, communication among multiple parties (e.g., for
a multiplayer gaming application) is realized through a dis-
tributed synchronization protocol [26]. This protocol creates
a multicast name prefix for communication among all the
peers in a group (e.g., users that play an online game as a
team), ensuring that a request sent from one peer in this
group will be received by all other peers. Through this syn-
chronization process and the established multicast channel,
collaborating peers can share information. However, this
process can be infiltrated by the censoring network through
the deployment of censoring nodes as routers and/or peers
in the synchronization group to intercept traffic?. To cope
with that, Harpocrates offers a data encryption mechanism
during the communication among collaborating peers, en-
suring that only selected collaborating peers will be able to
decrypt the exchanged information.

5 Secure Delegation Design
In this section, we present the secure delegation phase
(Fig. 3), including the proxy commitment, signature generation,

2The routers deployed as censoring nodes not only can intercept but also
drop the exchanged traffic. However, this would cause significant collat-
eral damage given that peers utilize allowed communication channels and
applications as we further discuss in Section 8.
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Figure 3: The secure delegation phase of Harpocrates has two steps.
First, peer A (producer) provides delegation metadata to the selected
proxy (S) for data publication and obtains the selected proxy’s com-
mitment. Subsequently, peer A provides the credentials for proxy
signature to the selected proxy.

delegated message signing, and signature verification proto-
cols. The goal is for the producer to get the selected proxy to
commit publishing the data on behalf of the producer, while
guaranteeing data integrity, confidentiality, and anonymity.
As mentioned in Section 3.2, we assume that producers have
anonymous public key certificates [20] to avoid revealing
information about themselves through their certificates. In
Section 8, we discuss approaches to augment the anonymity
level that generic public key certificates provide.

5.1 Proxy Commitment

As shown in Step 1 of Fig. 3, the producer generates del-
egation metadata, including the Data Name under which
the selected proxy should publish the data, the Data ID to
signal the selected proxy of the related Data packets, the data
HMAC (keyed-hash message authentication code) and its key
(HK), and the data encryption key (K). The Data ID is a ran-
dom string to be used as part of the data name, informing the
selected proxy of the Data packets that belong to this partic-
ular data collection. The producer then securely (signed and
encrypted) transmits the metadata to the selected proxy. We
employ decoy routing to make the proxies reachable to the
peers inside the censoring network. As stated in Section 3.3,
the censoring authority blocks requests from outside of the
censoring network to prevent leaking internal data. Thus,
the producer and peers can only communicate with prox-
ies by attaching information (e.g., delegation metadata) to
Interest packets and send them using decoy name prefixes.

Upon receiving the delegation metadata, the selected proxy
(“proxy” in the rest of this section) uses the metadata to cre-
ate the commitment, including the data name, its HMAC,
and the HMAC’s key. It then signs the commitment using
its primary key pair, encrypts it using the shared session
key, and returns it to the producer. The rationale behind en-
forcing the proxy to generate the commitment is to prevent
a malicious proxy from altering the producer’s data before
publication. The use of warrant-based proxy signatures [2]

Protocol 1 Proxy Signature Generation by Producer A

Input: Gs, W, H(), and ZQrand().
Output: PRs (Proxy S private key).
: Choose signing private key PRy € Z*‘QA

: Calculate corresponding public key PK4 = gFRA € Zp,.
: Select i = ZQrand().

: Calculate t = g € Zp,.

: Generate Wy, = H(W [|¢).

: Calculate PRs = (W, X PRg +1i) € Z*Q.
: Store < PRs, W, t >

N QU A W N =

requires the producer to generate a warrant and a signing
key pair for the selected proxy—from its own asymmetric key.
The generated signing key (delegated key pair) is different
from the selected proxy’s primary key pair and should be
used for proxy signature.

5.2 Producer Signature Delegation

As shown in Step 2 of Fig. 3, peer A generates a warrant
composed of the selected proxy’s signed commitment, the
proxy’s certificate (corresponds to its primary key pair for
commitment verification), and the producer’s public key
(Protocol 1). This information authorizes the selected proxy
to sign on behalf of the producer and restricts the selected
proxy from abusing the delegated authority (e.g., altering the
data or its name included in the commitment). Having the
warrant generated, the producer needs to derive the proxy’s
delegated key pair through the proxy signature scheme.

Protocol 1 takes an agreed upon Schnorr group (Gyg), the
hashing function (H()), and the warrant (W) as inputs and
returns the private signing key (PRs) of the selected proxy
(proxy S); the delegated private key. Producer A initiates
this process by choosing a Schnorr private signing key (PRy4)
and generating the corresponding public verification key
(PK4) (Lines 1-2). To derive the selected proxy’s signing key,
A selects a random integer i in the multiplicative groups
of integers of order Q and calculates t (Lines 3-4). It then
generates the warrant’s digest (W) using W and ¢ (Line 5).
In Line 6, A uses the warrant’s digest (W},), its private key
(PR4), and i to calculate the selected proxy’s private signing
key (PRs). The equation in Line 6 shows the involvement
of A’s private key in generating the selected proxy’s private
signing key. Finally, A securely sends the generated private
key (PRs), the warrant (W), and t to S. The completion of
Protocol 1 concludes the interactions between A and S.

5.3 Proxy Data Signing

Upon collecting all Data packets, proxy S executes Proto-
col 2 to sign the packets on behalf of producer A using the
delegated private signing key (PRs). Protocol 2 accepts the
agreed upon Schnorr group (Gs), the hash function (H()),
a Data packet (message M), and the three-tuple S received
from A (< PRs, W, t >) and returns a signed packet.

Initially, S uses Gs and its private signing key (PRs) to
generate the corresponding public verification key (PKs),
which will be used by consumers to verify the delegated
proxy signature on the Data packets. To ensure the validity
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Protocol 2 Delegated Message Signing by Proxy S

Input: Gs, H(), M, and < PRs, W, t >.
Output: Signed Message.
. H — 4PR *
1: Calculate proxy S public key PKs = g 'S € Zj,.
2: Generate Wy, = H(W||¢).

3: if (PKs = (PK, " x 1) € Z},) then

4:  Select r = ZQrand().

5:  Calculate k = g" € Z,.

6:  Generate a = H(M||k) € Zg.

7:  Calculate b = (r — (PRs X a)) € Z.
8: Store < M,W,t,a,b >.

9: else

10:  Fail.

11: endif

of PKg, S generates the warrant’s digest (Line 2) and veri-
fies its congruence with A’s public key (PKy) (Line 3). The
correctness of the congruence in Line 3 shows the involve-
ment of A’s public key in generating the delegated public
verification key (PKs). We note that Lines 1-3 of Protocol 2
need to be executed once. Thus, the cost of executing these
steps is negligible when amortized over multiple signing
operations. To sign a Data packet (message M), S executes
Lines 4-8 of Protocol 2-the signing process follows Schnorr
signature. S selects a random integer r € Z*Q and calculates
its corresponding value k (Lines 4-5). It then uses k in gener-
ating the message digest a (Line 6). Using the private signing
key (PRs), the digest (a), and the random integer (r), S signs
the message (Line 7) and stores the signature as a five-tuple
(< M,W,t,a,b >) for the consumer’s verification process.

5.4 Signature Verification

Protocols 1 and 2 enable consumers to validate the proxy’s
signatures and the delegation authorization, ensuring that S
is certified by A. Protocol 3 details the verification process by
accepting the Schnorr group (Gs), the hash function (H()),
and the five-tuple generated by S (< M, W, t,a,b >).

The consumer, verifying the selected proxy’s signature,
generates the warrant’s digest (W},) using warrant W and ¢
from the signature (Line 1). The consumer then uses W}, and
A’s public key (PKy4) to derive the signature verification key
(y). The amortized cost of extracting the signature verifica-
tion key (y) will be negligible as Lines 1-2 will be executed
once for a set of signature verification operations. After
extracting y, the consumer executes Lines 3-4, which refer
to the conventional Schorr signature verification process.
Following Lines 5-9, the consumer accepts the signature if

Protocol 3 Signature Verification by Consumers

Input: Gs, H(),and < M, W, t,a,b >.
Output: Verification Success / Fail.
: Generate Wy, = H(W||t).
: Generate verification key y = (PKXVh Xt) €L
: Calculate k,, = (gb X y®) € Zp,.
: Calculate a, = H(M||k,) € Zg.
if (a == a,) then
Success.
else
Fail.
: end if

*

p-

the received signature (a) matches the one that it generates
(ay) or rejects, otherwise.

6 Anonymous Data Uploading Design

In this section, we present the data uploading mechanism
of Harpocrates, so that data produced in a censoring network
can become available to consumers outside of this network.

6.1 Evading the Censoring Network

6.1.1  Data sharing initializationThe producer selects collab-
orating peers as a subset of the overall peers. The collaborat-
ing peers participate in uploading the producer’s data outside
of the censoring network. Subsequently, the producer creates
uploading metadata for each collaborating peer, consisting
of a symmetric key for the secure communication between
the collaborating peer and the producer and the data pieces
that the collaborating peer will forward to the proxies.

Fig. 4 illustrates a scenario, where the producer (peer A)
distributes a subset of the total data to peer B, who will for-
ward it to the proxies. The uploading metadata
[Uploading_MetaData] px, sent from peer A to B contains
the symmetric key Ssp and a list of data pieces “/sync/Gamel
/Piece_B_1” --- “/sync/Gamel/Piece_B_k” that B should
forward to the proxies. The metadata and the data pieces
are named under a multicast synchronization (“sync” for
short) prefix used by a multi-party application (e.g., gaming)
allowed to operate in the censoring network. This prefix
masquerades the producer’s prefix, so that it stays anony-
mous.

The producer sends uploading metadata to each of the
collaborating peers (the metadata is encrypted using the re-
ceiving collaborating peer’s public key) through the multicast
synchronization channel. Thus, all peers in the multicast
group will receive the metadata. However, only the peer
with the corresponding private key (peer B in Fig. 4) will be
able to decrypt the metadata and access the names of the
data pieces that will be uploaded on behalf of the producer.
In response, peer B will encrypt and send a decoy prefix
(e.g., “/Mendeley”) back to A. Each data piece listed in the
uploading metadata will contain one or more Data packets
named by A under B’s decoy prefix. Each of these packets
will contain the data to be anonymously uploaded to the
proxies. Once B receives a data piece, it will decapsulate the
contained packets and forward them towards the proxies
outside of the censoring network as we further discuss in
Section 6.1.3.

6.1.2  Data sharing modes among peersUpon receiving the
uploading metadata, a collaborating peer will request the
data pieces specified in the metadata from the producer. We
refer to this data sharing mode as Pull. These requests will
be received by all peers in the multicast group, but only the
producer has and will be able to provide the requested data.

Requests for data pieces may be intercepted by censoring
nodes aiming to prevent the data from leaving the censoring
network. The censoring nodes may receive requests sent by
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Figure 4: A data uploading example: peer A (producer) shares up-
loading metadata with peer B. Subsequently, peer B requests the
data pieces specified in the metadata using the Pull communication
mode. B forwards on behalf of the producer requests with decoy
name prefixes contained in the received data pieces to collaborating
proxies. These requests carry the data to be made available outside
of the censoring network in an encrypted format.

collaborating peers and reply with bogus pieces. In the exam-
ple of Fig. 4, B can detect a received bogus piece after trying
to decrypt it using Ssp (shared symmetric key between A
and B). As a result, B will request such pieces multiple times,
alerting the producer that it has not received the legitimate
pieces. Once the producer receives a certain number of con-
secutive requests for the same piece, the anti-censorship
mode (Push data sharing mode) will be triggered. Under the
Push mode, A will attach a piece requested multiple times
onto an Interest and send (“push”) it through the multicast
channel to B (encrypted with B’s public key).

Harpocrates features an adaptive communication mode
(Hybrid data sharing mode) that operates under the Pull
mode as long as no suspicious censorship activities are de-
tected by the producer, while switching to the Push mode
when Harpocrates detects censoring activities. This adap-
tation will happen by the producer independently for each
collaborating peer, since censoring nodes may be closer to
the producer (thus being able to block requests) than only
certain collaborating peers. To this end, the producer main-
tains a status for each collaborating peer and monitors the
delivery progress of corresponding pieces.

6.1.3 Making data available outside of the censoring network
As illustrated in Fig. 4, once a collaborating peer receives
and decrypts a data piece from the producer, this piece may
contain one or more requests (Interests) for a decoy prefix.
These requests carry (“hide”) the data to be uploaded in an
encrypted format. As we mentioned in Section 3.2, given
the pull-based nature of NDN communication, where data
can be retrieved only after the reception of a request, access
to the censoring network from the outside world may be
easily restricted by the censor. To evade censorship and
make the data available outside of the censoring network, the
collaborating peers send the requests, found in the received

pieces, towards the proxies. Due to their decoy name prefixes,
these requests will be forwarded outside of the censoring
network.

6.2 Data Gathering and Reconciliation

As we explained in Section 5, the producer generates and
shares with the selected proxy a Data ID random string. This
is included in the names of the requests sent from the collabo-
rating peers to the collaborating proxies and is used to signal
the selected proxy that these requests carry data belonging
to a particular data collection. The selected proxy shares the
Data ID value with all collaborating proxies, instructing them
to forward all the packets they receive and that contain this
value in their names to the selected proxy. For instance, Fig. 4
illustrates that peers A and B agreed to use “/Mendeley” as
the decoy prefix, while the requests sent to the collaborating
proxies have a name prefix “/Mendeley/Data_ID”. Collabo-
rating proxies receiving Interests for “/Mendeley” followed
by “/Data_ID” will forward them to the selected proxy. The
suffix of the names can be selected by the producer based
on the naming patterns of legitimate applications that use
the decoy prefix, maximizing the resemblance between these
requests and legitimate requests for the decoy prefix.

The requests received by the collaborating proxies carry
the data to be uploaded in an encrypted format, however,
the selected proxy is the only entity that can decrypt this
data, since it possesses the symmetric key K shared by the
producer during the secure delegation process (Fig. 3). As a
result, only the selected proxy can gather all the data, decrypt
it, and reconcile the original data collection generated by
the producer. The reconciled data will be published by the
selected proxy to consumers under the name instructed by
the producer during the secure delegation process (Fig. 3).

7 Evaluation

In this section, we present our evaluation study under two
setups. We first implement and evaluate our proxy signature
design on different hardware platforms. We then implement
Harpocrates and perform network simulations, so that we
can scale our study to large network topologies. Finally, we
compare Harpocrates to a design based on onion routing [17].

7.1 Evaluation Setup

To evaluate the security delegation phase (Section 5), we
implemented the proxy signature [2] and Schnorr signa-
ture [34] mechanisms using the Charm-Crypto library [4].
We developed the proxy signature generation (Protocol 1),
the proxy signing (Protocol 2), and the proxy verification
(Protocol 3) protocols. We also implemented Schnorr mes-
sage signing and signature verification as our comparison
baseline. We benchmarked these protocols on three plat-
forms: (i) a Raspberry Pi 4 with an ARMv7 processor and 4GB
of RAM running Raspbian 10; (ii) a laptop with a 2.20GHz In-
tel Core-i7 processor and 4GB of RAM running an Ubuntu 16
Virtual Machine (VM); and (iii) a desktop class server with
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a 3.60GHz Intel Xeon processor and 16GB of RAM running
Ubuntu 18. The results are averaged over 500 runs.

We use ndnSIM [28], the de-facto NDN network simulator,
to implement and evaluate Harpocrates based on a Rocket-
fuel topology (AS1221) with 278 routers and 731 links [37].
We connect collaborating peers and censoring nodes to this
topology by creating links to randomly selected routers. We
randomly attach five proxies to the topology, while ensuring
that the distance between each proxy and the closest peer is
at least five hops, so that each proxy is out of the censoring
network. A file of size 100MB is generated by a producer
(randomly selected among the peers) and is sent towards the
proxies. Finally, we implemented a design based on onion
routing [17] to compare with Harpocrates. The realization of
such an onion-based routing design in NDN is a challenge on
its own, since NDN is fundamentally different than TCP/IP.
To this end, in this paper, we randomly selected three onion
routers and incorporated benchmarked encryption/decryp-
tion times of onion encryption operations for each onion
router. For simplicity, we did not consider the time for the
selection of onion routers and key exchanges. The results
are averaged over ten runs.

Evaluation metrics: We consider the following metrics:
(1) Run time of proxy and Schnorr signing and verification:
the time needed to perform the signing and verification op-
erations on different hardware platforms. Proxy signing
includes the time for proxy key derivation and Schnorr sig-
nature. Similarly, the proxy verification run time includes
the time for proxy key derivation and Schnorr signature
verification.

(2) Data distribution success rate: the percentage of the total
data that was successfully uploaded to the proxies.

(3) Data publication delay: the time elapsed between the
producer generating the data and the completion of the re-
ception of all the data by the proxies.

(4) End-to-end per packet delay: the time elapsed between
starting the data uploading process for each Data packet and
the reception of each packet by a proxy.

(5) Normalized overhead: the ratio between the volume of
overhead traffic (multicast communication, metadata ex-
changes, peer-to-peer data sharing) and the volume of the
data to be uploaded from the producer to the proxies. We
further normalize the overhead based on the traffic volume
generated by the Pull mode. To this end, the Pull mode will,
by definition, result in normalized overheads of value 1.

7.2 Evaluation Results

Run time of proxy and Schnorr signing and verifica-
tion: As shown in Fig. 5, the proxy signature generation,
executed by the producer, does not incur considerable delay
even when running on a constrained device (6ms on a Rasp-
berry Pi). The proxy signing process results in run times
of about 3x higher than the run times for Schnorr signa-
ture on all platforms. The additional cost is attributed to the
generation of the corresponding public key (for signature
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5
d
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=
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Figure 5: Proxy and Schnorr signature implementation across dif-
ferent platforms. Run times are shown in log-scale.
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Figure 6: Success rate of different Harpocrates data sharing modes
(Pull, Push, and Hybrid). Push and Hybrid are aggregated into a sin-
gle line as their success rates overlap.

Table 2: Percent of collaborating peers blocked by censoring nodes.

Collaborating Peers Censoring Nodes (%)

0% | 5% 10% 15% 20% | 25% | 40% 60%
20 0% | 58% 72% | 78.5% | 84.5% | 87.5% | 90.5% | 96%
40 0% | 63.5% | 82.5% | 86.25% | 88.5% | 92% 95% | 97.75%
60 0% | 75% 86% | 88.5% | 94.8% | 95% | 97.5% | 97.6%

verification) and matching this key against the producer’s
public key (Lines 1-3 of Protocol 2). Similarly, the proxy
verification results in run times of about 1.5x higher than
Schnorr signature verification on all platforms due to the
proxy’s public key derivation (Lines 1-2 of Protocol 3). We
emphasize that the key derivation and comparison (Proto-
cols 2 and 3) are executed only once per uploading session,
incurring a negligible cost when amortized over multiple
signing and signature verification operations.

Data distribution success rate: In Fig. 6, we present the
data distribution success rate. Our results show that Hybrid
and Push modes successfully upload all the produced data to
the proxies. On the other hand, in the case of Pull, censor-
ing nodes are able to intercept the requests for data pieces
sent by the collaborating peers towards the producer. To
this end, collaborating peers will not be able to receive and
distribute the data towards the proxies. The actual success
rate values depend on the actual placement of the censoring
nodes. However, the random placement in our experiments
shows that even for small percentages of censoring nodes
(5% to 10%), the success rate of Pull degrades considerably,
since the majority of collaborating peers is blocked by cen-
soring nodes as presented in Table 2. Specifically, 58-75%
and 72-86% of the collaborating peers are blocked for 5% and
10% of censoring nodes respectively. As the percentage of
censoring nodes increases, up-to 96-97.75% of the collaborat-
ing peers may be blocked. Nevertheless, even in such cases,
Harpocrates successfully uploads all the produced data to the
proxies.

Data publication delay: In Fig. 7, we present the results of
the average data publication delay for Pull, Push, and Hybrid.
Our results indicate that the data publication delay for Push
is the lowest and it does not increase as the number of cen-
soring nodes increases, since the data pieces are pushed to
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all nodes including the censors, while only the collaborating
peers can decrypt these pieces. Pull's performance suffers in
the presence of censoring nodes, even if their number is rel-
atively small (e.g., 5% or 10% of the number of collaborating
peers). When the percentage of censoring nodes increases
from 0% to 5%, Pullfails to distribute all data pieces among the
collaborating peers. Hybrid, however, successfully adjusts to
the censoring nodes that intercept the data pieces, switching
to the Push mode. Our results show that as the percentage of
censoring nodes increases, Hybrid switches from the Pull to
the Push mode sooner during the data publication process,
thus Hybrid's data publication delay converges towards the
delay of Push. For all the modes, the data publication delay
decreases as we increase the number of collaborating peers
due to the fact that more peers upload the data in parallel.
Further analysis of our results indicated that 3-8% of the
data publication delays are spent on sharing the metadata
between producers and peers, 47-56% on sharing the data
pieces between producers and peers, and 36-50% on sending
the actual data from the collaborating peers to the proxies.
Note also that the Hybrid mode results in 1.5-2.1x higher
publication delays than uploading the data from the producer
to the closest proxy directly over the shortest network path.
End-to-end per packet delay: Fig. 8 presents the CDF of
the per packet delay. Fig. 8a shows that for varying num-
bers of collaborating peers (same percentage of censoring
nodes), 40% and 80% of the data is uploaded in less than
200ms and 300ms respectively. The per packet delay slightly
increases with the number of collaborating peers, since these
peers may be further away from the producer, thus the data
pieces travel longer distances to reach them. Fig. 8b shows
that the per packet delay decreases as the percentage of cen-
soring nodes increases, since more pieces are blocked, thus
Harpocrates switches from Pull to Push sooner during data
publication.
Normalized overhead: Fig. 9 shows the normalized over-
head results. The overhead for Pull is equal to 1, since it
acts as the normalization factor. Push results in the highest

overheads, since the data pieces are attached onto Inter-
ests pushed towards collaborating peers. Hybrid successfully
copes with the interception of data pieces by censoring nodes,
achieving overheads in the range between Pull and Push. It
converges to the overhead of Pull when no or a few censor-
ing nodes exist and to the overhead of Push as the number of
censoring nodes increases. As the number of collaborating
peers increases, the overhead for Push and Hybrid increases,
since the size of the peer multicast group increases.
Comparison to an onion routing based design: Com-
pared to a design based on onion routing, Harpocrates achieves
1.33-4.05% lower data publication delays, since it does not
require multiple time-consuming layers of encryption/de-
cryption. Depending on the placement of onion routers,
Harpocrates incurs roughly the same to up to 1.51X lower
overheads for Pull and Hybrid compared to the onion routing
based design when no censoring nodes exist. As we increase
the number of censoring nodes and collaborating peers, the
Hybrid mode of Harpocrates incurs 1.21-2.05X higher over-
heads compared to the design based on onion routing, since:
(i) it switches from Pull to Push sooner during data publica-
tion as we increase the number of censoring nodes; and (ii)
the size of the peer multicast group increases as we increase
the number of collaborating peers.

8 Security Analysis and Discussion

In this section, we discuss further security considerations
and directions to extend the design of Harpocrates.
Censoring network nodes: A censoring authority may de-
ploy censoring nodes in the network, including routers and
Deep Packet Inspection (DPI) proxy firewalls, to interrupt
data publication or breach the producer’s anonymity. A cen-
soring router, due to its limited capability in processing Inter-
est and Data packets beyond name matching, can randomly
drop a subset of packets. Such an action will negatively
impact peers that legitimately use allowed communication
channels. Prior work has argued that censoring authorities
avoid actions that result in high collateral damage [48].

Malicious routers may redirect traffic portions to proxy
firewalls for DPI. Such redirection in NDN is complicated
due to the communication model symmetry. More impor-
tantly, Interest and Data packets, although semantically rich,
do not carry fine-grained information that is available in
TCP/IP packets (e.g., IP addresses and port numbers). We
argue that in inspecting NDN packets, a proxy firewall can
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to successfully make all the data available outside of the censoring network.

only use packet sizes, names, and signature related infor-
mation. Harpocrates limits the impact of these threats by:
(i) uploading small-sized Data packets by attaching them to
Interests to avoid traffic anomalies; (ii) revealing innocuous
names (i.e., used by traffic allowed in the censoring network);
and (iii) referring to anonymous certificates in the signature
related information [39] of data pieces to prevent the pro-
ducer’s linkability to the data. It will be computationally
expensive for a censoring authority to verify the signatures
of all data pieces. However, if DPI drops all pieces associated
with anonymous certificates, Harpocrates will switch from
the Pullto the Push mode, piggybacking pieces onto Interests
(typically not signed in most NDN applications).

Censoring peers: The censoring authority may deploy cen-
soring nodes among peers. A censoring peer may intercept
requests for data pieces from collaborating peers and reply
with bogus pieces, which will consume PIT entries on routers
and prevent the legitimate pieces from reaching the collabo-
rating peers. The Hybrid mode of Harpocrates thwarts this
threat by switching to Push when such an event is identified.
As we discussed in Section 7, the Hybrid mode achieves 100%
data distribution success rates in the presence of censoring
peers—even when 60% of the peers are malicious.

If censoring nodes are among the collaborating peers,
these censoring collaborating peers can interrupt the com-
munication by obtaining and dropping the producer’s data
pieces (blackhole attacks). Although we assumed that the
collaborating peers are not malicious (Section 3.2), here we
discuss directions to thwart such an attack. The first di-
rection involves data replication. In a naive approach, the
producer blindly replicates the data by communicating over-
lapping data portions to different collaborating peers. This
increases the chances that the data will be received by legit-
imate collaborating peers, who will upload it towards the
proxies. To minimize redundant data delivery, the producer
can obtain the list of missing Data packets from the selected
proxy and publish them through the collaborating peers that
delivered previous packets. The producer identifies legiti-
mate collaborating peers by tracking their success rates in
delivering data to the selected proxy. Network coding tech-
niques, such as Random Linear Network Coding [19], can
also be employed to deliver linearly independent combina-
tions of Data packets to the selected proxy, enabling efficient
data reconciliation.

The second direction involves group-oriented cryptographic
techniques such as attribute-based [18] and broadcast [14]

encryption. These techniques enable a group of collaborat-
ing peers to use their private keys to independently decrypt
the same data piece delivered to them during the Push mode
over the multicast communication channel. If, at least, one
of the collaborating peers that can decrypt each data piece is
legitimate, the data will be successfully uploaded to a proxy.
Producer and collaborating peer anonymity: In our de-
sign, the producer includes its public key in the warrant,
enabling consumers to verify the validity of the delegation
in addition to the proxy’s signatures. The producer’s public
key in the warrant may allow the censoring authority to iden-
tify the producer, compromising its anonymity. To cope with
this threat, approaches that provide signature anonymity can
be used, including attribute-based [32], ring [33], and group
signatures [9]. The producer’s anonymity can be also aug-
mented through a transient key cryptosystem [8], an asym-
metric key cryptosystem, in which the key pair is bound to
a short time period rather than the owner’s identity. Thus, a
singed Data packet will be associated with a time (delegation
initiation in Harpocrates) rather than an identity. However,
utilizing such a cryptosystem requires further considerations
since private keys will be deleted after their short expiry time.
A malicious producer (deployed by the censoring author-
ity) may be able to infer the participation of collaborating
peers in data uploading, compromising their privacy. Similar
to the producer’s anonymity, cryptosystems including ring,
group, and attribute-based signatures can preserve peers’
anonymity. Distributed anonymous reputation management
mechanisms can also help peers make informed decisions
about their participation in data uploading [43].
Traffic analysis attacks: The censoring authority may or-
chestrate traffic analysis attacks to infer communication pat-
terns from encrypted traffic, aiming to breach the producer’s
anonymity. Note that data producers in Harpocrates use legit-
imate communication channels to transfer their data to the
collaborating peers and subsequently to the proxies. Leverag-
ing such legitimate communication channels for distributing
the data between the collaborating peers hides the producer’s
data and prevents the censoring authority from identifying
a data upload attempt. As described in Section 6.1, dispers-
ing the producer’s data across multiple collaborating peers
allows each peer to obtain a small portion of the data—with
potentially different sizes—from the producer. Peers can send
requests for data to the producer such that the generated
traffic follows the legitimate application distribution, making
these requests indistinguishable from the traffic generated
by the legitimate application. Each peer also uploads a small
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portion of the generated data to the proxies, thus preventing
peers from sending abnormal amounts of data outside of the
censoring network and creating traffic anomalies.

To transfer the producer’s data to proxies outside of the
censoring network, the collaborating peers send requests
containing portions of the data generated by the producer
hidden in them. The censoring authority may attempt to
orchestrate traffic correlation attacks by passively observing
the packet sizes between the producer and the collaborating
peers or between the collaborating peers and the proxies.
However, the data producer can assign different portions
of the data to collaborating peers, ensuring that traffic pat-
terns between the producer and these peers are not identical.
NDN also features variable size request packets, since such
packets can carry an unbounded number of parameters (data
of arbitrary sizes) as defined by the NDN packet format [1].
As a result, data producers can generate Interests of variable
sizes that follow the packet sizes of legitimate applications.

9 Conclusion and Future Work

In this paper, we presented Harpocrates, a framework for
the anonymous publication of data from a censoring network
to users outside of this network. Harpocrates takes advan-
tage of communication channels and applications that are
allowed in the censoring network, maximizing the collateral
damage for censoring authorities. By employing different
data sharing modes, Harpocrates can defend against cen-
soring actions. Through a secure delegation mechanism,
Harpocrates enables proxies outside of a censoring network
to make data available to users without compromising the
producer’s anonymity. In the future, we plan to: (i) imple-
ment a Harpocrates prototype and evaluate it against other
censorship circumvention solutions; and (ii) design mecha-
nisms to defend against malicious collaborating peers and
proxies.
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