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ABSTRACT
Artificial Intelligence (AI) techniques have emerged as a powerful
approach tomakewireless networksmore efficient and adaptable. In
this paper we present an ns-3 simulation framework, able to imple-
ment AI algorithms for the optimization of wireless networks. Our
pipeline consists of: (i) a new geometry-based mobility-dependent
channel model for V2X; (ii) all the layers of a 5G-NR-compliant
protocol stack, based on the ns3-mmwave module; (iii) a new appli-
cation to simulate V2X data transmission, and (iv) a new intelligent
entity for the control of the network via AI. Thanks to its flexible
and modular design, researchers can use this tool to implement,
train, and evaluate their own algorithms in a realistic and controlled
environment. We test the behavior of our framework in a Predictive
Quality of Service (PQoS) scenario, where AI functionalities are
implemented using Reinforcement Learning (RL), and demonstrate
that it promotes better network optimization compared to baseline
solutions that do not implement AI.

CCS CONCEPTS
• Networks→ Network simulations.
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1 INTRODUCTION
Artificial Intelligence (AI) will be a key component of future 6th
Generation (6G) wireless networks [10], as a means to achieve
autonomous network optimization [17]. In particular, the co-design
of communication systems and applications with AI in mind will
allow 6G networks to learn, adapt, and support diverse services
and requirements, without human intervention.

Among other areas, AI has been recognized as a promising tech-
nology in Vehicle-To-Everything (V2X) networks, to enable applica-
tions like traffic flow and congestion control, localization, platoon
management, and autonomous driving [26]. For these systems to
be truly autonomous, intelligent vehicles need to acquire, process,
and eventually disseminate massive amounts of data generated
by on-board sensors [32]. Notably, AI, in combination with ma-
chine learning (ML), can be designed to extract features from input
data [11], and support complex V2X tasks like object detection and
recognition [24], data compression [22], as well as tracking and
trajectory prediction [3].

As far as AI/ML is concerned, the availability of data for training
and optimization is essential. In this regard, experiments with real
testbeds are impractical due to limitations in the scalability and
flexibility of these platforms, as well as the high cost of hardware
components. On the other hand, AI-based research should follow
an iterative approach where modeling and validation will be cycli-
cally performed. Therefore, computer simulations have emerged
as important tools for testing the performance of AI solutions in
different conditions and scenarios. Python-based simulators are
among the most popular softwares for AI, thanks to desirable fea-
tures like versatility and readability [21]. Most importantly, many
open-source libraries providing base-level ready-to-use coding so-
lutions to develop AI functionalities, like TensorFlow, PyTorch or
Keras, are implemented in Python. When it comes to the simula-
tion of wireless networks, however, Python simulators tend to rely
on simplified assumptions on the system architecture, and have
not proven particularly successful in modeling the protocol stack
of complex networks. Instead, discrete-event network simulators,
like ns-3 [13], are valid alternatives to analyze the performance of
wireless networks in more realistic scenarios. How to integrate the
two simulators and build an open software able to support end-
to-end full-stack simulations, as well as network optimization via
AI, is still an open challenge. An initial effort in this direction was
made in [8]. However, while the authors focused on OpenAI Gym,
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Figure 1: Overview of the Proposed ns-3 Simulation Framework/Pipeline to Incorporate AI Functionalities in Wireless Networks

a toolkit specific for Reinforcement Learning (RL) research, in the
long term we expect network prediction and optimization to be
transparent to the underlying cellular infrastructure and the corre-
sponding learning schemes, which calls for more general solutions
to incorporate AI functionalities into the network.

In this paper, we fill this gap and propose a simulation pipeline
to design and test AI in wireless networks. In particular, we focus
on a V2X scenario, in which teleoperated vehicles use a cellular
connection to exchange sensor data with a remote driver. Specifi-
cally, we extended the ns-3 mmwave module [19], one of the most
5G-oriented frameworks to simulate wireless networks, as follows:

• We implemented a geometry-based channel model for V2X,
based on GEMV2 and Simulation of Urban MObility (SUMO)
traces, that is consistent with the actual deployment of build-
ings and vehicles in the scenario.

• We designed a new ns-3 application to simulate the traf-
fic flow in V2X use cases. Specifically, the ns-3 application
involves the exchange of sensor data, which may be preemp-
tively compressed and/or segmented to reduce the file size
before transmission, modeled based on the Kitti multi-modal
dataset [9]. The application is characterized by (i) the size
of the input data, and (ii) the time periodicity at which the
information is generated and exchanged, and (iii) the level
of compression/segmentation of the data.

• We introduced a new entity called “RAN-AI” (the core con-
tribution of this paper) that, connected to the Radio Access
Network (RAN) and with Python-based AI algorithms, opti-
mizes network operations.

As a case study, we validate our AI pipeline for a Predictive Qual-
ity of Service (PQoS) application [7], defined as a mechanism to
predict Quality of Service (QoS) changes and provide autonomous
vehicles with advance notifications to react accordingly. In this sce-
nario, the RAN-AI collects full-stack network metrics from different
components of the RAN, and implements an RL framework (first
introduced in [18]) able to identify the optimal network configura-
tion. We demonstrate that our RAN-AI is able to improve the QoS

of V2X applications, compared to other baseline solutions that do
not implement AI techniques.

The rest of the paper is structured as follows. In Section 2 we
discuss how we integrated AI operations in ns-3. In Section 3 we
validate our ns-3 implementation for PQoS. In Section 4we conclude
the paper with suggestions for future research.

2 DESIGN OF INTELLIGENTWIRELESS
NETWORKS USING NS-3

Figure 1 provides an overview of the ns-3 simulation framework that
we developed to integrate AI functionalities in vehicular networks.
We distinguish four main components, namely (i) the channel and
mobility models (Section 2.1), (ii) the network model (Section 2.2),
which simulates the communication network, (iii) the application
model (Section 2.3), which mimics a real vehicular application, and
(iv) the intelligent network controller (Section 2.4), which provides
AI functionalities to optimize the network configuration. The source
code is publicly available at [25].

2.1 Channel Model
A realistic characterization of the wireless channel is of paramount
importance to obtain accurate simulation results [15]. The channel
model should incorporate the impact of the radio environment on
the propagation of wireless signals (e.g., the presence of buildings
and other blockers) and user mobility.

The approach adopted in our framework relies on Open-
StreetMap (OSM) to obtain a detailed representation of the area of
interest. The generation of vehicles’ mobility traces is handled by
SUMO [14], a popular open-source tool for the simulation of vehic-
ular traffic. In particular, the OSM representation of the scenario is
converted into a SUMO network file using the netconvert utility,
and the generation of random routes is carried out using the script
randomTrips.py. Finally, the wireless channel is computed using
GEMV2, a geometry-based propagationmodel for V2X scenarios [6],
which is open source and publicly available [5]. GEMV2 calculates
both geometry-based large- and small-scale fading components of
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the channel from a map of the environment and the trajectories of
the vehicles, taking into account the effect of mobility, buildings
outlines and foliage, and outputs the propagation loss for all the
possible device pairs at each time step.

To feed the channel traces into ns-3, we created a parser able to
read the GEMV2 output files, and eventually compute the received
power between a pair of devices based on the current value of the
transmit power. The parser is implemented by the class GemvPropa-
gationLossModel, which exploits the modular design of the ns-3
propagation module by extending the PropagationLossModel
interface. The new class provides the method DoCalcRxPower(),
which reads the traces and retrieves the current simulation time to
determine the received power for the desired link(s). For an efficient
processing of the Comma Separated Values (CSV) files, we used the
CsvReader class available in the ns-3 core module.

2.2 Network Model
For an accurate characterization of the network components, we
chose to extend the ns3-mmwavemodule, an open source an publicly
available ns-3 module for the simulation of 5G networks [19].

The ns3-mmwave module implements models for all the layers
of the 5G NR protocol stack, for both Next Generation Node Bases
(gNBs) and User Equipments (UEs). The custom Physical (PHY)
and Medium Access Control (MAC) layers support different NR-
compliant frame structures and numerologies, multiple beamform-
ing algorithms and scheduling policies. The Radio Link Control
(RLC) and Packet Data Convergence Protocol (PDCP) layers, as well
as the core network models, are based on the ns-3 lena module for
Long Term Evolution (LTE) networks [23]. It also supports dual
connectivity with LTE base stations, which enables the simulation
of non-standalone 5G deployments, and Carrier Aggregation (CA)
at the MAC layer. Based on these features, ns3-mmwave supports
end-to-end full-stack network simulations with a high level of de-
tail, and has been taken as a reference benchmark simulator for 5G
scenarios.

Although this module is meant for the simulation of 5G systems
operating at millimeter wave (mmWave) frequencies, we intro-
duced some modifications to make it work at lower frequencies
too. In particular, we modified the class MmWaveHelper to accept
the GEMV2-based propagation model presented in Section 2.1, and
create gNBs and UEs without beamforming capabilities (via the In-
stallSub6GnbDevice() and InstallSub6UeDevice() methods,
respectively).

2.3 Application Model
We focused on a teleoperated driving scenario where a Host Vehicle
(HV) is controlled by a remote driver through an ad hoc driving
application installed on a remote or edge server. In order to be
teleoperated, the HV must be able to disseminate perception data
generated from on-board sensors like Light Detection and Ranging
(LiDAR) to the remote driver, that will then detect/recognize sen-
sitive entities in the environment (e.g., cars, pedestrians, cyclists,
etc.). However, the transmission of sensor data requires a consider-
able amount of radio resources and could potentially congest the
network, preventing a smooth driving experience. To tackle this

issue, data compression and segmentation are often applied in order
to reduce the size of raw data prior to transmission.

In ns-3, we designed a new application module to simulate this
data exchange and generate sensor data as a function of:

(1) The size of the input sensor data (in bytes);
(2) The time periodicity at which the information is generated

and exchanged (typically fixed to 100 ms for LiDAR sensors,
according to the device’s data sheets [29]);

(3) The level of compression/segmentation for the sensor data.

In this work we consider the sensor data from the Kitti multi-
modal dataset, collected using a Volkswagen Passat equipped with a
Velodyne LiDAR [9]. In particular, we rely on the data compression
pipeline proposed in [28]. First, we infer semantic segmentation
of point clouds with RangeNet++ [20]. We consider 3 segmenta-
tion levels:

• Raw (R): The raw LiDAR acquisition is considered.
• Segmentation Conservative (SC): Data points associated to
road elements are removed, thus reducing the file size.

• Segmentation Aggressive (SA): Data points associated to build-
ings, vegetation, traffic signs, and the background are also
removed, thus keeping only the most critical items in the
scene (typically pedestrians and vehicles).

Second, we compress the resulting frame using Draco [12], a soft-
ware whose flexibility allows the support of 15 quantization levels
and 11 compression levels. Since there are 3 segmentation levels, 15
quantization levels and 11 compression ratios, overall there would
be 495 distinct alternatives; for simplicity, our application imple-
ments the 7 most representative ones, in terms of the trade-off
between compression accuracy and speed, referred to as “applica-
tion modes” in the rest of the paper.

To implement the features described above, we started from the
application presented in [16], able to generate large data frames
and automatically fragment them into bursts of packets that are
then re-aggregated at the receiver, whenever possible. Specifically,
we extended the TraceFileBurstGenerator, that allows the user
to reproduce real world traffic traces, into the KittiTraceBurst-
Generator. Using the CsvReader utility, already available in ns-3,
we created a method to import sensor traces from the Kitti dataset
(after applying compression and segmentation to the data where
applicable), and save each frame information into a data structure.

As in a specific time instant of the simulation the application
can operate in one specific application mode, we provided Kitti-
TraceBurstGenerator with ad hoc methods to change the mode
in real time. In addition, considering that a single traffic trace could
incorporate and/or last for multiple scenes, the user can choose
what sequence the application is replicating and decide, in case the
reader reaches the end of the scene of interest, whether to loop
again from the beginning of the same scene or stop the application.

Considering that a LiDAR collects 3D points periodically, we also
emulate this behavior by the design of the FramePeriod attribute,
that indicates the time interval between a frame and the following
one, and is used to subsequently schedule the sending of each burst.
The BurstyApplication and BurstSink classes will then take care
of burst fragmentation, transmission and reception of packets, and
re-aggregation of the burst.
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For easy collection of statistics at the application, the module was
integrated with an additional BurstyAppStatsCalculator utility
class, which creates an output file to report how many bytes and
bursts were received in a specific window of time, and the delay
the received bursts have accumulated, on average, for each node.

2.4 Intelligent Network Controller
As highlighted in Section 1, the main goal of this work is to develop
a framework to integrate AI functionalities in ns-3. In this section,
we present a new entity called RAN-AI, installed at the gNB, which
interfaces with different components of the RAN, as well as the
core network, and incorporates AI capabilities with the purpose
of optimizing V2X network operations. In particular, the RAN-
AI collects network metrics and takes actions (also referred to as
“countermeasures”) to control the connected vehicles accordingly.

In our framework, the RAN-AI is responsible for:
(1) Collecting metrics from the gNB (i.e., cell-related informa-

tion) and the end users.
(2) Running AI algorithms using as inputs the collected met-

rics. We highlight that our implementation is AI-agnostic, in
the sense that it supports different AI models able to solve
heterogeneous problems.

(3) Determining the actions to take in order to maximize the
network performance.

(4) Communicating the actions to the relevant entities so that
they can tune their behavior accordingly. In particular, in
this work we allow the RAN-AI to control the end users,
even though our framework does not prevent other counter-
measures from being considered.

With respect to the code structure, RAN-AI functionalities are
implemented by the RanAI class, that is in charge of integrating the
features of ns3-ai [31], an ad hoc module to provide efficient and
high-speed data exchange between Python-based AI algorithms
and ns-3. Specifically, this module uses a shared memory implemen-
tation for interprocess communications, and provides a high-level
interface in both Python and C++ for different algorithms, which
is the reason why we integrated it in our framework.

To enable this new entity, an instance of the RanAI has to
be installed on each gNB in the simulation environment. First,
we included in MmWaveEnbNetDevice the attribute m_ranAI rep-
resenting the RAN-AI instance, which is initialized by calling
the class method InstallRanAI(). Specifically, InstallRanAI()
(i) initializes instances that gather full-stack network statistics
through the classes MmWaveBearerStatsCalculator and Bursty-
AppStatsCalculator, and (ii) schedules SendStatusUpdate(), a
routine that is executed every m_statusUpdate seconds. In partic-
ular, SendStatusUpdate() allows:

(1) The gNB to collect measurements at the PHY, MAC, RLC,
PDCP, and application layers, pertaining to the end users.

(2) The gNB to organize this information to be compatible with
ReportMeasures() input requirements and, through this
method, provide it to the RAN-AI.

(3) The RAN-AI to process the dataset via the AI framework.
When it comes to delivering the agent’s decision (i.e., the optimal

action) to an end user, the RAN-AI checks whether that user is
already configured to operate as specified by the action. If not,

the action must be communicated to the end user, and in our ns-3
framework we devise two possibilities:

• Ideal notification: We directly trigger a callback function to
apply the agent’s decision. No packet is transmitted, thus we
do not model the impact of the transmission delays and/or
communication errors/failure when changing the action.

• Real notification: The notification involves the transmission
of a real packet towards the intended end user. Specifically,
each notification packet contains (i) the agent’s decision,
(ii) the International Mobile Subscriber Identity (IMSI) of
the user, and (iii) the Radio Network Temporary Identifier
(RNTI) of the user in the cell. As such, both transmission
delays and communication errors are involved in the process
(i.e., the packet could be lost, leading the end user to operate
sub-optimally).1

With respect to the AI framework running on top of the RAN-AI,
we deployed multiple Markov Decision Processes (MDPs), each of
which represents the behavior of a distinct end user. Specifically,
we developed a novel Python module, named CentralizedAgent,
which allows an agent to interact with multiple learning environ-
ments, and to test multiple learning configurations, thereby eval-
uating the performance of different AI algorithms applied to the
same scenario. The CentralizedAgent module implements two
main methods, namely get_action() and update().

• get_action() takes as an input the states of the Nu end
users in the target scenario, and computes Nu actions. No-
tably, the state of an end user is a vector that includes all the
input parameters that the RAN-AI entity can collect for the
given vehicle. Depending on how state and action spaces are
explored, the method will return different actions.

• update() takes as an input a list of Nu learning transitions,
i.e., sequences [st , at , st+1, rt ] associated with each of the
Nu end users in the target scenario during slot t . Specifically,
a learning transition consists of (i) the state st of the end user
at the beginning of time slot t , (ii) the action at performed by
the end user during slot t , (iii) the state st+1 at the beginning
of the next slot t + 1 and, (iv) the reward rt that the end user
receives at the end of slot t . In general, the quality of the
agent’s decisions increases as more data are gathered by the
update() method.

The reward function is specific to the target application. As a case
study, in this paper we will validate our AI framework for a PQoS
application, as described in Section 3.1. Nevertheless, our RAN-
AI implementation is transparent to the ns-3 scenario, the only
dependence being how the input data is structured.

It should be mentioned that training an AI algorithm may re-
quire a huge computational effort. In our case, this challenge is
exacerbated by the fact that the algorithm’s input is directly taken
from the ns-3 simulation running under the hood, to provide infor-
mation on how the system evolves and reacts to the decisions of
the agent. At every step, in fact, the agent needs to wait for ns-3 to
compute and collect a set of metrics, that are then used for training.
In this sense, the proposed framework supports transfer learning,
where initial learning can be performed in a simplified (and faster)
1We recall that our framework is based on the ns3-mmwave module, that we extended
to support communication at both sub-6 GHz and mmWave frequencies.
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environment, with further training in a more realistic environment
(in our case, in ns-3).

3 A CASE STUDY
The framework we devised can be used to study different scenar-
ios where vehicular networks are orchestrated by AI algorithms.
With respect to the components described in Section 2, Report-
Measures() is the most important function as it allows to collect
and forward data of all users from the gNB to the ML agent. How
this information is collected is completely transparent to the ML
architecture that will use it as an input. The most trivial example
corresponds to the design of an algorithm to estimate a QoS index
(in terms of, for example, the delay, the Packet Reception Ratio
(PRR), or the application throughput) in each position of a given
map, and notify such prediction to the end users according to one of
the methods described in Section 2.4. Then, it is up to the developer
to decide what each vehicle should do with the information received
from the learning framework and, considering how the module has
been structured, such changes could be straightforward.

For this paper, we decided to demonstrate how our tool can be
used to evaluate and optimize wireless networks by focusing on a
PQoS use case. Our solution for this specific use case implements RL,
but it has to be highlighted that our framework can natively support
other AI approaches. In Section 3.1 we present our AI learning
setup, in Section 3.2 we describe our simulation parameters, and in
Section 3.3 we show some numerical results.

3.1 AI Algorithm
Overview. As a case study, we focus on PQoS, a paradigm to

provide autonomous systems with advanced notifications in case
of upcoming QoS changes [7]. To address this problem, the RAN-AI
introduced in Section 2.4 collects network statistics at the RAN level,
including the average Signal to Interference plus Noise Ratio (SINR),
average Modulation and Coding Scheme (MCS) index, Physical
Resource Block (PRB) utilization, mean/max/min/std of the delay
and PRR experienced at the PDCP layer. Based on the collected
metrics, it defines and applies network countermeasures in case
QoS requirements are not satisfied. Specifically, we designed the
RAN-AI to implement an AI agent, based on RL, able to identify the
optimal application mode (see Section 2.3) for the end users when
transmitting sensor data. The rationale behind this choice is that
end users will be encouraged to select more aggressive application
modes (e.g., those that apply compression/segmentation) to reduce
the size of the packets to send and promote faster transmissions.

Learning agent. Based on our previous work [18], our AI/RL
agent is trained according to the Double Q-learning (DQL) algo-
rithm described in [27], which is an extended version of the classical
Q-learning [30], even though our framework is flexible enough to
support more general, i.e., non-RL, learning schemes, for example
based on federated and/or distributed learning in which network
optimization is transparent to the underlying architecture. Hence,
whenever the update() function is called, CentralizedAgent fol-
lows the DQL procedure to perform a new training step. Our frame-
work approximates the agent’s policy bymeans of a Neural Network
(NN), which makes it possible to handle continuous state spaces
and overcome the curse of dimensionality phenomenon [4]. We

Table 1: Simulation Parameters

Parameter Description Value
fc Carrier frequency 3.5 GHz
B Total bandwidth 50 MHz

PTX Transmission power 23 dBm
T RAN-AI update periodicity 100 ms
τs Simulation time 80 s
Nu Number of vehicles {1, 5}
λ Discount factor 0.95
ζ Learning rate 10−4

ϵ Weight decay 10−3

α QoS/QoE weight 1
δM Max. tolerated delay 50 ms

PRRm Min. tolerated PRR 1
CDsym,m Max. tolerated Chamfer Distance 45

Layer size (inputs × outputs) 8 × 12 → 12 × 6 → 6 × 3

consider a Feed-Forward NN, with S inputs and A output neurons,
and implement the Rectified Linear Unit (ReLU) activation function
across the different layers [2].

We highlight that the input size of the NN coincides with the
dimension of the system’s state, i.e., the number of input parameters
of the RAN-AI entity. Instead, the output size of the NN corresponds
to the number of possible actions for the agent, i.e., in our case the
different application modes.

Reward function. In our target scenario, the performance of the
system depends on two different aspects:

• The Quality of Service (QoS): The vehicles should satisfy QoS
requirements, especially in terms of maximum end-to-end
delay δM and minimum PRR PRRm .

• The Quality of Experience (QoE): The transmitted data
should be accurate enough to perform driving operations.
For our case study, the Quality of Experience (QoE) depends
on the symmetric point-to-point Chamfer Distance CDsym,
which is inversely proportional to the quality of the received
data [28].

To incorporate both these factors, the agent reward is designed
to balance between QoS and QoE via a tuning parameter α ∈ [0, 1].

Let ˆPRRt and δ̂t be the PRR and average delay of the vehicle
at time t , respectively. If the QoS requirements are not met, i.e.,
δ̂t ≥ δM and ˆPRRt < PRRm , the agent reward R(t) is 0, otherwise
it is given by

R(t) = (1 − α)
δM − δ̂t
δM

+ α
CDsym,m − ĈDsym,t

CDsym,m
, (1)

where ĈDsym,t and CDsym,m are the Chamfer Distance at time t
and the maximum Chamfer Distance that can be tolerated, respec-
tively.

3.2 Simulation Parameters
The simulation parameters are shown in Table 1.

Scenario. We consider a scenario with Nu teleoperated vehicles
traveling on a real road topology, which corresponds to the portion
of the city of Bologna (Italy) depicted in Figure 2. There are two
main streets connected by a circular intersection, and several urban
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Figure 2: Our Simulation Scenario, Corresponding to a Portion of the City of
Bologna, Italy (the Red Star Represents the Position of the gNB)

and sub-urban streets. This area includes both commercial and
residential buildings with different heights and sizes. We consider a
single gNB, operating at 3.5 GHzwith a bandwidth of 50MHz, at the
center of the circular intersection at a height of 6.5 m (represented
with a red star in the figure).

V2X application. Each vehicle runs an instance of the KittiAp-
plication presented in Section 2.3 for streaming LiDAR data to a
remote driver, and receives downlink commands for teleoperated
driving operations, which is modeled as a UDP source with constant
rate 0.32 Mbps.

AI/RL algorithm. The RAN-AI collects network metrics every
100 ms, and implements the RL algorithm described in Section 3.1
to optimize network operations. In our implementation, the agent’s
action space A is limited to four most representative actions, cor-
responding to the set of application modes A ∈ {C-R, C-SC, C-SA},
where C-R means that data are compressed (with compression level
14) but not segmented, C-SC that data is compressed and conserva-
tive segmentation is applied, and C-SA that data is compressed and
aggressive segmentation is applied. In terms of the reward function
in Eq. (1), we set the tuning parameter to α = 1 (i.e., the agent
tries to maximize the QoE, as long as QoS demands are satisfied),
while communication requirements for teleoperated driving are
based on 5GAA specifications [1], so we have δM = 50 ms and
PRRm = 1. Finally, CDsym,m is set to 45, while ĈDsym,t depends
on the application mode and increases when considering more
aggressive compression/segmentation. Simulation results as a func-
tion of α can be found in [18], where we proved that decreasing α
has the benefit to further improve the QoS, even beyond the QoS
requirements under consideration, at the expense of some QoE
degradation.

3.3 Results
To validate our framework, we compared the following policies:

• DQL (proposed), where at each step the agent implements
our proposed RAN-AI framework.

Table 2: Average QoE ∈ [0, 1] Performance of Different PQoS Policies, as
a Function of the RAN-AI Implementation for Notifications (Real or Ideal)
and Nu

PQoS policy

RAN-AI notification
(Nu = 1)

Number of vehicles Nu
(Real Notification)

Real Ideal 1 5
C-R 1 1 1 1
C-SC 0.88 0.88 0.88 0.88
C-SA 0.22 0.22 0.22 0.22
DQL 0.98 0.94 0.98 0.78

• Constant (benchmark), where at the beginning of the simu-
lation the end user maintains one application mode ∈ A for
the whole simulation.

The two policies have been tested separately, and will be com-
pared in terms of the user’s (i) QoS, expressed in terms of delay
and PRR at the application layer, and (ii) QoE, which depends on
the Chamfer Distance. We investigate the impact of the RAN-AI
implementation for delivering the agent’s decisions to the end users
(real or ideal) and the number of vehicles Nu .

In Table 2 we report the QoE for different PQoS policies. We
observe that all the baseline solutions show constant values of
the QoE, regardless of the RAN-AI implementation and Nu , as
the compression level remains always fixed, while DQL shows
different QoE performance depending on the adopted policy. The
best QoE is achieved when transmitting raw sensor data (C-R),
given that data segmentation privileges efficiency over accuracy and
eventually distorts the LiDAR data before transmission. Moreover,
from Table 2 we can see that introducing ideal notifications leads
to QoE degradation, on average from 0.98 to 0.94. Although this
behavior may sound counterintuitive, we found that, when using
ideal notifications, DQL was encouraged to adopt a more aggressive
behavior, i.e., the agent was encouraged to change the application
mode more frequently throughout the learning process. This has
the benefit to improve the QoS (as we will show in Figure 4), at the
cost of a lower QoE. This is an indication that QoS and QoE should
be studied together to really understand the performance of the
system, as we will discuss in the following results.

In Figures 3a and 3b we illustrate the distributions of the delay
and PRR, respectively, experienced at the application layer vs. Nu .
Precisely, Figure 3b represents a split violin plot, which depicts
the estimated probability density function of the PRR for different
values of Nu , for each application mode.

First, as expected, the median and the percentiles of the delay
(PRR) are always higher (lower) when Nu = 5, due to the fact that
increasing the number of vehicles may congest the communication
channel, thus degrading the overall system performance. This result
validates the accuracy and realism of our ns-3 framework.

In terms of QoS, C-SA outperforms any other solution, since
in this configuration the data are extremely compressed and seg-
mented before transmission, thus reducing the size of the packets
to send, at the expense of a very low QoE (0.22). In turn, C-R maxi-
mizes the QoE, but results in a QoS degradation (up to 2.3× higher
latency compared to C-SA). It appears clear that, in our DQL imple-
mentation, the RAN-AI tries to adapt the compression level to the
conditions of the scenario via AI/RL, and achieves the best trade-off
between QoE and QoS. In particular, with Nu = 1, DQL is able to
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(a) Delay (Application Layer)

(b) PRR (Application Layer)

Figure 3: Performance of Different PQoS Policies, Considering Real Notifica-
tions at the RAN-AI and the Impact of the Number of Users

guarantee an average QoE of 0.98, while ensuring an average end-
to-end delay lower than 40 ms and a reliable data delivery. With
Nu = 5, DQL sacrifices the performance in terms of QoE (0.78) in
order to ensure an average delay lower than the maximum tolerated
value for teleoperated applications (i.e., 50 ms). Furthermore, DQL
reduces the variability of both the delay and the PRR compared to
its competitors, a critical requirement in V2X.

In Figure 4 we demonstrate that the impact of the additional
overhead introduced when control notifications are transmitted
from the RAN-AI to the end users is not negligible. Specifically,
with ideal notification settings, both the delay and the PRR im-
prove: the median delay and percentiles take lower values, while
the probability of packet loss decreases, given that the transmis-
sion of real notification packets may incur additional delays and
communication errors.

4 CONCLUSIONS
In recent years, V2X networks are incorporating AI as a method to
analyze large volumes of data and self-optimize. While simulators
like ns-3 have been popular tools to analyze the performance of

(a) Delay (Application Layer)

(b) PRR (Application Layer)

Figure 4: Performance of Different PQoS Policies with Nu = 1, Considering
the Impact of the RAN-AI Overhead for Notifications

wireless networks, how to simulate AI techniques and their impact
on the communication stack is still an open question. In this paper
we addressed this challenge, and proposed a novel framework in
ns-3 able to simulate AI algorithms. To this aim, we implemented a
new geometry-based channel model and application for V2X, and
a new intelligent entity (called RAN-AI) for optimizing wireless
networks. We demonstrated the accuracy and technical soundness
of our framework in a test scenario where the network performance
is controlled via PQoS. We showed from ns-3 simulations that V2X
performance requirements in terms of QoS and QoE can be satisfied
when the RAN-AI implements an RL algorithm for optimization.
We provide the source code of the simulator at [25], in the hope
that it will be useful to the broader community when implement-
ing and evaluating AI techniques to improve wireless networks
performance.

Future developments of our module will include a more exten-
sive simulation campaign to consider a higher number of vehicles
orchestrated by the same RAN-AI. From a learning perspective
we will study the performance when using different values of pa-
rameter α , but also test different learning tools such as federated
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learning for vehicular networks or QoS prediction based on the
vehicles’ positions on the map.
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