Determining the Orientation of Low Resolution Images of a
De-Bruijn Tracking Pattern with a CNN

Andreas Schmid
University of Regensburg
Regensburg, Germany
andreas.schmid@ur.de

Convolution
Input

LU ES

B @ ™

Max Pooling

Stefan Lippl
University of Regensburg
Regensburg, Germany
slippl@deloitte.de

Raphael Wimmer
University of Regensburg
Regensburg, Germany
raphael. wimmer@ur.de

Dense Layers Output
(128 Neurons)

(softmax)

Flatten
—

©06l660161016/6)
0006060

>

Figure 1: Network architecture. Three 2D convolutional layers (32, 64, 128; 3 x 3 kernel; linear activation), each followed by a
max pooling layer (2 X 2). The result is flattened and passed to three dense layers (128 neurons eachs, linear activation). A last
dense layer with 18 neurons and softmax activation serves as a classifier for the angles.

ABSTRACT

Inside-out optical 2D tracking of tangible objects on a surface often-
times uses a high-resolution pattern printed on the surface. While
De-Bruijn-torus patterns offer maximum information density, their
orientation must be known to decode them. Determining the orien-
tation is challenging for patterns with very fine details; traditional
algorithms, such as Hough Lines, do not work reliably. We show
that a convolutional neural network can reliably determine the
orientation of quasi-random bitmaps with 6 X 6 pixels per block
within 36 X 36 pixel images taken by a mouse sensor. Mean error
rate is below 2°. Furthermore, our model outperformed Hough Lines
in a test with arbitrarily rotated low-resolution rectangles. This
implies that CNN-based rotation-detection might also be applicable
for more general use cases.

KEYWORDS
CNN, Computer Vision, Tracking Pattern

ACM Reference Format:

Andreas Schmid, Stefan Lippl, and Raphael Wimmer. 2022. Determining
the Orientation of Low Resolution Images of a De-Bruijn Tracking Pattern
with a CNN. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Posters (SSGGRAPH ’22 Posters), August 07-11, 2022.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3532719.3543259

1 INTRODUCTION

Reliably tracking the positions of objects (Tangible Blocks, Fig. 2) on
a tabletop is an important challenge for physical-digital applications

SIGGRAPH °22 Posters, August 07-11, 2022, Vancouver, BC, Canada

© 2022 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Special Interest
Group on Computer Graphics and Interactive Techniques Conference Posters (SIGGRAPH
’22 Posters), August 07-11, 2022, https://doi.org/10.1145/3532719.3543259.

in the field of Tangible Interaction. Outside-in tracking methods
rely on external tracking infrastructure such as cameras or induc-
tive/capacitive sensors. They are therefore prone to occlusion by
user’s hands and require technical infrastructure. This limitation
can be avoided by using inside-out tracking with position sensors
integrated into tracked objects. Schiisselbauer et al. [2021] propose
a tracking method where a fast, low-resolution (36 X 36 px) mouse
sensor is used to determine the absolute position of tangible blocks
on a surface covered with a De-Bruijn torus [Fan et al. 1985] pattern.
While the system achieves sub-millimeter resolution, it fails when
tracked objects are not aligned with the tracking pattern. In order to
determine the object’s orientation relative to the pattern and undo
the rotation of the captured image, one might apply traditional
computer vision algorithms, such as Hough Line Transformation
[Duda and Hart 1972] or Iterative Closest Points. However, we have
found that these fail due to the low resolution of the sensor’s image.

In this paper, we present a first step for solving this problem
with a machine learning model that can determine the rotation of
low-resolution dot patterns.

Figure 2: Tangible block on a De-Bruijn-torus tracking pat-
tern. The block’s orientation is determined with our model.


https://orcid.org/0000-0003-3593-2476
https://orcid.org/0000-0001-5162-5113
https://doi.org/10.1145/3532719.3543259
https://doi.org/10.1145/3532719.3543259

SIGGRAPH 22 Posters, August 07-11, 2022, Vancouver, BC, Canada

2 METHOD

We trained a convolutional neural network (CNN) to classify the
orientation of a quasi-random dot pattern (Fig. 1). We implemented
this model in Python 3.9 using Tensorflow 2! with the Keras APL
The network consists of three 2D convolution layers (32, 64, and 128
filters; 3 X 3 kernel, a stride of one, same padding, linear activation),
each followed by a 2D max pooling layer (pool size 2 X 2, same
padding). After a flatten layer, three dense layers with 128 neurons
each and linear activation were added. We found that linear acti-
vation performs significantly better than other functions, such as
sigmoid and ReLU. Finally, a softmax layer with 18 neurons outputs
a probability distribution for each angle (0 — 85° in 5° increments).
Hyperparameters of the model were optimized with a manual grid
search approach. As the model is only trained with images rotated
in 5° increments, in-between angles are interpolated by calculating
a weighted average of predictions for each angle. For example, if
the model finds a 50% probability for both 35° and 40°, an angle of
37.5° is reported. Training the model with smaller angle increments
led to less accurate results.

We collected a training data set of 37800 images (36 X 36 px
each, 1890 for each 5° step between 0° and 85°) by moving a PixArt
PMW3360 mouse sensor? over a tracking pattern using an AxiDraw
V3 robotic arm®. An additional servo motor rotated the sensor
between 0° and 85° in the Z axis. For the tracking pattern, we used
a {8192,4096, 5,5} De-Bruijn torus scaled to 150 pixels per inch
and printed at 1200 dpi with a laser printer on glossy paper. Each
captured image contains 6.5 X 6.5 dots of the pattern. Thus, each
dot is about 5.5 X 5.5 pixels in size (Fig 3). This is the same setup as
used by Schiisselbauer et al. [2021].

We used 90% of this data set to train our model for three epochs
with a batch size of 64, an Adam optimizer, and categorial crossen-
tropy as the loss function. Additionally, training data was aug-
mented by rotating each training image in 90° steps. 20% of this
training data set were used for validating the model after each epoch.
The remaining 10% of the whole data set (233 images per angle)
were used for evaluation after the completed training process.

After three training epochs, our model reached 92.98% accuracy
on the validation data set (loss: 0.1879) and 88.77% accuracy on the
test data set. The final model has 537,746 trainable parameters.

Figure 3: Sample of the training data set. Top row (left to
right): 0° - 25°% center row (left to right): 30° — 55°; bottom
row (left to right): 60° — 85°.

!https://www.tensorflow.org/
Datasheet: http://www.pixart.com/products-detail/10/PMW3360DM-T2QU
3https://shop.evilmadscientist.com/productsmenu/846

Schmid et al.

3 EVALUATION

To evaluate our model’s performance, we acquired another data set
of 135 images for each 1° angle between 0° and 89° from a different
area within the De-Bruijn torus. On average, a prediction using
TensorFlow Lite* took 0.73 ms (sd: 0.23) on our test system®. For
evaluation images rotated in 1° increments, our model achieved a
mean error rate of 1.94° (sd: 1.63, max: 13.41). However, it performed
significantly better for only 5° and 10° increments (Table 1).

Table 1: Error rates for different orientation increments.

increment mean sd max error >5° error > 10°

1° 1.94° 163 134 4.28% 0.29%
5° 1.27° 190 10.8° 3.19% 0.16%
10° 1.25° 190 10.0° 3.52% 0.08%

To test whether our model also works for other patterns, we
generated 10,000 test images by placing between three and five
randomly sized rectangles in a binary 36 X 36 px image and rotating
the result by a random angle between 0° and 89°. We compared
the prediction accuracy of our model to the Hough Lines algorithm
[Duda and Hart 1972] (threshold: 12) which was applied after a
Canny edge detection (thresholds: 100 and 200). Those parameters
were optimized via grid search. Even though our model was not
trained on this data set, it attained an error rate of 3.47° (sd: 2.84) -
much better than the Hough Lines approach (mean error 8.07°, sd:
10.80, and 2.2% of angles unrecognized).

4 CONCLUSION

We have shown that convolutional neural networks can be used to
determine the orientation of low-resolution images of dot patterns.
As we could achieve high accuracy using only linear activation
functions, it might be possible to simplify the model in future it-
erations. Our CNN could outperform the Hough Lines algorithm
for a data set of rotated rectangles which it was not trained on.
This suggests that the model might also be of use in other domains
where low-resolution images need to be analyzed. Source code and
data sets are available at hci.ur.de/projects/dottrack.

ACKNOWLEDGMENTS

This project is funded by the Bavarian State Ministry of Science
and the Arts and coordinated by the Bavarian Research Institute
for Digital Transformation (bidt).

REFERENCES

Richard O. Duda and Peter E. Hart. 1972. Use of the Hough Transformation to Detect
Lines and Curves in Pictures. Commun. ACM 15, 1 (jan 1972), 11-15. https:
//doi.org/10.1145/361237.361242

C.T.Fan, S. M. Fan, S. L. Ma, and M. K. Siu. 1985. On De Bruijn arrays. Ars Combinatoria
19, MAY (1985), 205-213.

Dennis Schiisselbauer, Andreas Schmid, and Raphael Wimmer. 2021. Dothraki: Track-
ing Tangibles Atop Tabletops Through De-Bruijn Tori. In Proceedings of the Fifteenth
International Conference on Tangible, Embedded, and Embodied Interaction (Salzburg,
Austria) (TEI 21). Association for Computing Machinery, New York, NY, USA,
Article 37, 10 pages. https://doi.org/10.1145/3430524.3440656

*https://www.tensorflow.org/lite
5 HP EliteBook 850 G4 (Intel i7 CPU with 2.7 GHz, Intel HD Graphics 620, 16 GB RAM


https://www.tensorflow.org/
http://www.pixart.com/products-detail/10/PMW3360DM-T2QU
https://shop.evilmadscientist.com/productsmenu/846
hci.ur.de/projects/dottrack
https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/3430524.3440656
https://www.tensorflow.org/lite

	Abstract
	1 Introduction
	2 Method
	3 Evaluation
	4 Conclusion
	Acknowledgments
	References

