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ABSTRACT
Computational intelligence approaches to data clustering have been
successful in producing compact and well-separated clusters. In
particular, particle swarm optimization (PSO) is deemed an effective
approach to data clustering. This paper develops and evaluates a
discrete-valued variation of PSO, namely the set-based PSO (SBPSO)
algorithm, to cluster data. The SBPSO algorithm is evaluated on
six standard data sets and nine artificially generated data sets. The
clustering results of the SBPSO algorithm is compared to the per-
formance of established clustering algorithms and a PSO clustering
algorithm. It is concluded that the results of the SBPSO algorithm
varies with the data set characteristics. Nonetheless, the SBPSO is
deemed a successful approach to clustering data.
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1 INTRODUCTION
Data clustering is the unsupervised grouping of data instances
into clusters. Clusters are formed on the basic principle that data
instances within the same cluster are similar to one another, and
data points from different clusters are dissimilar. Clustering has
various applications such as exploratory data analysis, statistical
analysis, computer vision and pattern recognition, information
retrieval, and object recognition [1] [9] [10].

It is possible to apply clustering to a wide variety of data domains,
for example, text, multimedia, social networks, and biological data
[7]. The context of the problem to which data clustering is applied
varies with each application. Therefore, the clustering technique to
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be applied to a specific problem depends on a combination of the
data domain and context of the problem at hand as the technique
needs to be scalable and appropriate for the data domain [7].

The three main objectives of data clustering are [5]:
(1) To produce compact clusters: the distances between data

points and the respective cluster centroid should be mini-
mized;

(2) to produce well-separated clusters: the distances between
cluster centroids should be maximized; and

(3) to produce an optimal number of clusters.
Therefore, clustering can be approached as a multi-objective opti-
mization problem which yields an optimal set of centroids.

Particle swarm optimization (PSO) is a continuous optimization
algorithm inspired by bird flocking behaviour [3]. While PSO has
originally been developed to solve continuous-valued optimization
problems, several adaptations of PSO have been proposed to solve
discrete-valued problems, such as the binary PSO [6]. A discrete-
valued PSO algorithm developed by Langeveld and Engelbrecht
[8] is the set-based adaptation of the PSO, known as set-based
particle swarm optimization (SBPSO). The candidate solutions are
represented as sets, not as vectors as in standard PSO. Therefore,
SBPSO can be applied to any discrete-valued optimization problem
where solutions can be defined as sets.

The SBPSO algorithm can therefore also be applied to data clus-
tering problems, provided that the clustering problem can be de-
fined as a set-based optimization problem. SBPSO yields optimal
sets as combinations of elements from the defined universe. Solu-
tions to the clustering optimization problem can be represented as
a set of centroids and the universe is a finite set of elements. Thus,
the centroids are actual data points contained in the dataset. This
implies that the set universe is the actual dataset. Therefore, cluster-
ing can be defined as a set-based optimization problem. The SBPSO
clustering algorithm follows a medoid-based clustering approach.
SBPSO is then applied to find the smallest number of medoids that
yields compact and well-separated clusters.

Particle representation as a set has the implication that the size
of the particle position can change during algorithm execution [8].
Consequently, SBPSO allows for clustering solutions of differing
numbers of clusters. Therefore, the SBPSO algorithm can naturally
find an optimal number of clusters within the data set.

This paper develops a new SBPSO algorithm for mediod-based
data clustering. The algorithm is evaluated on fifteen different clus-
tering problems, and its performance is compared to that of estab-
lished clustering approaches such as the K-means and K-medoids
algorithms. The results show that the SBPSO algorithm is a suc-
cessful approach to data clustering.

The rest of the paper is organized as follows. Section 2 provides a
short summary of literature related to the SBPSO algorithm. Section
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3 describes the SBPSO algorithm and Section 4 presents the SBPSO
clustering algorithm. Section 5 summarizes the empirical process,
and Section 6 presents and discusses the results.

2 RELATEDWORK
This paper is the first attempt at developing a SBPSO algorithm for
data clustering. The following pieces of work are related to SBPSO
for data clustering:

• PSO for data clustering: The first PSO approach for data
clustering was developed and analyzed in [13].

• SBPSO applied to the knapsack problem: A generic
SBPSO algorithm is developed and tested on the multidi-
mensional knapsack problem. SBPSO is empirically shown
to outperform other discrete-valued PSO algorithms [8].

• SBPSO applied to feature selection: It is empirically
shown that a SBPSO k-nearest neighbour wrapper-based
algorithm can effectively solve the feature selection problem
(FSP). In particular, SBPSO statistically significantly outper-
forms three PSO algorithms on the FSP [4].

• SBPSO applied to polynomial approximation: SBPSO
works well to find polynomial approximations in low di-
mensions with promise for improved performance in higher
dimensions [14].

3 SET-BASED PARTICLE SWARM
OPTIMIZATION

PSO was originally created to solve problems with continuous-
valued decision variables. The PSO algorithm has been adapted
for discrete-valued optimization problems [11]. Set-based particle
swarm optimization is an example of an adaption of PSO for discrete-
valued optimization problems where solutions can be represented
as sets. This section discusses the SBPSO algorithm proposed by
Langeveld and Engelbrecht [8].

3.1 Set-based Particle Swarm Optimization
Concepts

The position and velocity of particles in SBPSO is defined as math-
ematical sets. The position is therefore a set of elements from the
universal set, as opposed to a vector of fixed dimensions as for the
classic PSO algorithm. The velocity is made up of operation pairs,
each of which involves the addition or deletion of a single element.
The solution of the SBPSO yields a set of elements corresponding
to the best position found by the swarm.

For the application of SBPSO to a maximization problem, let
• U = {en }n∈ |D | be the universal set which contains all the
elements, en , of the data set of a finite number of elements,
|D |,

• Xi (t) be the position of particle i at iteration t ,
• Vi (t) be the velocity of particle i at iteration t ,
• f be the objective function to be maximized,
• Yi (t) be the personal best of particle i , and
• Ŷ (t) be the global best position of the swarm at iteration t .

The paradigm of PSO is based on the idea of movement through
the entire search space by using velocity. The attraction towards
the personal best position of a particle influences the velocity of

the particle. In SBPSO, the particle position Xi (t) is also attracted
to the personal best position Yi (t). However, because mathematical
sets are used in SBPSO, the movement of a particle towards its
personal best is achieved by removing elements from Xi (t) that are
not in Yi (t) and adding elements toXi (t) that are contained in Yi (t).
Thereby, the sets are made more similar.

The particle position, Xi (t), is updated by adding the veloc-
ity Vi (t). The velocity in SBPSO is a set of operation pairs de-
noted as (±, e), where (+, e) refers to an addition of an element
e ∈ U and (−, e) refers to the removal of element e . The veloc-
ity of a particle i is defined as Vi (t) which is then written as{
vi,1, . . . ,vi,z

}
=

{(
±, eni,1

)
, . . . ,

(
±, eni,z

)}
where z represents

the number of operation pairs and eni,1 is an element contained in
U .

DenoteP(U ) as the power set, i.e. the set of all subsets, ofU . The
position of a particle i , Xi (t), is an element of P(U ). The objective
function f is a mapping which assigns a position a quality score
in R which is written as f : P(U ) → R. The velocity Vi (t) is a
function which maps the current particle position Xi (t) to a new
position Xi (t + 1), written as Vi (t) : P(U ) → P .

To enhance exploration in SBPSO, two special operators are
applied. The special operators ensures that elements that are not
contained in the personal best position, Yi (t), of the particle nor
in the global best position, Ŷi (t), are added to the position. The
special operators also remove elements from the current position
that are contained in Xi (t) as well as in Yi (t) and Ŷi (t) to enhance
exploration of the search space.

3.2 Set-based Particle Swarm Optimization
Operators

The operators required for SBPSO are listed in this section. Arith-
metic operators used in PSO are transformed to set-based operators.
The following set-based operators are defined (for detailed defini-
tions, please refer to [8]):

• The addition of two velocities, denoted as V1 ⊕ V2.
• The difference between two positions, denoted as X1 ⊖ X2.
• The multiplication of a velocity by a scalar, denoted as η ⊗ V .
• The addition of a velocity and a position, denoted as X ⊞V .
• The removal of elements which are in X (t) ∩Y (t) ∩ Ŷ (t) from
position X (t), denoted as ⊙−.

• The addition of elementswhich are outside ofX (t)∪Y (t)∪Ŷ (t),
denoted as ⊙+.

3.3 Set-based Particle Swarm Optimization
Update Equations

The operators as defined in Section 3.2 is combined to form the
velocity update equation for SBPSO as [8]

Vi (t + 1) = a1r1 ⊗ (Yi (t) ⊖ Xi (t)) ⊕ a2r2 ⊗ (Ŷi (t) ⊖ Xi (t))

⊕ (a3r3 ⊙
+
k Ai (t)) ⊕ (a4r4 ⊙

− Si (t))
(1)

where Ai (t) represents the elements not contained in X (t) ∪Y (t) ∪

Ŷ (t), Si (t) represents the elements which are contained in X (t) ∩

Y (t)∩Ŷ (t), a1,a2 ∈ [0, 1],a3,a4 ∈ [0, |U |] [8], and random numbers
ri are independently drawn from the uniform distribution on (0, 1).
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The position update equation is defined as [8]:

Xi (t + 1) = Xi (t) ⊞Vi (t + 1) (2)

4 SBPSO CLUSTERING
SBPSO represents candidate solutions as sets. The solution to the
clustering optimization problem is consequently a set of centroids
and the universe is a finite set of data points. Accordingly, the set of
centroids found by the SBPSO algorithm is actual data points from
the provided data set. The set of data points yielded by the algo-
rithm is the cluster mediods. Consequently, the SBPSO clustering
algorithm is based on the principles of K-medoids clustering.

In the context of clustering, a single particle represents the cluster
medoids of the clusters. Each particle, Xi , is constructed as

Xi = {mi,1, . . . ,mi,k , . . . ,mi,ni } (3)

where ni = |Xi |;mk represents the mediod of cluster k . The swarm
of the SBPSO algorithm is therefore composed of N sets of mediods
yielding a variety of cluster partitioning arrangements. The number
of particles is thus denoted by N . The particles are initialized with
varying lengths ranging from a minimum of two mediods to a
user specified maximum of number of mediods. It is important to
note that the size of the particles can vary due to solutions being
represented as sets. Thereby, SBPSO has the ability to optimize the
number of clusters, K .

The SBPSO clustering algorithm uses the star topology, where
information about best positions are exchanged among all particles;
thus, all particles are attracted to the best position as found by the
swarm. The same swarm topology is implemented for both the
SBPSO and PSO clustering algorithms.

In order to evaluate the clustering capabilities of the SBPSO
clustering algorithm in comparison to that of the PSO clustering
algorithm, the same objective function is implemented for both
algorithms. The objective function for set-based particles is

f (Xi ) = s(Xi ) + Dunn(Xi ) (4)

where s(Xi ) denotes the Silhouette index value and Dunn(Xi ) de-
notes the Dunn index value of the clustering structure yielded by
position Xi . The fitness of the SBPSO particles is then measured
using Equation (4). Consequently, by simultaneously maximizing
the indices, an optimal number of clusters is produced.

The SBPSO algorithm for data clustering is presented in Algo-
rithm 1. The SBPSO clustering algorithm first initialises the parti-
cles’ position as random subsets of elements in the data set. There-
after, the personal best position and global best position objective
function values are set to be minus infinity, because the objective
function is to be maximized.

After particles have been initialised, the algorithm runs for tmax
iterations; tmax is the maximum number of iterations. For each
particle, the Euclidean distance to each medoid is calculated. The
remaining data points, which are not contained in the position of the
particle, are assigned to the corresponding closest cluster medoid.
The fitness of each particle is then determined with Equation (4) and
the personal best and global best positions are updated accordingly.

The velocity of each particle is updated according to Equation
(1). The updated velocity is then used to update the position of each
particle using Equation (2). The global best position found at the

end of tmax iterations is then the optimal cluster medoids as found
by the SBPSO algorithm.

Input :Dataset, D; N ; tmax ; a1; a2; a3; a4
Output :K cluster medoids

for i = 1, ..., N do
SetU = D ;
Initialize iteration = 0 ;
Initialize Xi as a random subset ofU ;
Initialize Vi = ∅ ;
Initialize f (Yi ) = −∞ ;
Initialize f (Ŷ ) = −∞ ;
Calculate the distance matrix with Euclidean distance ;

end
while iterations < tmax do

for i = 1, ..., N do
Assign pj to cluster Ck such that
d(pj ,mi,k ) = min∀k=1, · · · ,K

{
d
(
pj ,mi,k

)}
;

Calculate the fitness of the particle Xi using
Equation (4) ;
Set the personal best position ;
if f (Xi ) > f (Yi ) then

Yi = Xi ;
end
Set the global best position ;
if f (Yi ) > f (Ŷ ) then

Ŷ = Yi ;
end

end
for i = 1, ..., N do

Update Vi according to Equation (1) ;
Update Xi according to Equation (2) ;
Calculate the fitness of the updated particle Xi using
Equation (4);

end
iterations = iterations + 1 ;

end
Algorithm 1: SBPSO Algorithm for Data Clustering

5 EMPIRICAL PROCESS
This section describes the procedure used to compare the clustering
results of SBPSO against other established clustering algorithms.
The section opens with a presentation of the clustering algorithms
employed. The data sets used are then listed. Thereafter, the control
parameter tuning process is discussed. Lastly, the criteria utilized
for evaluating the quality of the clustering results are discussed.

5.1 Clustering Algorithms Employed For
Evaluation

The clustering results of the SBPSO algorithm is compared to a
selection of clustering algorithms representative of the main clus-
tering categories, namely partitional and hierarchical clustering.
The algorithms selected, along with the respective R functions, are
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presented in Table 1. In addition, the SBPSO clustering results are
also evaluated against the results of a standard PSO clustering algo-
rithm [13]. The purpose of assessing the clustering results against
that of the PSO is to critically evaluate whether the SBPSO varia-
tion of the PSO algorithm improves the clustering abilities of the
swarm-based algorithm.

Table 1: Clustering Methods Considered for Analysis

Algorithm Category Function in R

K-means Partitional kmeans
K-medoids Partitional pam
Agnes Hierarchical hclust

Density-based Density-based dbscan

5.2 Benchmark Problems
The data sets used in the experiment consist of both standard clus-
tering data sets from the UCI Repository of Machine Learning
Databases [2] and artificially generated data sets. Six standard data
sets are used for the purpose of this study, namely:

• Iris plants: There are 150 data points, 3 classifications, and 4
variables in this data set. The classes are equally distributed.

• Wine: There are 178 data points and 4 variables in this
data set. There are no classifications present in the data set,
therefore data points are unlabelled.

• Breast cancer: There are 569 data points, 2 classifications,
and 31 variables in this data set. However, only 9 variables
are deemed relevant to the classification of the data point.
The classes are unequally distributed.

• Cervical Cancer Behavior: There are 72 data points, 2
classifications, and 19 variables in this data set.

• Ceramics: There are 88 data points, and 19 variables in this
data set. There are no classifications present in the data set,
therefore data points are unlabelled.

• QCM Sensor: There are 125 instances, 5 classifications and
8 variables in this data set.

Mixtures of Gaussians are used to generate artificial data sets.
The artificial data sets serve the purpose of evaluating the impact
of specific data set characteristics on the clustering results obtained.
The impact of the following data set characteristics are inspected:

• noise,
• cluster density, and
• the number of clusters present.

Three levels of severity are produced for each characteristic in
order to critically evaluate the impact thereof on the clustering
results. The default parameters for the mixture of Gaussians are
set to produce a two dimensional data set containing three equally
sized, well-separated and compact clusters without noise. Each data
set contains 150 data points.

5.3 Parameter Tuning
A grid search is implemented for the parameter tuning process. The
domain of the parameters of an algorithm is divided into a discrete
grid. Performance metrics based on the combinations of the values

contained in the grid are evaluated to find the best combination in
the domain. The performance metric utilized is the Silhouette index.
The parameters and corresponding parameter ranges considered in
the grid search for each clustering algorithm is presented in Table
2.

Table 2: Parameters Considered for Parameter Tuning

Algorithm Parameters Parameter Range

SBPSO a1 [0; 1]
a2 [0; 1]
a3 [0; |U |]
a4 [0; |U |]

PSO a1 [0; 5]
a2 [0; 5]
ω [0.5; 0.99]
k [2; 10]

K-means k [2; 10]

K-mediods k [2; 10]

Agnes k [2; 10]

DB eps [0.2; 10]
min-pts [2; 10]

For the purposes of this paper, the same number of particles is set
to 10 for both the SBPSO and PSO clustering algorithms. The size
of the k-tournament selection is not included in the grid search due
to limited computational resources. The size of the k-tournament
selection implemented in the adapted SBPSO algorithm is set to
three and the maximum number of medoids initialized is set to ten.

The results of the parameter tuning process for the SBPSO algo-
rithm is presented in Table 3.

Table 3: Tuned Parameters for Standard Data Sets

Data Set a1 a2 a3 a4

Iris 0.63 0.65 0.73 0.58
Breast Cancer 69 0.75 0.64 0.52
Wine 0.76 0.52 0.78 0.51
Cervix 0.42 0.41 0.30 0.31
Ceramics 0.35 0.51 0.34 0.32
QCM Sensor 0.42 0.31 0.33 0.31
Noise Level 1 0.49 0.51 0.59 0.72
Noise Level 2 0.76 0.72 0.91 0.54
Noise Level 3 0.53 0.51 0.89 0.51
Cluster Density Level 1 0.51 0.41 0.30 0.31
Cluster Density Level 2 0.71 0.52 0.52 0.62
Cluster Density Level 3 0.62 0.51 0.71 0.81
Number of Clusters Level 1 0.51 0.53 0.49 0.50
Number of Clusters Level 2 0.71 0.52 0.52 0.51
Number of Clusters Level 3 0.62 0.51 0.71 0.81

5.4 Evaluation Criteria
The results of the clustering algorithms are measured as the aver-
ages and corresponding standard deviations over 30 independent
runs. The quality of the respective clusterings are evaluated against
to the following criteria:
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• the Silhouette index, where it is the objective to maximize
the Silhouette index;

• the average intra-cluster distance, where it is the objective
to minimize the intra-cluster distance;

• the average inter cluster distance, where it is the objective
to maximize the inter-cluster distance; and

• the number of clusters produced.
Clusters that meet the above objectives are compact and well

separated. The Silhouette index is utilized as the metric to compare
the clustering performance of the clustering algorithms, because
the index incorporates the inter- and intra-cluster distances.

The SBPSO and PSO clustering algorithms are compared to each
other using a Mann-Whitney U test. The Mann-Whitey U test (with
level of significance is set to α = 0.05) is used to compare differences
between two independent groups [12]. In this case, the independent
groups are the Silhouette index values produced by the two different
clustering algorithms. The hypothesis is defined as

• Null hypothesis H0: There is no difference between the Sil-
houette index values.

• Alternative hypothesis H1: There is a difference between the
Silhouette index values.

The six clustering algorithms are ranked against each other
based on the highest average Silhouette index produced over the
30 independent runs.

6 EMPIRICAL ANALYSIS
This section presents the results for the standard data sets, followed
by the results of the artificial data sets.

6.1 Standard Data Sets Results
The clustering results obtained for the standard data sets are cap-
tured in Table 4. The results of the Mann-Whitney U test applied
to the clustering results of the SBPSO and PSO algorithms are cap-
tured in Table 5. The results indicate that there is a significant
difference between the clustering results of the SBPSO and PSO for
all data sets, except the Wine data set. The SBPSO algorithm yields
a higher average Silhouette index value than the PSO algorithm for
the Iris and Breast Cancer data sets. For the Cervix, Ceramics and
QCM Sensor data sets, the PSO yields a higher average Silhouette
index value. However, in the case of the Wine data set, there is no
significant difference between the Silhouette index values of the
SBPSO and PSO algorithms.

All algorithms produce two clusters for the Iris data set. The
number of clusters found does not correspond to the three classes
present in the data set - which is the number of clusters expected
to be produced. However, two clusters yields a higher Silhouette
index value for the Iris data set and the objective of the parameter
tuning process in this project is to maximize the Silhouette index.
There are no class labels present in the Wine data set and thus no
expected number of clusters to be produced. The PSO, K-means,
and K-medoids algorithms yield three clusters. The Agnes and DB
algorithms both yield two clusters. The SBPSO algorithm produced
an average number of clusters between two and three.

The Breast Cancer data set contains two class labels and thus
two clusters are expected to be detected by the clustering algo-
rithms. However, only the PSO, K-means, and K-medoids algorithms

Table 4: Standard Data Sets Clustering Results

Problem Algorithm Intra- Inter- Silhouette K
Cluster Cluster Index
Distance Distance

Iris SBPSO 1.506±0.000 3.647±0.000 0.581±0.000 2
PSO 1.511±0.122 3.642±0.009 0.579±0.003 2
K-means 1.506±0.000 3.647±0.000 0.581±0.000 2
K-mediods 1.506±0.000 3.647±0.000 0.581±0.000 2
Agnes 1.506±0.000 3.647±0.000 0.581±0.000 2
DB 1.537±0.000 3.461±0.000 0.563±0.000 2

Wine SBPSO 3.953±0.256 5.603±0.100 0.262±0.008 2.5±0.759
PSO 3.727±0.112 5.496±0.152 0.259±0.022 3
K-means 3.626±0.000 5.517±0.000 0.284±0.000 3
K-mediods 3.674±0.000 5.510±0.000 0.267±0.000 3
Agnes 4.867±0.000 7.069±0.000 0.298±0.000 2
DB 4.815±0.000 6.250±0.000 0.224±0.000 2

Breast SBPSO 6.758±0.229 14.869±3.328 0.506±0.097 2.2±0.523
Cancer PSO 5.875±0.262 9.567±0.2.665 0.356±0.071 2

K-means 5.445±0.016 8.742±0.0253 0.313±0.006 3
K-mediods 5.795±0.000 9.047±0.000 0.349±0.000 2
Agnes 6.906±0.000 19.489±0.000 0.633±0.000 2
DB 6.829±0.000 - 0.569±0.000 1

Cervix SBPSO 5.386±0.347 6.917±0.555 0.199±0.035 2.36±1.129
PSO 5.331±0.061 6.705±0.089 0.200±0.018 2
K-means 6.686±0.112 5.336±0.069 0.198±0.022 2
K-mediods 4.186±0.006 6.312±0.005 0.174±0.003 9
Agnes 5.911±0.000 8.719±0.000 0.310±0.000 2
DB 5.018±0.000 6.304±0.000 0.233±0.000 3

Ceramics SBPSO 4.664±0.422 6.595±0.494 0.260±0.023 2.63±1.066
PSO 4.678±0.122 6.509±0.030 0.277±0.001 2
K-means 6.495±0.113 4.672±0.000 0.275±0.031 2
K-mediods 6.468±0.000 4.685±0.000 0.268±0.000 2
Agnes 5.526±0.000 8.735±0.000 0.342±0.000 2
DB 5.277±0.000 5.836±0.000 0.565±0.000 2

QCM SBPSO 1.923±0.323 5.288±0.260 0.557±0.034 2.50±0.629
Sensor PSO 2.093±0.000 5.413±0.000 0.588±0.000 2

K-means 2.093±0.000 5.413±0.000 0.588±0.000 2
K-mediods 2.093±0.000 5.413±0.000 0.588±0.000 2
Agnes 2.093±0.000 5.413±0.000 0.588±0.000 2
DB 2.455±0.000 3.123±0.000 0.826±0.000 11

produce two clusters. The SBPSO algorithm produces an average
number of clusters of 2.2, which is close to the number of clusters
expected to be found.

The Cervix data set contains two class labels. The SBPSO algo-
rithm yielded an of average 2.36 clusters. The PSO, K-means, and
Agnes algorithms yielded two clusters. The K-medoids algorithm
yielded a total of nine clusters and the DB algorithm a total of three.

The rankings of the clustering algorithms are provided in Table
6. The clustering result of the DB function applied to the Breast
Cancer data set is excluded from the rankings as the algorithm is
unable to produce at least two clusters. The Agnes function yields
the best average Silhouette index values for four of the standard
data sets. The SBPSO is ranked higher than the PSO for three of
the standard data sets.

6.2 Artificial Data Sets Results
The clustering results for the three severity levels of the noise,
cluster density, and number of clusters data sets are presented in
Tables 7, 8, and 9, respectively. The results of the Mann-Whitney U
tests are presented in Table 10.

For the three noise data sets, there is significant difference be-
tween the clustering results of the SBPSO and PSO for severity
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Table 5: Statistical Significance: Standard Data Sets

Iris Wine Breast
Cancer

p-value < 0.001 p-value = 0.5792 p-value < 0.001
Significant Not Significant Significant
Reject H0 Do Not Reject H0 Reject H0

Cervix Ceramics QCM
Sensor

p-value = 0.03837 p-value = < 0.001 p-value < 0.001
Significant Significant Significant
Reject H0 Reject H0 Reject H0

Table 6: Ranks: Standard Data

Algorithm Iris Wine Breast Cervix Ceramics QCM
Cancer Sensor

SBPSO 1 4 2 4 6 3
PSO 2 5 3 3 3 2

K-means 1 2 5 5 4 2
K-medoids 1 3 4 6 5 2
Agnes 1 1 1 1 2 2
DB 3 6 - 2 1 1

Table 7: Artificial Data Sets Clustering Results: Noise

Problem Algorithm Intra- Inter- Silhouette K
Cluster Cluster Index
Distance Distance

Level 1 SBPSO 0.417±0.032 2.340±0.014 0.780±0.014 3.40±0.681
PSO 0.388±0.028 2.327±0.012 0.789±0.071 3.75±0.444
K-means 0.376±0.022 2.295±0.048 0.753±0.071 4
K-mediods 0.365±0.000 2.324±0.000 0.797±0.000 4
Agnes 0.364±0.000 2.319±0.000 0.794±0.000 4
DB 0.725±0.000 2.304±0.000 0.901±0.000 3

Level 2 SBPSO 0.392±0.017 2.374±0.005 0.802±0.005 3.10±0.447
PSO 0.396±0.014 2.372±0.003 0.801±0.002 3.05±0.224
K-means 0.338±0.013 2.355±0.010 0.805±0.029 4
K-mediods 0.332±0.000 2.348±0.000 0.811±0.000 4
Agnes 0.333±0.000 2.357±0.000 0.815±0.000 4
DB 0.538±0.000 2.334±0.000 0.876±0.000 2

Level 3 SBPSO 0.330±0.024 2.356±0.008 0.827±0.006 3.55±0.686
PSO 0.308±0.007 2.352±0.006 0.833±0.004 4
K-means 0.375±0.021 2.292±0.054 0.754±0.068 4
K-mediods 0.301±0.000 2.348±0.000 0.837±0.000 4
Agnes 0.313±0.000 2.351±0.000 0.830±0.000 4
DB 0.601±0.000 2.302±0.000 0.699±0.000 4

levels two and three. For a severity level of one, there is no signifi-
cant difference between the algorithms. The algorithm ranks are
given in Table 11. SBPSO outperforms the PSO for severity level
two, whereas the PSO outperforms SBPSO for severity level three.

There are three clusters present for all three severity levels of the
noise data sets. As indicated in Table 7, only the DB algorithm was
able to successfully detect the correct number of clusters for severity
level one. Both the SBPSO and PSO algorithms yield an average
number of clusters between three and four for severity levels one
and two. The SBPSO yields a lower average than PSO for severity
levels one and three. Thus, only for some of the independent runs
the SBPSO algorithm correctly detects three clusters.

For the cluster density data sets, there is no significant difference
between the clustering results of SBPSO and PSO for any of the

Table 8: Artificial Data Sets Clustering Results: Cluster Den-
sity

Level 1 Algorithm Intra-cluster Inter-cluster Silhouette K
Distance Distance Index

Level 1 SBPSO 0.245±0.000 2.399±0.000 0.882±0.000 3
PSO 0.245±0.000 2.399±0.000 0.882±0.000 3
K-means 0.508±0.187 2.369±0.048 0.749±0.091 3
K-mediods 0.245±0.000 2.399±0.000 0.882±0.000 3
Agnes 0.245±0.000 2.399±0.000 0.882±0.000 3
DB 0.376±0.000 2.574±0.000 0.905±0.000 3

Level 2 SBPSO 0.251±0.000 2.569±0.000 0.892±0.000 3
PSO 0.251±0.000 2.569±0.000 0.892±0.000 3
K-means 0.282±0.137 2.564±0.021 0.877±0.068 3
K-mediods 0.251±0.000 2.569±0.000 0.892±0.000 3
Agnes 0.251±0.000 2.569±0.000 0.892±0.000 3
DB 0.376±0.000 2.574±0.000 0.905±0.000 3

Level 3 SBPSO 0.586±0.239 3.298±0.046 0.820±0.059 2.70±0.470
PSO 0.499±0.093 3.152±0.113 0.821±0.035 2.95±0.223
K-means 0.517±0.176 3.134±0.422 0.787±0.163 3
K-mediods 0.433±0.000 3.277±0.000 0.858±0.000 3
Agnes 0.433±0.000 3.277±0.000 0.858±0.000 3
DB 0.433±0.000 3.267±0.000 0.863±0.000 2

Table 9: Artificial Data Sets Clustering Results: Number of
Clusters

Problem Algorithm Intra- Inter- Silhouette K
Cluster Cluster Index
Distance Distance

Level 1 SBPSO 0.417±0.032 2.340±0.014 0.780±0.014 3.40±0.681
PSO 0.388±0.028 2.327±0.012 0.789±0.071 3.75±0.444
K-means 0.376±0.022 2.295±0.048 0.753±0.071 4
K-mediods 0.365±0.000 2.324±0.000 0.797±0.000 4
Agnes 0.364±0.000 2.319±0.000 0.794±0.000 4
DB 0.725±0.000 2.304±0.000 0.901±0.000 3

Level 2 SBPSO 0.392±0.017 2.374±0.005 0.802±0.005 3.10±0.447
PSO 0.396±0.014 2.372±0.003 0.801±0.002 3.05±0.224
K-means 0.338±0.013 2.355±0.010 0.805±0.029 4
K-mediods 0.332±0.000 2.348±0.000 0.811±0.000 4
Agnes 0.333±0.000 2.357±0.000 0.815±0.000 4
DB 0.538±0.000 2.334±0.000 0.876±0.000 2

Level 3 SBPSO 0.330±0.024 2.356±0.008 0.827±0.006 3.55±0.686
PSO 0.308±0.007 2.352±0.006 0.833±0.004 4
K-means 0.375±0.021 2.292±0.054 0.754±0.068 4
K-mediods 0.301±0.000 2.348±0.000 0.837±0.000 4
Agnes 0.313±0.000 2.351±0.000 0.830±0.000 4
DB 0.601±0.000 2.302±0.000 0.699±0.000 4

three severity levels tested. As shown in Table 8, all six clustering al-
gorithms are able to correctly detect the three clusters present in the
cluster density data sets for severity levels one and two. However,
SBPSO and PSO detect two clusters for some of the independent
runs performed on severity level three. Hence, the average number
of clusters found for severity level three is less than three. The DB
algorithm also detects two clusters for severity level three.

There is a significant difference between the clustering results
of SBPSO and PSO for the number of clusters data sets. For each of
the severity levels, the SBPSO yields a higher average Silhouette
index value than PSO. Table 9 indicates that none of the clustering
algorithms were able to produce the correct number of clusters
for the data sets for any of the severity levels, except for the DB
algorithm at severity level three. At severity level one, the average
number of clusters detected by SBPSO is lower than the actual
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Table 10: Statistical Significance: Artificial Data

Noise Noise Noise
Level 1 Level 2 Level 3

p-value = 0.05966 p-value = 0.01093 p-value < 0.001
Not Significant Significant Significant

Do Not Reject H0 Reject H0 Reject H0

Cluster Cluster Cluster
Density Density Density
Level 1 Level 2 Level 3

Yields the Yields the p-value = 0.3269
exact same exact same Not Significant
results results Do Not Reject H0

Number of Number of Number of
Clusters Clusters Clusters
Level 1 Level 2 Level 3

p-value < 0.001 p-value < 0.001 p-value < 0.001
Significant Significant Significant
Reject H0 Reject H0 Reject H0

Table 11: Ranks: Artificial Data Sets

Algorithm Noise Noise Noise
Level 1 Level 2 Level 3

SBPSO 5 5 4
PSO 4 6 2
K-means 6 4 5
K-medoids 2 3 1
Agnes 3 2 3
DB 1 1 6

Algorithm Cluster Cluster Cluster
Density Density Density
Level 1 Level 2 Level 3

SBPSO 2 2 4
PSO 2 2 3
K-means 3 3 5
K-medoids 2 2 2
Agnes 2 2 2
DB 1 1 1

Algorithm Number of Number of Number of
Clusters Clusters Clusters
Level 1 Level 2 Level 3

SBPSO 4 2 4
PSO 5 5 5
K-means 2 3 2
K-medoids 1 1 1
Agnes 1 1 3
DB 3 3 -

number of clusters present in the data set. Only K-mediods and
Agnes correctly produce three clusters. For severity levels two and
three, SBPSO also detects less clusters than there are present in the
data set.

As shown in Table 11, the SBPSO is not ranked the best for
any of the artificial data sets. The DB algorithm is ranked best
for the noise data sets severity level one and two, and all three
levels of severity of the cluster density data sets. For the noise data
set at severity level three, K-medoids yields the highest average
Silhouette index value. Agnes is ranked the highest for the number
of clusters severity levels one and two. K-medoids also yields the
highest average Silhouette index value for the number of clusters
at severity level three.

Overall, none of the clustering algorithms dominate over all the
data sets. The performance of each algorithm varies with the data
set characteristics - this refers to the ability to produce an optimal
number of clusters and to produce a high Silhouette index value.

7 CONCLUSIONS
This paper investigated the application of the set-based particle
swarm optimization (SBPSO) algorithm to cluster data. Mediod-
based clustering is formulated as a set-based optimization prob-
lem, and a SBPSO algorithm was developed find the optimal set of
mediods to server as cluster centroids. The mediod-based SBPSO
clustering algorithm was compared to four established clustering
algorithms as well as a PSO clustering algorithm. While the SBPSO
clustering algorithm did not provide the best performance for all
of the datasets used, it provided good rankings with respect to the
clustering performance metrics. The SBPSO succeeded in finding
optimal numbers of clusters.

Future work will further explore the mediod-based SBPSO clus-
tering algorithm to implement mechanisms to improve its perfor-
mance, specifically approaches to maintain exploration for longer
periods of time and approaches to ensure that good mediods are
not removed from set-based particles. The SBPSO approach to clus-
tering will also be adapted to clustering on non-stationary data.
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