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Abstract

Predicting stock prices from textual informa-
tion is a challenging task due to the uncertainty
of the market and the difficulty in understand-
ing the natural language from a machine’s per-
spective. Previous researches mostly focused
on sentiment extraction based on single news.
However, the stocks on the financial market
can be highly correlated, one news regarding
one stock can quickly impact the prices of
other stocks. To take this effect into account,
we propose a new stock movement prediction
framework: Multi-Graph Recurrent Network
for Stock Forecasting (MGRN). This architec-
ture allows to combine the textual sentiment
from financial news and multiple relational in-
formation extracted from other types of finan-
cial data. Through an accuracy test and a trad-
ing simulation on the stocks of the STOXX
Europe 600 index, we demonstrate a better
performance from our model than other bench-
marks.

1 Introduction

Fama (1965) and Malkiel (1989) show that the
movement of stock price can be explained jointly
by all known information, although it is volatile
and non-stationary (Adam et al., 2016). The infor-
mation can include all types of available informa-
tion, such as historical prices (Kohara et al., 1997),
macroeconomic indicators (Garcia and Liu, 1999),
financial news (Ding et al., 2014), etc. Most of the
research focuses on the time series analysis of the
numerical indicators, i.e., using historical prices
to predict future prices (Luo et al., 2017). Al-
though simple and efficient, this method does not
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sightful discussions with Jean-Sebastien Deharo and Alexan-
dre Davroux.

consider the market sentiment and market moving
events, based on which most rational human in-
vestors trade. With the development of the nat-
ural language processing, more recent research
works start to use textual data for stock move-
ment prediction (Ding et al., 2014, 2015; Hu et al.,
2018). However, these researches assume that all
the stocks are independent and predict the price
movement of each stock independently, although
Hou (2007) shows that the movement of one stock
can significantly impact other correlated stocks.

To take stock correlation into consideration,
Guo et al. (2018) and Ye et al. (2021) integrate
the relationship information into traditional time
series analysis without using textual data. Cheng
et al. (2020) and Sawhney et al. (2020) design
neural networks to take both textual data and one
pre-defined relationship graph into consideration.
However, the stock relationships can come from
multiple aspects, such as price correlation (Camp-
bell et al., 1993), sector of activity (Vardharaj and
Fabozzi, 2007) and supply chain (Pandit et al.,
2011). We will demonstrate that considering mul-
tiple relationships at the same time can benefit the
prediction performance.

Hence, we want to design an improved model
which has the following characteristics: (1) learn
from both text data and relational data, (2) incor-
porate an unlimited number of relational graphs
into the structure, (3) take temporal patterns of the
news into account instead of learning from only
one news at a time.

To address the above-mentioned challenges, we
first discuss previous works (Sec. 2), we then
propose a new stock price movement prediction
framework: Multi-Graph Recurrent Network for
Stock Forecasting (MGRN). MGRN combines
textual information from a financial news provider
and relationship data from different sources to pre-
dict the variation of stock prices (Sec. 3). MGRN
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jointly learns from texts and relationships through
its graph-based structure, it can also learn from
news’ temporal patterns with its recurrent struc-
ture (Sec. 4). With various experiments, we show
the performance of our MGRN model as well as
other benchmark models (Sec. 5). We also per-
form trading simulations to show the profitability
of our results in real-life scenario (Sec. 6).

2 Related Work

2.1 Stock Movement Prediction

There are various approaches to predict stock
prices and the researches on this topic span on dif-
ferent domains. Econometricians use time-series
analysis (Mills and Mills, 1990) to predict future
prices based on historical prices and volumes data.
Financial analysts rely on company fundamental
data such as earnings and debt ratio (Ozlen, 2014;
Wang and Xu, 2004), or macroeconomic data such
as GDP and CPI index (Hoseinzade and Harati-
zadeh, 2019) to predict the trend of stock prices
from a economic point of view. Computer scien-
tists tend to use machine learning techniques to in-
terpret the stock price movement. With the devel-
opment of the natural language processing, more
researches focus on predicting stocks prices based
on financial news or social media texts.

Schumaker and Chen (2009) use a classical fea-
ture engineering method to extract features from
text data, Ke et al. (2019) use a TF-IDF (Crnic,
2011) like method to identify positive and nega-
tive words in financial texts. Nowadays, more re-
searches adopt deep learning methods to analyze
financial news. Ding et al. (2014, 2015) use struc-
tured representations and convolutional networks
to analyze news sentiments. Hu et al. (2018) ap-
ply attention mechanism to directly handle the raw
text without using widely used recurrent neural
network. Xu and Cohen (2018) propose a model
which considers jointly text and price information.
All these methods assume that all news are inde-
pendent to simplify the problem. Although useful,
this is contrary to the the common sense and some
findings (Hou, 2007; Klößner and Wagner, 2014)
which explain the price interactions among stocks.

2.2 Graph Neural Network

With the popularity of graph learning, more re-
searchers start to use graph-based structure to cap-
ture complex non-linear interactions among the
nodes. Graph Convolutional Network (GCN) is

one of the most used graph networks, and it has
gained more popularity since it obtains outstand-
ing result on node classification task (Kipf and
Welling, 2016). Some recent researches apply this
technique on stock movement prediction tasks.

Chen et al. (2018) and Kim et al. (2019) com-
bine historical price and corporation relationship
knowledge graph through graph-based models.
However, they only take historical price data as
input without considering the information from
news or social media texts. Sawhney et al. (2020)
design a Multipronged Attention Network (MAN-
SF) to consider both textual data and relationship
data at the same time. However, the study only
considers one pre-built graph from Wikidata1. In
the real world, the relationships among companies
come from multiple dimensions and it can change
significantly over time.

To close the gap in the researches, we propose
MGRN, which can ingest both textual data and an
unlimited number of relationship graphs built from
different sources, as opposed to the previous re-
searches. In addition, MGRN contains a recurrent
structure to model the temporal interactions of the
news, instead of assuming the independence of the
news.

3 Problem Formulation

Following Ding et al. (2015) and Xu and Cohen
(2018), we formulate the stock movement predic-
tion as a binary classification task. Given a uni-
verse of stocks S, for a stock s ∈ S, we define its
market adjusted return rs between t and t+∆t as:

rs,t =
Ps,t+∆t

Ps,t
−
Pm,t+∆t

Pm,t
(1)

where Ps,t denotes the price for stock s at time t,
and Pm,t denotes the market index value at time t.

We define the target of our stock movement pre-
diction task for stock s between t and t + ∆t as:

Ys,t =

{
1, rs,t > 0

0, rs,t ≤ 0
(2)

For a traditional single stock movement predic-
tion task, the goal is to predict Ys,t from all the
news related to the stock s in a look-back window
T , it can be written as:

Ŷs,t = f(ET
s,t, θ) (3)

1https://www.wikidata.org/



where ET
s,t denotes all the news for stock s be-

tween t − T and t and θ denotes the trainable pa-
rameters.

However, our goal is to consider both news and
cross effects among stocks when predicting stock
movement. Our prediction is hence written as:

Ŷs,t = f([ET
1,t, ..., E

T
n,t], [G1, ..., Gg], θ) (4)

where n is the number of stocks in our universe
S, Gi is the graph constructed from data source i
and g is the number of graphs we construct from
different data sources.

4 Multi-Graph Recurrent Network for
Stock Forecasting

The architecture of our MGRN model is shown in
Figure 1. It has three sub-components: Financial
News Encoder, Multi-Graph Convolutional Net-
work and Recurrent Neural Network. We intro-
duce the details of each component in the follow-
ing subsections.

4.1 Financial News Encoder
Single news embedding

For each news e, we need to represent it with
an embedding ve ∈ Rd. Following the work of
Sawhney et al. (2020), we simply use Universal
Sentence Encoder (Cer et al., 2018) to convert a
sentence into a fixed-length embedding.

Aggregated news embedding
Unlike stock movement prediction based on sin-

gle news, graph-based network structure requires
a valid node embedding for each node when we
train and predict. Hence, we need to choose a rea-
sonable time window to make sure that for most
of the stocks, there is at least one piece of news
in this window. This is to avoid too many zero
vectors as node embeddings. We simply choose
a period of one day when we aggregate the news,
following Kim et al. (2019) and Li et al. (2020). It
means that for stock s and on day d, we select all
the news concerning s between the market close
time on day d and the market close time on day
d− 1 to get its aggregated embedding.

Iyyer et al. (2015) and Wieting et al. (2015)
show that a simple average aggregation can have
similar and even better performance than more
complicated recurrent models such as LSTM. For
the sake of simplicity without sacrificing the accu-
racy, we use an average over all news embeddings

of a stock s as its aggregated news embedding on
day d. We denote it by vs,d. We have:

vs,d =
1

n

|E1
s,d|∑

i=1

eis,t (5)

where eis,t ∈ E1
s,d is the embedding of the i-th

news about s happening at time t between d and
d− 1.

4.2 Multi-GCN Attention Network
Graph Representation

We model the stock relationships with a graph
G. We use the graph’s adjacency matrix A ∈
Rn×n to represent the relationships among n
stocks. The element Ai,j denotes the intensity of
relationship between the stock i and the stock j.
We set Ai,i = 1.

There are two types of relationships: (1)
boolean relationship represented by a simple
graph and (2) continuous relationship represented
by a weighted graph.

For a boolean relationship, we have Ai,j ∈
{0, 1}. If there is a connection between stock i
and j, Ai,j is set to 1. Otherwise, it is set to 0. For
example, GICS sector 2 relationship is a boolean
relationship. If two stocks are both in the same
sector, we assert that they are connected. Supply
chain relationship is also a boolean relationship.
If one company is another company’s supplier, we
assert that they are connected.

However, for a continuous relationship, we have
Ai,j ∈ [0, 1]. The more important the relation be-
tween two stocks, the larger this value. For exam-
ple, the historical price relationship is a continuous
relationship. The intensity of the relationship be-
tween two stocks is calculated as the correlation
coefficient of two stocks’ daily return time series.

Following Duvenaud et al. (2015) and Kipf and
Welling (2016), we normalize our adjacency ma-
trix with a symmetric normalization:

Â = D−
1
2AD−

1
2 (6)

where D ∈ Rn×n is a generalized diagonal node
degree matrix for both simple graphs and weighted
graphs, defined as:

Di,j =

{∑
k Ai,k, i = j

0, i 6= j
(7)

2https://www.msci.com/gics
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Figure 1: An overview of the architecture of the MGRN model. Our MGRN model includes three sub-components:
(1) Financial News Encoder, which encodes textual news into a fixed length vector for each stock and each day
(vs,d). (2) Multi-Graph Convolutional Network, which takes the encoded daily news vectors and the graphs as
input. Through this multi-graph structure, we get multiple node embeddings for each stock. We then combine
these node embeddings into a single embedding (x̂s,d) through an attention mechanism. (3) Recurrent Neural
Network, which takes the combined embeddings during a look-back window T as input and extracts temporal
patterns among the news. hi,j denotes the j-th LSTM cell on the i-th layer. Finally, through a fully-connected
layer, we predict whether the stock price increases or decreases (ŷs,d).

Such normalization guarantees that the opera-
tions involving A do not change the scale of the
result on both simple graphs and weighted graphs.

Single Graph Convolutional Network
We use the same GCN structure as proposed by

Kipf and Welling (2016). For day d, we construct
our daily news matrix with Xd = [v1,d, ..., vn,d]T .
We also have one graphG and its adjacency matrix
is A.

Our GCN with L layers can be written as the
following function:

H(l+1) = σ(ÂH(l)W (l)) (8)

with H(0) = Xd and H(L) = Zd as the final
graph output. We have H(l) ∈ Rn×fl where fl
denotes the number of output features for layer l.
In Equation (8), σ denotes the activation function
andW (l) represents the weight matrix for the layer
l.

With such an operation, we obtain a new node
representation of dimension fL for each stock
from H(L).

Attention Aggregation Layer

Given g graphs G1, ..., Gg with their adjacency
matrixA1, ..., Ag, we attribute each graph an inde-
pendent GCN. For day d, we have g graph outputs
Zd,1, ..., Zd,g. We combine these graph outputs to
get an aggregated graph output with an attention
mechanism (Vaswani et al., 2017).

We define Wa ∈ RfL×w and q ∈ Rw×1, both of
which are trainable parameters. We then calculate
the attention coefficients αi ∈ Rn×1 for graph i
using the following formula:

αi =
exp(Zd,iWaq)∑
j exp(Zd,jWaq)

(9)

We then aggregate all the Zd,i using:

Zd =
∑
i

αi ⊗ Zd,i (10)

where ⊗ denotes element-wise multiplication.
Finally, we concatenate the graph output Zd

with the original daily news embeddings. Our final
output after the graph layer for the day d becomes:

X̂d = Xd ⊕ Zd (11)

where ⊕ denotes concatenation. This is to en-
sure that we can capture the information from both
graphs and the orignal text embeddings.



4.3 Recurrent Neural Network

We then build a recurrent network to capture the
temporal patterns in the news.

We first repeat the same process described in
Section 4.2 from day d to day d − T . We
have the outputs from the graph layer denoted by
X̂d, ..., X̂d−T as the input of our recurrent net-
work.

We use a straightforward multi-layer recurrent
neural network with LSTM cells (Hochreiter and
Schmidhuber, 1997) shown on the right-hand side
of Figure 1. At the final layer, we use a fully con-
nected layer followed by a softmax to make the
final prediction.

We input the concatenated outputs from the
graph layer and financial news encoder layer se-
quentially into the first layer of the RNN model.
For each stock at each day, we get its P+

s,d denoting
the probability that the stock price will increase
the next day and P−s,d = 1− P+

s,d representing the
price drop probability.

We train our MGRN network with an Adam op-
timizer (Kingma and Ba, 2014) by minimizing the
binary cross entropy loss, given as:

l =
∑
s

∑
d

Ys,dln(P+
s,d) + (1− Ys,d)ln(1−P+

s,d)

(12)
where Ys,d is the true stock price movement de-
fined in Equation 2.

5 Experiments

5.1 Datasets and Graph Building

Financial News Dataset
The dataset that we use is Bloomberg News3. In

this dataset, each entry contains a timestamp de-
noting when this news happened, a ticker which
signifies the stock related to this news and the
headline of this news. In addition to the neces-
sary information above, we can also find a score
which is among -1, 0 and +1, and a confidence be-
tween 0 and 100 associated with the score. These
two fields are given by Bloomberg’s proprietary
classification algorithm, it will serve as one of the
benchmarks for our prediction model. We present
a sample dataset in Table 1.

It is worth noting that we remove the stocks
which do not have enough news. This is to en-
sure that we do not have too many zero vectors as

3https://www.bloomberg.com/professional/product/event-
driven-feeds/

our daily news vector (Equation 5). We only select
the stocks which have more than 2 news per day in
average. With a such filter, we have 168 stocks in
the stock universe, and we observe that there are
only 15% (Table 2: Zero vector rate) zero vectors
among all daily news vectors, meaning that given
a stock and a date, there is a 85% chance there is
at least one piece of news.

Stock Price Dataset
We extract all the market close prices for all the

stocks in the universe, we also extract the Europe
STOXX 600 index value at the market close time4

for our market adjusted return calculation. We use
the stock prices for both labelling and building a
correlation graph from stock returns.

For labelling, we follow the procedure de-
scribed in Section 3. However, we observe that
there are some delisted stocks which no longer
have prices after a certain date, preventing us from
correctly calculating their returns. Hence, we re-
move the stocks which are delisted during our
training period. There are three such stocks, leav-
ing us 165 stocks in total in our experiments.

We also use the stocks prices to build a weighted
graphGc. For all stocks, we first calculate its mar-
ket adjusted returns with Equation 1, we have a
vector vs = [rs,1, ..., rs,Tc ] containing all the re-
turns from the first day until the last day in our
training dataset. We calculate the Pearson Corre-
lation Coefficient (Freedman et al., 2007) between
stock i and stock j, such that its adjacency matrix
Ac is given by:

Ac,i,j =
cov(vi, vj)

std(vi)std(vj)
(13)

where cov represents the covariance and std de-
notes the standard deviation.

Stock Sector Data
In finance, each company is classified into a

specific sector with Global Industry Classification
Standard (GICS). We use this data to construct a
sector graph Gs. Its adjacency matrix As is de-
fined as:

As,i,j =

{
1, sector(i) = sector(j)

0, otherwise
(14)

There are four granularities in GICS sector data:
Sector, Industry Group, Industry, Sub-Industry.

417:30 Central European Time



Headline TimeStamp Ticker Score Confidence

1st Source Corp: 06/20/2015 - 1st
Source announces the promotion of

Kim Richardson in St. Joseph

2015-06-
20T05:02:04.063

SRCE -1 39

Siasat Daily: Microsoft continues
rebranding of Nokia Priority stores in

India opens one in Chennai

2015-06-
20T05:14:01.096

MSFT 1 98

Rosneft, Eurochem to cooperate on
monetization at east urengoy

2015-06-
20T08:01:53.625

ROSN
RM

0 98

Table 1: A sample dataset from Bloomberg News dataset that we use as our financial news data.

We can therefore construct four graphs with this
dataset. In our experiments, we use the Industry
granularity as it gives the best performance. The
performances with different sector graphs are dis-
cussed in Section 5.4

Supply Chain Data
We use the supply chain data from Factset5 to

construct a supply chain graph. This dataset de-
scribes the supplier-customer relationship (SCR)
among different companies. We construct a sup-
ply chain graph Gsc such that

Asc,i,j =

{
1, i and j have SCR

0, otherwise
(15)

We show the heatmaps of three graphs in Figure
2.

Dataset Split
Following the standard in deep learning re-

searches, we split our dataset into three sub-
datasets: train, dev and test. The details are shown
in Table 2.

Parameter Settings
We use a look-back window T = 20 days and

we use a look-forward window ∆t = 1 day to
label our data.

The GCN model we use has two hidden lay-
ers, with 128 and 64 dimensions respectively. Our
RNN model also has two layers, with 128 and
64 LSTM cells respectively. We train our model
with an Adam optimizer for 10 epochs. We set the
batch size to 32.

5https://www.factset.com/marketplace/catalog/product/factset-
supply-chain-relationships

6Number of stocks multiplied by number of trading days,
this equals the total predictions we make in each dataset.

Train Dev Test

Total news 1,199,367 316,944 439,949
Start 01/2016 07/2018 01/2019
End 06/2018 12/2018 12/2019

Nb. Stocks 165 165 165
Trading days 652 118 256
Data points6 107,580 19,470 42,240

Zero vector rate 15% 17% 19%

Table 2: Statistics of the news dataset. Zero vector
rate means the ratio of zero vector among all embed-
ded daily news vectors vs,t. We only select the 165
stocks which have relatively more news to make this
value as small as possible in order not to impact our
GCN model.

5.2 Evaluation Metrics

Accuracy
Following previous researches on the stock

movement prediction task (Ding et al., 2015; Hu
et al., 2018; Sawhney et al., 2020), we use accu-
racy to evaluate the performance of our model.

However, this simple metric does not reflect the
need of a real-life investor, since he does not need
to make trades on all prediction results. The in-
vestor only trades when he is more confident about
the prediction. In other words, the accuracy on
the predictions with higher probability is more im-
portant than those with a mediocre probability.
Hence, we also include ”percentile accuracy” in
our evaluation metrics.

We note that the score Ss,d ∈ [−1, 1] for a stock
s on day d as:

Ss,d = (P+
s,d − 0.5)× 2 (16)

For each day, we choose the top q
2 -percentile

scores and the bottom q
2 -percentile scores of that

day, where q is a value between 0 and 100. We
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Figure 2: The heatmaps of our three graphs Gc, Gs and Gsc. We can see some common characteristics in these
heatmaps, for example, the top-left corner of the correlation graph and the sector graph. However, the graphs are
rather uncorrelated, we prove this with the experiment results in Section 5.4.

denote the accuracy calculated based on such se-
lection as Accq. The accuracy on the whole test
set is therefore Acc100.

Trading Simulation
We use a simple long/short trading strategy sim-

ilar to Ke et al. (2019). For each day, we at-
tribute equally weighted long positions for the
stocks whose scores are in the top q

2 -percentile.
For the stocks whose scores are in the bottom q

2 -
percentile, we give each stock the same short po-
sition. In this case, our long position equals to our
short position, leaving no market exposure for our
strategy.

We use annualized return and Sharpe ratio
(Sharpe, 1994) to evaluate the performance of our
strategies. The annualized Sharpe ratio is defined
as the ratio of the expected return R to its standard
deviation multiplied by square root of the number
of trading days Dy in one year:

Sharpe =
E(R)

σ(R)
×
√
Dy (17)

5.3 Baseline Models
We compare the performance of our MGRN
model with other baseline models to demonstrate
its performance.

We include the following baseline models:

• RAND: Random guess of Ys,t.

• ARIMA: Auto-Regressive Integrated Moving
Average model (Ho and Xie, 1998) based on
historical prices.

• BBG: The prediction given by Bloomberg
which comes along with Bloomberg News
dataset (Table 1).

• Mean-BERT: We fine-tune the Bidirectional
Encoder Representations from Transformers
(BERT) model proposed by Devlin et al.
(2018) as a classification model. We use the
average score of all the news for stock s on
day t as its Ss,d.

• MAN-SF8: A stock movement prediction
framework proposed by Sawhney et al.
(2020). The model combines price data, news
data and relational data to predict stock re-
turn.

• RNN: The model introduced in Sec. 4.3 with-
out adding any graph. This is the same as
a MGRN model with an identity matrix as
graph adjacency matrix.

To make a detailed analysis of the improvement
brought by different graphs, we train our MGRN
model with different graphs:

• MGRN-Corr: MGRN model with return cor-
relation graph Gc (Eq. 13).

• MGRN-Sector: MGRN model with sector
graph Gs (Eq. 14).

• MGRN-Supply: MGRN model with supply
chain graph Gsc (Eq. 15).

• MGRN: the full MGRN model using three
graphs Gc, Gs and Gsc at the same time.

5.4 Experiment Results
Table 4 shows the accuracy of different models
on the test set with different q-percentiles. We

8MAN-SF only allows to have one relationship, we use
the correlation for this model.



q 100 50 20 10 2

metric Ret.7 Sharpe Ret. Sharpe Ret. Sharpe Ret. Sharpe Ret. Sharpe

RAND 0.53 0.25 0.29 0.05 -0.5 -0.12 -0.6 0.11 3.59 0.33
ARIMA 0.3 0.09 0.79 0.16 2.26 0.9 1.5 0.13 2.24 0.36

BBG 2.78 0.66 3.72 0.57 3.89 0.56 2.56 0.35 18.48 1.54
Mean-BERT 0.21 0.05 0.98 0.41 4.25 0.66 7.21 0.98 8.08 1.11

MAN-SF 0.17 0.58 0.41 0.13 1.06 0.32 3.77 0.57 4.02 0.37

RNN 0.74 0.31 1.01 0.3 3.09 0.57 4.36 0.67 5.32 0.9
MGRN-Corr 1.27 0.4 2.04 0.51 3.45 0.57 5.06 0.61 15.19 1.19

MGRN-Sector 1.22 0.39 2.47 0.51 3.67 0.62 5.26 0.79 8.42 0.57
MGRN-Supply 1.05 0.42 1.92 0.58 3.11 0.72 10.86 1.31 10.55 0.7

MGRN 2.18 0.94 2.07 0.62 8.71 1.7 12.03 1.33 26.22 1.51

Table 3: The trading simulation result of all models with different q-percentiles.

find that our MGRN model shows the best perfor-
mance, outperforming other baseline models.

We compare the single graph models (MGRN-
Corr, MGRN-Sector and MGRN-Supply) and the
vanilla model without graph (RNN). We find that
all the graphs can help improve the performance,
especially for the most extreme scores (a smaller q
value). However, it is difficult to say which graph
has the best performance, since each graph has
different optimal performances on different per-
centiles. For example, the supply chain graph has
the most added value on the most extreme scores
(highest with q = 2), while the return correla-
tion graph is more powerful on less extreme scores
(highest with q = 10 and q = 20). This also sig-
nifies that the information in each graph is rather
independent, making it more reasonable to com-
bine different graphs.

We validate our hypothesis that combining dif-
ferent graph can help improve model performance
by comparing the full model (MGRN) with the
single graph models. We find that when using all
three graphs together, we have a significant im-
provement in accuracy (5% with q = 10 and 3.5%
with q = 20). It proves that our model can absorb
necessary information from multiple independent
graphs at the same time, validating the effective-
ness of combining relationship information from
different sources.

We also notice that adding a graph can lead to
a worse result compared with the no-graph RNN
in some scenario, for example, MGRN-Supply is
worse than RNN when q = 10 and q = 20. How-
ever, when combining with other graphs, the result
is better than using any graph individually. This is

because the errors usually come from several par-
ticular stocks, especially when we only have only
one source of information. If the source is incor-
rect, it can lead to significant error. The benefit
of using multiple graphs is to reduce the impact
of these cases by making decisions based on more
than one source of information.

Table 3 shows the trading simulation result us-
ing the strategy described in Sec. 5.2. We can also
confirm that our MGRN model outperforms other
models and that combining the graphs together is
beneficial. Although sometimes Bloomberg Sen-
timent Score shows better stability (Sharpe Ratio),
MGRN model is still the model that consistently
gives the best performance. This validates the us-
age of MGRN model in real-world scenario.

q 100 50 20 10 2

RAND 0.471 0.471 0.472 0.473 0.488
ARIMA 0.479 0.509 0.521 0.512 0.519
BBG9 0.501 0.500 0.487 0.488 0.551

Mean-BERT 0.518 0.528 0.561 0.593 0.665
MAN-SF 0.504 0.499 0.516 0.530 0.599

RNN 0.515 0.521 0.545 0.580 0.690
MGRN-Corr 0.516 0.531 0.576 0.623 0.696

MGRN-Sector 0.515 0.524 0.550 0.580 0.709
MGRN-Supply 0.515 0.522 0.534 0.557 0.720

MGRN 0.522 0.537 0.580 0.633 0.740

Table 4: The accuracy of baseline models and MGRN
models with different q-percentiles.

Sector Graphs

8The annualized return is shown in %
9As the Bloomberg Sentiment Score is a three class clas-

sification, we remove all the neutral predictions to be compa-
rable with our two class classification result



As we mentioned in Section 5.1, there are four
granularities in our GICS sector data. We com-
pare the performances from all four granularities,
and we find that the Industry level (the third gran-
ularity) shows the best performance, especially on
more extreme scores. Hence, we choose to use
Industry level to build Gs. The detailed result is
shown in Table 5.

level name q=100 q=20 q=10

1 Sector 0.519 0.521 0.542
2 Industry Group 0.514 0.529 0.569
3 Industry 0.515 0.550 0.580
4 Sub-Industry 0.509 0.542 0.556

Table 5: The accuracy of MGRN-Sector model but
with the sector graphs built from different GICS sec-
tor granularities.

5.5 Qualitative Analysis: An Example

We give a detailed study on one specific case to
show how our MGRN model helps improve stock
movement prediction.

We focus on the stock TLW LN10 on the Dec.
6, 2018. We notice a news in the evening of that
day: Tullow Oil Chairman Thompson Acquires
Shares. This is a positive signal since the exec-
utive of Tullow Oil buys its shares, showing con-
fidence as an insider. Based on this piece of news
among others, our vanilla MGRN (RNN) without
any relational input gives a slightly positive score
for this stock at 0.025. However, we observe a
return of -7.7% on the next trading day which is
contrary to our prediction result.

If we look at the same prediction from MGRN-
Sector model, we find that its Ss,d equals -0.107,
which is a correctly predicted negative value
among the bottom 10-percentile. The only rea-
son this new prediction is very different from that
of vanilla MGRN is the impact from other related
stocks. We find that GLEN LN11 has the most
negative score from vanilla MGRN in the same
sector. When we look at the news, we can find
plenty of negative news about this company on the
same day, such as Rosen Law Firm Announces In-
vestigation of Securities Claims Against Glencore
plc. These negative news caused the price drop of
GLEN LN by 3.4%, which potentially caused the

10Tullow Oil plc is a multinational oil and gas exploration
company.

11Glencore plc is an Anglo-Swiss multinational commod-
ity trading and mining company.

negative return (-2.6%) in the same sector since
we do not observe many negative news about other
companies.

We can also see the same phenomenon with
MGRN-Corr since the correlation between two
stocks are relatively high (0.56), but the prediction
from MGRN-Supply is still false because there is
no supplier-customer relationship between these
two stocks. We show the detail of this analysis
in Table 6.

Model Ai,j Ticker Score Result

RNN 0
TLW LN 0.025 False

GLEN LN -0.055 True

MGRN-Corr 0.56
TLW LN -0.036 True

GLEN LN -0.031 True

MGRN-Sector 1
TLW LN -0.107 True

GLEN LN -0.031 True

MGRN-Supply 0
TLW LN 0.013 False

GLEN LN -0.055 True

Table 6: Detailed results of the case study for TLW
LN on the Dec. 6, 2018. MGRN-Corr and MGRN-
Sector both give correct results because the negative
signal from GLEN LN can reach TLW LN through the
graphs, but MGRN-Supply still gives the wrong predic-
tion since these two stocks do not have connection on
this graph.

This example shows clearly how our MGRN
model helps improve prediction result compared
with a traditional recurrent model without rela-
tional modelling: the related stocks can transmit
their information through the meaningful graph.
The model can then make decision based on both
its own information and the transmitted informa-
tion.

6 Conclusion

We predict the stock movement by jointly con-
sidering financial news, multiple graph-based fea-
tures and temporal patterns of the news. We in-
troduce Multi-Graph Recurrent Network (MGRN)
for this task. Through extensive experiments and
trading simulations, we demonstrate the effective-
ness of the model structure. The result also proves
that adding relationship information, especially
different relationship information from multiple
sources, can help better predict stock movement.
We plan to incorporate more types of data (such
as time series) in our model to further improve the
prediction accuracy.
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