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Figure 1: The radial basis function network forecasts are fed into the curds and whey multivariate regression model, whose output is ranked
and selected by the naive Bayes asset ranker.

ABSTRACT
We extend the research into cross-sectional momentum trading
strategies. Our main result is our novel ranking algorithm, the
naive Bayes asset ranker (nbar), which we use to select subsets
of assets to trade from the S&P 500 index. We perform feature
representation transfer from radial basis function networks to a
curds and whey (caw) multivariate regression model that takes
advantage of the correlations between the response variables to
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improve predictive accuracy. The nbar ranks this regression output
by forecasting the one-step-ahead sequential posterior probability
that individual assets will be ranked higher than other portfolio
constituents. Earlier algorithms, such as the weighted majority, deal
with nonstationarity by ensuring the weights assigned to each ex-
pert never dip below a minimum threshold without ever increasing
weights again. Our ranking algorithm allows experts who previ-
ously performed poorly to have increased weights when they start
performing well. Our algorithm outperforms a strategy that would
hold the long-only S&P 500 index with hindsight, despite the index
appreciating by 205% during the test period. It also outperforms a
regress-then-rank baseline, the caw model.
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1 INTRODUCTION
Our particular modelling interest is in financial time series, which
are typically nonstationary. Nonstationarity implies statistical dis-
tributions that adapt over time and violates the independent and
identically distributed (iid) random variables assumption of most
regression and classification models. We require approaches that
adopt sequential optimisation methods, preferably methods that
make little or no assumptions about the data-generating process.
The prediction with expert advice framework [8] is a multidisci-
plinary area of research suited to predicting sequences sequentially,
where statistical distribution assumptions are not made. This frame-
work minimises the regret concerning the best available expert with
hindsight and is well-suited to portfolio selection problems.

The main result of this paper is our novel ranking algorithm,
the naive Bayes asset ranker, which we use to select subsets of
assets to trade from the S&P 500 index in either a long-only or a
long/short (cross-sectional momentum) capacity. Our ranking algo-
rithm forecasts the one-step-ahead sequential posterior probability
that individual assets will be ranked higher than other constituents
in the portfolio. Earlier algorithms, such as the weighted majority
algorithm [20], deal with nonstationarity by ensuring the weights
assigned to each expert never dip below a minimum threshold
without ever increasing weights again. In contrast, our ranking
algorithm allows experts who performed poorly previously to have
increased weight when they start performing well. Finally, our
algorithm computes the posterior ranking probabilities with ex-
ponential decay and is better suited to learning in nonstationary
environments.

We achieve higher risk-adjusted and total returns than a strategy
that would hold the long-only S&P 500 index with hindsight, despite
the index appreciating by 205% during the test period. We also
outperform a regress-then-rank baseline, a sequentially fitted curds
and whey multivariate regression model.

We end this introduction by providing a roadmap for this paper’s
layout. In section 2, we provide background to our research and per-
form a literature review. We provide a rationale for online learning
in finance in section 2.1. This is followed by a short introduction to
transfer learning in section 2.2, radial basis function networks in
section 2.3 and curds and whey multivariate regression in section
2.4. The final sections introduce the prediction with expert advice
framework in section 2.5, portfolio selection with expert advice
in section 2.6 and an introduction to the concept of naive Bayes
ranking in section 2.7.

2 BACKGROUND AND LITERATURE REVIEW
This section introduces the various models and topics that are the
foundations of our experimental work. The subjects discussed are
feature representation transfer, multivariate regression, prediction
with expert advice and ranking algorithms.

2.1 The rationale for online learning in finance
Financial time series exhibit serial correlation and nonstationarity
characteristics. High serial correlation results in spuriously high 𝑅2
for regression models [12]. Nonstationarity results in batch learning
models generalising poorly on unseen test data. Merton [23] models
the dynamics of financial assets as a jump-diffusion process. The
model superimposes a diffusion component modelled by geometric
Brownian motion, with a jump component driven by a Poisson
process. The goal is to model abrupt changes in prices due to the
arrival of new information, facilitating the increased likelihood
of tail events compared to the normal distribution. Financial time
series are alsomodelled as a random-walk process [22]. The random-
walk process implies the unpredictability of economic time series
returns and their time-varying random nature, which Nakamura
and Small [25] find exists in equities, currencies, precious metals
and energy returns.

One approach for coping with nonstationarity is to learn online
continuously. Onemay combine sequential optimisationwith states-
of-nature/transitional learning approaches such as reinforcement
learning [35] or continual learning approaches such as transfer
learning [36]. Nonstationarity is typically identified through unit
root tests such as the augmented Dickey-Fuller (adf) test [31]. In
section 4, we experiment with 21 years of daily sampled S&P 500
data between 2001-01-26 and 2022-03-25. When running the adf test
against the S&P 500 daily transaction prices, 90.5% of the time series
are considered nonstationary and when running the test against
their linear returns of the form

𝑦 𝑗,𝑡 = 𝑝 𝑗,𝑡/𝑝 𝑗,𝑡−1 − 1, 𝑗 = 1, ..., 𝑑, (1)

where 𝑗 denotes the constituent and 𝑡 denotes the time-step, 100%
of the time series are now considered stationary. One could now
assume that performing batch learning on the daily returns is rea-
sonable, and nonstationarity is no longer a concern. A simple ex-
periment calls this view into question, as whilst the returns might
be stationary, the models that operate on such time series require
parameters that must be adapted over time. To illustrate this point
succinctly, we fit ar(1) models with structural form

𝑦 𝑗,𝑡 = 𝑤 𝑗,𝑡𝑦 𝑗,𝑡−1 + 𝜖 𝑗,𝑡 ,
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to each constituent’s daily returns. The models are trained daily
using the past 𝑛 = 100 days on a rolling window basis. Using
one-week non-overlapping time buckets, we average the ar(1) coef-
ficients and denote them as𝑤 𝑗,𝑡 . Finally, we conduct two-sample
t-tests for equal means [34] where we compare𝑤 𝑗,𝑡 with𝑤 𝑗,𝑡+ℎ for
ℎ = 1, ..., 52 weeks, setting the significance level of the test, 𝛼 = 0.05.
We find that as the shift ℎ increases, the probability that the null
hypothesis 𝐻0 : 𝑤 𝑗,𝑡 = 𝑤 𝑗,𝑡+ℎ is rejected, increases considerably.
Figure 2 averages the results across the S&P 500 constituents and
time shifts; it demonstrates that the ar(1) parameters are changing
over time, despite the training data being almost the same for small
shifts ℎ. Specifically, the fraction of matched training days between
coefficients𝑤 𝑗,𝑡 and𝑤 𝑗,𝑡+ℎ is𝑚𝑎𝑥

(
0, 𝑛−5ℎ𝑛

)
.

Figure 2: The probability that 𝐻0 : 𝑤 𝑗,𝑡 = 𝑤 𝑗,𝑡+ℎ is rejected by the
two-sample t-test for equal means.

2.2 Transfer learning
Transfer learning refers to the machine learning paradigm in which
an algorithm extracts knowledge from one or more application sce-
narios to help boost the learning performance in a target scenario
[36]. Typically, traditional machine learning requires significant
amounts of training data. Transfer learning copes better with data
sparsity by looking at related learning domains where data is suffi-
cient. Even with large datasets, including streaming data, transfer
learning provides benefits by learning the adaptive statistical rela-
tionship of the source and target domains. Following Pan and Yang
[26]:

Definition 2.1 (transfer learning). Given a source domainD𝑆 and
learning task T𝑆 , a target domainD𝑇 and learning task T𝑇 , transfer
learning aims to help improve the learning of the target predictive
function 𝑓𝑇 (.) in D𝑇 using the knowledge in D𝑆 and T𝑆 , where
D𝑆 ≠ D𝑇 , or T𝑆 ≠ T𝑇 .

Feature-based approaches transform the original features to cre-
ate a new feature representation. For example, Borrageiro et al. [6]
perform online feature representation transfer from radial basis
function networks (rbfnets) to sequentially optimised reinforce-
ment learning agents, who learn to risk-manage and trade currency

pairs. Similarly, they apply feature representation transfer from
echo state networks [15] to reinforcement learning agents who
learn to trade cryptocurrency perpetual swaps, capturing a funding
profit [5].

2.3 The radial basis function network
The rbfnet is a single-layer network whose hidden units are radial
basis functions of the form

𝜙 𝑗 (x) = exp
(
−1
2
[x − 𝝁 𝑗 ]𝑇 𝚺−1𝑗 [x − 𝝁 𝑗 ]

)
. (2)

The hidden unit means and covariances are typically learnt through
clustering algorithms such as k-means [21]. The hidden unit outputs
are aggregated into a feature vector

𝝓𝑡 = [1, 𝜙1 (x), ..., 𝜙𝑘 (x)],

and mapped to the response via regression

𝑦𝑡 = 𝜽𝑇 𝝓𝑡 + 𝜖𝑡 .

The separation of class distributions modelled by local radial ba-
sis functions is probabilistic. The predictive uncertainty increases
where there is class-conditional distribution overlap. The radial ba-
sis functions can be thought of as the posterior feature probabilities,
and the weights can be interpreted as the posterior probabilities
of class membership, given the presence of the features [3]. It is
first with Moody and Darken [24] that we see the formulation of
the rbfnet as the combination of an unsupervised learning model
(k-means) and a supervised learning model (linear regression). This
form of feature representation transfer boosts model learning capac-
ity and, when combined with sequential optimisation, outperforms
biased baselines such as the random-walk in multi-horizon returns
forecasting [4].

2.4 Curds and whey multivariate regression
The curds and whey (caw) procedure due to Breiman and Friedman
[7] is a suitable way of predicting several response variables from
the same set of explanatory variables. The method takes advan-
tage of the correlations between the response variables to improve
predictive accuracy compared with the usual procedure of doing
individual regressions of each response variable on the shared set
of predictor variables. Assume there are 𝑛 training examples, 𝑑
predictors X ∈ R𝑛×𝑑 and 𝑞 targets Y ∈ R𝑛×𝑞 . The basic version of
the procedure begins with the multivariate ridge regression

𝚯 = (X𝑇X + 𝜆I𝑑 )−1X𝑇Y,

and estimates a shrinkage matrix

Ŷ = X𝚯

W = (Ŷ𝑇 Ŷ + 𝜆I𝑞)−1Ŷ𝑇Y.

At test time, the vector of forecasts is

ỹ𝑡 = Wŷ𝑡 ≡W[x𝑇𝑡 𝚯]𝑇 .

Given the nonstationary data we model, our particular interest is
in sequential optimisation. Thus we combine the caw procedure
with ewrls updating; this is shown in algorithm 1.
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Algorithm 1: Sequentially optimised curds and whey re-
gression.
Require: 𝜆, 𝜏
// 𝜆 is a ridge penalty

// 𝜏 is an exponential decay constant
Initialise: 𝚯 = 0𝑑×𝑞,W = 0𝑞×𝑞, P = I𝑑/𝜆,Q = I𝑞/𝜆
Input: x𝑡 ∈ R𝑑 , y𝑡 ∈ R𝑞
Output: ỹ𝑡 ∈ R𝑞

1 𝑟𝑡 = 1 + x𝑇
𝑡−1P𝑡−1x𝑡−1/𝜏

2 k𝑡 = P𝑡−1x𝑡−1/(𝑟𝑡𝜏 )
3 ŷ𝑡−1 = [x𝑇𝑡−1𝚯𝑡−1 ]𝑇
4 𝚯𝑡 = 𝚯𝑡−1 + k𝑡 (y𝑡 − ŷ𝑡−1 )𝑇
5 P𝑡 = P𝑡−1/𝜏 − k𝑡k𝑇𝑡 𝑟𝑡
6 P𝑡 = P𝑡−1𝜏
7 ŷ𝑡 = [x𝑇𝑡 𝚯𝑡 ]𝑇
8 𝑠𝑡 = 1 + ŷ𝑇

𝑡−1Q𝑡−1ŷ𝑡−1/𝜏
9 m𝑡 = Q𝑡−1ŷ𝑡−1/(𝑠𝑡𝜏 )

10 W𝑡 = W𝑡−1 +m𝑡 (y𝑡 −W𝑡−1ŷ𝑡−1 )𝑇
11 Q𝑡 = Q𝑡−1/𝜏 − m𝑡m𝑇

𝑡 𝑠𝑡

12 Q𝑡 = Q𝑡−1𝜏

13 ỹ𝑡 = W𝑡 ŷ𝑡

2.5 Prediction with expert advice
Prediction with expert advice is a multidisciplinary research area
that predicts individual sequences in an online learning setting.
Unlike standard statistical approaches, the prediction with expert
advice framework imposes no probabilistic assumption on the data-
generating mechanism. Instead, it generates predictions that work
well for all sequences, with performance nearly as good as the best
expert with hindsight [8]. The basic structure of problems in this
context is encapsulated in algorithm 2, adapted from Rakhlin and
Sridharan [30]. Perhaps the most well-known algorithm within this

Algorithm 2: Prediction with expert advice
1 for 𝑡 ← 1 to 𝑇 do
2 Learner chooses the set of predictions ŷ𝑡 ∈ D.
3 Nature simultaneously chooses an outcome 𝑦𝑡 ∈ A.
4 Player suffers a loss ℓ (ŷ𝑡 , 𝑦𝑡 ) and all observe (ŷ𝑡 , 𝑦𝑡 ).

framework is the weighted majority (wm) algorithm of Littlestone
andWarmuth [20]. The authors study the construction of prediction
algorithms where the learner faces a sequence of trials, and the goal
is to make as few mistakes as possible with predictions made at the
end of each trial. They are interested in cases where the learner
believes some experts will perform well but does not know which
ones. A simple method based on weighted voting is introduced
to minimise the regret concerning the best expert with hindsight.
Given a sequence of trials, if there is an algorithm in the pool 𝑑 that
makes at most𝑚mistakes, then the wm algorithmwill make at most
𝑐 (log𝑑 +𝑚) mistakes on that sequence, where 𝑐 is fixed constant.
However, the wm algorithm is less suited to nonstationary data,
despite the authors modifying their base algorithm to ensure that
the weight assigned to the individual experts never dips below 𝜂/𝑑 ,
which is the learning rate divided by the number of experts. This

fixed, minimum threshold weight is somewhat rudimentary. In the
context of financial time series, our preference is for algorithms that
assign more weight to experts now performing well, irrespective
of whether they performed less well previously.

2.6 Portfolio selection with expert advice
Helmbold et al. [14] present an online investment algorithm that
achieves almost the same wealth as the best constant-rebalanced
portfolio with hindsight, including Cover’s universal portfolio selec-
tion algorithm [9]. The algorithm employs a multiplicative update
rule using a framework introduced by Kivinen and Warmuth [18].
Singer [33] notes that the earlier work into online portfolio selection
algorithms which are competitive with the best constant rebalanced
portfolio determined in hindsight [10], employ the assumption that
high yield returns can be achieved using a fixed asset allocation
strategy. However, the return of a constant rebalanced portfolio
is often much smaller than the return of an ad-hoc investment
strategy that adapts to changes in the market. Singer presents an
efficient portfolio selection algorithm that tracks a changing mar-
ket and describes a simple extension of his algorithm for including
transaction costs.

Poh et al. [27] apply batch (offline) learning-to-rank algorithms,
originally designed for natural language processing, to cross-sectional
momentum trading strategies. Cross-sectional strategies mitigate
some of the risk associated with wider market moves by buying
the top 𝛼-percentile of strategies with the highest expected future
returns and selling the bottom 𝛼-percentile of strategies with the
lowest expected future returns. Classical approaches that rely on
the ranking of assets include ranking annualised returns [16], or
more recent regress-then-rank approaches [13]. Poh et al. [28] use
a context-aware learning-to-rank model based on the transformer
architecture to encode top/bottom-ranked assets, learn the context
and exploit this information to rerank the initial results.

2.7 Naive Bayes ranking
The academic literature shows that naive Bayes ranking has a broad
meaning. At the core of the idea is the naive Bayes classifier

𝑃 (𝑦𝑐 |x) =
𝑃 (x|𝑦𝑐 )𝑃 (𝑦𝑐 )∑
𝑗 𝑃 (x|𝑦 𝑗 )𝑃 (𝑦 𝑗 )

,

which predicts that the target 𝑦 takes on a label value of 𝑐 if this
posterior probability is highest. Independence assumptions in the
inputs mean that the probabilities are modelled iteratively and
inexpensively. Zhang and Su [37] study the general performance
of naive Bayes in ranking, using the auc curve [29] to evaluate the
quality of rankings generated by a classifier. Flach and Matsubara
[11] consider binary classification tasks, where a ranker sorts a set
of instances from highest to lowest expectation that the instance
is positive. Using the odds ratio to rank the attribute values, they
obtain a restricted version of the naive Bayes ranker.

Krawczyk and Wozniak [19] propose a modification to the naive
Bayes classifier for mining streams in a nonstationary environment
in the presence of the concept drift phenomenon [17]. Their algo-
rithmworks by fitting a naive Bayes classifier on samples they deem
essential and removing unnecessary and outdated examples that
no longer represent the present state of the analysed data stream;
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this approach contrasts with our algorithm. We do not focus our
learning on retaining relevant training data. Instead, we forecast
one-step-ahead posterior ranking probabilities using all test data
processed as a stream. Further details of our meta-algorithm are
provided next.

3 THE NAIVE BAYES ASSET RANKER
Our ranking algorithm is the naive Bayes asset ranker (nbar), which
is succinctly displayed in algorithm 3. The algorithm sequentially
ranks a set of experts; it does so by forecasting the one-step-ahead
posterior probability that individual experts will be ranked higher
than the set of available experts at its disposal. In the context of the
experiment described in section 4, each expert is a forecasted return
for an individual portfolio constituent of the S&P 500. The fore-
casted returns come from the caw multivariate regression model,
which utilises feature representation transfer from the constituent
S&P 500 returns to rbfnets whose k-means++ [2] clusters form
hidden units. Assume that the algorithm is presented with a set of
𝑞 forecasts. The goal is to select a subset of experts 1 ≤ 𝑘 ≤ 𝑞 such
that the reward of the 𝑘 experts is expected to be the highest; this
is achieved by estimating the sequential posterior probability that
expert 𝑗 ∈ 1, ..., 𝑞 is ranked higher than each of the remaining 𝑞 − 1
experts. This posterior probability is computed with exponential
decay, allowing experts who performed poorly and now perform
well to be selected with greater weight than previously. The inputs
to the algorithm are 𝛼 = 𝑘/𝑞, with 𝑘 ≤ 𝑞, the 𝛼-percentile subset
of assets to trade, and 𝜏 , an exponential half-life. Denote as

𝑝 (r𝑗,𝑡 ≥ r𝑡 ) = 𝑝 (a𝑡 ) =
𝑞∏
𝑖=1

𝑝 (r𝑗,𝑡 ≥ r𝑖,𝑡 ),

the probability that the forecasted returns of asset 𝑗 will be ranked
higher than the 𝑞 assets considered, where r𝑡 ∈ R𝑞 is the vector
of forecasts at time 𝑡 . Furthermore, denote as 𝑝 (r𝑗,𝑡 > 0) = 𝑝 (b𝑡 ),
the probability that asset 𝑗 has a forecasted return at time 𝑡 that
is greater than zero; this condition is required so that we do not
naively select 𝑘 assets to go long if there are fewer assets with
expected positive returns. The sequential posterior probability that
algorithm 3 computes is

𝑝 (a𝑡 |b𝑡 ) =
𝑝 (b𝑡 |a𝑡 )𝑝 (a𝑡 )

𝑝 (b𝑡 |a𝑡 )𝑝 (a𝑡 ) + 𝑝 (b𝑡 |a𝑐𝑡 )𝑝 (a𝑐𝑡 )
. (3)

Finally, the algorithm returns the set of indices that would sort
𝑝 (a𝑡 |b𝑡 ) from largest to smallest.

4 THE RESEARCH EXPERIMENT
Our research experiment aims to assess the benefits of sequen-
tially optimised ranking algorithms to select subsets or portfolios
of financial assets to hold in either a long-only or long/short (cross-
sectional momentum) capacity. More concretely, we experiment
with the constituents of the S&P 500 index. We use our nbar al-
gorithm as the sequentially optimised ranker, with the posterior
ranking probabilities of equation 3 estimated continuously during
the test set. The nbar inputs are the one-step-ahead predicted daily
returns estimated by the caw multivariate regression model. In
turn, the caw model collects individual one-step-ahead predicted
daily returns from rbfnets, one per S&P 500 constituent. The rbfnets

Algorithm 3: The naive Bayes asset ranker
Input: r𝑡 , 𝜏 , 𝛼
Initialise: s = 1𝑞 , S = 1𝑞×𝑞 , p = 0𝑞 , 𝑛 = 0, 𝑘 = ⌊𝛼𝑞⌋
// r𝑡 are the forecast one-step-ahead daily returns

from the caw algorithm 1

// 𝜏 is an exponential decay constant

// 𝛼 is the maximum percentile of experts that can be

chosen
Output: z𝑡 = 𝑎𝑟𝑔𝑆𝑜𝑟𝑡 (p𝑡 )

1 if 𝜏 = 1 then
2 𝑛 = 𝑛 + 1
3 𝑤𝑡 = (𝑛 − 1)/𝑛
4 else
5 𝑤𝑡 = 𝜏

// 𝐼 (.) is an indicator function that returns 1 for a

true condition, or else 0
6 for 𝑗 ← 1 to 𝑞 do
7 s𝑗,𝑡 = 𝑤𝑡 s𝑗,𝑡 + (1 − 𝑤𝑡 )𝐼

(
r𝑗,𝑡 ≥ 0

)
8 for 𝑖 ← 1 to 𝑞 do
9 S𝑖 𝑗,𝑡 = 𝑤𝑡 S𝑖 𝑗,𝑡 + (1 − 𝑤𝑡 )𝐼

(
r𝑗,𝑡 ≥ r𝑖,𝑡

)
10 Initialise zero vectors a = b = 0𝑞
11 for 𝑗 ← 1 to 𝑞 do
12 b𝑗 = s𝑗,𝑡 /

∑𝑞

𝑖=1 s𝑖,𝑡

13 a𝑗 =
∑𝑞

𝑖=1 S𝑖 𝑗,𝑡∑𝑞

ℎ=1
∑𝑞

𝑘=1 Sℎ𝑘,𝑡

14 a𝑐 = 1 − a
15 p𝑡 = ba

ba+ba𝑐
// 𝑎𝑟𝑔𝑆𝑜𝑟𝑡 (.) returns the indices that would sort an

array from largest to smallest value

16 z𝑡 = 𝑎𝑟𝑔𝑆𝑜𝑟𝑡 (p𝑡 )
17 Denote z𝑗,𝑡 = 𝑗∗, the test time return is

∑𝑘
𝑗=1 r𝑗∗,𝑡+1p𝑗∗,𝑡 .

have hidden units whose means are determined via k-means++;
thus, we perform feature representation transfer from external in-
puts, the S&P 500 constituent daily returns, to hidden unit outputs
determined by clustering algorithms. These hidden unit outputs
are mapped to the response, individual constituent one-step-ahead
daily return forecasts, using exponentially weighted recursive least-
squares. A schematic in the form of graphical probability models is
shown in figure 1.

At first glance, this meta-model setup might seem overly or
unnecessarily complicated. We could, for example, use the raw S&P
500 constituent daily returns as inputs to the nbar. However, we
are building on the research of regress-then-rank algorithms in
the context of portfolio selection [13, 16], which motivates our use
of the rbfnets. We are also building on the work of Breiman and
Friedman [7] to take advantage of the correlations between the
response variables to improve predictive accuracy compared with
the usual procedure of doing individual regressions of each response
variable on the shared set of predictor variables. We use their caw
procedure but combine it with exponentially weighted recursive
least-squares to facilitate sequential optimisation in the test set
without forward-looking bias. Finally, we utilise the research of
Borrageiro et al. [4] to make use of online learning rbfnets, as these
models retain more remarkable knowledge of the input feature
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space. They also respond better to regime changes or concept drifts
than models that do not use feature representation transfer; for
example, from clustering algorithms [4], Gaussian mixture models
[6] or echo state networks [5].

4.1 Baseline models
In order to assess the true value of the meta-model shown in figure
1, we adopt two baseline models. The first model intuitively is the
long-only holding of the S&P 500 constituents with equal weight-
ing and replicates a passive, index-tracking investment strategy.
A second baseline is our proxy for the regress-then-rank models,
the sequentially optimised caw multivariate regression model, al-
gorithm 1. This baseline also uses the individual predicted daily
returns from online learning rbfnets.

4.2 The S&P 500 dataset
We conduct this research experiment using the daily closing con-
stituent prices for the S&P 500 index, which we extract from Refini-
tiv. Due to their relatively new trade history, some time series have
little data. Therefore, we select a subset of the S&P 500 index, where
each constituent contains a trade count greater than or equal to the
25’th percentile of trade counts; this leaves us with a subset of 378
Refinitiv information codes (rics). The dataset begins on 2001-01-26
and ends on 2022-03-25, 5326 days.

4.3 Experiment design
We use the first 25% of the data as a training set and the remaining
data as a test set. In the training set, algorithms 1 and 3 are initialised
and fitted. These models are also sequentially optimised without
forward-looking bias in the test set. The hyperparameters that are
set for this experiment are:
• Exponential decay, 𝜏 = 0.99.
• Ridge penalty, 𝜆 = 0.001.
• Radial basis function networks with 500 hidden units deter-
mined by k-means++.
• Maximum percentile of assets to trade either long or short,
𝛼 = 0.05.

Once the training data are assigned to their nearest cluster centres,
the cluster-conditional covariance matrices and their inverses are
estimated. Cluster centres with few training data vectors assigned
to them are regularised to a diagonal variance prior. Thus, we are
adopting a Bayesian maximum a posteriori procedure here.

We use the forecasts of the caw model, algorithm 1, as the basis
for taking risk in a subset of constituents in the S&P 500 index.
Specifically, the long-only caw model buys the expected top five
per cent of performing assets ỹ𝑡 . For example, if there are 𝑘 assets
in this top five percentile, then a weight of 1/𝑘 is applied per con-
stituent. The long/short caw model works similarly, except that
it includes the short-selling of the bottom five per cent of most
negative forecasts, with a weight of −1/𝑘 .

A second forecaster we consider is the nbar algorithm 3, applied
to the one-step-ahead forecasts of the caw model. Algorithm 3
outputs z𝑡 , the set of indices that would sort p𝑡 in descending order,
which is the posterior probability of highest ranked assets. Denoting
z𝑗,𝑡 = 𝑗∗ and assuming there are 𝑘 assets in the expected top five
per cent of performing assets, the nbar assigns a weight to the 𝑗 ′𝑡ℎ

constituent (1 ≤ 𝑗 ≤ 𝑘) of

p𝑗∗,𝑡
/ 𝑘∑︁
𝑖∗=1

p𝑖∗,𝑡 . (4)

Similarly, for short positions, assuming there are 𝑘 assets we wish to
go short, the weight assigned to the 𝑗 ′𝑡ℎ constituent (𝑞−𝑘 ≤ 𝑗 ≤ 𝑞)
is

−
(
1 − p𝑗∗,𝑡

)/ ( 𝑞∑︁
𝑖∗=𝑞−𝑘

1 − p𝑖∗,𝑡
)
. (5)

We must also consider execution costs. We force the caw and nbar
models to trade as price takers, meaning that the models incur a
cost equal to half the bid/ask spread times the change in absolute
position. Specifically, we apply the average transaction cost per
S&P 500 constituent, whose distribution of relative basis point costs

𝑏𝑝𝑐𝑜𝑠𝑡 𝑗 =
10000
𝑇

𝑇∑︁
𝑡=1

𝑎𝑠𝑘 𝑗,𝑡 − 𝑏𝑖𝑑 𝑗,𝑡
𝑚𝑖𝑑 𝑗,𝑡

,

is shown in figure 3. Furthermore, as these data are sampled daily,

Figure 3: The distribution of transaction costs, where the distribu-
tion is taken over the average transaction cost per S&P 500
constituent.

any portfolio rebalancing is applied at most once a day, at the close
of trading circa 4 pm EST.

4.4 Results
The passive index tracking baseline purchases each constituent
with equal weighting at 𝑡 = 0 and holds them till the end of the
experiment. This strategy pays transaction costs once and therefore
has the least fees, as shown in table 1. Table 2 and figure 4 also
show that the cumulative returns generated by this strategy are
205%, the compound annual growth rate (cagr) is 7.3% and the risk-
adjusted annualised Sharpe ratio (sr) is a little under 0.8. Assuming
normally distributed returns, the Sharpe ratio implies a probabil-
ity of positive annual returns of 71%. The largest peak-to-trough
drawdown for the strategy is just under 72%, and the total return to
maximum drawdown is around 2.9. Finally, by simply holding the
index, the percentage of days with positive returns is 55%. The same
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performance metrics are available for the caw and nbar models.
Both long-only and long/short caw and nbar models outperform
the passive index tracking baseline, with the long/short models
showing higher risk-adjusted performance measures indicated by
the Sharpe ratios. The nbar performs best, with the long/short nbar
showing the highest total and risk-adjusted returns. Table 1 shows
that despite the caw and nbar models being actively managed strate-
gies that rebalance the portfolios daily, only the caw models show
high transaction costs. The nbar models rebalance less often and
do a better job of picking portfolio constituents.

Figure 5 shows a bird’s eye view of the nbar cross-sectional mo-
mentum weights across time. Long positions show up as dark blue
specks, and short positions show up as yellow specks. We see evi-
dence of the nbar dynamically shifting weights over time to find the
best candidates to hold on a cross-sectional momentum basis, given
the fixed constraint that a maximum of five per cent of total assets
can be held long or short. The weight range in figure 5 indicates
a relatively diffuse weight choice; in other words, no single con-
stituent appears to dominate the others regarding predicted returns
performance. We can zoom into a specific portfolio constituent,
namely Electronic Arts Inc. In figure 6, we see that the long/short
nbar switches between long, short and flat positions as necessary,
without an exponential decay of the weights permanently, as with
the weighted majority algorithm.

Figure 7 displays the sensitivity of total returns and Sharpe ratios
to the selection percentile, that is, the fraction of assets that are
held in either a long-only or long/short manner. We draw similar
conclusions with the fixed experiment that selects five per cent
of the expected best-performing assets. The nbar models perform
best, and the long/short models perform better than their long-
only counterparts. The total return increases as fewer assets are
selected, particularly for the nbar, which shows a ×5 improvement
over the baseline when trading just a pair of assets in a long/short
manner. However, such a strategy is not scalable if a large amount
of investment capital needs to be allocated to it. Furthermore, we
have not modelled the trade impact that would invariably appear
if we were executing prominent positions relative to each asset’s
average daily volume turnover. Figure 7 also shows that the Sharpe
ratios increase toward a selection percentile of around five per cent
and, depending on the model, decrease or plateau after that.

Table 1: Relative transaction costs incurred by eachmodel in the test
set. A buy-and-hold strategy on the S&P 500 achieves the
lowest transaction costs. However, from the perspective of a
more active portfolio management standpoint, our ranking
algorithm incurs far lower transaction costs than the regress-
then-rank baseline.

transaction costs

long S&P 500 -0.003
long caw -0.933
long/short caw -1.966
long nbar -0.050
long/short nbar -0.104

Figure 4: Total return by each model in the test set where the maxi-
mum selection percentile is set to 5% of the total number
of portfolio constituents. The naive Bayes asset ranker
performs best, particularly the cross-sectional momentum
version.

Table 2: Summary returns statistics are shown in relation to the
experiment, shown visually in figure 4. The cross-sectional
momentum naive Bayes asset ranker has the highest total
and risk-adjusted returns.

long
S&P
500

long
caw

long
nbar

long
short
caw

long
short
nbar

mean 0.0005 0.001 0.0013 0.0009 0.0015
std 0.012 0.016 0.016 0.010 0.010
total ret 2.047 4.113 5.372 3.397 5.806
cagr 0.073 0.108 0.124 0.098 0.128
sr 0.798 1.243 1.636 1.624 2.879
𝑝𝑟 (ann. ret > 0) 0.71 0.816 0.895 0.893 0.994
max dd 0.717 0.64 0.646 0.942 0.202
total ret / max dd 2.853 6.423 8.311 3.607 28.7
win ratio % 0.549 0.553 0.563 0.547 0.575

5 DISCUSSION
The results show that the caw models outperform the baseline,
and the nbar models have the best overall performance. The caw
models apply a multivariate regression technique, and the nbar
models rank assets sequentially using posterior probabilities. How
might we rationalise this performance ordering? Several academic
papers discuss the shortcomings of regression models compared to
classification models in the financial time series prediction setting.
For example, Satchell and Timmermann [32] show that regres-
sion models that typically minimise prediction mean-square error
(mse) obtain worse performance than a random-walk model when
forecasting daily foreign exchange (fx) returns. Furthermore, they
show that the probability of correctly predicting the sign of the
change in daily fx rates is higher for the regression models than
the random-walk baseline, even though the mse of the regression
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Figure 5: The naive Bayes asset ranker cross-sectional momentum
weights across time. We find visual evidence that the port-
folio selection is dynamic and changing over time.

Figure 6: Naive Bayes asset ranker cross-sectional momentum
weights across time for Electronic Arts Inc. Unlike the
weightedmajority algorithm, which assigns an expert max-
imum weight, which then erodes as the expert makes mis-
takes, our algorithm allows the expert to be selected with
greater absolute weight in future, irrespective of how poor
it performed previously.

models exceeds that of the random-walk model. They conclude that
mse is not always an appropriate performance measure for evalu-
ating predictive performance. More recently, Amjad and Shah [1]
find that classical time series regression algorithms, such as arima
models, have poor performance when forecasting Bitcoin returns.
However, they find that the probability distribution of the sign of
future price changes is adequately approximated from finite data,
specifically classification algorithms that estimate this conditional
probability distribution.

Figure 7: Test returns by model and selection percentile. Restricting
the maximum selection percentile results in the highest
total returns but is not particularly useful for portfolio
managers that need to allocate substantial investment cap-
ital. The risk-adjusted returns for this test set peak near
an upper-bound selection percentile of 5% of total con-
stituents.

6 CONCLUSIONS
We extend the research into cross-sectional momentum trading
strategies. Our main result is our novel ranking algorithm, the
naive Bayes asset ranker (nbar), which we use to select subsets
of assets to trade from the S&P 500 index. We perform feature
representation transfer from radial basis function networks to a
curds and whey (caw) multivariate regression model that takes
advantage of the correlations between the response variables to
improve predictive accuracy. The nbar ranks this regression output
by forecasting the one-step-ahead sequential posterior probability
that individual assets will be ranked higher than other portfolio
constituents. Earlier algorithms, such as the weighted majority, deal
with nonstationarity by ensuring the weights assigned to each ex-
pert never dip below a minimum threshold without ever increasing
weights again. Our ranking algorithm allows experts who previ-
ously performed poorly to have increased weights when they start
performing well. Our algorithm outperforms a strategy that would
hold the long-only S&P 500 index with hindsight, despite the index
appreciating by 205% during the test period. It also outperforms a
regress-then-rank baseline, the caw model.
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