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Abstract

We address the problem of strategic asset allocation (SAA) with portfolios that include illiquid al-
ternative asset classes. The main challenge in portfolio construction with illiquid asset classes is that
we do not have direct control over our positions, as we do in liquid asset classes. Instead we can only
make commitments; the position builds up over time as capital calls come in, and reduces over time
as distributions occur, neither of which the investor has direct control over. The effect on positions of
our commitments is subject to a delay, typically of a few years, and is also unknown or stochastic. A
further challenge is the requirement that we can meet the capital calls, with very high probability, with
our liquid assets.

We formulate the illiquid dynamics as a random linear system, and propose a convex optimization
based model predictive control (MPC) policy for allocating liquid assets and making new illiquid com-
mitments in each period. Despite the challenges of time delay and uncertainty, we show that this policy
attains performance surprisingly close to a fictional setting where we pretend the illiquid asset classes
are completely liquid, and we can arbitrarily and immediately adjust our positions. In this paper we
focus on the growth problem, with no external liabilities or income, but the method is readily extended
to handle this case.
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1 Introduction

There is considerable investor interest across several financial contexts in constructing portfolios which mix
liquid and illiquid assets, especially illiquid alternative investments. We wish to perform strategic asset
allocation to asset classes that include illiquid alternative assets, as well as more liquid asset classes. Several
challenges arise. First, we can only augment our illiquid positions by making capital commitments. Moreover,
these commitments only indirectly affect our illiquid position through uncertain and delayed capital calls,
that we have no direct control over. A further challenge is the solvency requirement: we should be able to
fund the capital calls from our liquid positions with very high probability. A simple strategy to guarantee
coverage of capital calls is to keep an amount equal to the uncalled capital commitments in cash. However
this creates significant cash drag, since this cash could be invested in higher returning liquid assets. The
method we describe in this paper addresses all of these issues.

2 Previous work

There is a rich history of studying portfolio construction. Our work helps extend the modern portfolio
theory framework developed by Markowitz [Mar52] and Merton [Mer69], which focuses on liquid assets. We
contribute to the further study of illiquidity and multi-period planning. While this work takes as an input
a stochastic model which describes the risk and return of illiquid investments, calibrating such models is a
nuanced and well studied problem. For a guide to the literature on the risks and returns of private equity
investments, see Kortweg [Kor19].

Continuous time. There is a breadth of work on modeling portfolio construction with illiquid assets.
Many authors consider continuous time stochastic processes. Dimmock et al. study the endowment model,
under which university endowments hold high allocations in illiquid alternative assets, via a continuous
time dynamic choice model with deterministic-in-time discrete liquidity shocks every T periods [DWY19].
They allow the investor to increase the position in the illiquid asset instantaneously, not modeling the
delayed nature of capital calls. Ang et al. also study a continuous time problem, but model the timing
of liquidity events of the illiquid asset as an independent Poisson process [APW13]. Optimal solutions are
assumed to have almost surely non-negative liquid wealth, meaning that the investor must always be able
to cover the effects of illiquidity. Another important line of inquiry studies the effects of illiquidity through
the commitment risk of a fixed alternative’s commitment. Sorensen, Wang, and Yang [SWY14] study this
problem by focusing on an investor who can modify their positions in stocks and bonds, taking an investment
in an illiquid asset as given and held to maturity.

Discrete time. The discrete time case is also well studied. Takahashi and Alexander first introduced
what amounts to a deterministic linear system to model an illiquid asset’s calls, distributions, and asset
value [TA02]. This model posits that calls are a time-varying fraction of uncalled commitments, and that
distributions are a time-varying fraction of the illiquid asset value, and returns are constant. Our model
is similar, but differs in two important ways. First, our model is time-invariant. Second our model incor-
porates randomness in these fractions as well as the returns. Giommetti and Sorensen use the Takahashi
and Alexander model in a standard, discrete-time, infinite-horizon, partial-equilibrium portfolio model to
determine optimal allocation to private equity [GS21]. Here the calls and distributions are deterministic frac-
tions of the uncalled commitments and illiquid asset value, but the illiquid asset value grows with stochastic
returns. Again, there is an almost sure constraint which insists that the investor’s liquid wealth is never
exhausted, which means that the investor maintains a liquidity reserve of safe assets to cover calls.

Optimal allocation to illiquid assets. Broadly, across the literature we have reviewed, the reported op-
timal allocations to illiquid assets are strikingly low compared to the de facto wants and need of institutional
investors who are increasingly allocating larger and larger shares of their portfolios to illiquid alternatives.
In their extensive survey of Illiquidity and investment decisions, Tédongap and Tafolong [TT18] report that
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recommended illiquid allocations range from the low single digits to around 20% on the upper end. This
is strikingly lower than the target levels observed in practice. For example, the National Association of
College and University Business Officers (NACUBO) provide data showing the allocation weights of illiquid
alternatives in University endowments reaching 52% in 2010. Unlike other analyses, our method does not
require investors be able to cover calls with probability one, and instead provides a tool for maintaining an
optimized target asset allocation under uncertain calls, distributions, returns, and growth.

Hayes, Primbs, and Chiquoine propose a penalty cost approach to asset allocation whereby an additional
term is added to the traditional mean-variance optimization (MVO) problem to compensate for the intro-
duction of illiquidity [HPC15]. They solicit a user provided marginal cost curve which captures the return
premium needed for an illiquid asset to be preferred over a theoretically equivalent liquid alternative. This
leads to a formulation nearly identical to the standard MVO problem, with a liquidity-adjusted expected
return (a function of the allocation). In their work the notion of liquidity is captured in a scalar between 0
and 1.

Multi-period optimization. Our policy is based on solving a multi-period optimization problem. Dantzig
and Infanger [DI93] introduce a multi-stage stochastic linear programming approach to multi-period portfolio
optimization. Mulvey, Pauling, and Madey survey the advantages of multi-period portfolio models, including
the potential for variance reduction and increased return, as well as the ability to analyze the probability of
achieving or missing goals [MPM03]. Boyd et al. [BBDK17] describe a general framework for multi-period
convex optimization. This framework focuses on planning a sequence of trades over a set of periods trades
given return forecasts, trading costs, and holding costs. Our framework also solves a multi-period convex
optimization problem, but we do not make an approximation of the dynamics, which is more appropriate
for the longer time horizons and thus more significant growth observed in strategic asset allocation.

Model predictive control. Our method falls under the category of Model Predictive Control (MPC),
which is both widely studied in academia and used in industry. For a survey of MPC, see for example
the books Model Predictive Control [CA07] or Garćıa et al. [GPM89]. Herzog et al. [HKD+06] use an
MPC approach for multi-period portfolio optimization, but only consider normally distributed returns and
standard liquid assets. They do include a factor model of returns, as well as a conditional value at risk
(CVaR) constraint which is different in interpretation but takes the same form as our insolvency constraint.
The closest work we have identified to our own is the thesis of Lee, who uses a very similar multi-period
optimization problem with linear illiquid dynamics [Lee]. We both use a quadratic risk, and use certainty
equivalent planning to solve an open loop control problem. Lee’s problem is multi-period, but the objective
is a function of only the final period wealth, whereas in our case we have stage costs, as well as constraints
on the solvency of our portfolio. Additionally, in our stochastic model we use random call and distribution
intensities.

Contributions. The linear dynamics of the illiquid wealth motivate model predictive control (MPC) as a
solution method. To the best of our knowledge, there do not exist multi-period optimization-based policies
for constructing portfolios with both liquid and illiquid alternative assets. We believe our contributions
include the following.

1. Incorporating random intensities with the classic linear model of the illiquid asset’s calls and distribu-
tions.

2. Formulating a multi-period optimization problem to perform strategic asset allocation with liquid and
illiquid assets.

3. Using homogeneous risk constraints to account for growth in the multi-period planning problem.

4. Using liquidity/insolvency constraints to ensure calls are covered with high probability.

4



5. Obtaining a performance bound for the problem by considering a stylized liquid world where the illiquid
asset is completely liquid.
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3 Stochastic dynamic model for an illiquid asset

In this section we describe our stochastic dynamic model of one illiquid asset. Our model is closely related
to the linear system proposed by Takahashi and Alexander [TA02], with the addition of uncertainty in the
capital calls and distributions. We demonstrate a straightforward extension of our model which would include
the Takahashi model in §8. We consider a discrete-time setting, with period denoted by t = 1, 2, 3 . . ., which
could represent months, quarters, years, or any other period. Our model involves the following quantities,
all denominated in dollars.

• It ≥ 0 is the illiquid wealth (or position in or NAV of the illiquid asset) at period t.

• Kt ≥ 0 is the total uncalled commitments at period t.

• Ct ≥ 0 is the capital call at period t.

• Dt ≥ 0 is the distribution at period t.

• nt ≥ 0 is the amount newly committed to the illiquid asset at period t.

The commitment nt is the only variable we can directly control or choose. All the others are affected
indirectly by nt.

Dynamics. Here we describe how the variables evolve over time. At period t,

• we make a new capital commitment nt (which we can choose)

• we receive capital call Ct (which is not under our control)

• we receive distribution Dt (which is not under our control)

The uncalled commitment in period t+ 1 is

Kt+1 = Kt + nt − Ct,

and the illiquid wealth in period t+ 1 is

It+1 = ItRt + Ct −Dt,

where Rt ≥ 0 is a random total return on the illiquid asset.

Calls and distributions. We model calls and distributions as random fractions of Kt, Pt, and nt. We
model calls as

Ct = λ0tnt + λ1tKt,

where λ0t ∈ [0, 1] is the random immediate commitment call intensity and λ1t ∈ [0, 1] is the random existing
commitment call intensity. Similarly, we model distributions as

Dt = ItRtδt,

where δt ∈ [0, 1] is the random distribution intensity.
We assume the random variables (Rt, λ

0
t , λ

1
t , δt) ∈ R× [0, 1]3 are I.I.D., i.e., independent across time and

identically distributed. (But for fixed period t, the components Rt, λ
0
t , λ

1
t , and δt need not be independent.)

We do not know these random variables when we choose the current commitment nt. Formally, we assume
that nt ⊥⊥ (Rt, λ

0
t , λ

1
t , δt). The current commitment can depend on anything known at the beginning of

period t (including for example past values of returns and intensities), but the current period return and
intensities are independent of the commitment.
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3.1 Stochastic linear system model

The model above can be expressed as a linear dynamical system with random dynamics and input matrices.
With state xt = (It,Kt) ∈ R2 and the control or input ut = nt ∈ R, the dynamics are given by

xt+1 = Atxt +Btut,

where

At =

[
Rt(1− δt) λ1t

0 1− λ1t

]
, Bt =

[
λ0t

1− λ0t

]
. (1)

With output yt = (It,Kt, Ct, Dt) ∈ R4, we have

yt = Ftxt +Gtut,

where

Ft =


1 0
0 1
0 λ1t

Rt(1− δt) 0

 , Gt =


0
0
λ0t
0

 . (2)

We assume the initial state is known. We observe that xt ⊥⊥ (Ft, Gt), since the former depends on the
initial state, nt, and (Fτ , Gτ ) for τ < t, and these are all independent of (Ft, Gt).

A careful reader might notice that these linear dynamics mean that the commitments and distributions
asymptotically approach zero but never terminate. However, the fractions of calls and distributions relative to
the initial amounts are minuscule after several periods, and are negligible in the presence of new commitments
coming in each period. Additionally, Gupta and Van Nieuwerburgh [GN21] found in analyzing long-term
private equity behavior that often funds have activity even fifteen years after inception, further justifying
the persisting calls and distributions in the linear systems model.

3.2 Mean dynamics

Let xt = Ext denote the mean of the state, ut = Eut denote the mean of the input or control, and yt = Eyt
denote the mean of the output. We define the mean matrices

A = EAt, B = EBt, F = EFt, G = EGt

(which do not depend on t). We then have

xt+1 = Axt +But, yt = Fxt +Gut, (3)

which states that the mean state and output is described by the same linear dynamical system, with the
random matrices replaced with their expectations. The mean dynamics is a time-invariant deterministic
linear dynamical system.

3.3 Impulse and step responses

Our linear system model implies that the mapping from the sequence of commitments or inputs u1, u2, . . .
to the resulting outputs y1, y2, . . . is linear but random. We review three standard concepts from linear
dynamical systems.
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Commitment impulse response. We can consider the response of uncalled commitments, calls, illiquid
wealth, and distributions to committing n1 = 1 at period t = 1 and nt = 0 for all t > 1, with zero initial
state. This is referred to as the impulse response of the system. The impulse response is the stochastic
process

yt =


It
Kt

Ct
Dt

 = FtAt−1 · · ·A2B1, t = 1, 2, . . . .

From the mean dynamics (3), we know that the mean impulse response is given by

yt = F A
t−1

B, t = 1, 2, . . . .

Commitment step response. We can also consider the effect of committing n1 = n2 = · · · = 1, which
is referred to as the step response of the system. The step response shows how a simple policy of constant
commitment impacts our exposure over time in the illiquid asset, calls, distributions, and our level of uncalled
commitment. The step response is the stochastic process

yt = Ft

((
t−3∑
i=0

At−1 · · ·A2+iBi+1

)
+Bt−1

)
+Gt, t = 1, 2, . . . .

From the mean dynamics (3), we know that the mean step response is given by

yt = F

(
t−2∑
i=0

A
i

)
B +G, t = 1, 2, . . . . (4)

Steady state response. We define the unit steady-state mean response yss as limt→∞ ystept . Assuming
the spectral radius of A is less than one, we take the limit of (4) as t→∞ to obtain

yss = F (I −A)−1B +G.

We refer to the entries of
yss = (αK , αC , αI , αD) (5)

as the steady state gains from commitment to illiquid wealth, uncalled commitment, capital calls, and
distribution. These numbers have a simple interpretation. For example, αI tells us what the asymptotic
mean illiquid wealth is, if we repeatedly make a commitment of $1. It can be shown that αC = 1, i.e., if we
constantly commit $1, then asymptotically, and in mean, the capital calls will also be $1.

3.4 A particular return and intensity distribution

We suggest the following parametric joint distribution for (λ1t , λ
0
t , δt, Rt). They are generated from a random

3-vector
zt ∼ N (µ,Σ) ∈ R3. (6)

From these we obtain

λ1t =
1

1 + exp(zt)1
, λ0t =

1

2
λ1t , δt =

1

1 + exp (zt)2
, Rt = exp (zt)3. (7)

With this model, the return is log-normally distributed while the call and distribution intensities are logit-
normally distributed. Dependency among the return and the intensities are modeled by the off-diagonal
entries of Σ.
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3.5 Example

Here we describe a particular instance of the distribution described above, that we will use in various
numerical examples in the sequel.

Example return and intensity distribution. In this example we use the following parameters for the
distribution of (λ1t , λ

0
t , δt, Rt) specified in (6):

µ =

−0.700
−0.423
0.158

 , Σ =

0.068 0.072 0.006
0.073 0.271 0.043
0.006 0.043 0.079

 . (8)

This example is based on yearly periods. The mean return of the illiquid asset is derived from the
BlackRock Capital Market Assumptions as of July 2021, which reports one private equity asset, Buyout,
with a mean annual return of 15.8% [Bla21]. The call and distribution mean intensities are calibrated from
private equity data for the eFront Buyout fund. The mean values of the intensities are we report the empirical
means

λ
1

t = .26, λ
0

t = .128, δt = .33.

(These are found by Monte Carlo simulation, since the mean of a logit-normal distribution doesn’t have an
analytical expression.) The covariance matrix is calibrated from the same data.

Commitment impulse response. The impulse response from commitment to uncalled commitment,
calls, illiquid wealth, and distributions is shown in figure 1. The top row shows the mean response, and the
bottom shows 100 realizations, with the empirical mean shown as the white curve.

We see that the uncalled commitments peak in the next period at a level of about 0.8. The calls peak at
the next period at .28. We can see that our initial commitment translates into an illiquid holding which, in
expectation, peaks four periods later with a value of about .47. Similarly, the resulting distributions peak
with the illiquid wealth four periods later, with a level of .24.

Commitment step response. In figure 2, we see the step response to constant unit commitment of
uncalled commitments, calls, illiquid wealth, and distributions. The top row shows the mean response, and
the bottom shows 100 realizations. The mean step responses converge in around 8 periods to values near
their asymptotic values.

Asymptotic expected response to constant commitment. The steady-state gains are

αK = 2.491, αC = 1.000, αI = 3.685, αD = 1.804.

For example, repeatedly committing $1 leads to an asymptotic mean illiquid wealth of $3.685.

3.6 Comparison with the Takahashi and Alexander model

Our stochastic model of an illiquid asset is closely related to that of Takahashi and Alexander [TA02], but it
differs in to key ways. The most important difference is that our model is Markovian; the calls, distributions,
and returns at time t are conditionally independent of the all previous quantities, given the state at time
t. In comparison, Takahashi and Alexander’s model specifies time varying call and distribution intensity
parameters. These time varying intensities mean that the final intensities can be set to 1, meaning calls and
distributions can have deterministic end times, and the exposure will not geometrically decline. In §8 we
describe how to modify our model to depend on arbitrarily many previous time periods. This means we can
exactly capture the original Takahashi and Alexander model with this extension of our model. We emphasize
that this generalization remains fully tractable from the portfolio optimization standpoint described in this
paper. The second difference between our model and that of Takahashi and Alexander is that ours is a
stochastic model, with random intensities, whereas theirs is deterministic.
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Figure 1: Commitment impulse response. The top plot shows the mean values, and the bottom plot shows
100 realizations of the stochastic model.
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Figure 2: Commitment step response. The top plot shows the mean values, and the bottom plot shows 100
realizations of the stochastic model.
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4 Commitment optimization

Because the dynamics is linear, we can use convex optimization to choose a sequence of commitments to
meet various goals in expectation. We consider a simple example here to illustrate.

We consider the task of starting with no illiquid exposure or uncalled commitments, i.e., I1 = 0, K1 = 0,
and choosing a sequence of commitments, nt, t = 1, . . . , T . Our goal is to reach and maintain an illiquid
wealth of Itar, so we use as our primary objective the mean-square tracking error,

E
1

T + 1

T+1∑
t=1

(It − Itar)2.

In addition, we want a smooth sequence of commitments, so we add a secondary objective term which is the
mean square difference in commitments,

E
1

T − 1

T∑
t=2

(nt − nt−1)2,

We also impose a maximum allowed per-period commitment, i.e., nt ≤ nlim. (Of course we can add other
constraints and objective terms; this example is meant only to illustrate the idea.)

We illustrate two methods. The first is simple open-loop planning, in which assume that state follows
its mean trajectory, and we determine a fixed sequence of commitments, and then simply execute this plan.
The second method is a closed-loop method, which adapts the commitments based on previously realized
returns, capital calls, and distributions. This method is called model predictive control (MPC). We evaluate
both policies under the mean dynamics and the stochastic dynamics.

4.1 Open loop commitment control

Planning. We will find a plan of commitments based on the mean dynamics. This leads to the convex
optimization problem

minimize 1
T+1

∑T+1
t=1 (Ît − Itarg)2 + γsmooth 1

T−1
∑T
t=2(n̂t − n̂t−1)2

subject to x̂t+1 = Ax̂t +Bn̂t, t = 1, . . . , T
x̂1 = 0
0 ≤ n̂t ≤ nlim, t = 1, . . . , T,

where γsmooth > 0 is a hyperparameter that determines the weight of the smoothing penalty, and A and
B are as defined in (2). The variables in this problem are n̂1, . . . , n̂T and x̂1, . . . , x̂T+1, with Ît = (xt)1 for
t = 1, . . . , T + 1. We use the notation Ît, n̂t, x̂t to emphasize that these are quantities in our plan, and not
the realized values. This is a simple convex optimization problem, a quadratic program (QP), and readily
solved [BV04].

Example. Solving this problem with our running example defined in (8) for

T = 20, γsmooth = 1, Itarg = 1, nlim = .5, (9)

we find the optimal planned sequence of commitments and corresponding uncalled commitment and exposure
shown in figure 4.1.

The mean-squared tracking error attained by our plan is 0.133. We can also calculate the tracking error
from t = 5 onwards to account for the large contribution to tracking error of the first four periods. Thus, a
perhaps more meaningful metric is the delayed root-mean-square (RMS) tracking error,(

1

T − 4

T∑
t=5

(It − Itarg)

)1/2

.
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Figure 3: Deterministic commitment planning.

(This is on the same scale as Itarg and is readily compared to it.) The plan attains a delayed RMS tracking
error of 0.071.

The optimal commitment sequence makes sense. It hits the limit for the first two periods, in order
to quickly bring up the illiquid wealth; then it backs off to a lower level by around period 6, and finally
converges to an asymyptotic value near Itarg/αI = 0.27, which is the constant commitment value that would
asymptotical give mean illiquid value Itarg.

Results. These results above are with the mean dynamics. We can also execute this sequence of planned
commitments under random calls and distributions as specified by our stochastic model in §3.5. The results
for 100 simulated realizations is shown in figure 4. The mean-squared tracking error, averaged across the
realizations, is 0.199. The delayed root-mean-square tracking error, averaged across the realizations is 0.274.

4.2 Closed loop commitment control via MPC

We now perform model predictive control, which is a closed loop method, meaning nt can depend on xt, i.e.,
we can adapt our commitments to the current values of uncalled commitments and illiquid wealth.

Planning. At every time t = 1, . . . , T , we plan commitments over the next H periods t, t+ 1, . . . , T +H,
where H is a planning horizon. We use x̂τ |t, n̂τ |t to indicate that these are the quantities in the plan at time
τ , from the plan made at time t. These planned quantities are found by solving the optimization problem

minimize 1
H+1

∑t+H+1
τ=t (Îτ |t − Itarg)2 + γsmooth 1

H−1
∑T
t=2(n̂τ |t − n̂τ−1|t)

subject to x̂t|t = xt
x̂τ+1|t = Ax̂τ |t +Bn̂τ |t, τ = t, . . . , t+H
0 ≤ n̂τ |t ≤ nlim, τ = t, . . . , t+H,

with variables x̂t|t, . . . , x̂t+H+1|t and n̂t|t, . . . , n̂t+H|t, Îτ |t = (x̂t|t)1 Note that when we plan at time t, we
include the constraint x̂t|t = xt; this closes the feedback loop by planning based on the current realized state.

Policy. Our policy is simple to explain: at time t, after planning as described above, we execute control

nt = n̂t|t.
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Figure 4: Open loop commitment control, 100 realizations.

Note that the planned quantities Îτ |t, x̂τ |t, τ = t+ 1, . . . , t+H + 1, and n̂τ |t, τ = t+ 1, . . . , t+H, are never
executed by the MPC policy. They are only part of the plan.

Results. We again execute our policy under random calls and distributions as specified by our stochastic
model in §3.5. The results for 100 simulated trajectories a shown in figure 5. The average mean-squared
error is 0.182. The average delayed root-mean-square tracking error is 0.244, an 11% reduction from the
open loop policy.
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Figure 5: MPC commitment control, 100 realizations.
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5 Joint liquid and illiquid model

We now describe a model for an investment universe consisting of multiple illiquid alternative and liquid
assets. First, we extend to a universe of nill illiquid assets.

Multiple illiquids. We extend the same quantities as in §3 from scalars to vectors of dimension nill.

Kt, It, Ct, Dt ∈ Rnill

, nt ∈ Rnill

, Rill
t , λ

1
t , λ

0
t , δt ∈ Rnill

.

We have the exact same dynamics as before, duplicated for each illiquid asset. Each has its own states
for exposure and uncalled commitment, and its own control for its new commitments. The illiquid calls,
distributions, and returns are now part of a joint distribution. The illiquid dynamics extend in vectorized
form to

Kt+1 = Kt + nt − Ct, It+1 = diag(Rt)It + Ct −Dt,

with
Ct = diag(λ0t )nt + diag(λ1t )Kt, Dt = diag(Rt) diag(δt)It.

We emphasize that while the return, call, and distribution dynamics here are separable across the illiquid
assets, the underling random variables ((Rt)j , (λ

0
t )j , (λ

1
t )j , (δt)j) can be modeled jointly. We continue with

our assumption that these random variables are independent across time.

Multiple liquids. There are now a set of nliq liquid assets available to us. The liquid assets are simple:
we can buy and sell them at will at each period; they suffer none of the complex dynamics of the illiquid
assets. We add one new state, Lt, the (total) liquid wealth at period t. In addition to new commitments for
each illiquid asset, at each time t we now control how we allocate our liquid wealth each period, as well as
how much outside cash to inject into our liquid wealth. Thus we have the additional quantities, which we
can control:

• ht ≥ 0 (∈ Rnliq

) is the allocation in dollars invested in liquid assets at period t

• st ≥ 0 (∈ R) is the outside cash injected at period t

At the beginning of period t, we invest (or allocate) our liquid wealth in liquid assets. This corresponds to

the constraint Lt = 1Tht. We receive multiplicative liquid returns (Rliq
t )j ∈ R on liquid asset j, yielding

total return hTt R
liq
t . We then pay out capital calls from and receive distributions to our liquid wealth, for all

illiquid assets. This corresponds to a net increase in liquid wealth given by −1TCt + 1TDt. Lastly, if at this
stage our liquid wealth is negative, we are forced to add outside cash st to at least bring our liquid wealth
to zero. Compactly, the liquid dynamics are

Lt+1 = hTt R
liq
t − 1TCt + 1TDt + st,

with constraints
ht, nt, st ≥ 0, Lt ≥ 0, Lt = 1Tht.

5.1 Stochastic linear system model

We can again represent these dynamics as a stochastic linear system. Let xt = (Lt, It,Kt) ∈ R1+2nill

be the

state vector. The control is ut = (ht, nt, st) ∈ R1+nliq+nill

. Extending the A and B matrices from §1, define

At =

0 (δt ◦Rill
t )T −λ1t

T

0 diag((1− δt)Rill
t ) diag(λ1t )

0 diag(0) diag(1− λ1t )

 , Bt =

Rliq
t

T
−λ0t

T
1

0T diag(λ0t ) 0
0T diag(1− λ0t ) 0

 . (10)

16



Then the random linear dynamics with multiple illiquids and liquids are

xt+1 = Atxt +Btut,

with constraints
ht, nt, st ≥ 0, Lt ≥ 0, Lt = 1Tht.

The presence of the outside cash control st implies that a feasible control exists for any feasible value of the
states, since st prevents the liquid wealth from ever being negative.

As in §3.2, we let xt = Ext denote the mean of the state, ut = Eut denote the mean of the input or
control, define the mean system matrices as

A = EAt, B = EBt,

and recover the same mean dynamics
xt+1 = Axt +But. (11)

5.2 Return and intensity distribution

We extend the previous generative model specified in (6) and (7) to include liquid returns,

zt =

[
zintt
zrett

]
∼ N (µ,Σ) ∈ R3nill+nliq

, µ =

[
µint

µret

]
, Σ =

[
Σint Σ12

Σ21 Σret

]
. (12)

From these we obtain delayed and immediate call intensities

λ1t =
1

1 + exp(zt)1:nill

, λ0t =
1

2
λ1t ,

distribution intensities

δt =
1

1 + exp +(zt)nill+1:2nill

,

and returns [
Rill
t

Rliq
t

]
=

[
exp (zt)2nill+1:3nnill

exp (zt)3nill:

]
.
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6 Strategic asset allocation under the relaxed liquid model

In this section we introduce a highly simplified model, where all of the challenges of illiquid alternative assets
are swept under the rug. This model is definitely not realistic, but we can use it to develop an unattainable
benchmark for performance that can be obtained with the more accurate model.

6.1 Relaxed liquid model

As a thought experiment, we imagine the illiquid assets are completely liquid: we have arbitrary control of
illiquid asset positions (immediate increase or decrease). This is a relaxation of the actual problem setting,
where we must face stochastic and only indirectly controllable calls and distributions. The idea of a relaxed
liquid model is not new; for example, Giommetti et al. [GS21] consider the target allocations resulting from
treating illiquid assets as fully liquid for comparison, but do not evaluate stochastic control policies trying
to achieve these allocations in an illiquid world. The relaxed liquid model is also implicitly behind various
Captial Market Assumptions, where return ranges, and correlations, are given for both liquid and illiquid
assets.

The relaxed liquid model is very simple. There is only one state, the total wealth Wt. The quantities we

have control over are the allocations to liquid and illiquid assets, denoted hliqt ∈ Rnliq

and hillt ∈ Rnill

. The
wealth evolves according to the dynamics

Wt+1 = uTt rt, uTt 1 = 1, u =

[
hliqt
hillt

]
,

where rt = zrett is defined in (12).
We use the standard trick of working with the weights of the allocations in each period, denoted wt,

instead of ut. This is defined as wt = ut/Wt, so 1Twt = 1. We recover the dollar allocations as ut = Wtwt.

6.2 Markowitz allocation and policy

A standard way to choose a portfolio allocation is to solve the one period risk-constrained Markowitz problem,

maximize µTw
subject to 1Tw = 1, w ≥ 0

‖Σ1/2w‖2 ≤ σ,
(13)

where σ is the maximum tolerable return standard deviation, and µ and Σ are the expected return and
return covariance, respectively. We denote the optimal allocation as w?. The natural policy associated with
solving the Markowitz problem simply rebalances to w?: it sets ut = Wtw

? for each period t. This simple
rebalancing is of course not possible under the accurate model that includes the challenges of alternative
assets, but it is under the relaxed liquid model.

6.3 Example

Liquid performance. Under the assumptions of §6.1, we solve the one period Markowitz problem with
µret,Σret the mean and covariance of the joint distribution of liquid, illiquid asset returns. Using this relaxed
Markowitz target, we simulate the fantasy performance achieved by being able to perfectly rebalance both
liquids and illiquids to the Markowitz target each period, for multiple periods, using the policy described
earlier in 6.2.
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Figure 6: Relaxed liquid risk-return trade-off, obtained by pretending the illiquid assets are fully liquid. This
gives an unattainable performance benchmark for problem when the challenges of illiquid alternatives are
present.

For the parameters defined in (12), we use the specific values of

µret =
(
0.158 0.000 0.072 0.023 0.036 0.046

)
, (14)

σret =
(
0.281 0.000 0.206 0.046 0.047 0.162

)
, (15)

Cret =


1.000 0.000 0.422 −0.298 −0.002 0.261
0.000 1.000 0.000 0.000 0.000 0.000
0.422 0.000 1.000 −0.843 0.197 0.800
−0.298 0.000 −0.843 1.000 −0.018 −0.739
−0.002 0.000 0.197 −0.018 1.000 0.628
0.261 0.000 0.800 −0.739 0.628 1.000

 , (16)

with Σret = diag(σret)C diag(σret). The liquid return mean and covariance matrix are gathered from the
BlackRock Capital Market Assumptions for equities as of July 2021 [Bla21]. The corresponding expected
returns are

R
liq

t =
(
1.21834088 1.0976099 1.02436202 1.0377968 1.0609715 1

)
,

where the last asset is cash.

Risk-return trade-off. By solving the Markowitz problem with these parameters across a range of values
for the risk tolerance σ (which give rise to corresponding Markowitz targets), we can create a risk-return
trade-off plot, shown in figure 6. We should consider this trade-off curve as an unattainable performance
benchmark, that we can only strive to attain when the challenges of illiquid alternatives are present.
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7 Strategic asset allocation with full illiquid dynamics

In §6, we describe an approach to strategic asset allocation for portfolios including an imagined class of
illiquid alternatives which are rendered completely liquid. In this section, we provide methods to perform
strategic asset allocation with mixed liquid and illiquid alternative portfolios where we can only augment our
illiquid position by making new commitments, and the effect of this action is random and delayed. First, we
describe a method which over time establishes and then maintains a given target allocation under growth.
Then, we describe a more sophisticated MPC method which jointly selects a target allocation based on a
user’s risk tolerance, establishes the target, and maintains the target in growth.

7.1 Steady-state commitment policy

We first describe a simple policy, which seeks to track a target allocation θtarg. It allocates liquid assets
proportionate to its desired liquid allocation, and makes new commitments of a target level of illiquid wealth
scaled by the asymptotic expected private response to constant commitment. The input is a target allocation
θtarg, current liquid wealth L and illiquid wealth I. First, the policy checks if L is negative. If it is, it returns
control

u = (h, n, s), h = 0, n = 0, s = |L|.

Otherwise, if the liquid wealth is positive, the policy proceeds as follows. First, the policy rebalances the
liquid holdings proportionately to θtarg,

h = L
θliq

1T θliq
,

where θliq, θill are the liquid and illiquid blocks of the allocation vector θtarg =

[
θliq

θill

]
, respectively. Then,

with αI as the 1 dollar private commitment step response defined in (5), and Itarg as the target illiquid level,
ptarg = θill(L+ I), the policy commits

ni =
Itargi

αIi

and returns control u = (h, n, 0).

7.2 Model predictive control policy

We now describe a more sophisticated policy which plans ahead based on a model of the future, seeking to
maximize wealth subject to various risk constraints. For a sequence of prospective actions, the policy forecasts
future state variables using the mean dynamics described in (11). The policy then chooses a sequence of
actions by optimizing an objective which depends on the planned actions and forecast states. Finally, the
policy executes solely the first step of the planned sequence. The impact of that action is observed, and the
resulting state is observed, and then this cycle repeats.

The policy selects a planned sequence of actions by trying to maximize the ultimate total liquid and
illiquid wealth. However, it is also constrained by a user’s risk tolerance, which caps the allowable per period
return volatility. Additionally, because capital calls are stochastic in nature, the policy seeks to guarantee
that with high probability, all capital calls can be funded from the liquid wealth.

Modified Markowitz constraint. Motivated by the standard one period risk-constrained Markowitz
problem (13), we would like to include a risk constraint in our planning problem. However, the Markowitz
problem has variables in weight space rather than wealth space. Other multi-period optimization problems
based on the Markowitz problem, such as in [BBDK17], assume a timescale over which the wealth does
not grow significantly over the planning horizon. In our case, since potential application contexts include
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endowments and insurers, we must handle substantial growth over the investment horizon. Thus, we consider
an analogous risk constraint in wealth space rather than weight space,

yTΣy

(1T y)2
≤ σ2 ⇐⇒ ‖Σ1/2y‖2 ≤ σ1T y.

y = (h, I) is the liquid and illiquid exposure. Thus, we use the constraint

‖Σ1/2y‖2 ≤ σ1T y,

which is invariant in wealth. It is also convex, which means that problems with such constraints can be
reliably solved.

Insolvency constraint. An important challenge in performing strategic asset allocation with illiquid
alternatives is ensuring that the probability of being unable to pay a capital call is extremely low. In our
model, this corresponds to requiring

P (Wt+1 < 0 | Xt, nt, ht) ≤ εins

for a small probability of failure εins. We make several approximations to facilitate a convex constraint.
First, we approximate Rliq

t as a multivariate normal random variable,

Rliq
t ∼ N(µliq,Σliq).

It is important to note that these parameters are the mean and covariance of the liquid returns, rather than
the mean and covariance which parameterize the log normal liquid return distribution given by µret and Σret

in (12). Then we assume we receive the expected calls ct = E[Ct | Xt, nt, ht], which is a linear function

of our controls. They are given by ct = λ
1,T

t Kt + λ
0,T

t nt. Finally, we assume pessimistically there are no
distributions or outside cash. With these approximations, we have

P (Wt+1 < 0 | Xt, nt, ht) ≈ P (Rliq
t ht − ct ≤ 0)

= P (N(hTt µliq − ct, hTt Σliqht) < 0) ≤ ε.

This probabilistic constraint holds if and only if

ct − hTt µliq ≤ Φ−1(εins)‖Σ1/2
liq ht‖2, (17)

where Φ is the standard normal cumulative distribution function. This constraint is convex provided εins ≤
1/2, since then Φ−1(εins) ≤ 0, and (17) is a second order cone constraint (see [BV04, §4.4.2]).

As mentioned above, the constraint (17) is pessimistic because it assumes no distribution. An alternative
and less pessimistic formulation of the insolvency constraint would consider the distribution, the calls, and
the liquid returns all under a joint normal approximation.

Smoothing penalty. Among control sequences with similar objective values, we would like for new com-
mitments to be fairly smooth across time. We can consider a natural commitment smoothing penalty

g(n) =

H−1∑
t=0

γt‖nt+1 − nt‖2

The time discount γ appears because in a growth context we expect nt to increase over time. Additionally,
it helps account for the increased uncertainty of future planned steps.
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MPC planning problem. All objective terms and constraints outlined above are consolidated into one
optimization problem. At time t, we plan {x̂τ |t}t+H+1

τ=t , {ûτ |t}t+Hτ=t , where H is the planning horizon, by
solving the optimization problem

maximize
∑t+H
τ=t γ

t
(
L̂τ |t + 1T Îτ |t − λcashŝτ |t

)
− λsmoothg(n̂·|t)

subject to x̂t|t = xt
x̂τ+1|t = Ax̂τ |t +Bûτ |t, τ = t, . . . , t+H

L̂τ |t ≥ 0, τ = t, . . . , t+H + 1

ĥτ |t, n̂τ |t, ŝτ |t ≥ 0, τ = t, . . . , t+H

1T ĥτ |t = L̂τ |t, τ = t, . . . , t+H
‖Σ1/2ŷτ |t‖2 ≤ σ1T ŷτ |t, τ = t, . . . , t+H

λ
1,T
K̂τ + λ

0,T
n̂τ |t − ĥTτ |tµliq ≤ Φ−1(εins)‖Σ1/2

liq ĥτ |t‖2, τ = t, . . . , t+H,

(18)

where λcash > 0 is a hyperparameter penalizing outside cash use. Recall that L, I, and K are components
of x, and h, n, and s are components of u.

7.3 Example

In this example, we evaluate the performance of the two policies described in §7.1 and §7.2 using the risk
return trade off. For the parameters defined in (12), we use the specific values of

µret =
(
0.158, 0.000, 0.072, 0.023, 0.036, 0.046

)
, (19)

σret =
(
0.281, 0.000, 0.206, 0.046, 0.047, 0.162

)
, (20)

Cret =


1.000 0.000 0.422 −0.298 −0.002 0.261
0.000 1.000 0.000 0.000 0.000 0.000
0.422 0.000 1.000 −0.843 0.197 0.800
−0.298 0.000 −0.843 1.000 −0.018 −0.739
−0.002 0.000 0.197 −0.018 1.000 0.628
0.261 0.000 0.800 −0.739 0.628 1.000

 (21)

with Σret = diag(σret)C diag(σret).

Illiquid dynamics. We consider the actual illiquid world: full call/distribution random dynamics as
described in §5.1. We evaluate the two policies described in §7.1 and §7.2 on the same simulated returns as
the imaginary Markowitz portfolio.

Example policy specifications. In this case study, we use the steady state commitment policy with
parameters

c = 3.685, κ = .1,

and values of θ arising from solving the one period Markowitz problem defined in 6.2 for 30 evenly spaced
values of σ between 0 and .3, with our specified return distribution parameters defined in (14–16).

For the MPC policy, we use the same σ values described above, but for numerical reasons use the standard
trick of moving the risk limit to penalized form by subtracting

λrisk(‖Σ1/2yt‖2 − σ1T yt)+

from each term of the objective defined in (18), penalizing excess risk. The parameter values are

γ = .97, H = 10, εins = .02, λrisk = 10, λsmooth = .1, λcash = 1000,

with A,B as defined in (11), with the distributions instantiated in (8) and (19–21).
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Figure 7: Risk return trade-off, 200 simulations of 20 periods.

Results. We see in figure 7 that both the MPC and heuristic policies are extremely close to the risk-return
performance of the liquid relaxation, which is an unattainable benchmark. This is despite the challenging
illiquid dynamics we face in the non-relaxed setting. The performance stated here is averaged across 20
periods of simulation, for 200 simulated trajectories.

We can also examine the performance across a shorter time horizon. figure 8 shows the same risk-return
tradeoff for 10 periods. Evidently, there is a larger gap between the MPC policy and the liquid performance
ceiling, and also between the MPC and simple policies. This has a perfectly clear interpretation: because
there is a roughly 4 period delay before peak illiquid exposure (see figure 1), the impact of the illiquid
alternative asset’s high returns is delayed. Additionally, by planning ahead, the MPC policy achieves illiquid
exposure faster than the simple policy.

By looking at the average allocation across time for both policies shown in figure 9, we can further
understand these differences. We can now see directly that the MPC policy is able to reach a stable allocation
in fewer periods than the heuristic policy. If we include the proportional feedback control, the heuristic does
reach the allocation faster, but still not as quickly as the MPC. Another difference is that the heuristic policy
and MPC sweep out the same risk return trade-off profile, but may not choose the exact same portfolio steady
state weights. Generally, the heuristic undershoots the illiquid target it is trying to reach.
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Figure 8: Risk return trade-off, 200 simulations of 10 periods.

Figure 9: Average allocations across time, 200 simulations for 20 periods. MPC, heuristic, and relaxation.
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8 Extensions

Liquidation. We can easily extend the model to allow for liquidation of illiquid alternatives on the secon-
daries market. Per common practice (for example, see [GS21]), we assume that at time t we can liquidate
0 ≤ `t ≤ Pt from Pt which, after a haircut φ is available as liquid wealth φ`t. This changes the control by

appending an `t ∈ Rnill

to ut as defined in §5.1. Accordingly, the new control matrix is given by[
Bliq
t B̃t

]
,

with

B̃t =

φ1T

−I
0

 ,
where the block of zeros and the identity matrix are in dimension Rnill×nill

. There is also a new constraint
enforcing 0 ≤ −`t ≤ It, i.e.the maximum liquidation is the entire liquid exposure in a given asset.

Tracking fixed weights. In this paper, a user specifies a risk tolerance parameter σ as in (13), which
implicitly specifies the portfolio weights across the liquid and illiquid assets. However, an investor may have
arrived with pre-selected target portfolio weights. Instead of seeking to track a target illiquid exposure, as in
the problem posed in §4, we can instead seek to track target portfolio weights. A natural tracking constraint
in planning is

‖Σ1/2(ŷτ |t − θ1T ŷτ |t)‖2 ≤ σtrack1T ŷτ |t,

where θ ∈ Rnill+nliq

is the user-provided vector of target portfolio weights, and σtrack is a tracking variance
hyperparameter. As with our risk constraint in (18), in practice a slack variable can be added to the above
constraint to guarantee feasibility.

Liabilities. We can incorporate external liabilities Zt by modifying our liquid wealth update to

Lt+1 = hTt R
liq
t − 1TCt + 1TDt + st − Zt.

This encodes an external obligation of Zt dollars in period t. This could represent the liabilities of an insurer
or a pension fund. MPC is able to handle these liabilities quite gracefully: at every time t the planning
problem takes in a forecast of the next H liabilities L̂τ |t, τ = t, . . . , t + H. The insolvency constraint (17)
can be modified to include the liabilities as

Lt + ct − hTt µliq ≤ Φ−1(εins)‖Σ1/2
liq ht‖2.

Time varying forecasts. In the current problem formulation, we plan based on the mean dynamics
(11), which we treat as stationary at every time t. The mean dynamics capture the expected returns,
call intensities, and distribution intensities. It is immediate to replace these stationary forecasts with time
varying ones: planning at time t in (18) becomes

x̂τ+1|t = Aτ |tx̂τ |t +Bτ |tûτ |t, τ = t, . . . , t+H,

where Aτ |t and Bτ |t are the forecasted mean dynamics at time τ generated at time t.

Illiquid dynamics with vintages. A natural way to extend the Takahashi and Alexander illiquid asset
model is to have time varying intensity parameters that depend on the age of the investment. This amounts
to keeping track of vintages for each asset class, rather than aggregating all exposure to a given illiquid asset
in one state, as this paper does. This extension is quite natural, and is readily implementable as an only
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slightly larger tractable convex optimization based planning problem. A given illiquid asset at time t, rather
than by two states It and Kt, will now require 2k states,

It,a, Kt,a,

where a denotes the age of the investment and the maximum age tracked is k. In words, at each time, we
keep track of the exposure and uncalled commitments from commitments of age a.

9 Conclusion

We have described a flexible stochastic linear system model of liquid and illiquid alternative assets, that
takes into account the dynamics of the illiquid assets and the randomness of returns, calls, and distributions.
This model allows us to develop an MPC policy that in each time period chooses a liquid wealth allocation,
and also new commitments to make in each alternative asset.

We compare the results of this policy with a relaxed liquid model, where we assume that all illiquid
assets are fully liquid. This relaxed liquid model is easy to understand, since the challenges of alternative
assets have all been swept under the rug. For the relaxed liquid model, we can work out optimal investment
policies. The performance with these policies can be thought of as an unattainable benchmark, that we
know we cannot achieve or beat when all the challenges of alternative investments are present.

Suprisingly, the performance of the MPC policy under the real model, with all the challenges of alternative
assets, is very close to the performance of the relaxed liquid model, under an optimal policy. Roughly
speaking, there isn’t much room for improvement. This is a strong validation of the MPC policy.

Another interesting conclusion is that the relaxed liquid model is not as useless as one might imagine,
since MPC can attain similar performance with all the challenges present. In a sense this validates reasoning
based on the relaxed liquid model, where illiquid assets are treated as liquid assets. Roughly speaking, the
asset manager can reason about the portfolio using the simple relaxed liquid model; feedback control with
the MPC policy handles the challenges of illiquid alternative assets.
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