
Pre
pri
nt

An Empirical Study on the Effectiveness of Static C Code
Analyzers for Vulnerability Detection

Stephan Lipp
Technical University of Munich

Germany

Sebastian Banescu
Technical University of Munich

Germany

Alexander Pretschner
Technical University of Munich

Germany

ABSTRACT

Static code analysis is often used to scan source code for security
vulnerabilities. Given the wide range of existing solutions imple-
menting different analysis techniques, it is very challenging to
perform an objective comparison between static analysis tools to
determine which ones are most effective at detecting vulnerabilities.
Existing studies are thereby limited in that (1) they use synthetic
datasets, whose vulnerabilities do not reflect the complexity of se-
curity bugs that can be found in practice and/or (2) they do not
provide differentiated analyses w.r.t. the types of vulnerabilities
output by the static analyzers. Hence, their conclusions about an
analyzer’s capability to detect vulnerabilities may not generalize
to real-world programs. In this paper, we propose a methodology
for automatically evaluating the effectiveness of static code analyz-
ers based on CVE reports. We evaluate five free and open-source
and one commercial static C code analyzer(s) against 27 software
projects containing a total of 1.15 million lines of code and 192
vulnerabilities (ground truth). While static C analyzers have been
shown to perform well in benchmarks with synthetic bugs, our
results indicate that state-of-the-art tools miss in-between 47% and
80% of the vulnerabilities in a benchmark set of real-world pro-
grams. Moreover, our study finds that this false negative rate can
be reduced to 30% to 69% when combining the results of static ana-
lyzers, at the cost of 15 percentage points more functions flagged.
Many vulnerabilities hence remain undetected, especially those
beyond the classical memory-related security bugs.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

static code analysis, vulnerability detection, empirical study

ACM Reference Format:

Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An Empir-
ical Study on the Effectiveness of Static C Code Analyzers for Vulnerability
Detection. In Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA ’22), July 18–22, 2022, Virtual, South
Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3533767.
3534380

ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’22), July 18–22, 2022, Virtual, South Korea, https://doi.org/10.1145/3533767.3534380.

1 INTRODUCTION

Context. Dealing with software weaknesses is an inherent part
of software development. Organizations expend a non-negligible
amount of effort on detecting such weaknesses as early as possible
in the software life-cycle [29]. The security domain, with a con-
sistently high number of Common Vulnerabilities and Exposures
(CVE) submissions year after year, still sees C (and C++) among
the programming languages that are at the root of most vulnera-
bilities [66]. Accordingly, researchers have been proposing ways
to detect vulnerabilities, including techniques such as static code
analysis, dynamic software testing, and formal verification.

Beller et al. [20] examined 168,214 open-source projects to find
out if and how static code analyzers are used in practice. Their
results show that the usage of such tools is widespread, i.e., 77% of
the projects employ at least one static analyzer. Static code analysis
is thereby mostly used by software developers [60, 67] to automati-
cally scan source code (without executing it) in order to find security
vulnerabilities. Furthermore, static analyzers are usually cheaper to
set up and execute than dynamic testing tools. For example, grey-
box fuzzers [21, 22, 36] or concolic execution engines [26, 57, 69]
require a test harness as well as extensive code instrumentation to
test a given piece of software. They also need to be run for several
hours to increase the chances of detecting vulnerabilities, while
static analyzers can fully scan large codebases in less than an hour.
However, dynamic testing tools do not produce false positives, i.e.,
findings in the code that are non-issues, as each observed program
failure indicates an actual software weakness. This is a common
criticism [30, 39, 43, 44] of static analyzers and has been addressed
in many research papers [19, 46, 48, 52, 55, 59, 67]. However, a less
studied limitation is their false negative rate, i.e., software weak-
nesses that are not detected even though the static analyzer should
be able to find them.

Problem and State-of-Practice. Existing studies measure the ef-
fectiveness of static code analyzers mainly on synthetic benchmark
datasets [13, 16, 28, 33, 38, 40, 45, 56, 61, 63, 68]. These are datasets
that contain software bugs added either automatically by so-called
bug injection engines, as e.g. in the LAVA-M dataset [34], or manu-
ally by security experts such as in the Juliet Test Suite [12, 23]. How-
ever, the injected synthetic bugs are relatively easy to spot [25, 37],
as they are usually inserted in the form of syntactic code changes
to a single instruction (e.g., off-by-one array access). Many evalua-
tions [13, 28, 38, 40, 61, 63] performed on such benchmarks thereby
report detection rates around 80%—for certain types of vulnerabili-
ties even 100%—for some of the analyzers studied. Infer [10], for
example, a static analyzer also used in our benchmark, detects in
the Juliet Test Suite for C/C++ on average 79% of the vulnerabil-
ities [63] across four different Common Weakness Enumeration
(CWE) categories. However, it is questionable whether the high

https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1145/3533767.3534380

Pre
pri
nt

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Stephan Lipp, Sebastian Banescu, and Alexander Pretschner

detection rates are representative in the sense that they also apply
to the more complex vulnerabilities that occur in practice. Further-
more, this caveat calls into question the vulnerability types best
and worst detected, as well as the performance increase that can
be achieved by combining multiple analyzers, reported by some of
those studies. This information, if available for real-world programs,
would allow researchers and practitioners to gain deeper insights
into the strengths and weaknesses of static code analyzers, as well
as the trade-offs (detection increase vs. analysis overhead) when
using multiple tools in combination. Up to now, we are not aware of
any work that can answer these questions for real-world programs.
Another thread observed in related studies [11, 32, 40, 41, 65, 71] is
that they do not check whether the vulnerable code locations used
as ground truth, i.e. fault, error, or failure locations [18], are also
those that static analyzers are able to find in the first place. The
wrong code granularity for approximating vulnerability detection
can thereby render the entire evaluation invalid.

Solution and Contributions. To address the above gaps, we pro-
pose an automated and reproducible approach to assess the effec-
tiveness of five free and open-source (FOS) and one commercial
static C code analyzer(s) using a benchmark dataset that consists
of 27 FOS projects with 192 known security bugs, i.e., validated
CVEs (ground truth). For this, we also examine the code locations
typically marked by static analyzers and those of the vulnerabilities
in our dataset. We do this to determine (1) if our dataset can gener-
ally be used to evaluate such analyzers and (2) what an appropriate
code granularity is (w.r.t. our dataset) to approximate vulnerability
detection. Furthermore, due to the lack of empirical research on the
benefits of using multiple static analyzers in combination, we ana-
lyze the increase/trade-off in bug detection and number of flagged
functions of single vs. combined analyzer usage. As final part of
our study, we identify the types of vulnerabilities that were reliably
detected, as opposed to those that remained largely undetected.

This research paper presents the following contributions:

(1) We perform an in-depth analysis determining function-level
as the code granularity best suited to automatically evalu-
ate the effectiveness of static code analyzers on CVE-based
benchmark datasets (see Section 3.2).

(2) We conduct a large-scale empirical study of five FOS and one
commercial static C analyzer(s), showing that when run on
a benchmark dataset with known real-world vulnerabilities
(192 validated CVEs)
• even in the least restrictive evaluation scenario, the state-
of-the-art static analyzers chosen detect not more than
roughly half (53%) of the included software vulnerabilities
(see Section 5.1),

• using multiple analyzers can increase the detection rate
by 21 to 34 percentage points (depending on the eval. sce-
nario) compared to using only one tool, while flagging
about 15pp more functions (see Section 5.2), and

• vulnerabilities that belong to the weakness categories
CWE-{664,703} are more effectively detected than those
of CWE-{682,707,691} (see Section 5.3).

(3) We release all data and the analysis script to foster com-
parable and evidence-based studies on static code analysis:
https://doi.org/10.5281/zenodo.6515687

2 STATIC CODE ANALYSIS

2.1 Techniques

Syntactic Static Analysis. This analysis technique searches for
syntactic patterns in the source code that might indicate a vul-
nerability. Examples of such code patterns are calls to dangerous
C functions such as memcpy or strcpy, which can lead to safety-
critical system behavior when called with incorrect arguments. This
technique can thereby be applied to all source files in a codebase as
well as to specific parts of the source code as the analysis does not
require compilable code artifacts.

Semantic Static Analysis. This technique takes the program se-
mantics, i.e., control- and/or data-flow information, into account
when searching for vulnerabilities. More specifically, the source
code is first lifted into a more abstract representation, such as an
abstract syntax tree, call graph, or control-flow graph. Then, certain
security checks are performed on that representation in order to
find vulnerabilities. Despite the problem of undecidability [49] that
comes with semantic static analysis1, it allows searching for more
complex vulnerabilities.

2.2 Selected Analyzers

We selected six different static code analyzers (five that are free
and open-source and one commercial tool) that support C code.
These tools implement state-of-the-art analysis techniques and
were used in previous benchmarks [62] with synthetic software
bugs and/or are popular among practitioners, using GitHub stars (⋆)
as an indicator [24] for this.

2.2.1 Flawfinder (FLF). This static analyzer is licensed under the
GPLv2. Here, we use version 2.0.11 of Flawfinder [9] (⋆250),
released in February 2020. Flawfinder implements a syntactic
analysis technique that scans C/C++ source code for potentially
vulnerable code patterns stored in a local database. The integrated
rules primarily identify functions that have been susceptible to
vulnerabilities in the past and also assess their risk of triggering a
security bug by analyzing the arguments.

2.2.2 Cppcheck (CPC). This static analyzer is released under the
GPLv3. In this study, we employ version 2.3 of Cppcheck [6] (⋆3.9k),
which was released in December 2020. Cppcheck scans C and C++
source code for security-critical bugs using lightweight data-flow
analysis. Using a combination of syntactic and semantic analysis
techniques, Cppcheck focuses on detecting software vulnerabilities
caused by undefined C/C++ behavior as well as on critical source
code constructs.

2.2.3 Infer (IFR). This static analyzer is developed by Meta (for-
merly known as Facebook, Inc.) and is released under the MIT Li-
cense. In this study, we use Infer [10] (⋆12.9k) version 0.14.02,
released in April 2018. Infer implements a semantic analysis ap-
proach that utilizes formal verification techniques such as sepa-
ration logic [58] and bi-adduction [27], allowing to reason about
1 Symbolic execution [47] and abstract interpretation [31] also fall into this category,
but were not considered in this study.
2 Although newer versions of Infer were available at the time of conducting the
experiments, this version was the only one we could get run on an older Ubuntu
GNU/Linux system needed to compile and analyze the older program versions of
Binutils and FFmpeg.

https://doi.org/10.5281/zenodo.6515687

Pre
pri
nt

An Empirical Study on the Effectiveness of Static C Code Analyzers for Vulnerability Detection ISSTA ’22, July 18–22, 2022, Virtual, South Korea

pointer structures (such as those in C/C++ to manipulate memory),
in order to detect software vulnerabilities.

2.2.4 CodeChecker (CCH). This refers to an entire static analysis
platform that is released under the Apache-2.0 License. Here, we
use CodeChecker [3] (⋆1.5k) version 6.12.0, released in May 2020.
By default, it employs the LLVM/Clang static analysis toolchain
consisting of the semantic analyzers Clang Static Analyzer [1]
and Clang-Tidy [2]. This analysis platform is thereby not limited
to these two C/C++ analyzers, i.e., other static analyzers can be
added to run them in combination.

2.2.5 CodeQL (CQL). This static analysis engine is released under
a custom license that allows to freely use CodeQL [4] (⋆4.1k) for
academic research. In this study, we use version 2.1.3 of CodeQL,
released in May 2020. CodeQL implements a semantic analysis
technique where the analysis engine is decoupled from the respec-
tive rules/checks, formulated in a query language called QL [17].
Predefined rule packages thereby already exist that can be used to
search for security-relevant weaknesses in the code.

2.2.6 CommSCA (CSA). This static analyzer is the only commercial
tool used in this study. Similar to the other analyzers, we made
sure to use one of the latest versions of CommSCA. To protect
the company behind this static code analyzer, we anonymized its
name and neither reveal its exact version and release date, nor the
implemented analysis technique.

2.3 Automated Analyzer Evaluation

Common Weakness Enumeration (CWE). CWE [5] refers to
a category system for software (and hardware) weaknesses, in-
cluding security vulnerabilities, which is also used in CVE reports
and supported by many static analyzers [4, 6, 7, 9, 64]. Each weak-
ness type included in this enumeration has a unique identifier as
well as a description that indicates how it relates to other types.
This relationship is thereby specified as a child-parent hierarchy,
meaning that the child CWE is a more concrete software weak-
ness instance of the parent CWE. Top-level CWEs with no further
parent CWEs, such as CWE-664: “Improper Control of a Resource
Through its Lifetime”, can therefore be considered the lowest com-
mon denominator of all subjacent child CWEs. Accordingly, these
high-level CWEs represent vulnerability classes, while all CWEs
below indicate vulnerability types.

deallocuse
(Cppcheck)

cpp/use-after-free
(CodeQL)

USE_AFTER_FREE
(Infer)

CWE-415
(“Double Free”)

CWE-416
(“Use After Free”)

CWE-825 . . . CWE-664

Figure 1: Example of mapping and grouping analyzer-

specific use-after-free vulnerability identifiers to the vulner-

ability class CWE-664.

Table 1: Benchmark Programs

Subject Version LoC # Functions # Vulns.

Libpng 1.6.38 10,184 398 7
LibTIFF 4.1.0 19,527 826 13
Libxml2 2.9.10 85,442 2,982 17
OpenSSL 3.0.0 165,187 13,036 21
PHP 8.0.0-dev 209,407 9,145 15
Poppler 0.88.0 63,561 4,659 22
SQLite3 3.32.0 53,272 2,298 16
Binutils 2.29 134,767 4,071 59
FFmpeg n3.3.2 413,353 17,788 22

Total 1,154,700 55,203 192

CWE Mapping and Grouping. Different static analyzers use
different identifiers for the types of vulnerabilities they support.
Flawfinder, for example, use CWEs, while others introduce their
own vulnerability identifiers. These different identifiers make it
difficult to automatically assess whether a static analysis tool is
referring to the correct vulnerability type, which would allow for
a more rigorous evaluation. For this reason, we created a map-
ping that assigns each analyzer-specific vulnerability identifier to
the corresponding analyzer-agnostic CWE ID. An example of this
mapping can be found in Fig. 1, where the use-after-free vulner-
ability identifiers of the analyzers Cppcheck, CodeQL, and Infer
are mapped to CWE-416: “Use After Free”.

Many C-specific vulnerabilities are closely related. For example,
double-free vulnerabilities (CWE-415) are related to use-after-free
ones (CWE-416); hence, CWE-825: “Expired Pointer Dereference”
constitutes the parent of both types. Consequently, by comparing
only low-level vulnerability types, we would diminish the effective-
ness of the analyzers that do not output the exact CWE IDs, but
closely related ones that are also correct. Therefore, we leverage
the existing CWE hierarchy as proposed by Goseva-Popstojanova
and Perhinschi in [40] to group related vulnerability types into
classes. Using this CWE grouping, we can now automatically and
reproducibly evaluate if the class of the vulnerability issued by the
tools matches that of the vulnerability in the code.

3 BENCHMARKING

3.1 Benchmark Dataset — Ground Truth

Selection Criteria and Existing Datasets. For our evaluation,
we searched for benchmark datasets with C programs that contain
a representative and diverse set of well-documented security vul-
nerabilities. Existing work [13, 16, 28, 33, 38, 40, 45, 56, 61, 63, 68]
thereby mostly utilize programs that include synthetic software
bugs [8, 34, 61] such as those in the widespread Juliet Test Suite [12].
However, these bugs do not necessarily reflect the complexity of
real-world vulnerabilities [25, 37]. Unfortunately, datasets with
real-world security bugs are rather rare and those that are available
contain only few vulnerabilities (mostly of the same type) [53] or
are insufficiently documented, e.g., they do not specify the vulnera-
bility types [14, 15].

Pre
pri
nt

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Stephan Lipp, Sebastian Banescu, and Alexander Pretschner

10

100

1000

SQLite3 PHP FFmpeg Poppler Binutils OpenSSL Libxml2 libpng LibTIFF

Subjects

L
o

C
 (

V
u

ln
.

F
u

n
c
tio

n
s)

Figure 2: Log-scaled distribution of lines of code (LoC) of

functions affected by ≥1 vulnerabilities across the different

benchmark programs.

Magma plus Open-Source Programs. An exception to this is
Magma [42], a benchmark dataset built from validated CVE reports,
originally designed to evaluate the effectiveness of fuzzers. The
included programs contain a large and diverse set of vulnerabilities
that should also be detectable by static C analyzers (discussed be-
low). Magma thereby uses a technique called front-porting, where
security bugs found and publicly reported in the past are rein-
serted into the latest program version. For each ported vulnerability,
Magma specifies—besides the root cause—the function(s) where it
manifests and may lead to a program crash.

Besides Magma (version v1.1), which contains 111 vulnerabili-
ties (CVEs), we also employ an older version of the Binutils suite,
consisting of 19 programs for manipulating compiled code, and the
video/audio processing tool FFmpeg, as they contain many well-
documented vulnerabilities3 (81 non-front-ported vulnerabilities
in total). An overview of our benchmark programs can be found in
Table 1. This table is supplemented by Fig. 2, showing that except
for SQLite3, the arithmetic mean of lines of code of the functions
affected4 by one or more vulnerabilities is below 100 LoC.

Vulnerability Validation. Since many of the employed analyzers
attach themselves to the build process, we checked5 that none of
the vulnerable source code was removed by the preprocessor due to
an improper build configuration. In cases vulnerable code has been
removed, we either reconfigured the build process or, if we could
not adjust the configuration accordingly, omitted6 the vulnerability
from the evaluation.

Furthermore, when using real-world programs in such evalua-
tions, there is the possibility that they contain vulnerabilities that
have not been discovered yet. Accordingly, a static analyzer may
detect a new vulnerability that is then not considered in the final
rating. However, since we evaluate whether the static analyzers

3 We manually examined every CVE-related commit message and code changes to
extract the functions affected by the vulnerabilities.
4 By “affected” we mean that a code block contains at least one incorrect instruction
that (along with others) cause the vulnerability.
5 We scanned the LLVMbitcode file(s) [50] of the respective programs for the vulnerable
functions using a self-written compiler pass.
6 The software vulnerabilities CVE-2019-19959, CVE-2017-15286, CVE-2019-19925,
CVE-2019-9936 in SQLite3, CVE-2019-9022 in PHP, and a buffer-overread vulnerabil-
ity in Libxml2 (denoted BUG #758518 in Magma) could not be verified in the LLVM
bitcode files and were therefore omitted from the evaluation. We also reported these
vulnerabilities to the Magma creators.

0

10

20

30

40

50

12
5

11
9

78
7

41
6

39
9

77
2

40
1

41
5

61
1

66
4

68
1

77
0

19
0

36
9

13
1

18
9

83
5

61
7

47
6 20 12

9

Vulnerability Type (CWE ID)

#
 V

u
ln

e
ra

b
ili

tie
s

CWE−664 CWE−682 CWE−691 CWE−703 CWE−707

Figure 3: Distribution of the vulnerability types included in

our benchmark dataset. Each type thereby belongs to one

of the five vulnerability classes CWE-{664,682,691,703,707},
which count 117, 27, 7, 29, and 12 (in total 192) vulnerabili-

ties, respectively.

manage to find known and existing security bugs in our benchmark
dataset, we consider this permissible to draw conclusions about
their effectiveness.

Vulnerability Types andClasses. Figure 3 shows the distribution
of vulnerability types (CWE IDs) of the 192 CVEs in our benchmark
dataset. In total, it contains 21 different types, grouped into the five
vulnerability classes described below.

3.1.1 Improper Control of a Resource Through its Lifetime (CWE-
664). This class refers to memory-related vulnerabilities where the
software improperly retains control of a resource. Instances are in-
correct out-of-bound read/write operations (CWE-{119,125,787}),
use-after-free vulnerabilities (CWE-{415,416}), resource manage-
ment errors (CWE-{399,770,772,401}), and incorrect conversion
between numeric types (CWE-681).

3.1.2 Incorrect Calculation (CWE-682). Vulnerabilities that belong
to this class originate from incorrect calculations whose results are
later used in security-critical source code such as memory alloca-
tions/accesses. Typical for this class are divide-by-zero (CWE-369)
and integer-overflow vulnerabilities (CWE-190), which can lead to
wrong buffer size calculations (CWE-131) like the one in function
xmlMemStrdupLoc (see Fig. 4).

3.1.3 Insufficient Control-Flow Management (CWE-691). This class
represents vulnerabilities where the program control-flow is manip-
ulated so that the security of the software system is compromised.
Examples are loops whose exit condition is never reached/satisfied
(CWE-835), allowing attackers to consume excessive resources, or
reachable assertions (CWE-617) that can be triggered by an attacker
to initiate a denial-of-service (DoS) attack.

3.1.4 Improper Check or Handling of Exceptional Conditions (CWE-
703). This class concerns vulnerabilities where exceptional con-
ditions are not properly checked/handled in the source code. A
concrete vulnerability type of this class would e.g. be a missing
if statement that prevents a NULL pointer dereference (CWE-476),
resulting in a program crash.

Pre
pri
nt

An Empirical Study on the Effectiveness of Static C Code Analyzers for Vulnerability Detection ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 2: Supported Vulnerability Classes

Analyzer

Vuln. Class FLF IFR CPC CCH CQL CSA

CWE-664 ✓ ✓ ✓ ✓ ✓ ✓

CWE-682 ✓ ✓ ✓ ✓ ✓ ✓

CWE-703 ✓ ✓ ✓ ✓ ✓

CWE-707 ✓ ✓ ✓ ✓

CWE-691 ✓ ✓ ✓ ✓

3.1.5 Improper Neutralization (CWE-707). This refers to vulnera-
bilities where the program input/output is insufficiently neutralized
against security threats. Examples includemalformed strings passed
via parameters or environment variables to a program that are not
validated (CWE-20), as well as improper validation of array indices
(CWE-129) that pose a security risk such as remote code execution.

Supported Vulnerability Classes. Table 2 shows for each vulner-
ability class if it is supported (✓) by the respective static analyzer,
or not (blank). A class is thereby considered supported if the docu-
mentation states that the respective analyzer implements a security
check for at least one of the vulnerability types in that specific
class. As shown in the table, most vulnerability classes—especially
CWE-{664,682}—are supported by the studied analyzers. However,
class CWE-703 is not supported by Flawfinder and CWE-707 not
by Infer and Cppcheck. Moreover, Infer and CodeChecker do
not support CWE-691 vulnerabilities.

3.2 Vulnerability Detection Granularity

Root Cause vs. Manifestation. In general, static analyzers rather
mark the code location(s) where a vulnerability potentially man-
ifests as a security-critical program state (error) during execu-
tion, rather than the location(s) of the corresponding root cause
(fault) [18]. One reason for this is to reduce the number of false
positives, since not every fault necessarily manifests as a security
bug. The error of a vulnerability can thereby occur at places in the
code that are different from those of the fault.

Figure 4 gives an example of this issue, where a potential integer-
overflow in function strlen on line 3 (root cause/fault) may mani-
fest as a out-of-bounds write vulnerability (CWE-787) from line 6
onwards. Thereby, none of the six analyzers flag the line contain-
ing the root cause as vulnerable. Instead, CodeQL and CommSCA
mark line 6 as containing CWE-401: “Missing Release of Mem-
ory after Effective Lifetime”. Moreover, on line 18 CommSCA in-
dicates CWE-676: “Use of Potentially Dangerous Function”, while
Flawfinder and CodeQL both output CWE-120: “Buffer Copy with-
out Checking Size of Input”. Lastly, CodeQL flags line 19 with
CWE-401 (same as line 6 before). All lines marked by those analyz-
ers thereby correctly indicate possible manifestations (including
the correct vulnerability class) of this vulnerability.

Abstraction Level. As mentioned before, the benchmark dataset
used in this study is based on CVE reports. However, the accuracy
across different reports can vary widely [54], making it difficult
to find an appropriate code abstraction to automatically check
whether a vulnerability was detected by a static analyzer, or not.

1 char *xmlMemStrdupLoc(const char *str, const char *file, int
line) {↪→

2 char *s;
3 size_t size = strlen(str) + 1;
4 MEMHDR *p;
5 if (!xmlMemInitialized) xmlInitMemory();
6 p = (MEMHDR *) malloc(RESERVE_SIZE + size);
7 if (!p) goto error;
8 p->mh_tag = MEMTAG;
9 p->mh_size = size;

10 p->mh_type = STRDUP_TYPE;
11 p->mh_file = file;
12 p->mh_line = line;
13 xmlMutexLock(xmlMemMutex);
14 p->mh_number = ++block;
15 xmlMutexUnlock(xmlMemMutex);
16 /* #define CLIENT_2_HDR(a) ((void *)(((char *)(a)) -

RESERVE_SIZE)) */↪→

17 s = (char *) HDR_2_CLIENT(p);
18 strcpy(s,str);
19 return(s);
20 error:
21 return(NULL);
22 }

Figure 4: Function xmlMemStrdupLoc (without debug code) in

Libxml2 containing CVE-2017-5130 which shows the diver-

gence between the root cause on line 3 and the lines 6, 18,

and 19 (potential manifestation) marked by Flawfinder,

CodeQL, and CommSCA.

Some CVEs in our dataset only name the function(s) where the
vulnerability manifests and may lead to a program crash, without
specifying the exact lines involved. Others instead describe the root
cause (not manifestation) in the code through a software patch
(e.g., link to GitHub commit). These heterogeneous vulnerability
descriptions (fault vs. error and function- vs. instruction-level) in
the CVEs, and the fact that static analyzers mark the manifestation
of a vulnerability in the code rather than its root cause, led us to
choose function-level as the code abstraction for our evaluation.
Note that using a more fine-grained code abstraction, e.g. lines
or basic blocks, would require to manually determine all possible
instructions where a vulnerability may manifest. However, this not
only requires a lot of time and effort for the 192 vulnerabilities, but
is also very subjective and can distort the entire evaluation.

Fault-Error Location Conformity. For our evaluation to work,
fault (root cause) and error (manifestation) of the vulnerabilities in
our benchmark must occur within the same functions. Otherwise,
for CVEs that only specify the location(s) of the fault, but not that
of the error, we cannot tell if the vulnerability was detected or
not, as a static analyzer may mark the correct manifestation in a
function other than that containing the fault. To verify this, we use
the metric

Fault-Error Conformity (FEC) =
|Ffault ∩ Ferror |

|Ferror |
(1)

which for a given vulnerability (CVE) computes the ratio of error-
containing functions (Ferror) that also include the underlying fault
(Ffault). Accordingly, the higher the FEC ratio, the more fault and er-
ror locations of a vulnerability overlap within the same function(s).

Pre
pri
nt

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Stephan Lipp, Sebastian Banescu, and Alexander Pretschner

Table 3: Fault-Error Conformity Results

Proportion of vulns. with

Subject # Vulns. FEC = 1.0 1.0 > FEC > 0.0 FEC = 0.0

Libpng 7 0.57 0 0.43
LibTIFF 13 1 0 0
Libxml2 17 0.94 0 0.06
OpenSSL 21 1 0 0
PHP 15 0.93 0 0.07
Poppler 22 1 0 0
SQLite3 16 1 0 0

Mean 0.92 0 0.08

Note that we can perform this analysis only for the vulnerabilities
in Magma as the provided CVE patch files additionally specify the
functions in which they manifest. For our evaluation, we assume
similar Fault-Error Conformity results for Binutils and FFmpeg as
they are comparable to the Magma programs in terms of program
size, application domain, and vulnerability types contained.

Table 3 shows for each Magma program the proportion of the
111 vulnerabilities where (1) fault and error location(s) fully overlap
in the same function(s) (FEC = 1.0), (2) some intersecting functions
exist (1.0 > FEC > 0.0), and (3) both fault and error occur in disjoint
functions (FEC = 0.0). Except for Libpng, where only four of the
seven vulnerabilities (57%) completely overlap, in almost7 all other
programs fault and error of the vulnerabilities provided by Magma
lie within the same function(s).

Summary (FEC). On average, the root cause (fault) and the
manifestation (error, marked by static analyzers) both lie within
the same function(s) in 92% of the Magma vulnerabilities. As-
suming this also holds for the vulnerabilities in Binutils and
FFmpeg (for which we only know the faults), function-level is
thus a suitable code abstraction to evaluate the effectiveness of
such tools using our CVE-based benchmark dataset.

4 EVALUATION SETUP

4.1 Research Questions

The evaluation presented in this work aims to answer the following
research questions:
RQ1 Static Analyzer Effectiveness. How effective are state-of-the-

art static C code analyzers at detecting vulnerabilities in real-
world codebases?

RQ2 Effectiveness Increase by Analyzer Combinations. How much
more effective is the best combination of static C analyzers
than the best single analyzer?

RQ3 Best vs. Worst Detected Vulnerabilities. Which classes of vul-
nerabilities are detected best and worst by static C analyzers?

7 The vulnerabilities where the affected functions do not entirely overlap are:
CVE-2014-9495, CVE-2019-7317, a use-after-free vulnerability that has not yet
been assigned a CWE ID (all three in Libpng), CVE-2017-8872 (Libxml2), and
CVE-2018-14883 (PHP). All five vulnerabilities belong to the class CWE-664: “Improper
Control of a Resource Through its Lifetime”.

4.2 Evaluation Metrics and Scenarios

Effectiveness Measures. The goal of the chosen static analyzers
is to detect as many vulnerabilities in the code as possible, while
minimizing at the same time the number of false analyzer alarms.
To evaluate this, we use the metrics:

Vuln. Detection Ratio =
Detected vulns.

All vulns. in benchmark
(2)

Marked Function Ratio =
Marked Functions

All functions in benchmark
(3)

The first formula (a.k.a. recall) calculates the proportion of de-
tected vulnerabilities included in the benchmark. Instead of the
precision measure—for which we do not have ground truth data
(see Section 3.1)—we use the proportion of functions marked as
potentially vulnerable by an analyzer (second formula) to approxi-
mate the extent of false positives. We consider this a valid approach,
since the ratio of functions affected by one or more of the 192 vul-
nerabilities (i.e., 223/55203 ≈ 0.004) is very small.

Table 4: Evaluation Scenarios

Comparison of vuln. class

No Yes

Functions affected

by vuln. to detect

≥1 Scenario 1 (S1-1) Scenario 2 (S1-2)

All Scenario 3 (S2-1) Scenario 4 (S2-2)

Vulnerability Detection Scenarios. Inspired by Thung et al. [65],
we evaluate the vulnerability detection capabilities of the static
analyzers with respect to four different scenarios:

• Scenario 1 (S1-1): A vulnerability is considered detected
if at least one affected function was marked by the static
analyzer, regardless of the issued vulnerability class.

• Scenario 2 (S1-2): A vulnerability is considered detected
if at least one affected function was marked by the static
analyzer together with the correct vulnerability class.

• Scenario 3 (S2-1): A vulnerability is considered detected
if all affected functions were marked by the static analyzer,
regardless of the issued vulnerability class.

• Scenario 4 (S2-2): A vulnerability is considered detected
if all affected functions were marked by the static analyzer
together with the correct vulnerability class.

These evaluation scenarios (summarized in Table 4) allow to
examine the effectiveness of the static analyzers from different
perspectives. S1-2 and S2-2 thereby tighten our approximation by
additionally requiring the analyzers to return the correct vuln. class
for a security bug to be counted as detected. Accordingly, tools that
perform well in the these two scenarios can accelerate the manual
search for resp. remediation of vulnerabilities by providing both
the right code locations and non-misleading vulnerability types.

4.3 Analyzer and Subject Configuration

Static Code Analyzers. For each analyzer, we studied its docu-
mentation, and if a check for a vulnerability type in our benchmark
supported by the tool is not enabled by default, we enabled it.

Pre
pri
nt

An Empirical Study on the Effectiveness of Static C Code Analyzers for Vulnerability Detection ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Checks that do not focus on security vulnerabilities, such as code
smells or unreachable code, were disabled. For CodeQL, we used
the external libraries and queries (security checks) of version 1.23.1,
provided by Semmle8.

Subject Programs. We changed the build process of SQLite3 so
that all C files are compiled (and analyzed) separately, instead of
merging all source files into a single code file before compilation.
Otherwise, this would prevent an automated evaluation of static
analyzers that attach to the build process. In Binutils, the vulnera-
bilities are spread over the 19 programs and also over the code for
the manipulations of the different binary formats. Therefore, we
(cross-)compiled and analyzed each of the affected Binutils binary
format variants separately. Here, we also made sure that we did not
consider shared code fragments twice in our evaluation.

4.4 Infrastructure

In this study, we performed all experiments on a machine with an
Intel® Xeon® E5-1650v2 processor containing 12 logical cores that
run at 3.5GHz, with access to 128GBmainmemory andGNU/Linux
Ubuntu 16.04 (64-bit) as operating system.

5 EVALUATION RESULTS

Note that CodeQL did not output any analysis results for all Binutils
programs after more than twoweeks of running andmultiple retries.
For this reason, we evaluated CodeQL with zero vulnerabilities
found on Binutils.

5.1 RQ.1: Static Analyzer Effectiveness

Program-specific Performance. The low detection rates in Fig. 5
show that many vulnerabilities could not be found by the selected
static analyzers. The analyzers performed particularly poorly in
Poppler, FFmpeg, and Libpng, possibly due to the following reasons.
With respect to Poppler, it is the only C++ program in our bench-
mark. Although all employed tools support C/C++, it seems they
focus primarily on plain C and provide only rudimentary support
for C++. As for FFmpeg, it is the largest program in our benchmark
with 413,353 lines of code, which may force the static analyzers
to abort the analysis when e.g. the nesting depth of if or #ifdef
statements reaches a certain limit. Regarding Libpng, the low detec-
tion rates may be attributed to the divergent functions of fault and
error of some of its vulnerabilities (see Table 3). Furthermore, these
results indicate no observable performance difference on programs
containing front-ported vulnerabilities and Binutils and FFmpeg,
which contain normal vulnerabilities.

Analyzer-specific Performance. Figure 6 shows substantial per-
formance differences between the static analyzers. The most ef-
fective ones are CommSCA, CodeQL, and Flawfinder, whereas
Cppcheck, CodeChecker, and Infer are those with the fewest vul-
nerabilities detected. The commercial analyzer CommSCA outper-
forms in all evaluation scenarios the next best free and open-source
static analyzer, i.e. CodeQL resp. Flawfinder, by 45 (24 percentage
points), 26 (13pp), 22 (11pp), and 12 (6pp) more security bugs found.
CommSCA thereby marks slightly fewer functions than CodeQL
and is therefore likely to return fewer false positives. Interestingly,

8 https://www.semmle.com/

with about the same number of marked functions, Flawfinder
outperforms Infer in all four scenarios. Also, it has roughly the
same detection rates as CodeQL in S1-{1,2}, while flagging 11pp
less functions. This shows that semantic analysis methods are not
always more effective than the less complex syntactic ones.

Summary (RQ1). Our empirical evaluation shows that state-of-
the-art static C code analyzers overlook a large number of real-
world vulnerabilities. Depending on the different evaluation
scenarios, even the top-performing analyzer (CommSCA) fails
to detect 47% (S1-1), 70% (S1-2), 64% (S2-1), and 80% (S2-2) of the
192 vulnerabilities included in our benchmark dataset.

5.2 RQ.2: Effectiveness Increase by Analyzer

Combinations

Best-performing Analyzers and Combinations. Here, we se-
lected the static analyzers and combinations thereof (free and open-
source vs. commercial) with the most vulnerabilities found in all
benchmark programs. A vulnerability is thereby considered found if
at least one analyzer from the respective group was able to detect it.
Since multiple combinations found the same number of bugs, we se-
lected those that contain the fewest analyzers and thus also output
the fewest false positives. As shown in Fig. 7, all selected combina-
tions that contain CommSCA count less than six static analyzers.
This implies that CommSCA subsumes all vulnerabilities found by
Cppcheck in the scenarios S{1,2}-1 and by CodeChecker in S{1,2}-2.
Furthermore, most of these combinations include Infer, Cppcheck,
and CodeChecker, which are rather ineffective when run alone
(see Fig. 6)—apparently, they manage to find security bugs that the
others overlook. This supports the suggestion of Fatima et al. [35]
of using multiple analyzers to detect more vulnerabilities.

Performance Improvements. As shown in Fig. 7, the best an-
alyzer combination (Flawfinder-Infer-CodeQL-CodeChecker-
CommSCA) detects in scenario S1-1 34 (17pp) and in S2-1 30 (16pp)
more vulnerabilities than the best single static analyzer (CommSCA),
while marking 15pp more functions. In S1-2 and S2-2, Flawfinder-
Cppcheck-Infer-CodeQL-CommSCAoutperformsCommSCAwith
24 (13pp) and 21 (11pp) more vulnerabilities found, again with 15pp
more flagged functions. Interestingly, the best combination detects
in S1-1, S2-1, and S2-2 more than twice as many security bugs as
CodeQL, however, at the cost of flagging roughly double the num-
ber of functions. For scenario S1-2, with 6 times more functions
marked, the best combination finds more than three times as many
vulnerabilities as Flawfinder. Moreover, the best combinations of
free and open-source analyzers detect in all four scenarios at least
as many vulnerabilities as the commercial tool CommSCA.

Summary (RQ2). Our empirical evaluation shows that us-
ing multiple static C code analyzers can improve vulnerability
detection in the different evaluation scenarios by 21 to 34 per-
centage points compared to a single, top-performing analyzer,
while marking 15pp more functions as potentially vulnerable.
Nonetheless, the best combination(s) still miss 30% (S1-1), 57%
(S1-2), 43% (S2-1), and 69% (S2-2) of the 192 vulnerabilities.

https://www.semmle.com/

Pre
pri
nt

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Stephan Lipp, Sebastian Banescu, and Alexander Pretschner

PHP Poppler SQLite3

LibTIFF Libxml2 OpenSSL

Binutils FFmpeg libpng

FLF CPC IFR CCH CQL CSA FLF CPC IFR CCH CQL CSA FLF CPC IFR CCH CQL CSA

FLF CPC IFR CCH CQL CSA FLF CPC IFR CCH CQL CSA FLF CPC IFR CCH CQL CSA

FLF CPC IFR CCH CQL CSA FLF CPC IFR CCH CQL CSA FLF CPC IFR CCH CQL CSA

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Analyzers

P
ro

p
o

rt
io

n
 o

f
D

e
te

ct
e

d
 V

u
ln

e
ra

b
ili

tie
s

Scenario 1 (S1−1) Scenario 2 (S1−2) Scenario 3 (S2−1) Scenario 4 (S2−2)

Figure 5: Proportion of vulnerabilities detected by the static C analyzer in the different benchmark programs.

Scenario 3 (S2−1) Scenario 4 (S2−2)

Scenario 1 (S1−1) Scenario 2 (S1−2)

CSA CQL FLF IFR CCH CPC CSA CQL FLF IFR CCH CPC

CSA CQL FLF IFR CCH CPC CSA FLF CQL IFR CCH CPC

0.2

0

0.2

0.4

0.2

0

0.2

0.4

Analyzers

P
ro

p
o

rt
io

n

Detected Vulns. Marked Functions

Figure 6: Proportion of detected vulnerabilities and flagged

functions (mirrored y-axis scale) by the different static C an-

alyzers in all benchmark programs.

5.3 RQ.3: Best vs. Worst Detected

Vulnerabilities

Figure 8 shows the detection rates of the vulnerability classes best
and worst detected by the six static analyzers. Note that scenarios
S1-1 and S2-1 ignore the vulnerability class output by the analyzers,
hence allowing only limited insights here.

Best Detected Classes. The two vulnerability classes supported
by most of the employed analyzers, i.e. CWE-{664,703} (see Ta-
ble 2), are also the ones whose vulnerabilities were detected most
frequently in the scenarios S1-2 and S2-2. However, 50% (and more)
of the CWE-{664,703} vulnerabilities were still overlooked in these
two scenarios, revealing once again the deficiencies of state-of-
the-art static C analyzers. Also note that CWE-682 vulnerabilities
(supported by all six analyzers) are best detected in the scenarios
S1-1 (78%) and S2-1 (70%), which might be an indicator of insuffi-
ciently differentiated vulnerability types in these tools.

Worst Detected Classes. The worst detected vulnerability classes,
i.e. CWE-{691,707}, also coincide with the ones supported by the
fewest analyzers. In both scenarios, S1-2 and S2-2, one out of seven
(14%) included CWE-707 vulnerabilities and only one out of twelve
(8%) CWE-691 ones could be found. Now, given that Flawfinder,
Cppcheck (CWE-691) resp. CodeChecker (CWE-707), CodeQL, and

Pre
pri
nt

An Empirical Study on the Effectiveness of Static C Code Analyzers for Vulnerability Detection ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Scenario 1 (S1−1) Scenario 2 (S1−2) Scenario 3 (S2−1) Scenario 4 (S2−2)

FLF
−I

FR
−C

Q
L−

C
C
H
−C

SA
C
SA

FLF
−C

PC
−I

FR
−C

Q
L−

C
C
H

C
Q
L

FLF
−C

PC
−I

FR
−C

Q
L−

C
SA

FLF
−C

PC
−I

FR
−C

Q
L−

C
C
H

C
SA

FLF

FLF
−I

FR
−C

Q
L−

C
C
H
−C

SA

FLF
−C

PC
−I

FR
−C

Q
L−

C
C
H

C
SA

C
Q
L

FLF
−C

PC
−I

FR
−C

Q
L−

C
SA

FLF
−C

PC
−I

FR
−C

Q
L−

C
C
H

C
SA

C
Q
L

0.25

0.00

0.25

0.50

0.75

Analyzer Combinations

P
ro

p
o

rt
io

n

Detected Vulns. Marked Functions

Figure 7: Proportion of detected vulnerabilities and flagged functions by the best single static C analyzers and the best analyzer

combinations (free and open-source/commercial) in all benchmark programs.

Scenario 3 (S2−1) Scenario 4 (S2−2)

Scenario 1 (S1−1) Scenario 2 (S1−2)

664 682 691 703 707 664 682 691 703 707

0

30

60

90

120

0

30

60

90

120

Vulnerability Class (CWE ID)

#
 V

u
ln

e
ra

b
ili

tie
s

Detected Included

Figure 8: Number of vulnerabilities detected by the static C

analyzers in the different vuln. classes.

CommSCA support these vulnerability classes, the chances of de-
tecting such vulnerabilities in real-world programs through static
analysis are rather low.

Summary (RQ3). Our empirical evaluation shows that vulner-
abilities of the classes CWE-{664,703} were more effectively
detected by the static C code analyzers than those belonging
to CWE-{682,707,691}. However, depending on the evaluation
scenario, 32%–66% of the 117 CWE-664 vulnerabilities and 24%–
59% of the 29 CWE-703 ones are missed by the tools.

6 THREATS TO VALIDITY

External Validity. This threat relates to the degree to which our
results can be generalized to and across programs and static anal-
ysis tools outside of our benchmark. To mitigate this threat, we
use a diverse set of 27 real-world programs with a total of 192

vulnerabilities (CVEs). Furthermore, we employ six different static
C code analyzers, including one commercial tool, that implement
both modern and older but proven analysis techniques.

Internal Validity. The threats discussed hereafter concern the
degree to which our empirical study minimizes potential method-
ological mistakes.

One concern relates to the correctness of the CWE mapping
for the static analyzers Infer and CodeChecker. Here, for each
analyzer-specific vulnerability identifier, we checked the corre-
sponding description in the documentation to ensure that we as-
signed an appropriate CWE. For the identifiers that either did not
provide a description or one that was unclear to us, we contacted
the developers for additional information or let them validate our
mapping, respectively.

Another concern is that the front-ported vulnerabilities in the
Magma programs negatively impact the effectiveness of the em-
ployed static analysis tools, i.e., the code of the newer program ver-
sions may make it harder for the tools to detect older, front-ported
bugs. To reduce this potential bias, we added 20 more open-source
programs (FFmpeg plus the Binutils suite) and thus 82 additional
vulnerabilities to our benchmark for which the chosen program
versions contain known vulnerabilities.

Moreover, whenever using real-world programs in such an eval-
uation, there is the chance that they contain further vulnerabili-
ties that have not been detected yet. However, since we evaluate
whether the selected static code analyzers succeed in finding known
and existing software vulnerabilities, we believe that this allows
drawing valid conclusions about their effectiveness.

The last threat to validity concerns our assumption that the code
location(s) of the fault (ground truth) and that of the corresponding
manifestation (marked by the static analyzers) of the vulnerabili-
ties in FFmpeg and Binutils also lie within the same functions. We
cannot guarantee this, but since these programs are comparable
to those provided by Magma in terms of program size, application
domain, and vulnerability types included, we consider this a valid
assumption.

Pre
pri
nt

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Stephan Lipp, Sebastian Banescu, and Alexander Pretschner

7 RELATEDWORK

The relevance of evaluating static code analyzers against real-world
vulnerabilities is underlined by a project called OpenSSF CVE
Benchmark [11], initiated by the Open Source Security Foundation
(OpenSSF)9 to facilitating a uniform comparison of static JavaScript
analyzers. At the time of writing this paper, their benchmark in-
cludes three analyzers and around 200 vulnerabilities (CVEs).

The work of Zitser et al. [71] also evaluates the performance of
several static C (and C++) analyzers. However, different from our
study, they focus on buffer-overflow vulnerabilities and discuss the
analyzers’ false positive rates. In contrast, we analyses the extent
of false negatives, thereby also considers a much wider range of
vulnerability types. Also, we evaluate the static analyzers on real-
world codebases, while Zitser et al. used synthetic programs (with
a total of 14 vulnerabilities) due to limitations of the employed
analyzers. Interestingly, although their work is over 15 years old,
the detection rates have not improved much today.

Zheng et al. [70] compared three commercial static C/C++ analyz-
ers on three Nortel network service software products using several
metrics. Among others, they evaluated the defect detection rates
of the analyzers, taking mainly into account non-security-related
bugs. The false negative rates they report are thereby slightly lower
than what we observed, but around the same order of magnitude.
However, they neither include free and open-source (FOS) static
analyzers nor benchmark programs outside the network domain,
which may limit the generalizability of their results. In contrast,
we use an automated approach to evaluate the effectiveness of
six different static analyzers (FOS and commercial) in detecting
vulnerabilities in 27 programs from different domains.

Chatzieleftheriou and Katsaros [28] conduct an evaluation of six
static code analyzers, including two commercial ones, using a syn-
thetic dataset targeted at common C/C++ vulnerabilities. Therein,
they compare the tools individually, but not in combination, and
present the analyzers’ precision and recall scores. The only analyzer
also found in our study is Cppcheck, which similarly to our results
performs poorly compared to the other tools.

Goseva-Popstojanova and Perhinschi [40] assess the effective-
ness of three commercial static analyzers for C/C++ and Java on
the synthetic Juliet Test Suite [12] and two free and open-source
C projects, containing 12 real-world vulnerabilities. In contrast,
our evaluation also includes FOS analyzers and is performed on 27
real-world programs with a total of 192 vulnerabilities. Contrary to
our observations, the commercial tools they chose show no signifi-
cant performance difference. However, they also conclude that the
performance of static code analyzer depends on the vulnerability
type, with some CWEs being better detected than others.

Another related work is provided by D’abruzzo Pereira and
Vieira in [32], in which they evaluate the effectiveness of Cppcheck
and Flawfinder in detecting real-world vulnerabilities [14, 15]. Un-
like our work, their study is limited to these two analyzers, because
the used benchmark programs do not support tools that attach to the
build process. Moreover, they count a vulnerability detected if the
affected source files are marked. This can lead to overly optimistic
results, as reflected by the detection rates of 83.5% (Cppcheck) and
36.2% (Flawfinder) that deviate from our numbers.

9https://openssf.org/

Kaur and Nayyar [45] conduct a similar empirical study as we
do, with the difference that besides static C/C++ analyzers, they
also examine tools for Java programs. Their set of analyzers also
includes Flawfinder and Cppcheck, which are evaluated with
respect to 10 different CWEs, some of which are also included in
our benchmark. However, they use the synthetic Juliet Test Suite,
while we evaluate the analyzers on real-world software projects
with known vulnerabilities. According to their results, of the 118
vulnerabilities they targeted, Cppcheck outperforms Flawfinder,
whereas the exact opposite holds true in our evaluation.

Thung et al. [65] conduct a study that is strongly related to our
work, yet different in the sense that they evaluate three static Java
analyzers to check their effectiveness on three large free and open-
source programs. The benchmark programs contain 200 real-world
software weaknesses, but not all of them manifest as security vul-
nerabilities. Interestingly, they also encountered software projects
where all static analyzers combined were unable to detect 50% of
the weaknesses in their benchmark.

Another study led by Habib and Pradel [41], who used three
static Java analyzers on 15 real-world projects with a total of 597
bugs, found that as many as 95.5% of the defects were not detected.
However, the results of Java analyzers are not necessarily transfer-
able to C analyzers due to the different language constructs (e.g.,
memory pointers) and the associated vulnerability types.

In sum, our work differs from the state of the art in terms of the
considered (1) programming languages, (2) benchmark programs
(FOS vs. commercial) and hence reproducibility, (3) static code an-
alyzers, (4) nature of vulnerabilities (synthetic vs. real-world) &
weakness categories (CWEs), and (5) detection code granularity
(lines vs. functions vs. modules/files). Moreover, some related stud-
ies have been conducted more than a decade ago.

8 CONCLUSION AND FUTUREWORK

We evaluated the vulnerability detection capabilities of six state-
of-the-art static C code analyzers against 27 free and open-source
programs containing in total 192 real-world vulnerabilities (i.e., val-
idated CVEs). Our empirical study revealed that the studied static
analyzers are rather ineffective when applied to real-world software
projects; roughly half (47%, best analyzer) and more of the known
vulnerabilities were missed. Therefore, we motivated the use of
multiple static analyzers in combination by showing that they can
significantly increase effectiveness; up to 21–34 percentage points
(depending on the evaluation scenario) more vulnerabilities de-
tected compared to using only one tool, while flagging about 15pp
more functions as potentially vulnerable. However, certain types of
vulnerabilities—especially the non-memory-related ones—seemed
generally difficult to detect via static code analysis, as virtually all
of the employed analyzers struggled finding them.

We consider this work as a basis for future research on the effec-
tiveness of static code analysis for vulnerability detection. Here, we
plan to investigate the underlying reasons as to why so many vul-
nerabilities could not be detected, even though they are supported
by the respective analyzers. In doing so, we hope to not only find
ways to improve them, but also to gain a better understanding of
the general limitations of such tools.

https://openssf.org/

Pre
pri
nt

An Empirical Study on the Effectiveness of Static C Code Analyzers for Vulnerability Detection ISSTA ’22, July 18–22, 2022, Virtual, South Korea

9 DATA AVAILABILITY STATEMENT

We release all evaluation data and the analysis script [51] to replicate
the results of this work and to encourage further studies on static
code analysis.

ACKNOWLEDGMENTS

We would like to thank our colleagues Daniel Elsner and Markus
Schnappinger, as well as the anonymous reviewers, for their valu-
able feedback.

REFERENCES

[1] [n. d.]. Clang Static Analyzer. https://clang-analyzer.llvm.org/. Accessed: 2021-
07-23.

[2] [n. d.]. Clang-Tidy: Extra Clang Tools. https://clang.llvm.org/extra/clang-tidy/.
Accessed: 2021-07-23.

[3] [n. d.]. CodeChecker. https://codechecker.readthedocs.io/en/latest/. Accessed:
2021-07-23.

[4] [n. d.]. CodeQL for Research. https://securitylab.github.com/tools/codeql/. Ac-
cessed: 2021-07-23.

[5] [n. d.]. The Common Weakness Enumeration (CWE) Initiative. https://cwe.mitre.
org/. Accessed: 2022-01-19.

[6] [n. d.]. Cppcheck: A Tool for Static C/C++ Code Analysis. http://cppcheck.
sourceforge.net/. Accessed: 2021-07-23.

[7] [n. d.]. CWE-Compatible Products and Services. https://cwe.mitre.org/
compatible/compatible.html. Accessed: 2022-01-12.

[8] [n. d.]. Cyber Grand Challenge Corpus. http://www.lungetech.com/cgc-corpus/.
Accessed: 2021-07-10.

[9] [n. d.]. Flawfinder. https://dwheeler.com/flawfinder/. Accessed: 2021-07-23.
[10] [n. d.]. Infer: A Tool to Detect Bugs in Java and C/C++/Objective-c Code. https:

//fbinfer.com/. Accessed: 2021-07-23.
[11] [n. d.]. Introducing the OpenSSF CVE Benchmark. https://openssf.org/blog/2020/

12/09/introducing-the-openssf-cve-benchmark/. Accessed: 2021-08-13.
[12] [n. d.]. Juliet Test Suite. https://samate.nist.gov/SRD/testsuite.php. Accessed:

2021-07-10.
[13] Midya Alqaradaghi, Gregory Morse, and Tamás Kozsik. 2021. Detecting Security

Vulnerabilities with Static Analysis — A Case Study. Pollack Periodica (dec 2021).
https://doi.org/10.1556/606.2021.00454

[14] Henrique Alves, Baldoino Fonseca, and Nuno Antunes. 2016. Experimenting
Machine Learning Techniques to Predict Vulnerabilities. In Proceedings of the
Latin-American Symposium on Dependable Computing. 151–156. https://doi.org/
10.1109/LADC.2016.32

[15] Henrique Alves, Baldoino Fonseca, and Nuno Antunes. 2016. Software Metrics
and Security Vulnerabilities: Dataset and Exploratory Study. In Proceedings of
the European Dependable Computing Conference. 37–44. https://doi.org/10.1109/
EDCC.2016.34

[16] Andrei Arusoaie, Stefan Ciobaca, Vlad Craciun, Dragos Gavrilut, and Dorel
Lucanu. 2018. A Comparison of Open-source Static Analysis Tools for Vulnera-
bility Detection in C/C++ Code. In Proceedings of the International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, 161–168.
https://doi.org/10.1109/SYNASC.2017.00035

[17] Pavel Avgustinov, Oege De Moor, Michael Peyton Jones, and Max Schäfer. 2016.
QL: Object-oriented Queries on Relational Data. In Leibniz International Proceed-
ings in Informatics, Vol. 56. 1–25. https://doi.org/10.4230/LIPIcs.ECOOP.2016.2

[18] Algirdas Avižienis, Jean Claude Laprie, Brian Randell, and Carl Landwehr. 2004.
Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing 1, 1 (2004), 11–33. https:
//doi.org/10.1109/TDSC.2004.2

[19] Nathaniel Ayewah, David Hovemeyer, David J. Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5
(2008), 22–29. https://doi.org/10.1109/MS.2008.130

[20] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. In Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 470–481. https://doi.org/10.1109/saner.2016.
105

[21] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed Greybox Fuzzing. In Proceedings of the Conference on Computer
and Communications Security. ACM, New York, NY, USA, 2329–2344. https:
//doi.org/10.1145/3133956.3134020

[22] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2019. Coverage-
Based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering 45, 5 (may 2019), 489–506. https://doi.org/10.1109/TSE.2017.2785841

[23] Tim Boland and Paul E. Black. 2012. Juliet 1.1 C/C++ and Java Test Suite. Computer
45, 10 (oct 2012), 88–90. https://doi.org/10.1109/MC.2012.345

[24] Hudson Borges and Marco Tulio Valente. 2018. What’s in a Github Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of Sys-
tems and Software 146 (2018), 112–129. https://doi.org/10.1016/j.jss.2018.09.016

[25] Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt, William Robertson, and
Tim Leek. 2021. Evaluating Synthetic Bugs. In Proceedings of the Asia Conference
on Computer and Communications Security. 716–730. https://doi.org/10.1145/
3433210.3453096

[26] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2019. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation. 209–224. https://doi.org/10.5555/1855741.1855756

[27] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011.
Compositional Shape Analysis by Means of Bi-Abduction. In Journal of the ACM,
Vol. 58. New York, NY, USA. https://doi.org/10.1145/2049697.2049700

[28] George Chatzieleftheriou and Panagiotis Katsaros. 2011. Test-Driving Static
Analysis Tools in Search of C Code Vulnerabilities. In Proceedings of the Inter-
national Computer Software and Applications Conference. IEEE, 96–103. https:
//doi.org/10.1109/COMPSACW.2011.26

[29] Brian Chess and Gary Mcgraw. 2004. Static Analysis for Security. IEEE Security
and Privacy Magazine 2, 6 (2004), 76–79. https://doi.org/10.1109/MSP.2004.111

[30] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the International
Conference on Automated Software Engineering. 332–343. https://doi.org/10.1145/
2970276.2970347

[31] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In Proceedings of the Symposium on Principles of Programming
Languages, Vol. Part F1307. 238–252. https://doi.org/10.1145/512950.512973

[32] Jose D’abruzzo Pereira and Marco Vieira. 2020. On the Use of Open-Source C/C++
Static Analysis Tools in Large Projects. In Proceedings of the European Dependable
Computing Conference. 97–102. https://doi.org/10.1109/EDCC51268.2020.00025

[33] Aurelien Delaitre, Bertrand Stivalet, Elizabeth Fong, and Vadim Okun. 2015.
Evaluating Bug Finders: Test and Measurement of Static Code Analyzers. In
Proceedings of the International Workshop on Complex Faults and Failures in Large
Software Systems. IEEE, 14–20. https://doi.org/10.1109/COUFLESS.2015.10

[34] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-Scale
Automated Vulnerability Addition. In Proceedings of the IEEE Symposium on
Security and Privacy. IEEE, 110–121. https://doi.org/10.1109/SP.2016.15

[35] Anum Fatima, Shazia Bibi, and Rida Hanif. 2018. Comparative Study on Static
Code Analysis Tools for C/C++. In Proceedings of the International Bhurban
Conference on Applied Sciences and Technology, Vol. 2018-Janua. IEEE, 465–469.
https://doi.org/10.1109/IBCAST.2018.8312265

[36] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the USENIX
Workshop on Offensive Technologies.

[37] Sijia Geng, Yuekang Li, Yunlan Du, Jun Xu, Yang Liu, and Bing Mao. 2020. An
Empirical Study on Benchmarks of Artificial Software Vulnerabilities. (mar 2020).
arXiv:2003.09561 http://arxiv.org/abs/2003.09561

[38] Christoph Gentsch. 2020. Evaluation of Open Source Static Analysis Security
Testing (SAST) Tools for C. Technical Report. German Aerospace Center (DLR
DW). 37 pages. https://elib.dlr.de/133945/

[39] Anjana Gosain and Ganga Sharma. 2015. Static Analysis: A Survey of Techniques
and Tools. Advances in Intelligent Systems and Computing 343 (2015), 581–591.
https://doi.org/10.1007/978-81-322-2268-2_59

[40] Katerina Goseva-Popstojanova and Andrei Perhinschi. 2015. On the Capability of
Static Code Analysis to Detect Security Vulnerabilities. Information and Software
Technology 68 (dec 2015), 18–33. https://doi.org/10.1016/j.infsof.2015.08.002

[41] Andrew Habib and Michael Pradel. 2018. How Many of All Bugs Do We Find?
A Study of Static Bug Detectors. In Proceedings of the International Conference
on Automated Software Engineering. ACM, New York, NY, USA, 317–328. https:
//doi.org/10.1145/3238147.3238213

[42] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2021. Magma: A Ground-
Truth Fuzzing Benchmark. Proceedings of the International Conference on
Measurement and Modeling of Computer Systems 4, 3 (2021), 81–82. https:
//doi.org/10.1145/3410220.3456276 arXiv:2009.01120

[43] Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams. 2019. Chal-
lenges with Responding to Static Analysis Tool Alerts. In Proceedings of the
International Working Conference on Mining Software Repositories. IEEE, 245–249.
https://doi.org/10.1109/MSR.2019.00049

[44] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In Proceedings of the International Conference on Software Engineering. 672–681.
https://doi.org/10.1109/ICSE.2013.6606613

[45] Arvinder Kaur and Ruchikaa Nayyar. 2020. A Comparative Study of Static Code
Analysis Tools for Vulnerability Detection in C/C++ and JAVA Source Code. In

https://clang-analyzer.llvm.org/
https://clang.llvm.org/extra/clang-tidy/
https://codechecker.readthedocs.io/en/latest/
https://securitylab.github.com/tools/codeql/
https://cwe.mitre.org/
https://cwe.mitre.org/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://cwe.mitre.org/compatible/compatible.html
https://cwe.mitre.org/compatible/compatible.html
http://www.lungetech.com/cgc-corpus/
https://dwheeler.com/flawfinder/
https://fbinfer.com/
https://fbinfer.com/
https://openssf.org/blog/2020/12/09/introducing-the-openssf-cve-benchmark/
https://openssf.org/blog/2020/12/09/introducing-the-openssf-cve-benchmark/
https://samate.nist.gov/SRD/testsuite.php
https://doi.org/10.1556/606.2021.00454
https://doi.org/10.1109/LADC.2016.32
https://doi.org/10.1109/LADC.2016.32
https://doi.org/10.1109/EDCC.2016.34
https://doi.org/10.1109/EDCC.2016.34
https://doi.org/10.1109/SYNASC.2017.00035
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/saner.2016.105
https://doi.org/10.1109/saner.2016.105
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.5555/1855741.1855756
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1109/COMPSACW.2011.26
https://doi.org/10.1109/COMPSACW.2011.26
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/EDCC51268.2020.00025
https://doi.org/10.1109/COUFLESS.2015.10
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/IBCAST.2018.8312265
https://arxiv.org/abs/2003.09561
http://arxiv.org/abs/2003.09561
https://elib.dlr.de/133945/
https://doi.org/10.1007/978-81-322-2268-2_59
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3410220.3456276
https://doi.org/10.1145/3410220.3456276
https://arxiv.org/abs/2009.01120
https://doi.org/10.1109/MSR.2019.00049
https://doi.org/10.1109/ICSE.2013.6606613

Pre
pri
nt

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Stephan Lipp, Sebastian Banescu, and Alexander Pretschner

Procedia Computer Science, Vol. 171. 2023–2029. https://doi.org/10.1016/j.procs.
2020.04.217

[46] Sunghun Kim and Michael D. Ernst. 2007. Which Warnings Should I Fix First?. In
Proceedings of the Joint Meeting of the European Software Engineering Conference
and the Symposium on the Foundations of Software Engineering. 45–54. https:
//doi.org/10.1145/1287624.1287633

[47] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394. https://doi.org/10.1145/360248.360252

[48] Ted Kremenek and Dawson Engler. 2003. Z-Ranking: Using Statistical Analysis to
Counter the Impact of Static Analysis Approximations. Lecture Notes in Computer
Science 2694 (2003), 295–315. https://doi.org/10.1007/3-540-44898-5_16

[49] William Landi. 1992. Undecidability of Static Analysis. ACM Letters on Program-
ming Languages and Systems 1, 4 (1992), 323–337. https://doi.org/10.1145/161494.
161501

[50] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization. IEEE, 75–86. https://doi.org/
10.1109/CGO.2004.1281665

[51] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. Artifacts for
the ISSTA 2022 Paper: An Empirical Study on the Effectiveness of Static C Code
Analyzers for Vulnerability Detection. https://doi.org/10.5281/zenodo.6515687

[52] V Benjamin Livshits and Monica S Lam. 2005. Finding Security Errors in Java
Programs with Static Analysis. In Proc. Usenix Security Symposium. 271–286.

[53] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005.
BugBench: Benchmarks for Evaluating Bug Detection Tools. In Proceedings of
the Workshop on the Evaluation of Software Defect Detection Tools. 1–5. https:
//doi.org/10.1.1.134.8941

[54] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,
and Gang Wang. 2018. Understanding the Reproducibility of Crowd-reported
Security Vulnerabilities. In Proceedings of the USENIX Security Symposium. 919–
936.

[55] TukaramMuske, Rohith Talluri, and Alexander Serebrenik. 2018. Repositioning of
Static Analysis Alarms. In Proceedings of the International Symposium on Software
Testing and Analysis. ACM, New York, NY, USA, 187–197. https://doi.org/10.
1145/3213846.3213850

[56] Vadim Okun, Aurelien Delaitre, and Paul E Black. 2011. Report on the Static
Analysis Tool Exposition (SATE) IV. Technical Report. https://doi.org/10.6028/
NIST.SP.500-297

[57] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic Execution with
SymCC: Don’t Interpret, Compile!. In Proceedings of the USENIX Security Sympo-
sium.

[58] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data
Structures. In Proceedings of the Symposium on Logic in Computer Science. IEEE
Comput. Soc, 55–74. https://doi.org/10.1109/lics.2002.1029817

[59] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and
Gregg Rothermel. 2008. Predicting Accurate and Actionable Static Analysis Warn-
ings: An Experimental Approach. In Proceedings of the International Conference
on Software Engineering. 341–350. https://doi.org/10.1145/1368088.1368135

[60] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (2018), 58–66. https://doi.org/10.1145/3188720

[61] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. 2015. Test
Suites for Benchmarks of Static Analysis Tools. In Proceedings of the Interna-
tional Symposium on Software Reliability Engineering Workshops. IEEE, 12–15.
https://doi.org/10.1109/ISSREW.2015.7392027

[62] Darko Stefanović, Danilo Nikolić, Dušanka Dakić, Ivana Spasojević, and Sonja
Ristić. 2020. Static Code Analysis Tools: A Systematic Literature Review. In
Proceedings of the International Symposium on Intelligent Manufacturing and
Automation, Vol. 31. 565–573. https://doi.org/10.2507/31st.daaam.proceedings.
078

[63] Wouter Stikkelorum. 2016. Challenges of Using Sound and Complete Static Analysis
Tools in Industrial Software. mathesis. University of Amsterdam. https://scripties.
uba.uva.nl/scriptie/618182

[64] Patrick Thomson. 2022. Static Analysis. Commun. ACM 65, 1 (jan 2022), 50–54.
https://doi.org/10.1145/3486592

[65] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premku-
mar T. Devanbu. 2012. To What Extent Could We Detect Field Defects? An
Empirical Study of False Negatives in Static Bug Finding Tools. In Proceedings
of the International Conference on Automated Software Engineering. ACM, New
York, NY, USA, 50–59. https://doi.org/10.1145/2351676.2351685

[66] Stephen Turner. 2014. Security Vulnerabilities of the Top Ten Programming
Languages: C, Java, C++, Objective-C, C#, Php, Visual Basic, Python, Perl, and
Ruby. Journal of Technology Research 5 (2014), 1–16.

[67] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C. Gall. 2018. Context Is King: The Developer Perspective on
the Usage of Static Analysis Tools. In Proceedings of the International Conference
on Software Analysis, Evolution and Reengineering. IEEE, 38–49. https://doi.org/
10.1109/SANER.2018.8330195

[68] Andreas Wagner and Johannes Sametinger. 2014. Using the Juliet Test Suite to
Compare Static Security Scanners. In Proceedings of the International Conference
on Security and Cryptography. SCITEPRESS, 244–252. https://doi.org/10.5220/
0005032902440252

[69] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the USENIX Security Symposium. 745–761. https://doi.org/10.5555/3277203.
3277260

[70] Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P. Hude-
pohl, and Mladen A. Vouk. 2006. On the Value of Static Analysis for Fault
Detection in Software. IEEE Transactions on Software Engineering 32, 4 (apr 2006),
240–253. https://doi.org/10.1109/TSE.2006.38

[71] Misha Zitser, Richard Lippmann, and Tim Leek. 2004. Testing Static Analysis
Tools Using Exploitable Buffer Overflows from Open Source Code. In Proceedings
of the International Symposium on the Foundations of Software Engineering. ACM,
New York, NY, USA, 97. https://doi.org/10.1145/1029894.1029911

https://doi.org/10.1016/j.procs.2020.04.217
https://doi.org/10.1016/j.procs.2020.04.217
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/3-540-44898-5_16
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.5281/zenodo.6515687
https://doi.org/10.1.1.134.8941
https://doi.org/10.1.1.134.8941
https://doi.org/10.1145/3213846.3213850
https://doi.org/10.1145/3213846.3213850
https://doi.org/10.6028/NIST.SP.500-297
https://doi.org/10.6028/NIST.SP.500-297
https://doi.org/10.1109/lics.2002.1029817
https://doi.org/10.1145/1368088.1368135
https://doi.org/10.1145/3188720
https://doi.org/10.1109/ISSREW.2015.7392027
https://doi.org/10.2507/31st.daaam.proceedings.078
https://doi.org/10.2507/31st.daaam.proceedings.078
https://scripties.uba.uva.nl/scriptie/618182
https://scripties.uba.uva.nl/scriptie/618182
https://doi.org/10.1145/3486592
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.5220/0005032902440252
https://doi.org/10.5220/0005032902440252
https://doi.org/10.5555/3277203.3277260
https://doi.org/10.5555/3277203.3277260
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1145/1029894.1029911

	Abstract
	1 Introduction
	2 Static Code Analysis
	2.1 Techniques
	2.2 Selected Analyzers
	2.3 Automated Analyzer Evaluation

	3 Benchmarking
	3.1 Benchmark Dataset — Ground Truth
	3.2 Vulnerability Detection Granularity

	4 Evaluation Setup
	4.1 Research Questions
	4.2 Evaluation Metrics and Scenarios
	4.3 Analyzer and Subject Configuration
	4.4 Infrastructure

	5 Evaluation Results
	5.1 RQ.1: Static Analyzer Effectiveness
	5.2 RQ.2: Effectiveness Increase by Analyzer Combinations
	5.3 RQ.3: Best vs. Worst Detected Vulnerabilities

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	9 Data Availability Statement
	Acknowledgments
	References

