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ABSTRACT
Regression testing is an important part of the software development
process but suffers from the presence of flaky tests. Flaky tests are
tests that can nondeterministically pass or fail regardless of code
changes. Order-dependent flaky tests are a prominent kind of flaky
tests whose outcome depends on the test order in which they are
run. Prior work has focused on detecting order-dependent flaky
tests through rerunning all tests in different test orders on a single
version of code. As code is constantly changing, rerunning all tests
in different test orders after every change is costly.

In this work, we propose IncIDFlakies, a technique to detect
order-dependent flaky tests by analyzing code changes to detect
newly-introduced order-dependent flaky tests due to those changes.
Building upon existing work in iDFlakies that reruns tests in dif-
ferent test orders, IncIDFlakies analyzes and selects to run only
the tests that (1) are affected by the change, and (2) can potentially
result in a test-order dependency among each other due to potential
shared state. Running IncIDFlakies on 67 order-dependent flaky
tests across changes in code in their respective projects, including
the changes where they became flaky, we find that IncIDFlakies can
select to run on average 65.4% of all the tests, resulting in running
68.4% of the time that baseline iDFlakies would use when running
the same number of test orders with the full test suite. Furthermore,
we find that IncIDFlakies can still ensure that the test orders it runs
can potentially detect the order-dependent flaky tests.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
flaky test detection, order-dependent flaky test, evolution-aware
analysis

ACM Reference Format:
Chengpeng Li and August Shi. 2022. Evolution-Aware Detection of Order-
Dependent Flaky Tests. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’22), July 18–22, 2022,
Virtual, South Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3533767.3534404

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534404

1 INTRODUCTION
Regression testing is an important part of software development but
is plagued by the presence of flaky tests. Flaky tests are tests that
nondeterministically pass or fail when run on the same version of
code [32]. A flaky test failure can mislead developers into believing
there is a fault introduced in the change, and they would waste
time debugging the non-existent fault when the real problem is that
the flaky test would have nondeterministically failed regardless of
that change. Prior work has found several reasons for flaky tests,
with common ones including asynchronous wait, concurrency, or
test-order dependencies [12, 32].

An important kind of flaky tests are order-dependent flaky tests.
Order-dependent flaky tests are flaky tests whose outcome depends
on the test order in which they are run. Luo et al. found order-
dependent flaky tests to be among the top three most common kinds
of flaky tests in their empirical study [32]. Prior work has focused
on developing techniques that detect order-dependent flaky tests
through various means of rerunning the entire test suite in different
test orders [24, 47] or analyzing the dependencies between all tests
in the test suite [9, 16]. However, these techniques are expensive
and analyze the tests through (re)running all tests on just a single
version of software. For example, iDFlakies [24] reruns all tests in
different, random test orders, detecting an order-dependent flaky
test when it runs both a test order in which it passes and another
test order in which it fails. iDFlakies tries all these different test
orders on one version of software. A developer who aims to use
iDFlakies to detect order-dependent flaky tests as soon as they are
introduced would have to run iDFlakies after every change they
make. Each iDFlakies run is independent of each other, and they
do not use any information concerning changes between versions.
Over time, using iDFlakies becomes expensive given the need to
rerun all tests multiple times across frequent changes.

We propose IncIDFlakies, a technique to detect newly-introduced
order-dependent flaky tests efficiently after a code change. IncID-
Flakies builds upon iDFlakies, detecting order-dependent flaky tests
by rerunning tests in random test orders. However, IncIDFlakies
also takes into consideration the code changes since the last time
IncIDFlakies was run, running test orders consisting of only the
subset of tests that may become order-dependent flaky tests after
the change. In general, an order-dependent flaky test can only fail
when run in relation with some other tests. The order-dependent
flaky test may fail when another test runs before it and “pollutes”
their shared state, or the order-dependent flaky test may actually
only pass when run after some other test that sets up the shared
state properly for it [40]. A detection technique that runs tests to
detect order-dependent flaky tests would need to run multiple tests
in relation to each other. A change may induce a test to become an
order-dependent flaky test if the change makes this test depend on
some shared state that some other test may modify. Conversely, a
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change may be such that a test starts modifying some shared state,
therefore leading to some other test to become an order-dependent
flaky test. In both scenarios, IncIDFlakies has to run at least these re-
lated tests to detect newly-introduced order-dependent flaky tests.

To select the necessary tests based on the changes, we leverage
regression test selection (RTS) techniques to select tests that are
affected by the change, meaning their behavior could differ after
the change [18, 28, 46]. However, running just these affected tests
is insufficient. It is possible that the change makes a test modify
some state shared with other tests, or the change makes the test
now depend on some shared state that other tests modify. These
other tests’ behavior may not differ after the change, so an RTS
technique would (rightfully) not select them. A technique that aims
to detect newly-introduced order-dependent flaky tests, however,
would need to run those tests as to ensure the order-dependent flaky
test can be detected.We use existing RTS techniques Ekstazi [17, 18]
and STARTS [28, 29] to analyze changes, and we also augment the
analysis to include additional tests that reach shared state used by
the affected tests.

We evaluate IncIDFlakies on a dataset of 67 order-dependent
flaky tests where prior work has already identified the code ver-
sion/commit where the test became flaky, termed the flakiness-
introducing commit [27]. These order-dependent flaky tests are
spread across 14 open-source Java projects, and we evaluate on
a total of 27 flakiness-introducing commits. For each flakiness-
introducing commit, we additionally select up to five commits right
before the flakiness-introducing commit, and we use the changes
between the commits to evaluate how efficient IncIDFlakies would
be at selecting and running the selected tests in different test orders
upon analyzing those changes. We find that IncIDFlakies can on av-
erage run 65.4% of the tests while taking 68.4% of the time it would
take iDFlakies to try the same number of test orders. Furthermore,
we find that IncIDFlakies can successfully select the necessary tests
to ensure it can run test orders that detect the newly-introduced
order-dependent flaky test at the flakiness-introducing commit.

This paper makes the following contributions:
• Evolution-aware flaky-test detection. We develop the
first technique that analyzes changes and code evolution to
more efficiently detect order-dependent flaky tests. Our tech-
nique builds upon RTS techniques to select all the necessary
tests to ensure order-dependent flaky tests can be detected
through running in different test orders after a change.

• Implementation.We implement IncIDFlakies as an addi-
tional detector for the existing tool iDFlakies.

• Evaluation. Our evaluation of IncIDFlakies shows it can
select the tests to detect all the order-dependent flaky tests
from our dataset at the flakiness-introducing commits. Our
evaluation shows that IncIDFlakies can provide substantial
time savings, running 65.4% of tests and taking 68.4% of the
time needed if running iDFlakies on the full test suite.

2 BACKGROUND
2.1 Order-Dependent Flaky Tests
An order-dependent flaky test is a flaky test whose outcome depends
on the test order in which it is run [24, 32, 47]. An order-dependent
flaky test must have both a passing test order (in which it passes)

and a failing test order (in which it fails). Furthermore, the order-
dependent flaky test must deterministically pass in the passing test
order and fail in the failing test order, i.e., it is not a nondeterministic
order-dependent flaky test [26].

Shi et al. [40] previously categorized order-dependent flaky tests
into two types, victims and brittles. A victim fails when some other
test, termed a polluter, runs before it in the test order. Conceptually,
the polluter “pollutes” some state the two tests share, so the victim
runs in an unexpected starting state and therefore fails. The victim
passes when run on its own or before the polluter. Conversely,
a brittle fails when run by itself, but it passes when another test,
termed a state-setter, is run before it. Conceptually, the state-setter
sets up the shared state properly for the brittle to start running in.

Figure 1 illustrates an example order-dependent flaky test taken
from ktuukkan/marine-api, a real-world project we use in our eval-
uation. In this project, testConstructor (Line 23) is an order-
dependent flaky test. testConstructor passes when it runs by it-
self. However, when testRegisterParserWithAlternativeBegin-
Char (Line 8) runs before, then testConstructor fails. In other
words, testConstructor is a victim and testRegisterParser-
WithAlternativeBeginChar is its corresponding polluter. More
specifically, the polluter unregisters VDMParser.class (Line 10)
from the parsers map (Line 32) of the shared SentenceFactory
instance obtained from calling SentenceFactory.getInstance()
(Line 3).When the victim runs, it invokes createParser() (Line 20)
to create a parser for VDMParser.class. However, if the polluter
had run before and removed this parser from the parsersmap, then
executing createParser() would throw an IllegalArgument-
Exception (Line 47), and so the victim would fail.

Note that the test code that tries to create the parser is actually
part of an instance field declaration in the test class Abstract-
AISMessageListenerTest, meaning it is run when an instance of
the test class is initialized, which, in JUnit, happens before every
test method gets run. As such, testConstructor is not the only
victim in this example but rather every test method in the test class
AbstractAISMessageListenerTest is a victim as well.

2.2 Regression Test Selection (RTS)
When developers run tests after they make changes as part of their
regression testing process, they can speed up the process by using
regression test selection (RTS) to select and run a subset of the
full test suite, namely the tests whose behavior could be affected
by those changes [46]. In general, an RTS technique analyzes the
dependency relationship between tests and code under test, creating
a mapping from tests to code elements, such as statements, methods,
or classes, that the tests depend on [46]. After determining which
code elements have changed, an RTS technique would select to
run the tests that depend on those elements; these tests are the
affected tests. Prior work has found that tracking dependencies at
the class level, i.e., mapping test classes to other classes that they
depend on, is the most efficient at reducing the cost of regression
testing [18, 28]. These findings have led to the creation of two open-
source RTS tools for Java projects, Ekstazi [17] and STARTS [29].
Ekstazi. Ekstazi [17, 18] is a dynamic RTS technique. Ekstazi cre-
ates its class-level dependency mapping by instrumenting the code
under test and tracking which classes each test class covers after
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1 // existing test class that contains polluter

2 public class SentenceFactoryTest {

3 private final SentenceFactory instance =

4 SentenceFactory.getInstance ();

5

6 @Test

7 public void

8 testRegisterParserWithAlternativeBeginChar () {

9 ...

10 instance.unregisterParser(VDMParser.class);

11 }

12 }

13

14 // newly -introduced test class with order -dependent test

15 public class AbstractAISMessageListenerTest {

16 private final SentenceFactory sf =

17 SentenceFactory.getInstance ();

18

19 private final AISSentence AIS_01 = (AISSentence)

20 sf.createParser("VDM");

21

22 @Test

23 public void testConstructor () {

24 ...

25 }

26 }

27

28 // class of shared static field

29 public final class SentenceFactory {

30 // map containing parser classes

31 private static

32 Map <String , Class <? extends SentenceParser >> parsers;

33

34 public void unregisterParser

35 (Class <? extends SentenceParser > parser) {

36 for (String key : parsers.keySet ()) {

37 if (parsers.get(key) == parser) {

38 parsers.remove(key);

39 break;

40 }

41 }

42 }

43

44 public Sentence createParser(String nmea) {

45 String sid = SentenceId.parseStr(nmea);

46 if (! parsers.containsKey(type)) {

47 throw new IllegalArgumentException (...);

48 }

49 return createParserImpl(sid , nmea);

50 }

51 }

Figure 1: Example order-dependent flaky test from
ktuukkan/marine-api

executing the tests. To track which classes have changed between
versions, Ekstazi also records a checksum representation of the
contents of each Java class file (a class in Java is represented as a
class file on disk). After recompiling the code after a change, Ekstazi
checks whether any new compiled class files now have a different
checksum from what was recorded before, meaning the class has
changed. Then, Ekstazi would select to run the test classes that
depend upon the changed classes based on the dependency map-
ping collected from running tests on the previous version; these

tests would be the affected tests. Ekstazi would also update the
class file checksums and the dependency mapping with coverage
information collected from executing the affected tests on this new
version in preparation for the next change.
STARTS. STARTS [28, 29] is a static RTS technique. Similar to Ek-
stazi, STARTS also creates a class-level dependency mapping, from
test classes to other classes each test class depends upon. However,
STARTS creates this mapping by first constructing an intertype
relation graph [35] of the code. In this graph, nodes are classes,
and an edge exists between one node to another if a class either
uses or inherits from that other class. This graph is constructed
purely statically by analyzing the compiled class files in a project.
STARTS then constructs a dependency mapping from test class to
other classes by finding which other classes are reachable within
this graph from each test class. To determine which classes have
changed, STARTS uses the same checksum logic as employed by
Ekstazi. Also like Ekstazi, STARTS determines affected tests as the
test classes that are mapped to any changed classes in the depen-
dency mapping. The key difference is that STARTS does not need
to run any tests beforehand to create this dependency mapping.

3 INCIDFLAKIES
We present IncIDFlakies to detect order-dependent flaky tests af-
ter they are introduced in a change. The use scenario for IncID-
Flakies is that developers would run the detection technique after
their changes and have performed basic regression testing to check
the correctness of their changes. The developer is already willing
to use a flaky-test detection such as iDFlakies after changes, so
IncIDFlakies aims to reduce that detection cost. In this scenario,
developers would then already be using RTS techniques to speed
up regression testing by running only the affected tests based on
the changes. The developer would only use IncIDFlakies to de-
tect newly-introduced order-dependent flaky tests after finishing
running affected tests, and as such, IncIDFlakies can then reuse
the results of the already run RTS technique, namely the affected
tests and the dependency mapping information (Section 2.2). IncID-
Flakies also takes as input the full test suite, as it needs to analyze
which additional tests from the full test suite are necessary to also
select as to ensure detecting newly-introduced order-dependent
flaky tests. IncIDFlakies would then run its selected tests in different
test orders to detect order-dependent flaky tests.

We next describe how IncIDFlakies selects the tests to run as
well as how IncIDFlakies then runs the tests to detect any newly-
introduced order-dependent flaky tests.

3.1 Selection
IncIDFlakies starts with the affected tests provided by the RTS
technique that ran previously. These affected tests are those whose
behavior could differ based on the changes, which means they could
now be modifying some state shared with other tests in the test
suite (i.e., they become polluters or state-setters), or they could now
depend on some shared state that is modified by some other tests in
the test suite (i.e., they become victims or brittles). As such, these
tests must be run to detect whether any test orders involving them
result in an order-dependent flaky test failure.
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contains static fields

AbstractAISMessageListener

AbstractAISMessageListenerTest

SentenceFactory

SentenceFactoryTest

Figure 2: Graph representation of dependencies between
classes from ktuukkan/marine-api

However, just running the selected tests based on the RTS tool is
not enough to ensure detection of newly-introduced order-dependent
flaky tests. Consider once again the example in Figure 1. The
example shows code and tests at commit 3d8dff0f. Before this
commit, the polluter already existed in the test suite. While it
was always unregistering the VDMParser.class from the shared
SentenceFactory instance, no other tests actually relied on that
instance. As such, no other test would be found to be an order-
dependent flaky test in relation to the polluter. However, this com-
mit introduced awhole new test class AbstractAISMessageListener-
Test, and its initialization depends on this shared SentenceFactory
instance. As such, tests in this test class are victims from the very
beginning, upon introduction into the test suite. Furthermore, this
commit only introduced the new test class and modified the class
it tests. Figure 2 illustrates how AbstractAISMessageListener-
Test and AbstractAISMessageListener are the only modified
classes (nodes with red outline), and only AbstractAISMessage-
ListenerTest is an affected test class (red-dashed rectangle). No
other test classes would be affected by this change (no dependency
edge to the modified classes). An RTS technique would (rightfully)
only select tests in AbstractAISMessageListenerTest as affected
tests, because no other test should behave differently after this
change. Even though the newly-introduced tests are indeed order-
dependent flaky tests due to their relation with another existing
test (in SentenceFactoryTest), it would not be detected as such
if not run alongside that other test.

To address this issue, we introduce analysis to select additional
tests that are related to the affected tests and should then be run
together to ensure any newly-introduced order-dependent flaky
test can be detected. Figure 3 shows the process. We start with the
affected tests provided by the RTS technique. For each affected test,
we use the mapping to find all its dependency classes (Line 13). We
analyze these dependency classes for potential sources of shared
state, namely static fields. While shared state can come in variety
of forms such as static fields, files, database connections, etc., we
focus on just static fields, as prior work found them to be a common
source of state shared between tests in Java [8, 20, 31, 32, 47].

For each dependency class, we obtain the static fields defined in
the class, if any (Line 21). If the dependency class contains static
fields, that means the affected test could modify or use any state

1 # Input: tests : all tests at the current sha

2 # affected_tests : affected tests from RTS

3 # deps : test to dependencies mapping from RTS

4 # Output: tests to run in different test orders

5 def IncIDFlakies(tests , affected_tests , deps):

6 additional_tests = set()

7 processed_deps = set()

8 # get the dependencies from class to tests

9 reverse_deps = get_reverse_dependencies(deps)

10 for test in affected_tests:

11 if not test in deps.keys ():

12 continue

13 dependencies = deps[test]

14 for dp in dependencies:

15 # process each dependency once

16 if dp in processed_deps:

17 continue

18 if in_third_party_library(dp):

19 continue

20 processed_deps.add(dp)

21 static_fields = get_static_fields(dp)

22 for field in static_fields:

23 # exclude final fields that are immutable

24 if is_final(field) and is_immutable(field):

25 continue

26 # include all tests that reach this class

27 additional_tests |= reverse_deps[dp]

28 break

29

30 return affected_tests | additional_tests

Figure 3: Process for selecting additional tests to run

reachable from the static field that could also be shared with other
tests. As such, we need to include other tests that also can reach this
dependency class. The affected test’s behavior could be changed
such that it modifies this shared state these other tests depend on,
or the affected test could now be depending on this shared state that
some other test is already modifying (e.g., the example in Figure 1).
We construct a reverse dependency mapping going from classes to
tests that depend on each class (Line 9). We use that mapping to
find all tests that reach this dependency class with static fields, to
be included as the additional tests needed to run (Line 27).

Consider Figure 2 again. IncIDFlakieswould start with Abstract-
AISMessageListenerTest and find all its dependency classes, even-
tually finding that SentenceFactory has a static field that is not
final and immutable. The process then finds all the test classes
that depend on SentenceFactory, namely test classes Abstract-
AISMessageListenerTest and SentenceFactoryTest, including
all of them to be run. As such, SentenceFactoryTest is an addi-
tional test class to be selected (blue dashed rectangle). Running both
test classes together could result in detecting the newly-introduced
order-dependent flaky tests in AbstractAISMessageListenerTest.

As a heuristic to avoid selecting too many additional tests, we ig-
nore dependency classes that are in third-party libraries beyond the
code in the project itself (Line 18). We want to focus on shared state
within the code that the developers have control over. In particular,
we do not want to track dependencies within the Java standard
library, as many classes could depend on some few Java classes
(as found in prior work on RTS [28]). While ignoring potential
dependencies on third-party library classes can result in missing to
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select relevant tests, we believe there is only a small chance that
tests may affect each other’s behavior through state shared from
static fields in these external classes.

As another optimization, we also check whether static fields
contained in a dependency class are final and are of an immutable
type, such as java.lang.String, java.util.regex.Pattern, or
a primitive type. We ignore any such static fields (Line 24). A final
field value cannot be changed after its initial assignment, and an
immutable object’s state cannot change, so tests cannot modify
shared state through these fields. If a dependency class only contains
such static fields, we would skip processing that class altogether.

3.2 Running Selected Tests
Once IncIDFlakies has selected the tests to run based on the changes,
it will next run them in different test orders for detecting any
newly-introduced order-dependent flaky tests. We build this part
of IncIDFlakies on top of iDFlakies [1, 24], an existing tool that
detects order-dependent flaky tests in a single version of software
by running all the tests in different, random test orders. While
effective at detecting order-dependent flaky tests, iDFlakies would
be costly to deploy as part of a continuous integration process given
that it would need to run many different test orders after every
change. IncIDFlakies aims to improve upon iDFlakies by running
fewer tests after every change.

Since we are building upon iDFlakies, we inherit many of the
same configuration options as well. The most relevant configura-
tion option is the number of rounds to run. In iDFlakies, a round
represents a test order that iDFlakies would run the tests in. If any
tests have a different outcome when run in this round than the
outcomes recorded from an initial so-called original test order, iD-
Flakies would mark the test as flaky. It would also rerun that same
test order to check whether it maintains the same outcome, and
if so, that detected flaky test would also be categorized as order-
dependent. The more rounds that iDFlakies is configured with then
the higher the chance of detecting any order-dependent flaky tests
(since iDFlakies would have tried more test orders). However, more
rounds means also a higher running cost.

In the case of IncIDFlakies, the expected use scenario is that
developers would choose a number of rounds to run IncIDFlakies
with, and IncIDFlakies would only run the selected tests that many
rounds, reporting any detected order-dependent flaky tests after-
wards. While some extra analysis is needed to determine which
additional tests to select, the expectation is that running fewer
tests per round would overall decrease the running cost for detect-
ing order-dependent flaky tests after every change. Furthermore,
with fewer tests, there would be fewer permutations of test orders
overall, so IncIDFlakies would likely cover more relative orderings
between the relevant tests in the limited number of rounds.

4 EXPERIMENTAL SETUP
4.1 Subjects
To evaluate IncIDFlakies, we use the order-dependent flaky tests
contained with IDoFT [2], a public dataset of flaky tests collected
across open-source Java projects on GitHub. These flaky tests were
detected using automated flaky-test detection tools such as iD-
Flakies [1] or NonDex [4]. In addition, Lam et al. [27] previously

Table 1: Filtering tests from IDoFT

# tests Category

104 initial order-dependent flaky tests
9 denoted as non-order-dependent flaky test
20 could not compile
8 cannot reproduce flakiness

67 final # tests

conducted a longitudinal study on flaky tests within this dataset,
where they determined the commit in the flaky test’s project’s
history where the flakiness was introduced, termed its flakiness-
introducing commit. They marked these flakiness-introducing com-
mits for a subset of tests in IDoFT. Given that IncIDFlakies specif-
ically targets order-dependent flaky tests, we start with the 104
tests in the dataset that are both marked as order-dependent and
have a corresponding flakiness-introducing commit. However, 9
of these tests fall into the category of what IDoFT considers non-
order-dependent or nondeterministic order-dependent [26], which
means the tests do not deterministically pass or fail in a specific
test order; we ignore such tests from our evaluation.

To determine whether IncIDFlakies can run the proper tests
to detect order-dependent flaky tests at the flakiness-introducing
commit, we need to first find possible passing and failing test orders
for each order-dependent flaky test. First, we found we could no
longer compile or run tests at the flakiness-introducing commit for
one of the projects (Activiti/Activiti), and so we excluded their 20
tests. Next, we ran iDFlakies on each of the flakiness-introducing
commits for 100 rounds as to detect both such test orders for each
of the remaining order-dependent flaky tests. Unfortunately, we
could not detect 8 order-dependent flaky tests at their flakiness-
introducing commits even after running iDFlakies for this large
number of rounds. From our inspection, we found that three of
them likely have their flakiness-introducing commit marked wrong
in the dataset, one cannot be run using the current iDFlakies tooling
given their use of a specialized test runner, and the remaining four
are likely non-order-dependent flaky tests. Overall, our evaluation
dataset consists of 67 order-dependent flaky tests from 14 projects,
consisting of 21modules. Table 1 shows a breakdown of our filtering
process to obtain those 67 order-dependent flaky tests.

These 67 order-dependent flaky tests are also spread across 27
flakiness-introducing commits (order-dependent flaky tests of the
same project/module may share the same flakiness-introducing
commit). We confirmed that these commits are indeed flakiness-
introducing commits for each test by also running iDFlakies on the
commit right before as to check the test is not detected as flaky
on the previous commit. There was just one flakiness-introducing
commit from the IDoFT dataset where we found the corresponding
test was still flaky on the previous commit, so we went back further
in that test’s history to find an earlier commit that constitutes the
flakiness-introducing commit (which matched with the flakiness-
introducing commit of another order-dependent flaky test in the
dataset). Table 2 provides the details of these projects/modules and
the flakiness-introducing commits. In the table, each row represents
the flakiness-introducing commit for a project and module, where
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Table 2: Projects/modules, commit SHAs, and # order-dependent flaky tests used in evaluation

ID SLUG Module SHA # OD Tests

V1 apache/incubator-dubbo dubbo-cluster fcd1af81 2
V2 apache/incubator-dubbo dubbo-common 3c6201cf 1
V3 apache/incubator-dubbo dubbo-config/dubbo-config-api 46c6ccb3 1
V4 apache/incubator-dubbo dubbo-config/dubbo-config-spring 5f5fecd6 2
V5 apache/incubator-dubbo dubbo-filter/dubbo-filter-cache 9f7306f9 1
V6 apache/incubator-dubbo dubbo-rpc/dubbo-rpc-api b055991b 2
V7 apache/incubator-dubbo dubbo-serialization/dubbo-serialization-fst 67843758 1
V8 ctco/cukes cukes-http 216a5da6 1
V9 dropwizard/dropwizard dropwizard-logging 416bdaaf 1
V10 elasticjob/elastic-job-lite elastic-job-lite/elastic-job-lite-core 7e2505bc 1
V11 elasticjob/elastic-job-lite elastic-job-lite/elastic-job-lite-core a000cd2a 1
V12 elasticjob/elastic-job-lite elastic-job-lite/elastic-job-lite-core c808c8e7 2
V13 fhoeben/hsac-fitnesse-fixtures . faff990c 1
V14 hexagonframework/spring-data-ebean . 2d3515b0 1
V15 kevinsawicki/http-request lib cb9e021f 1
V16 ktuukkan/marine-api . 3d8dff0f 9
V17 ktuukkan/marine-api . b4afeed8 3
V18 openpojo/openpojo . 2ab65a57 1
V19 openpojo/openpojo . 4d69e2cf 1
V20 openpojo/openpojo . 92186a6f 1
V21 openpojo/openpojo . a22bb1c5 2
V22 querydsl/querydsl querydsl-hibernate-search 2c195ffa 1
V23 tbsalling/aismessages . 12864f81 2
V24 wikidata/wikidata-toolkit wdtk-dumpfiles f7cb4087 3
V25 wikidata/wikidata-toolkit wdtk-util 539f5223 2
V26 wildfly/wildfly naming c22e2311 22
V27 zalando/riptide riptide-spring-boot-starter 08442067 1
Overall 67

the project GitHub SLUG is presented under column “SLUG”, the
module name is presented under column “Module”, and the commit
SHA is presented under column “SHA”. Each flakiness-introducing
commit is given an ID for reuse in later tables. We also present in
the table the number of order-dependent flaky tests out of the total
67 associated with each flakiness-introducing commit.
Collecting additional commits. To give a better sense of how
many tests IncIDFlakies would select to run and how much time
it would take, we collect additional commits before each flakiness-
introducing commit where we would run IncIDFlakies. The use
scenario is that a developer would run a flaky-test detection tech-
nique after all changes without knowing whether there would be a
flaky test introduced or not. As such, we should evaluate the po-
tential time savings IncIDFlakies provides over baseline iDFlakies
even on commits where there would not be flaky tests detected.

Starting from each flakiness-introducing commit, we go back in
the Git history one commit at a time, and we include that commit
in our evaluation if there is a change in Java source code from
either the module that contains the order-dependent flaky test or
any modules it depends on. We restrict to such commits because
the RTS techniques we use, Ekstazi and STARTS, focus on Java
code changes. As such, they would not do any selection if there
are non-code changes. We collect up to five commits prior to each

Figure 4: The process of collecting additional commits

flakiness-introducing commit that satisfy our criteria (we could
only collect four commits for V8 that satisfy our criteria).

Figure 4 illustrates how we collect these additional commits
per flakiness-introducing commit. In the figure, commit C5 is the
flakiness-introducing commit, the latest commit considered, and
commits C1-C4 are immediately before C5 in the Git history. There
are code changes between C4 and C5, so we use C4 in the evalua-
tion (circled in the figure). However, there are non-code changes
between C3 and C4, so we do not include C3. Since there are code
changes between C2 and C4, we then also include C2 for evaluation.
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4.2 Running IncIDFlakies
For each commit we use in our evaluation, we use each RTS tech-
nique to analyze the changes between that commit and the sub-
sequent commit we collected, obtaining both the set of affected
tests and the dependency mapping from tests to classes provided
by the RTS techniques. This part simulates our expected usage
for IncIDFlakies where a developer would have already used RTS
as part of their regression testing process, and IncIDFlakies as a
flaky-test detection tool can reuse that information. We then run
IncIDFlakies using the affected tests and dependency mapping pro-
vided by the RTS technique on this subsequent commit. We denote
IncIDFlakies that uses Ekstazi as IncIDFlakies𝐸 , and IncIDFlakies
that uses STARTS is denoted as IncIDFlakies𝑆 .

On each commit where we run IncIDFlakies, we configure it to
use 10 rounds, as suggested by previous work on iDFlakies [24].
On each of these commits, we also run iDFlakies, which does not
analyze any changes and simply runs with the entire test suite;
we also use the same 10 rounds configuration so it can be a fair
baseline for comparison against IncIDFlakies. We measure what
percentage of all the tests are selected to run by IncIDFlakies and
how much time it takes for IncIDFlakies to run compared against
iDFlakies for the same number of rounds. In both cases, a smaller
percentage is better, as it would indicate IncIDFlakies provides
savings in tests to run and time to run them. Note that the time we
measure for running IncIDFlakies includes both the analysis time
for determining the additional tests to also select and also the time
to run all the selected tests for 10 rounds.

Another configuration detail for our experiments is that we dis-
able the step where iDFlakies reruns test orders where it discovers
a difference in test outcome as to check whether the test is an actual
order-dependent flaky test [1, 24]. Since iDFlakies and IncIDFlakies
can be running different tests at the same commit, they may run
different test orders that may detect different sets of flaky tests. As
such, their runtimes can differ drastically if one detects more flaky
tests and has to rerun more times. To allow for fairer comparison
of runtime differences, we disable the rerun step in both iDFlakies
and IncIDFlakies, ensuring they always run the exact same number
of rounds without any additional test runs.

4.3 Potential for Detection
Given that the order-dependent flaky test flakiness only first mani-
fests at the flakiness-introducing commit, we evaluate how effective
IncIDFlakies is at detecting the order-dependent flaky tests only on
the flakiness-introducing commit. We compare how many of the
order-dependent flaky tests are detected by IncIDFlakies compared
against those detected by baseline iDFlakies within the same 10
rounds, with the higher percentage the better.

However, given the nondeterministic nature of running different
test orders, it is not guaranteed that every order-dependent flaky
test would be detected in the 10 rounds we use for our evaluation.
As such, we need a metric for determining whether it is possible for
IncIDFlakies to potentially detect the order-dependent flaky test if
it was to run long enough (iDFlakies would always be guaranteed
to detect the test given that it is running the full test suite).

An order-dependent flaky test would only be detected if running
in different test orders reveals a passing test order and a failing

test order. In other words, if the order-dependent flaky test is a
victim, then it needs to be run with at least one of its polluters; if the
order-dependent flaky test is a brittle, then it needs to be run with
at least one of its state-setters. As such, we say the technique can
potentially detect the order-dependent flaky test at the flakiness-
introducing commit if it selects both the order-dependent flaky test
and at least one of its corresponding polluters/state-setters.

For each order-dependent flaky test, by definition, we will al-
ready have one passing test order and one failing test order at
the flakiness-introducing commit. We run iFixFlakies [40] on the
order-dependent flaky test using those test orders. iFixFlakies can
minimize the test orders and be configured to find all the possible
polluters and state-setters. We record the polluters and state-setters,
and we use that information to determine whether a technique
can actually detect the order-dependent flaky test at the flakiness-
introducing commit.

5 EVALUATION
We address the following research questions:

• RQ1:How efficient is running IncIDFlakies compared against
baseline iDFlakies?

• RQ2: How effective is IncIDFlakies at detecting the newly-
introduced order-dependent flaky tests?

We address RQ1 to check whether it is practical to use IncID-
Flakies compared against just running iDFlakies after every change.
We address RQ2 to check whether using IncIDFlakies can detect a
newly-introduced order-dependent flaky test by selecting both the
test itself and the relevant other tests such that the order-dependent
flaky test can be detected when run in different test orders.

5.1 RQ1: Efficiency of Running IncIDFlakies
Table 3 shows results concerning efficiency of IncIDFlakies com-
pared against baseline iDFlakies when run across all commits used
in our evaluation. In the table, we show under column “iDFlakies”
the average number of tests across all commits (which is the num-
ber of tests that iDFlakies would run) along with the average time
in seconds to run iDFlakies configured for 10 rounds across those
commits; each row represents commits collected relative to the
corresponding flakiness-introducing commit (Section 4.1). The final
row shows the average number of tests and the time to run across
all commits across all projects.

In the table, we show the average percentages of tests selected
by IncIDFlakies𝐸 and IncIDFlakies𝑆 across all commits w.r.t. the
baseline all tests that would be run by iDFlakies. We also show the
percentage of time IncIDFlakies𝐸 and IncIDFlakies𝑆 would take
to both analyze and select tests to run along with running those
tests the same number of rounds as baseline iDFlakies. We see
that IncIDFlakies allows for savings in both number of tests to
run and time to run and detect order-dependent flaky tests. On
average, IncIDFlakies𝐸 selects 65.4% of the tests while taking only
68.4% of the time for running iDFlakies. IncIDFlakies𝑆 has a similar
reduction, selecting 70.0% of the tests while taking only 70.5% of
the time for running iDFlakies.

We also compare the results of IncIDFlakies against running only
the tests selected by the RTS techniques Ekstazi and STARTS. These
tests are just the affected tests based on the changes and would
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Table 3: IncIDFlakies tests selected and time to run

iDFlakies IncIDFlakies𝐸 IncIDFlakies𝑆 Ekstazi STARTS
ID # Tests Time (s) % Sele % Time % Sele % Time % Sele % Time % Sele % Time
V1 108.0 55.1 94.4 97.6 100.0 98.4 37.7 32.9 92.0 96.0
V2 287.2 142.6 39.3 68.1 49.9 75.0 3.3 26.8 3.7 26.9
V3 35.0 54.6 60.0 60.3 40.0 39.9 48.7 49.2 40.0 39.7
V4 62.4 61.9 22.7 61.1 58.1 61.2 14.3 54.4 47.8 62.8
V5 2.8 12.4 80.0 77.4 80.0 77.7 80.0 77.1 80.0 77.6
V6 52.8 49.3 63.1 43.0 77.6 58.2 39.0 38.5 39.3 32.9
V7 61.8 6.0 40.0 39.1 60.0 57.5 40.0 40.0 60.0 57.4
V8 8.5 10.3 50.0 50.6 50.0 48.1 50.0 52.0 50.0 48.2
V9 74.4 36.6 64.9 74.5 66.9 75.7 37.6 66.5 52.3 71.6
V10 309.2 82.4 74.1 36.1 88.6 36.3 40.0 33.4 63.0 36.1
V11 310.2 122.2 71.8 36.2 83.6 37.1 24.1 27.4 28.8 30.8
V12 308.2 121.8 72.6 36.4 83.5 37.2 34.4 28.9 42.1 32.7
V13 174.8 13.1 10.3 18.3 62.8 91.6 3.2 15.4 55.1 90.8
V14 20.8 18.5 80.0 76.9 80.0 78.3 72.9 76.6 61.6 76.3
V15 150.4 12.5 80.0 73.6 80.0 73.1 79.7 74.1 79.7 74.0
V16 716.4 18.3 21.8 67.0 23.5 67.3 2.2 25.1 2.2 24.9
V17 693.6 17.7 30.7 64.2 32.1 64.5 19.5 38.8 23.3 54.4
V18 1156.2 338.0 97.5 99.8 97.5 99.4 34.9 89.8 58.9 75.0
V19 1117.6 323.5 78.5 79.5 78.5 79.5 66.0 77.4 78.3 79.6
V20 1052.4 48.7 97.3 97.4 97.3 97.4 3.8 24.4 41.0 54.8
V21 1124.0 330.6 97.5 97.5 97.5 101.0 37.9 90.8 59.5 63.0
V22 13.0 27.2 80.0 82.1 80.0 79.1 80.0 80.0 80.0 78.8
V23 19.8 5.1 80.0 76.1 80.0 74.6 80.0 76.8 80.0 75.7
V24 62.2 31.7 72.6 100.5 72.6 96.5 22.9 29.2 22.9 27.8
V25 11.6 9.0 20.7 28.7 20.7 29.1 20.7 29.1 20.7 28.8
V26 82.0 19.2 100.0 99.7 100.0 98.8 100.0 100.3 100.0 99.0
V27 55.0 93.5 81.9 102.3 44.2 65.9 55.7 84.5 30.7 43.4
Average 301.1 76.8 65.4 68.4 70.0 70.5 41.7 53.3 51.6 57.8

not include the additional tests IncIDFlakies would select based on
their relation to the affected tests w.r.t. static fields. Table 3 shows
the percentage of tests selected by Ekstazi and STARTS (under the
columns labeled by the technique). The table also shows the time
to run the same 10 rounds for just the affected tests relative to
the time to run iDFlakies on the full test suite (note that this time
does not include any time to analyze to select additional tests, it
is just the time run Ekstazi/STARTS’s affected tests). On average,
Ekstazi selects 41.7% of the tests while taking only 53.3% of the
time needed for iDFlakies, while STARTS selects 51.6% of the tests
while taking only 57.8% of the time. In general, STARTS selects
more tests than Ekstazi, which is expected given that the static
analysis STARTS uses tries to over-approximate which tests are
affected by the changes. However, there are still some commits
where STARTS would select fewer tests than Ekstazi, which can
occur due to dynamic dependencies between tests and classes, such
as through reflection [28, 39], which a static technique such as
STARTS would not track. Ekstazi, however, would track them.

Overall, our results show that a large number of additional tests
would be selected due to their relation to the affected tests via
shared static fields. While IncIDFlakies does require a nontrivial
amount of additional time to run with more tests, we see later

(Section 5.2) that this additional time is necessary as to ensure the
newly-introduced order-dependent flaky tests can be detected.

RQ1: Overall, IncIDFlakies outperforms iDFlakies, providing
a reduction in both tests selected and time to run. Specifically,
IncIDFlakies𝐸 selects 65.4% of the tests and take 68.4% of the
time iDFlakies needs; IncIDFlakies𝑆 selects 70.0% of the tests and
takes 70.5% of the time iDFlakies.

5.2 RQ2: Detecting Order-Dependent Flaky
Tests

Table 4 shows the detection results from running IncIDFlakies
across the 27 flakiness-introducing commits (note that we only eval-
uate on the flakiness-introducing commits here because these are
the commits where a technique could actually detect the flaky test).
We show the percentage of the known order-dependent flaky tests
(total number of order-dependent flaky tests shown in Table 2) at
each flakiness-introducing commit that can potentially be detected
by IncIDFlakies, shown under columns marked “% P”, meaning both
it and any of its corresponding polluters or state-setters are part
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Table 4: Order-dependent flaky tests detected using IncIDFlakies

iDFlakies IncIDFlakies𝐸 IncIDFlakies𝑆 Ekstazi STARTS
ID % D % P % D % P % D % P % D % P % D
V1 100.0 100.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0
V2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 50.0 50.0
V5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V6 50.0 100.0 50.0 100.0 50.0 100.0 100.0 100.0 50.0
V7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V9 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
V10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V11 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V12 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
V13 100.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0
V14 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
V15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V16 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0
V17 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
V18 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
V19 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V20 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
V21 50.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
V22 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V23 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V24 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V26 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
V27 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Average 91.0 100.0 85.1 100.0 73.1 71.6 67.2 73.1 67.2

of the selected tests (Section 4.3). Overall, we see that IncIDFlakies
can select the tests necessary to detect all 67 order-dependent flaky
tests, for both IncIDFlakies𝐸 and IncIDFlakies𝑆 .

In contrast, we also show the percentage of order-dependent
flaky tests that can be detected by using just the affected tests from
RTS techniques Ekstazi and STARTS. Use of Ekstazi can only detect
71.6% of the order-dependent flaky tests, and STARTS can only
detect 73.1% of the order-dependent flaky tests. We also find that,
on average, Ekstazi’s affected tests only include 70.6% of all the
polluters/state-setters per order-dependent flaky test; the percent-
age is 73.1% for STARTS’s affected tests. Meanwhile, IncIDFlakies𝐸
and IncIDFlakies𝑆 both end up selecting all the polluters/state-
setters per order-dependent flaky test (though selecting all polluters
and state-setters is not guaranteed). These results show the impor-
tance of IncIDFlakies’s extra analysis to select the additional tests
related to the affected tests, as to ensure the order-dependent flaky
tests can be detected from running in different test orders.

Besides determining whether it is possible to detect the order-
dependent flaky tests in different test orders, we also measure
whether running those tests in 10 rounds actually detects the order-
dependent flaky test. In Table 4, we also show under columns “% D”

the percentage of known order-dependent flaky tests that were ac-
tually detected within the 10 rounds. We also show this percentage
for the baseline iDFlakies, because, given the random nature of us-
ing a limited number of different test orders, it may not be possible
to detect all the order-dependent flaky tests. Indeed, iDFlakies that
runs on the full test suite detects 91.0% of the order-dependent flaky
tests within 10 rounds. Note that we only measure the percentage
of the known 67 order-dependent flaky tests detected in our eval-
uation; we do not consider additional order-dependent flaky tests
detected across the rounds.

IncIDFlakies also does not detect all the order-dependent flaky
tests, detecting 85.1% and 73.1% for IncIDFlakies𝐸 and IncIDFlakies𝑆 ,
respectively. We also see that running just the tests selected by
Ekstazi or STARTS for the same number of rounds results in even
fewer order-dependent flaky tests detected, which is expected given
the order-dependent flaky tests that they cannot possibly detect
(e.g., the example in Figure 1). While IncIDFlakies does not detect as
many order-dependent flaky tests as baseline iDFlakies in the same
number of rounds, they are still able to detect most of the order-
dependent flaky tests within a shorter amount of time compared
against iDFlakies (Section 5.1). Given some more resources (or
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different seeds for random number generation), they could still
potentially detect all newly-introduced order-dependent flaky tests.

Indeed, when we inspect the cases where IncIDFlakies did not
detect order-dependent flaky tests within the 10 rounds, we confirm
that, if we were to run the selected tests for more rounds (up to
100), IncIDFlakies could actually detect all order-dependent flaky
tests. In all these cases, we found the order-dependent flaky tests
would each have many “cleaners”. While an order-dependent flaky
test normally fails when run after a polluter, if there is another test,
called a cleaner, that runs in-between, the order-dependent flaky
test would pass [40]. Large number of cleaners reduces the number
of test orders that can fail, which explains why it is so difficult to
induce a failing test order, even with fewer tests to run overall.

RQ2: IncIDFlakies can potentially detect all newly-introduced
order-dependent flaky tests from our evaluation at the flakiness-
introducing commit by selecting the order-dependent flaky tests
along with at least one corresponding polluter/state-setter.

5.3 Discussion
Finer-grained dependency analysis. Currently, we rely on the
dependencies provided by Ekstazi and STARTS, which both collect
class-level test dependencies. Collecting test dependencies at a
finer granularity, such as at the method level, could result in more
precisely identifying the relationship between tests and static fields,
resulting in fewer tests to run. In our preliminary work, we used
Soot [5] to compute a method-level call graph connecting tests to
static fields. Starting with the initial affected tests from an RTS
technique, we would find the additional tests by navigating this
more precise call graph. For example, when we used this call graph
to select additional tests on top of the STARTS affected tests, the
average percentage of tests to run across all commits is 67.3% (vs.
the 70.0% using STARTS’ class-level dependencies). However, the
combination of analysis and running selected tests took on average
154.8% of the time baseline iDFlakies would take across commits.
In other words, using the finer-grained analysis resulted in higher
runtime than the baseline. Future work for more precise analysis
should focus on improving its cost.
Polluted shared state. Recall that IncIDFlakies employs a heuris-
tic that ignores dependencies on classes in third-party libraries
(Section 3.1). Using ODRepair [31], a technique that can identify
shared static fields for order-dependent flaky tests, we find two
order-dependent flaky tests where the relevant shared static field is
found in third-party library code. We also find one order-dependent
flaky test where the shared static field likely is from third-party
library code (but not confirmed through ODRepair).

Interestingly, we see several cases where we believe the polluted
shared state is not due to static fields. For example, the tests in wild-
fly/wildfly seem to depend on shared state accessible using the JNDI
service [3], not through static fields. However, the RTS technique
selects all the tests due to the change. In general, the combination
of both RTS and the analysis for determining additional tests helps
with selecting the necessary tests to detect newly-introduced order-
dependent flaky tests (Section 5.2). The over-approximation from

the coarser-grained analysis of class-level dependencies, while se-
lecting more tests, helps with increasing the chance of selecting all
relevant tests. In the future, we can extend the analysis to consider
not just static fields but also other code elements that indicate using
different kinds of shared state, e.g., code that accesses files.

6 THREATS TO VALIDITY
The results of our evaluation may not generalize to other projects.
Our evaluation dataset was obtained from prior work that evaluated
on a large dataset of order-dependent flaky tests [27]. These order-
dependent flaky tests are from popular open-source Java projects,
spread across a wide range of application domains.

The flakiness-introducing commits we use in our evaluation have
the risk of not being the exact commit where the test is flaky. We
obtained these flakiness-introducing commits from prior work [27],
where they started from the commit where the flaky test was in-
troduced and worked their way forward while running iDFlakies
to find which commit is the flakiness-introducing commit. We also
confirm that the tests are indeed flaky at the flakiness-introducing
commit by obtaining both a passing and failing test order there.
Further, we check that the order-dependent flaky tests are not flaky
on the commit before the flakiness-introducing commit by running
iDFlakies on that prior commit for 100 rounds without obtaining
both a passing and failing test order.

Our implementation may contain bugs. To mitigate this threat,
we build IncIDFlakies upon existing tools Ekstazi, STARTS, and
iDFlakies. These tools have been utilized extensively in research [18,
19, 24–28, 30, 40, 42, 48]. For the newer analysis parts, we reviewed
code and execution logs to confirm the implementation correctness.

7 RELATEDWORK
Flaky tests. Luo et al. conducted the first empirical study on flaky
tests in open-source projects [32]. They studied the common root
causes for fixed flaky tests along with how they could manifest and
how developers would fix them. Eck et al. conducted a similar study
with a focus on the developers’ perspectives [12]. Flaky tests are
also prevalent in industry, to the point that researchers at Facebook
propose everyone to “assume all tests are flaky” [21].

To help with the issue of flaky tests, there has been numerous
work in detecting different types of flaky tests, such as detecting
order-dependent flaky tests [16, 24, 45, 47], flaky tests that make
assumptions on determinism in specifications [38], flaky tests that
depend on random number generation [11], or time-constrained
flaky tests [43]. Our work focuses on detecting order-dependent
flaky tests, but unlike prior work that detects through analysis on a
single code version, we consider the changes between code versions.
There has also been work in detecting flaky tests without having
to rerun tests but rather through machine learning techniques [6].
However, there is risk that tests classified as flaky are actually
not. Our work builds upon iDFlakies to detect flaky tests through
reruns [24], ensuring detected flaky tests are actually flaky, but
doing so more efficiently by leveraging code evolution. Bell et
al. [10] proposed DeFlaker, which detects flaky tests by checking
whether a test has a different outcome after a change yet does not
cover that change. Such a test must be flaky since its outcome is not
related to the change. However, DeFlaker can only detect flaky tests
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if it so happens to have a different outcome after a change, unlike
our work that reruns tests in different test orders to more easily
manifest flakiness. Indeed, Bell et al. found that flakiness manifests
more easily if they would change up the running environment.
Order-dependentflaky tests. Luo et al. found that order-dependent
flaky tests are one of the top three kinds of flaky tests [32]. Zhang et
al. [47] developed DTDetector to detect order-dependent flaky tests
proactively by running tests in random test orders. Lam et al. [24]
followed up with iDFlakies to both detect and partially classify flaky
tests as order-dependent or non-order-dependent flaky tests. We
build upon iDFlakies to make it evolution-aware and run more effi-
ciently by only selecting the necessary tests between code versions.
Our evolution-aware analysis could potentially be applied to other
techniques that aim to detect order-dependent flaky tests [16, 45],
but across multiple code versions. Lam et al. [27] also used iD-
Flakies in their longitudinal study to find the flakiness-introducing
commit for known order-dependent flaky tests. They start with
the commit that first introduced the test into the project and then
moved forward through commits until reaching one where using
iDFlakies detects the order-dependent flaky test (which could be at
the test-introducing commit). We reuse their dataset for our work
on detecting such tests at the flakiness-introducing commit.

Huo and Clause [23] proposed OraclePolish to detect tests with
assertions that depend on input data not controlled by the tests
themselves, meaning they could potentially fail when run by them-
selves (these assertions are “brittle”). Gyori et al. [20] developed
PolDet to find tests that could “pollute” the state for other tests
(which may not even exist in the test suite yet) by tracking whether
shared state via static fields have changed between when a test
starts and when a test finishes. Shi et al. [40] would define specific
tests related to order-dependent flaky tests (with terms “brittle” and
“polluter” inspired by previous work) and developed iFixFlakies
to find the polluters and state-setters for order-dependent flaky
tests. iFixFlakies would ultimately propose patches for these order-
dependent flaky tests by leveraging code from the existing test suite.
We use iFixFlakies to find all polluters and state-setters to help with
our evaluation. Li et al. [31] proposed ODRepair as another means
to repair order-dependent flaky tests without relying on test-suite
code. ODRepair identifies the polluted shared state between tests
and then constructs method sequences that reset that state. We use
ODRepair to check the shared state between tests.

Bell and Kaiser [8] proposed VmVm as a runtime environment to
reset shared state from static fields as to prevent pollution between
tests. Arcuri et al. [7] also noticed issues with tests sharing state
when automatically generating tests. They also proposed a runtime
to reset shared state between generated tests. We also focus our
analysis on how tests depend on each other through static fields.
Regression test selection. Regression test selection (RTS) aims to
reduce the cost of regression testing by selecting to run only the
tests that are affected by recent changes [46]. Early work on RTS fo-
cused on reducing the number of test selected through finer-grained
analysis of the relationship between tests and code elements, such
as statements or methods [22, 35–37, 46]. Recent work found that
coarser-grained analysis, such as tracking the dependencies be-
tween test classes and classes under test, can be more efficient due
to the faster analysis despite selecting more tests [18]. Industry

has taken this finding further, focusing on even coarser-grained
analysis for RTS, at the target/module level [13, 15, 34, 41, 49].

For Java projects, RTS techniques such as Ekstazi [17, 18] and
STARTS [28, 29] are available to perform RTS by tracking class-
level dependencies dynamically and statically, respectively. We use
Ekstazi and STARTS to analyze changes and help select the rele-
vant tests for detecting newly-introduced order-dependent flaky
tests. Extensive work in recent years have leveraged Ekstazi and
STARTS for different goals, e.g., evolution-aware runtime monitor-
ing [30], detecting faults in RTS tools [48], or evaluating large-scale
ecosystem RTS [19]. There have also been efforts to improve these
tools, such as making Ekstazi refactoring-aware [44] or improving
STARTS to approximate dependencies from reflection [39].

Recent work has also started exploring RTS that leverages ma-
chine learning algorithms as to predict which tests could fail based
on a change before running them [14, 33]. These ML-based RTS
techniques do not explicitly analyze the code changes to perform its
prediction. For the purposes of our work, we cannot use such ML-
based RTS techniques, because our goal is not to select which tests
would newly fail after a change but rather identify new flakiness.

8 CONCLUSIONS
We propose IncIDFlakies, a technique for efficiently detecting order-
dependent flaky tests introduced in a change. Existing technique
iDFlakies must run all tests in different test orders without any
knowledge of changes between code, resulting in high overheads
if it has to run after every change, which happens frequently. In-
cIDFlakies improves upon iDFlakies by selecting to run in different
test orders the subset of tests that can ensure detecting newly-
introduced order-dependent flaky tests after a change. IncIDFlakies
leverages RTS techniques to analyze the changes to find the tests
whose behavior would be affected by the changes. However, run-
ning just these affected tests are not enough to ensure detecting
order-dependent flaky tests given the nature of dependencies be-
tween tests. We augment the analysis to also include tests that
are related to the affected tests through static fields, a common
way that state is shared between tests in Java. Our evaluation on 67
order-dependent flaky tests where prior work has identified the cor-
responding flakiness-introducing commit shows that IncIDFlakies
can select to run 65.4% of tests while running only 68.4% of the
time baseline iDFlakies would need to run the same number of test
orders with the full test suite. Furthermore, IncIDFlakies ensures
all order-dependent flaky tests in our evaluation can be detected
when running using its selected tests.

In the future, we plan on additional strategies to prioritize relative
orderings between selected tests as to increase the chances of detect-
ing newly-introduced order-dependent flaky tests within a limited
number of test orders. We also plan to apply similar evolution-
aware analysis to augment other techniques beyond iDFlakies for
detecting order-dependent flaky tests [16, 45].
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