
Detecting Resource Utilization Bugs Induced by Variant
Lifecycles in Android

Yifei Lu
lyf@smail.nju.edu.cn

State Key Laboratory for Novel Software Technology,
Software Institute, Nanjing University

Nanjing, China

Minxue Pan∗
mxp@nju.edu.cn

State Key Laboratory for Novel Software Technology,
Software Institute, Nanjing University

Nanjing, China

Yu Pei
csypei@comp.polyu.edu.hk
Department of Computing,

The Hong Kong Polytechnic University
Hong Kong, China

Xuandong Li
lxd@nju.edu.cn

State Key Laboratory for Novel Software Technology,
Nanjing University
Nanjing, China

ABSTRACT

The lifecycle models of Android components such as Activities and
Fragments predefine the possible orders in which the components’
callback methods will be invoked during app executions. Corre-
spondingly, resource utilization operations performed by Android
components must comply with all possible lifecycles to ensure safe
utilization of the resources in all circumstances, which, however,
can be challenging to achieve. In response to the challenge, vari-
ous techniques have been developed to detect resource utilization
bugs that manifest themselves when components go through com-

mon lifecycles, but the fact that Android components may execute
their callback methods in uncommon orders, leading to variant
component lifecycles, has largely been overlooked by the existing
techniques.

In this paper, we first identify three variant lifecycles for Android
Activities and Fragments and then develop a technique called VALA
to automatically detect bugs in Android apps that are induced by
the variant lifecycles and may cause resource utilization errors
like resource leaks and data losses. In an experimental evaluation
conducted on 35 Android apps, a supporting tool for the VALA
technique automatically detected 8 resource utilization bugs. All
the 8 bugs were manually confirmed to be real defects and 7 of
them were reported for the first time.

KEYWORDS

Android applications, variant lifecycles, resource utilization bugs,
static analysis

1 INTRODUCTION

Android has been the unquestionable world leader of the mobile op-
erating systems market in the past few years [30, 31], and Android
apps are becoming more and more indispensable for many people’s
everyday life and work. To develop an Android app that always
functions as expected in all circumstances, however, is never an
easy task. One important difference between Android apps and tra-
ditional desktop applications is that the lifecycle models of Android
components such as activities and fragments are predefined by the
platform architecture. The lifecycle model of a component not only

∗Corresponding author.

stipulates how the component transits through different states in
response to various user and system events but also defines a set
of callback methods, or entrypoints [2, 40], that will be invoked
automatically by the Android framework to handle events trig-
gered on the component during app executions. Correspondingly,
to program a new Android component essentially boils down to
overriding those entrypoints with appropriate implementations.

Although the concept of lifecycle model is straightforward to un-
derstand, to organize necessary operations into various entrypoints
so that they always correctly implement the required functionali-
ties is challenging in practice, largely because different component
states and input events may lead to distinct entrypoint execution
sequences, or distinct lifecycles, in various app executions, while
the correct implementation of most functionalities demands that
the relevant operations are performed in specific orders. For ex-
ample, one key aspect of safe and efficient resource utilization in
Android apps is to always properly release the allocated resources
when they are no longer needed, no matter how users interact
with the app or how the states of the app’s activities and frag-
ments change. In view of the challenge, various techniques have
been developed in the past few years to dynamically [11, 28, 29] or
statically [10, 16, 42] detect resource utilization bugs in Android
apps due to non-conformity with the Android component lifecy-
cles. These techniques concern the common lifecycles of Android
components and have been applied to detect real bugs in popular
Android apps.

However, the execution orders of the component entrypoints
(and the operations they perform in turn) may deviate from the
common cases under specific circumstances, resulting in variant
lifecycles for those components. The variant lifecycles have largely
been overlooked by the existing techniques, partly because they
take place rarely, and partly because the descriptions of the uncom-
mon entrypoint execution orders are scattered at multiple locations
of the Android documentation.

Failing to take the deviations into account significantly impairs
the effectiveness of existing techniques in the face of variant life-
cycles. On the one hand, since the chance of accidentally running
an app under those specific circumstances is very slim, existing
techniques that are based on dynamic analysis are unlikely to be

© 2022 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in ISSTA 2022 : proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, https://doi.org/10.1145/3533767.3534413.

This is the Pre-Published Version.

Yifei Lu, Minxue Pan, Yu Pei, and Xuandong Li

successful in triggering variant lifecycles; On the other hand, state-
of-the-art static-analysis-based techniques cannot effectively dis-
cover those bugs either because, to the best of our knowledge, all
of them derive app executions from Android component lifecy-
cle models, but none of their models includes information about
the uncommon entrypoint execution orders. Moreover, naively in-
corporating the uncommon entrypoint execution orders into the
techniques’ lifecycle models will most likely be counterproductive,
since the resultant model will significantly increase not only the
costs for analyzing the apps but also the number of false positives
produced.

In this work, we first manually analyze the Android API ref-
erence to identify three scenarios under which the entrypoints
defined within Android activities and fragments will be executed
in uncommon orders, and then propose a technique, called VALA
(VAriant Lifecycle Analyzer), to automatically detect bugs in An-
droid apps that are caused by the three related variant lifecycles and
will lead to resource utilization errors like resource leak errors and
data loss errors. Given that the resource utilization code causing the
errors can be scattered across different entrypoints and guarded by
specific conditions, VALA applies complex static program analysis
techniques, instead of simple search algorithms based on pattern
matching, to achieve higher effectiveness. For the analysis to be
efficient, we design VALA on the basis of two considerations. First,
we refrain from conducting an expensive, global analysis of all the
entrypoints of Android components, since the differences between
common and variant lifecycles concern only a few types of entry-
points. Second, we focus on resources referenced by member fields
of Android components in the analysis. Because we target resource
utilization bugs caused by variant lifecycle entrypoints and entry-
points are functions without user-defined parameters, resources
accessible across multiple entrypoints of a component are typically
referenced by member fields.

We have developed a tool, also named VALA, to support the easy
application of the VALA technique. Taking an Android app, a group
of resource utilization operations (RUOs), and a set of resource
utilization requirements as the input, VALA first checks its activities
and fragments to find out whether any of them may go through
variant lifecycles and thus risk containing resource utilization bugs
that we are looking for. Then, for each component that does face
the risk, VALA performs a context-sensitive data-flow analysis to
gather possible execution sequences of the RUOs in relevant en-
trypoints of the component. In the end, VALA concatenates the
operation sequences gathered from entrypoints in orders stipulated
by the variant lifecycles, and it reports a resource utilization bug
if a resultant operation sequence violates the resource utilization
requirements. In an experimental evaluation conducted on 35 An-
droid apps, VALA detected 8 resource utilization bugs due to variant
lifecycles. All the 8 bugs were manually confirmed to be real defects,
and 7 of them were reported to the developers of the corresponding
apps for the first time. Besides, the average time VALA needed to an-
alyze each app was less than half a minute. Such results suggest that
VALA is both effective and efficient in detecting resource utilization
bugs in Android apps that are induced by variant lifecycles.

The contributions this paper makes are as the following:

(1) We identify an important class of bugs that are caused by
variant lifecycles of Android components, and we manually
analyze the official Android documentation to spot three
scenarios under which Android activities and fragments
may go through variant lifecycles.

(2) We develop a technique called VALA that applies context-
sensitive data-flow analysis to collect possible sequences
of RUOs from component entrypoints and detects resource
utilization bugs based on the gathered operation sequences
and the resource utilization requirements.

(3) We implement the VALA technique into a tool with the same
name and make it publicly available online∗. We empirically
evaluate the effectiveness and efficiency of VALA on 35
real-world Android apps. The experimental results suggest
VALA is both effective and efficient in detecting resource
utilization bugs induced by variant lifecycles in Android
apps.

The rest of this paper is organized as the following. Section 2
introduces the background and motivation of the work. Section 3
elaborates how the VALA technique detects resource utilization
bugs caused by Android variant lifecycles step by step. Section 4
reports on the experiments we conducted to evaluate VALA and the
results of the experiments. Section 5 reviews recent work that is
closely related to ours. Section 6 concludes the paper.

Activity/Fragment running

Activity/Fragment launched

Activity/Fragment shut down

onCreateView()

onPause()

onStop()

onDestroyView()

onDestroy()

onCreate()

onStart()

onResume()

onCreate()

onStart()

onResume()

onPause()

onStop()

onDestroy()

Component State

Entrypoints

onSaveInstanceState()

Activity Fragment

En
tri

re
 L

oo
p

Fo
re

gr
ou

nd
 L

oo
p

V
isi

bl
e

Lo
op

Transition

Loop Transition

En
tri

re
 L

oo
p

Fo
re

gr
ou

nd
 L

oo
p

V
isi

bl
e

Lo
op

Figure 1: A basic lifecycle model for Android activities and

fragments. States like “Activity/Fragment started” and “Ac-

tivity/Fragment paused” have been omitted for simplicity.

∗https://github.com/SEG-DENSE/VALA.

https://github.com/SEG-DENSE/VALA

Detecting Resource Utilization Bugs Induced by Variant Lifecycles in Android

2 BACKGROUND AND MOTIVATION

In this section, we first make a brief introduction to a basic lifecycle
model for Android activities and fragments, and then illustrate
through examples how RUOs that work finewith common lifecycles
may cause bugs in the face of variant lifecycles.

2.1 A Basic Lifecycle Model for Android

Activities and Fragments

Activities and fragments are two important and frequently-used
types of Android components. As essential building blocks of An-
droid apps, an Activity abstracts a single screen that interacts with
users, whereas a Fragment abstracts a modular section of an ac-
tivity. Activities and fragments are all lifecycle-aware, in the sense
that their lifecycle models are predefined by the Android platform
architecture. Particularly, the lifecycle model of an activity or a
fragment stipulates how the component transits through different
states in response to various user and system events. The lifecy-
cle model also defines a set of callback methods, or entrypoints,
which the Android framework will automatically invoke to handle
events triggered on the component. By overriding the entrypoints
with appropriate implementations, Android developers program
the desired functionalities into activities and fragments.

Figure 1 gives a basic lifecycle model for Android activities and
fragments, with states like “Activity/Fragment started” and “Ac-
tivity/Fragment paused” (“started” and “paused” for short) being
omitted for simplicity reasons. The figure shows, e.g., that an ac-
tivity’s entrypoints onCreate, onStart, and onResume are usually
invoked in sequence during the activity’s transition from state
“launched” to state “running”, while four other entrypoints are usu-
ally invoked in order when the activity transits from state “running”
to state “shut down”.

The basic model also highlights three key loops in common
lifecycles [28], including i) the entire loop that contains all state
transitions and entrypoint invocations from onCreate through
onDestroy, ii) the visible loop that contains state transitions and
entrypoint invocations from onStart through onStop, and iii) the
foreground loop that contains state transitions and entrypoint in-
vocations from onResume through onPause. For instance, a config-
uration change from landscape orientation to portrait orientation
due to the rotation of the device may trigger an execution of the
entire loop, turning off and on the screen may trigger an execution
of the visible loop, while covering part of a foreground activity or
fragment with a GUI element and then discarding that element may
trigger an execution of the foreground loop.

2.2 Motivating Examples

Figure 2 illustrates how a variant lifecycle may cause a resource
leak error during the execution of AskPushPermissionActivity
from app GmsCore. Particularly, as shown in Figure 2a, the activity
declares a member field db to hold a helper object through which
it can operate the underlying database, and as done in the common
practice, the activity instantiates the helper object in entrypoint
onCreate and releases the helper object in entrypoint onStop. Such
implementation would work perfectly fine when the activity goes
through its common lifecycles, where entrypoint onStop is surely

class AskPushPermissionActivity {

 private SQLiteOpenHelper db;

 void onCreate(Bundle) {
l0 o = new SQLiteOpenHelper();
l1 db = o;

 /* an exception handler */
l2 if (db.Query() != null)
l3 finish();
 }

 void onStop() {
l4 db.close();
 }
}

(a) Code snippet

onCreate()

onStop()

onDestroy()

Activity
finish()

(b) Entrypoint execution order

Figure 2: A resource leak error caused by variant lifecycles

class MainActivity {

 private boolean isUnlocked;

 onSaveInstanceState
 (Bundle outState) {
l0 b = isUnlocked

l1 outState.put(KEY, b);
 }

 onStop() {
l2 isUnlocked = false;
 }
}

(a) Code snippet

onSaveInstanceState()

onStop()

Activity Over API 28

(b) Entrypoint execution order

Figure 3: A data loss error caused by variant lifecycles

invoked, causing the helper object to be released, before the activity
shuts down.

However, due to the invocation to method finish in its entry-
point onCreate, the activity may go through a variant lifecycle
during its execution, as shown in Figure 2b. More concretely, ac-
cording to the Android API reference [7], calling method finish
on an Activity will cause (1) the Activity’s entrypoint onDestroy
to be executed directly and then (2) the Activity to be destroyed.
Since AskPushPermissionActivity invokes method finish in its
entrypoint onCreate, executing the method invocation will effec-
tively destroy the activity without executing entrypoint onStop,
which will cause a resource leak error since the helper object is not
properly released.

Figure 3 illustrates how another variant lifecycle may cause a
data loss error during the execution of MainActivity from app
To-Do List. As shown in Figure 3a, the activity stores the value of its
member field isUnlocked in entrypoint onSaveInstanceState,
and it also sets the value of isUnlocked to false in entrypoint
onStop. When the activity goes through common lifecycles sum-
marized in Figure 1, entrypoint onSaveInstanceState is always

Yifei Lu, Minxue Pan, Yu Pei, and Xuandong Li

executed before entrypoint onStop, and therefore the actual value
of isUnlocked to be saved into outState can be either true or
false, depending on the activity’s internal state, which is most
likely also the behavior developers expected for the activity.

The execution order of entrypoints onSaveInstanceState and
onStop, however, will be different for apps targeting more re-
cent Android versions. Specifically, starting from Android 9 (or
API version 28), entrypoint onStop is called before entrypoint
onSaveInstanceState, as shown in Figure 3b. Such change will
cause a data loss error to MainActivity, since isUnlocked will
always be set to false before its value is stored. Since data loss
errors do not always cause problems that are directly visible to
users, they can be hard to notice.

The two examples clearly demonstrate that, if not appropriately
handled, variant lifecycles may lead to resource utilization errors.
Such variant lifecycles, however, have largely been overlooked by
Android developers and researchers, and we can see two main
reasons for that. First, the variant lifecycles are not clearly stated in
the official guidelines to Android component lifecycle model [8] and
can be hard to notice. Actually, the fact that calling method finish
on an activity will cause the execution of that activity’s entrypoint
onDestroy and then the destruction of the activity is only explained
in the document of methods onCreate and onDestroy, but not in
that of method finish, probably because the main purpose of
finish is to destroy an activity, rather than to alter the common
activity lifecycle. Second, to understand that implementations like
the one shown in Figure 2a are faulty, programmers need to not
only be aware of the impact of method finish on activity and
fragment lifecycles but also relate that impact to the utilization
of resources in those components, but the relation can be missed
easily.

Meanwhile, existing techniques that detect resource utilization
bugs in Android apps due to non-conformity with the Android
component lifecycle model are less likely to be effective in the face
of variant lifecycles. On the one hand, activities and fragments
only go through variant lifecycles under specific conditions, while
techniques that are based on dynamic analysis can hardly run into
app states satisfying those conditions by chance. For example, the
invocation to method finish in Figure 2a is part of an exception
handler and it is guarded by a condition, making the chance of
actually triggering the invocation with existing dynamic analysis
based techniques very slim. On the other hand, techniques that
are based on static analysis rely on Android component lifecycle
models to derive app behaviors, but none of their models contains
information about variant lifecycles, and to accurately model the
interplay between entrypoints and RUOs is non-trivial. For in-
stance, while the invocation to finish in onCreate will always
cause AskPushPermissionActivity to go through a variant life-
cycle, no resource leak error would occur if the helper object is
instantiated after the call to finish. To avoid raising false alarms
in such a situation, precise, control- and data-dependent analysis
of the entrypoints is needed, which, however, is challenging.

3 THE VALA TECHNIQUE

In this section, we explain in detail how we identify variant
Android component lifecycles, what RUOs we consider in this

Table 1: Basic information about the Activity and Fragment

classes in various Android libraries.

Library Type Root Class #SubCls #Mthd

basic Activity android.app.Activity 9 372
Fragment android.app.Fragment 4 167

support Activity android.support.v4.app.FragmentActivity 1 94
Fragment android.support.v4.app.Fragment 25 567

androidx Activity androidx.activity.ComponentActivity 2 206
Fragment androidx.fragment.app.Fragment 32 623

Overall - - 73 2029

work, and how the VALA technique detects resource utilization
bugs caused by those variant lifecycles step by step. Note that,
while resource utilization errors may also occur inside individual
entrypoints or in common Android component lifecycles, VALA
is not devised to detect those errors, and several techniques have
been proposed to effectively reveal those errors [10, 15, 35].

We will use the following notations in the explanation. Given an
Android app 𝑃 , let 𝐴 and 𝐺 be the set of activities and fragments
defined in 𝑃 , respectively,𝐶 = 𝐴∪𝐺 , while 𝐹 and 𝐸𝑃 be the set of all
member fields and entrypoints defined in𝐶 , respectively. Functions
\ : 𝐶 → 2𝐹 and 𝜓 : 𝐶 → 2𝐸𝑃 map each component in 𝐶 to the
set of member fields and entrypoints defined in the component,
respectively. Functions \ ′ : 𝐹 → 𝐶 and 𝜓 ′ : 𝐸𝑃 → 𝐶 map each
member field and entrypoint defined in an activity or fragment to
its containing component.

3.1 Variant Lifecycles of Android Activities and

Fragments

We first performed a comprehensive investigation into the Android
API reference to manually gather information about variant lifecy-
cles of Android activities and fragments, including the conditions
under which activities and fragments will go through variant life-
cycles and the entrypoints whose execution orders will be different
in those variant lifecycles. We gathered the information from the
Android API reference, instead of the other materials about An-
droid, because the API reference is well-maintained, up-to-date,
and supposed to be thorough in the sense that it should contain all
the information that developers need to know to correctly program
and interact with activities and fragments.

To the best of our knowledge, three libraries are widely used
in implementing Android activities and fragments, namely the
basic library introduced at the very beginning of the platform, the
support library that provides a compatibility layer to make Android
development against multiple API versions easier, and the androidx
library that also provides backward compatibility across Android
releases and aims to supersede the support library.While the support
library is no longer maintained, and Google recommends that the
androidx library should be used instead in future developments,
we include the library in this study because many time-honored
Android apps still rely on it. Table 1 lists for each library (Library)
and each type of component (Type), i.e., Activity or Fragment, the
root class (Root), the number of its subclasses (#SubCLs), and the
total number of APIs defined in those subclasses (#Mthd).

Detecting Resource Utilization Bugs Induced by Variant Lifecycles in Android

Table 2: Types of variant lifecycles for Android activities and fragments.

ID Component Condition Variation Relevant Entrypoints

Skip1 Activity Method finish is called in
onCreate

Entrypoint onDestroy will be invoked and the activity will be de-
stroyed immediately after onCreate returns, skipping entrypoints like
onStop.

onCreate, onDestroy,
onStop

Skip2 Fragment setRetainInstance(true) is
called to retain the Fragment
instance

Entrypoints onDestroy and onCreatewill be skipped, while the other
entrypoints will still be executed, in the following entire loop.

onCreate, onDestroy,
onCreateView

Swap Activity App is running on Android 9.0
or later

Entrypoint onSaveInstanceState will be executed after, instead of
before, onStop.

onSaveInstanceState,
onStop

Table 3: Sample resource types and their utilization opera-

tions considered by VALA.

resource class reqest op. release op.

android.database.sqlite.SQLiteOpenHelper new close
com.google.android.exoplayer2.ExoPlayerFactory newInstance release
org.apache.http.impl.client.DefaultHttpClient connect close
android.hardware.SensorManager registerListener unregisterListener
java.util.logging.FileHandler new close
io.reactivex.disposables.CompositeDisposable new dispose

data store class save op. edit op.†

android.database.sqlite.SQLiteDatabase insert p.f=q
android.os.Bundle putSize p.f=q
android.content.SharedPreferences.Editor putBoolean p.f=q

† Here, p is an alias of this activity or fragment, while f is a member field
of the activity or fragment, and the save operation stores the value of f.

To collect the variant lifecycles, we went through the following
process: We first studied the Android official guides and collected all
the mentioned lifecycle transitions. We then searched all methods’
descriptions in the Android API references of the three libraries
for mentions of lifecycle transitions. Those transitions that are not
listed in the official guides but mentioned in the API references
imply variant lifecycles. In total, three types of variant lifecycles
were successfully identified from the API references. Table 2 lists,
for each variant lifecycle type, its ID, the type of Android compo-
nents it concerns (Component), the condition under which it will
be triggered (Condition), its impact on entrypoint execution order
(Variation), and the entrypoints that are relevant to it (Relevant
Entrypoints). The three variant lifecycles are independent of the
underlying Android libraries used, and we have seen instances
of variant lifecycles of types Skip1 and Swap in Section 2.2. Pre-
vious research has studied the existence of implicit control flow
transitions due to invocations of callback methods in the Android
framework [4, 5]. But the callback methods considered there are
communicated to the Android framework by using registration

methods and are not strictly related to Android component lifecy-
cles.

3.2 Resource Utilization Operations

Since the three types of variant lifecycles influence the entrypoint
execution orders differently, the possible types of resource utiliza-
tion errors they may cause are also different. In this work, we
consider mainly two kinds of such bugs. For variant lifecycles that
may cause the executions of certain entrypoints to be skipped, i.e.,

those of types Skip1 and Skip2, resource leak errors may occur if
entrypoints responsible for releasing the allocated resources are
skipped. For variant lifecycles that may cause the executions of
entrypoints to be swapped, i.e., those of type Swap, data loss errors
may occur if the data to be stored is modified in entrypoint onStop.
Since VALA aims to detect bugs caused by variant lifecycles, we
are only concerned with RUOs directly or indirectly performed by
entrypoints here. With this design, the requirements for correct re-
source utilization that we want to fulfill across entrypoints, even in
the face of variant lifecycles, can essentially be summarized as the
following. First, all allocated resources should be properly released.
Second, all modifications to app data should be faithfully saved.

We collected in total 51 pairs of resource request/release opera-
tions from previous studies [15, 25] and frequently-used third-party
libraries [13, 27]. We also gathered from a previous work [29] 60 op-
erations that are often invoked in entrypoint onSaveInstanceState
to store app data. Since the purpose of entrypoint onSaveInstance-
State, as suggested by its name, is to save the state of this compo-
nent instance, we consider an assignment to a field of this activity
or fragment as an edit operation if the field is part of the instance
state and therefore should be saved. For example, if this activity
has a member field named x and SharedPreferences.Editor.put
Boolean(key, x) is a save operation performed by onSaveInstan
ceState, assignment this.x = q in entrypoint onStop will be
considered as an edit operation associated with the save operation.
Table 3 lists some of the resource request/release operation pairs and
some data save/edit operations. The full list of RUOs that VALA han-
dles is publicly available for download at https://github.com/SEG-
DENSE/VALA/blob/master/ResourceOPMap.xml.

Overall,VALA is concernedwith four types of RUOs, namely𝑅𝐸𝑄 ,
𝑅𝐸𝐿, 𝑆𝐴𝑉 and 𝐸𝐷𝑇 , for request, release, save, and edit operations,
respectively. Let T = {𝑅𝐸𝑄, 𝑅𝐸𝐿, 𝑆𝐴𝑉 , 𝐸𝐷𝑇 } be the set of RUO
types.

3.3 Resource Utilization Operation Sequences

from Entrypoints

To gather all RUO sequences from an entrypoint, VALA repeat-
edly applies a context-sensitive data-flow analysis, each time to
an individual execution path of the entrypoint for effectiveness. In
Android, resources that need to be accessed across entrypoints are
typically referenced by member fields since entrypoints are func-
tions that do not have user-defined parameters. Therefore, VALA

https://github.com/SEG-DENSE/VALA/blob/master/ResourceOPMap.xml
https://github.com/SEG-DENSE/VALA/blob/master/ResourceOPMap.xml

Yifei Lu, Minxue Pan, Yu Pei, and Xuandong Li

stmtF assign | call
assignF 𝑝 = 𝑞 | 𝑝.𝑓 = 𝑞 | 𝑝 = 𝑞.𝑓 callF 𝑝 = 𝑞.𝑚(𝑟)
𝑝, 𝑞, 𝑟 ∈ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑓 ∈ 𝐹𝑖𝑒𝑙𝑑, 𝑚 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑

Figure 4: Syntax of the core language.

focuses on one member field of the entrypoint’s containing activ-
ity or fragment in the analysis of each execution path. To gather
an accurate sequence of RUOs performed on a member field, the
analysis especially keeps track of the aliasing relation between the
member field and other expressions.

More concretely, given an entrypoint 𝑒𝑝 ∈ 𝐸𝑃 , VALA first con-
structs a program structure tree (PST) [18] for 𝑒𝑝 by unfolding the
loops and inlining the non-library methods invoked directly or in-
directly by 𝑒𝑝 . In the PST, nodes are simple statements from 𝑃 , with
the root node corresponding to the entry of 𝑒𝑝 and the leaf nodes
corresponding to the exit of 𝑒𝑝 , while edges are possible control
flows. Let Ω be the set of all paths from the root node to leaf nodes
in the tree. Each path 𝜔 ∈ Ω can be mapped to an execution of 𝑒𝑝 ,
if there do exist appropriate inputs to the entrypoint that can make
conditions along the path evaluate to values matching the branches
being taken. Then, VALA constructs a derived program 𝑃𝜔 from
each 𝜔 ∈ Ω by collecting the statements along 𝜔 . The following
symbolic analysis is applied to 𝑃𝜔 . Figure 4 gives the syntax of the
core language of 𝑃𝜔 and we will use the language to present the
algorithm for the analysis. Note that, due to its specific construction
process, 𝑃𝜔 contains neither control structures like branches and
loops nor invocations to non-library methods. Instead, program 𝑃𝜔
contains simply a sequence of simple statements to be executed in
order. Suppose the first statement of 𝑃𝜔 is at index 0.

During the symbolic analysis of program 𝑃𝜔 targeting a mem-
ber field 𝑓 ∈ \ (𝜓 ′ (𝑒𝑝)), a state ⟨𝑖𝑑𝑥, 𝜙, 𝜖⟩ of the program contains
the index 𝑖𝑑𝑥 of the next statement to execute, the set 𝜙 of alias
expressions of 𝑓 in the form of access paths [6, 21], and the set 𝜖 of
RUOs performed on 𝑓 so far. The inference rules in Figure 5 present
the operational semantics of the statements in 𝑃𝜔 . The following
notations are used in defining the inference rules. Function 𝑝𝑟𝑒

takes a set 𝜙 of access paths and a access path 𝑟 as the parameters
and returns the set of access paths from 𝜙 that have 𝑟 as a prefix.
Function 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 takes a set 𝜙𝑎 of access paths, a access path 𝑟 , and
another set 𝜙𝑏 of access paths as the parameters and returns a new
set of access paths by taking each access path from 𝜙𝑎 and replacing
its prefix 𝑟 , when exists, with each access path in 𝜙𝑏 . Function 𝑅𝑈𝑂
constructs a RUO from a statement. Function 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑒 takes a
statement index 𝑖𝑑𝑥 and a access path 𝑟 as the input and returns a
pair ⟨𝜙, 𝜖⟩ as the output, where 𝜙 is the set of aliasing access paths
of 𝑟 and 𝜖 is the set of RUOs performed on 𝑟 , when the program
𝑃𝜔 executes till index 𝑖𝑑𝑥 . For performance reasons, VALA calcu-
lates the result of function 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑒 by conducting a backward
analysis [32].

Particularly, VALA combines taint propagation (i.e., to derive new
access paths when the variable on the right-hand side is tainted)
and strong update (i.e., to remove access paths from 𝜙 if they can be
mapped to the variable on the left-hand side) techniques from tra-
ditional interprocedural taint analysis with a backward on-demand
alias analysis [32] to analyze assignment statements. For instance,

when the assignment is of form 𝑡ℎ𝑖𝑠 .𝑓 = 𝑞 (assign 2.2 in Figure 5),
the member field of interest is directed to another (possibly dif-
ferent) object. In this case, VALA first performs backward analysis
to find out the collection of access paths to 𝑞 at that location and
the set of RUOs applied to 𝑞 before the assignment. Then, the tool
replaces the RUOs and access paths collected for 𝑡ℎ𝑖𝑠 .𝑓 so far with
the sets of operations and access paths returned by the backward
analysis, since the previously collected operations and access paths
will no longer affect the use of 𝑡ℎ𝑖𝑠 .𝑓 after the assignment. The
current assignment statement is also treated as an EDT operation
and added to the set.

VALA applies two different strategies in handling calls to library
methods, depending on whether the method invocation constitutes
a RUO or not. When yes, the tool constructs a RUO from the state-
ment and adds it to the operation set. When no, the tool simply
skips the method call, since the call is irrelevant to the type of bugs
that we are looking for.

The analysis reaches its end when the last statement in 𝑃𝜔 has
been processed. The RUO set in the final state of the analysis then
contains all the operations on 𝑓 that may be perceived outside 𝑒𝑝 .

Consider the code snippet in Figure 2a for example. A derived
program 𝑃 ′ for entrypoint onCreate may contain statements cor-
responding to lines 𝑙0, 𝑙1, . . . , 𝑙2, 𝑙3. The analysis of 𝑃 ′ w.r.t. field
db will start from an initial state ⟨0, {𝑡ℎ𝑖𝑠 .𝑑𝑏}, ∅⟩. At statement 𝑙0,
since the statement is not related to 𝑑𝑏, the tool will simply change
the state to ⟨1, {𝑡ℎ𝑖𝑠 .𝑑𝑏}, ∅⟩. At statement 𝑙1, the assignment to 𝑑𝑏
will enlarge 𝜙 with the local reference o and an EDT operation
will also be collected. Moreover, a backward analysis will be per-
formed to look for aliases of o and operations on these aliases,
and the program state will be updated to incorporate the analysis
results. As the result, a REQ operation will be constructed from
the instantiation statement at 𝑙0, and the program state will be-
come ⟨2, {𝑡ℎ𝑖𝑠 .𝑑𝑏}, {𝑅𝑈𝑂 (𝑃 ′ [0]), 𝑅𝑈𝑂 (𝑃 ′ [1])}⟩. If no other RUOs,
including assignments, is applied to 𝑑𝑏 in 𝑃 ′, the set of RUOs gath-
ered from 𝑃 ′ will be {𝑅𝑈𝑂 (𝑃 ′ [0]), 𝑅𝑈𝑂 (𝑃 ′ [1])}.

Given the set of RUOs gathered from a derived program for an
entrypoint, we can naturally turn that set into a sequence based
on their execution order. For an entrypoint 𝑒𝑝 ∈ 𝐸𝑃𝑃 , we use E𝑒𝑝
to denote the set of all RUO sequences gathered from the derived
programs of 𝑒𝑝 .

3.4 Detection of Resource Utilization Bugs

Induced by Variant Lifecycles

In this section, we elaborate on how VALA detects resource uti-
lization bugs induced by the three types of variant lifecycles.

Considering that the variant lifecycles are only triggered under
specific circumstances, e.g., when certain methods are invoked,
we extend the mechanism for gathering resource utilization se-
quences described in Section 3.3 so that invocations to the variant
lifecycle-triggering methods are also recorded during the analysis.
Particularly, we introduce a new type 𝑁𝑈𝐿𝐿 of RUO, construct
𝑁𝑈𝐿𝐿 operations from invocations to variant lifecycle-triggering
methods when identifying RUOs, and add the 𝑁𝑈𝐿𝐿 operations
to the resource utilization operation sequences gathered from en-
trypoints. Take the code snippet in Figure 2a for example. When

Detecting Resource Utilization Bugs Induced by Variant Lifecycles in Android

assign 1 :
𝑃 [𝑖𝑑𝑥] = 𝑝 = 𝑞 𝜙 ′ = 𝜙 \ 𝑝𝑟𝑒 (𝜙, 𝑝) ∪ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑝𝑟𝑒 (𝜙,𝑞), 𝑞, {𝑝 })

⟨𝑖𝑑𝑥, 𝜙, 𝜖 ⟩ =[[⟨𝑃 [𝑖𝑑𝑥] ⟩]]⇒ ⟨𝑖𝑑𝑥 + 1, 𝜙 ′, 𝜖 ⟩

assign 2.1 :

𝑃 [𝑖𝑑𝑥] = 𝑝.𝑓 1 = 𝑞 𝑝.𝑓 1 ≠ 𝑡ℎ𝑖𝑠.𝑓 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑒 (𝑖𝑑𝑥, 𝑝) = ⟨𝜙1, 𝜖1 ⟩
𝜙 ′ = 𝜙 \ 𝑝𝑟𝑒 (𝜙, 𝑝.𝑓 1) ∪ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑝𝑟𝑒 (𝜙,𝑞), 𝑞, {𝑝.𝑓 1} ∪ 𝜙1 .𝑓 1) 𝜖 ′ = 𝜖 ∪ 𝜖1 ∪ {𝑅𝑈𝑂 (𝑃 [𝑖𝑑𝑥]) }

⟨𝑖𝑑𝑥, 𝜙, 𝜖 ⟩ =[[⟨𝑃 [𝑖𝑑𝑥] ⟩]]⇒ ⟨𝑖𝑑𝑥 + 1, 𝜙 ′, 𝜖 ′ ⟩

assign 2.2 :
𝑃 [𝑖𝑑𝑥] = 𝑝.𝑓 1 = 𝑞 𝑝.𝑓 1 = 𝑡ℎ𝑖𝑠.𝑓 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑒 (𝑖𝑑𝑥, 𝑝) = ⟨𝜙1, 𝜖1 ⟩ 𝜙 ′ = {𝑡ℎ𝑖𝑠.𝑓 , 𝑞} ∪ 𝜙1 𝜖 ′ = 𝜖1 ∪ {𝑅𝑈𝑂 (𝑃 [𝑖𝑑𝑥]) }

⟨𝑖𝑑𝑥, 𝜙, 𝜖 ⟩ =[[⟨𝑃 [𝑖𝑑𝑥] ⟩]]⇒ ⟨𝑖𝑑𝑥 + 1, 𝜙 ′, 𝜖 ′ ⟩

assign 3 :
𝑃 [𝑖𝑑𝑥] = 𝑝 = 𝑞.𝑓 𝜙 ′ = 𝜙 \ 𝑝𝑟𝑒 (𝜙, 𝑝) ∪ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑝𝑟𝑒 (𝜙,𝑞.𝑓), 𝑞.𝑓 , {𝑝 })

⟨𝑖𝑑𝑥, 𝜙, 𝜖 ⟩ =[[⟨𝑃 [𝑖𝑑𝑥] ⟩]]⇒ ⟨𝑖𝑑𝑥 + 1, 𝜙 ′, 𝜖 ⟩

call 1.1 :
𝑃 [𝑖𝑑𝑥] = 𝑝 =𝑚 (𝑟) 𝑖𝑠𝑅𝑈𝑂 (𝑚) 𝜖 ′ = 𝜖 ∪ {𝑅𝑈𝑂 (𝑃 [𝑖𝑑𝑥]) }

⟨𝑖𝑑𝑥, 𝜙, 𝜖 ⟩ =[[⟨𝑃 [𝑖𝑑𝑥] ⟩]]⇒ ⟨𝑖𝑑𝑥 + 1, 𝜙, 𝜖 ′ ⟩

call 1.2 :
𝑃 [𝑖𝑑𝑥] = 𝑝 =𝑚 (𝑟) ¬𝑖𝑠𝑅𝑈𝑂 (𝑚)

⟨𝑖𝑑𝑥, 𝜙, 𝜖 ⟩ =[[⟨𝑃 [𝑖𝑑𝑥] ⟩]]⇒ ⟨𝑖𝑑𝑥 + 1, 𝜙, 𝜖 ⟩

Figure 5: Operational semantics of the statements in the core language presented as a set of inference rules.

encountering the invocation to method finish, VALA builds a new
resource utilization operation 𝑅𝑈𝑂 (𝑃 ′ [3]) and adds it to the resul-
tant operation sequence.

Detection of resource utilization bugs induced by variant life-
cycles with VALA essentially involves concatenating the RUO se-
quences gathered from entrypoints and checking whether any of
those resultant sequences may violate the requirements for correct
resource utilization. If a violation is detected, VALA reports the
error, together with the operation sequences, the Android activity
or fragment, the entrypoints, and the variant lifecycle, to the user.

Particularly, to detect resource utilization bugs induced by Skip1
variant lifecycles, VALA looks for a pair ⟨𝑠1, 𝑠2⟩ of RUO sequences,
where 𝑠1 and 𝑠2 are from entrypoints onCreate and onStop of an
activity, they both concern the same member field, and they satisfy
the following conditions: 1) 𝑠1 contains a 𝑁𝑈𝐿𝐿 operation that
invokes method finish; 2) 𝑠1 contains a 𝑅𝐸𝑄 operation 𝑜1; 3) 𝑜1 is
not followed by any 𝑅𝐸𝐿 operations in 𝑠1; 4) 𝑠2 contains a 𝑅𝐸𝐿 oper-
ation 𝑜2; 5) 𝑜1 and 𝑜2 concern the same resource. Here, condition 1
ensures that a Skip1 variant lifecycle is triggered, conditions 2 and
3 ensure that a resource is requested, but not released, in onCreate,
while conditions 4 and 5 ensure that the resource is released in
onStop. Given that entrypoint onStop will be skipped in a Skip1
variant lifecycle, the resource will not be released in such cases,
causing a resource leak error.

To detect resource utilization bugs induced by Swap variant
lifecycles, VALA first checks the app’s manifest file to determine
whether the app’s target Android OS version is set to 9.0 or higher.
If yes, activities in the app may go through Swap variant lifecycles.
VALA then looks for a pair ⟨𝑠1, 𝑠2⟩ of RUO sequences, where 𝑠1 and
𝑠2 are from entrypoints onStop and onSaveInstanceState of an
activity, they both concern the same member field, and they satisfy
the following conditions: 1) 𝑠1 contains an 𝐸𝐷𝑇 operation 𝑜1; 2) 𝑜1
is not followed by any 𝑆𝐴𝑉 operations in 𝑠1; 3) 𝑠2 contains a 𝑆𝐴𝑉
operation 𝑜2; 4) 𝑜2 is not preceded by any 𝐸𝐷𝑇 operations in 𝑠2;
5) 𝑜1 and 𝑜2 concern the same resource. Here, conditions 1 and 2
ensure that the member field is edited but not saved in entrypoint
onStop, while conditions 3, 4, and 5 ensure that the member field
is not edited but saved in entrypoint onSaveInstanceState. Since
entrypoint onStop will be executed before onSaveInstanceState

in a Swap variant lifecycle, a wrong value may be stored for the
member field, causing a data loss error. If the app has been con-
figured to run only on Android versions before 9.0, the app is safe
from resource utilization bugs caused by Swap variant lifecycles.
But if we can still find RUO pairs satisfying these conditions, VALA
will issue a warning against the case to draw developers’ attention
to the risk involved in changing the app’s configuration.

To detect resource utilization bugs induced by Skip2 variant
lifecycles, VALA first checks if method setRetainInstance is in-
voked with argument true on a fragment of the app. If yes, the
fragment may go through a Skip2 variant lifecycle. For such a frag-
ment, VALA then looks for a pair ⟨𝑠1, 𝑠2⟩ of RUO sequences, where
𝑠1 and 𝑠2 are from entrypoints onCreateView and onDestroy of
a fragment, they both concern the same member field, and they
satisfy the following conditions: 1) 𝑠1 contains a 𝑅𝐸𝑄 operation 𝑜1;
2) 𝑜1 is not followed by any 𝑅𝐸𝐿 operations in 𝑠1; 3) 𝑠2 contains a
𝑅𝐸𝐿 operation 𝑜2; 4) 𝑜1 and 𝑜2 utilize the same type of resource.
Here, conditions 1 and 2 ensure that a resource is requested, but not
released, in onCreateView, while conditions 3 and 4 ensure that
the resource is released in onDestroy. Since entrypoint onDestroy
will be skipped in a Skip2 variant lifecycle, the resource will not be
released in such a case, causing a resource leak error.

Two things are worth noting about the design of VALA here.
First, VALA only analyzes the utilization of resources referenced
directly by member fields of activities and fragments, but in some
rare cases, resources may also be referenced by variables contained
in those member fields or shared in other ways, and VALA may
miss resource utilization bugs in those cases. While those ways of
resource sharing may also be modeled and analyzed in VALA, they
are far less common in Android apps according to our experience,
and the analysis of extra resource sharing forms will significantly
increase the application costs of VALA, not in proportion to the
enhancement of tool’s effectiveness. In the end, our design of VALA
trades a small portion of effectiveness for a large improvement to
efficiency. Second, while VALA can only detect resource utilization
bugs that are induced by the three types of variant lifecycles, the
bugs cover quite some different resource types and reflect common
problems in the interplay between RUOs and Android component
lifecycles. Besides, support for new types of resources, utilization

Yifei Lu, Minxue Pan, Yu Pei, and Xuandong Li

operations, and variant lifecycles can be easily added into VALA to
expand its applicability.

Since for each type of variant lifecycle only a few entrypoints are
involved in detecting these bugs, VALA analyzes only the relevant
entrypoints and avoids doing the same on irrelevant entrypoints.
Besides, VALA also implements another optimization in bug detec-
tion. More concretely, if a component member field is not utilized in
any variant lifecycle-relevant entrypoints or it is not of any resource
type that VALA supports, the tool will not gather RUO sequences
concerning the member field when detecting bugs induced by Skip1
and Skip2 variant lifecycles.

3.5 Implementation

The VALA technique has been developed into a prototype tool with
the same name. The VALA tool was built on the FlowDroid [3] static
analysis framework for Android apps. We reused the class hierar-
chy relation and control-flow graph generated by FlowDroid, but
replaced its implementation of the IFDS algorithm with our own
propagation functions. Since FlowDroid does not fully support the
analysis of reflective or native method calls, VALA may miss some
method invocations when applied on apps utilizing such advanced
language features. However, we do not expect this limitation to
seriously impair the effectiveness of VALA since, according to our
experience, activity/fragment entrypoints seldom contain reflective
or native method invocations. Besides, as observed in our exper-
imental evaluation of VALA (see Section 4), FlowDroid may also
crash when analyzing some apps, which negatively impacts VALA’s
applicability.

4 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the effectiveness and ef-
ficiency of VALA. The evaluation aims to address the following
research questions:

• RQ1:How effective is VALA in detecting resource utilization
bugs induced by variant lifecycles?

• RQ2:How efficient is VALA in detecting resource utilization
bugs induced by variant lifecycles?

• RQ3:How does VALA compare with existing tools in detect-
ing resource utilization bugs induced by variant lifecycles?

4.1 Experimental Setup

Subjects.We selected popular apps fromGitHub [12] as the subjects
of our experiments based on the following criteria:

(1) the app should have at least 50 stars. This criterion helps us
exclude projects that are less representative of real-world
Android apps, e.g., training projects from novice developers.

(2) the app should have at least one executable artifact and the
corresponding source code should be available on Github.
This criterion is necessary because VALA takes executable
APK files as its input and we manually check the source
code to confirm whether bugs reported by VALA indicate
real problems;

(3) the app should contain at least one activity or fragment
that may go through one type of the variant lifecycles.
That is, at least one activity or fragment in the app should
override all the entrypoints relevant to one variant lifecycle

Table 4: Basic information about the 35 subject apps.

ID App Cate
∗
Version #C #F #CV #FV

Total Skip1 Skip2 Swap

S01 Aptoide Prod. 9.13.3.1 156 1502 28 17 11 2 566
S02 Beedio Music 1.3.0 17 97 2 0 2 0 36
S03 BiglyBT Tool 1.2.6 81 392 17 17 0 0 112
S04 BuildmLearn Tool 2.5.0 46 201 1 1 0 1 15
S05 Campus-Android Edu 3.4 79 343 8 8 0 0 42
S06 cgeo Ent. 2020.04.25 65 553 8 8 0 5 176
S07 EasyBudget Fin. 1.6.4 17 58 2 1 0 2 12
S08 GmsCore Tool 0.2.10 27 53 1 1 1 0 5
S09 Hentoid Comic 1.11.5 80 352 17 16 1 0 77
S10 iNaturalistAndroid Edu 1.18.14 101 1655 16 7 0 15 655
S11 jchat Com. 2.3.0 116 1061 48 48 0 0 469
S12 kefu Prod. 1.5 39 280 1 0 0 1 8
S13 Koler Com. 0.3.1 29 245 3 1 2 0 87
S14 nextcloud Prod. 3.12.0 RC1 122 1234 2 0 0 2 36
S15 nextcloud_news News 0.9.9.36 33 325 2 1 1 0 17
S16 nRF Toolbox Tool 2.8.4 52 332 9 9 0 0 79
S17 ObscuraCam Video 4.0.1 14 240 1 1 0 1 75
S18 ODK Collect Prod. 1.26.3 96 473 5 4 1 2 73
S19 OneBusAway Map 2.7.2 187 829 1 0 0 1 43
S20 open-gpstracker-ng Travel 2.0.0 4 5 1 0 0 1 2
S21 Resplash Pers. v1.3.3 44 411 13 0 13 0 187
S22 S1-Next Social 2.1.2-56 156 897 91 91 0 0 696
S23 Sensor-Data-Logger Tool 1.5 28 146 1 0 0 1 15
S24 SkyTube Social 2.972 47 251 11 2 9 0 65
S25 stock-hawk Fin. 1.0 11 72 1 0 0 1 14
S26 StoryMaker Phot. 2.1.6.10 81 634 1 1 0 1 9
S27 talon-twitter-holo Social 4.17.1 125 971 2 2 0 0 77
S28 To-Do List Prod. 2.3 18 121 1 1 0 1 39
S29 Trivia hack Tool 2.5.1 25 119 2 2 0 0 6
S30 Ushahidi Com. v3.9 57 290 1 1 0 0 3
S31 wallabag Prod 2.4.0 35 293 2 1 0 1 72
S32 wikipedia Book 2.7.50320 94 823 4 0 1 3 90
S33WordPress Prod. 14.8-rc-2 241 2078 21 21 0 13 373
S34 Zapp Video 3.4.0 27 147 1 1 0 0 13
S35 zulip Com. 1.3.2 27 217 1 0 0 1 14

Overall 2377 17700 326 263 42 55 4258
∗ Prod.: Productivity; Edu.: Education; Ent.: Entertainment; Fin.: Finance;

Com.: Communication; Pers.: Personalization; Phot.: Photography;

type (see Table 2). Naturally, apps without such activities or
fragments will never exhibit variant lifecycles and therefore
will never contain bugs induced by variant lifecycles. We
apply the FlowDroid tool on each app to check whether this
criterion is satisfied.

We initially gathered from GitHub in total 287 apps satisfying
the criteria 1 and 2. Among them, 252 apps were excluded because
they do not contain activities or fragments that may exhibit variant
lifecycles or FlowDroid crashed when analyzing them, which vio-
lates criterion 3. This leaves us with 35 apps as our subjects. Table 4
lists basic information about the 35 apps. For each app (App), the
table gives an ID, its category (Cate), the version used (Version),
the total number of activities and fragments defined in it (#C), the
total number of fields defined in those activities and fragments (#F),
the total number of activities and fragments that may go through
variant lifecycles (#CV|Total), the breakdown of that total number
to the three types of variant lifecycles, and the total number of
fields defined in those activities and fragments (#FV). Our subject
apps are diversified in terms of their application categories and size
(measured in #C and #F). Note, however, that the #C and #F values
reported in Table 4 do not directly indicate analysis complexity
for VALA since most activities and fragments in those apps will
never exhibit variant lifecycles, while VALA’s analysis complexity is

Detecting Resource Utilization Bugs Induced by Variant Lifecycles in Android

Table 5: Experimental results of VALA and Relda2 on the 12

subjects. All times are in seconds.

App VALA Relda2

#Bug #FP #C𝐴 #F𝐴 Ttotal TPST Tdet Mem #Bug #FP Ttotal Mem

S01 0 0 3 3 40 37 3 873 0(0) 0 30 790
S05 1 0 2 2 11 9 2 493 2(0) 82 123 735
S06 1 0 4 7 15 3 18 791 0(0) 9 101 661
S08 1 0 1 1 3 2 1 514 0(0) 0 17 436
S18 1 0 3 35 15 12 3 697 0(0) 64 618 1280
S23 0 0 1 2 2 1 1 468 0(0) 0 35 692
S24 1 0 1 1 13 12 1 251 0(0) 3 39 666
S25 0 0 1 1 4 3 1 105 0(0) 0 1 133
S27 1 0 1 1 10 8 2 542 7(0) 0 51 658
S28 1 0 1 1 2 1 1 434 0(0) 0 4 251
S32 1 0 1 1 10 7 3 387 3(0) 7 98 669
S33 0 0 1 1 24 22 2 572 0(0) 0 55 866

Overview 8 0 20 56 151 122 29 6127 12(0) 165 1142 7047

dominated by (1) the number of activities and fragments that may
exhibit variant lifecycles (measured in #CV and #FV) and (2) how
the relevant resources are utilized in those variant lifecycles.
Baseline bug detection technique. To the best of our knowledge,
no technique that targets specifically resource utilization bugs in-
duced by variant lifecycles has been developed before. Therefore,
we compare VALA with Relda2 [35, 36], which is an off-the-shelf re-
source leak detection tool and is closely related to VALA. We answer
RQ3 based on results of the comparison.
Environment. All experiments were run on a desktop computer
with one 2.6GHz Quad-core processor and 64GB RAM running
CentOs 6.10. The OS is required for running Relda2.

4.2 Experimental Results

In this section, we report the experimental results and answer
the research questions.

4.2.1 RQ1: Effectiveness. In total, VALA found 8 bugs, including
6 resource leak errors and 2 data loss errors, in the 35 apps. In
addition to the 8 bugs, VALA also issued 2 warnings against apps
Sensor-Data-Logger and Stock-Hawk. Recall that, VALA issues a
warning against an app if, although the app targets Android OS
versions before 9.0, it would trigger a data loss error when executed
on Android OS version 9.0 or later (Section 3.4). VALA did not
find any resource utilization bugs in the remaining 25 apps. Such
a high rate of variant lifecycle relevant apps with detected bugs
indicates that even experienced developers of popular apps may
not realize the complications associated with the variant lifecycles.
VALA terminated almost instantly on 23 apps since, although they
contain activities and/or fragments satisfying the conditions listed
in Table 2, no member fields of those activities and fragments are
of the resource or data types that VALA supports. Table 5 lists the
remaining 12 apps and, for each app, the number of bugs detected
by VALA (#Bug), the number of detected bugs that turned out to be
false positives (#FP).

We manually checked the 8 bugs reported by VALA and decided
they are all true positives. Furthermore, we submitted all the de-
tected bugs, except the one in app ODK Collect since it has been

Table 6: Eight bugs revealed by VALA in the experiments.

App Bug

VL Type Error State Issue

Campus-Android Skip1 Leak Reported bit.ly/3s146J9
cgeo Swap Loss Fixed bit.ly/2R7Q4IX
Gmscore Skip1 Leak Fixed bit.ly/3sWVm8e
ODK Collect Skip2 Leak Fixed bit.ly/3t0v4Cd
SkyTube Skip2 Leak Confirmed bit.ly/3mwFerS
talon-twitter-holo Skip1 Leak Reported bit.ly/3mvv9v3
To-Do List Swap Loss Reported bit.ly/3d1E6ZY
Wikipedia Skip2 Leak Fixed bit.ly/3rV0g4k

fixed by the programmer, as issues to their corresponding devel-
opment teams. All the 7 issues were reported for the first time:
4 of those issues were quickly fixed or confirmed as bugs by the
developers, while we received no response regarding the other 3
issues, probably because the related projects are no longer main-
tained. Developers, such as those of app SkyTube, admitted in their
response that the issue we reported is indeed an interesting bug,
and that it is hard to correctly implement resource utilization into
the Android lifecycles. Table 6 lists the 8 bugs reported by VALA
and, for each bug, the containing app (App), the type of variant
lifecycle that induced the bug (VL Type), the error type (Error), its
state (State), and the URL of its issue report (Issue).

Particularly, half of the 6 resource leak errors, i.e., those in apps
Campus-Android,Wikipedia, and ODK Collect, are related to class
CompositeDisposable—a disposable container from a third-party
library that obtains and releases multiple other disposables. Such re-
sults suggest that, compared with writing all the resource utilization
code in activities and fragments from scratch, utilizing resources
through third-party libraries poses extra challenges on developers,
probably because third-party libraries often document the common
behaviors of their APIs but seldom specify how the APIs function
under special circumstances. In view of such additional challenges,
programmers may opt against relying on third-party libraries in
similar situations. In fact, the developers of app ODK Collect did
replace CompositeDisposable with their homemade Schedulers
for asynchronous work in a later revision.

Another thing worth mentioning is that, while developers of app
Gmscore confirmed the reported issue is indeed a bug, their fix to
the bug was still defective: They just moved the resource releasing
operation from onStop to onDestory, which, however, still cannot
guarantee the release operation is always executed since, according
to the Android lifecycle model guidelines, entrypoint onDestroy
can be skipped even in common activity lifecycles. A safer way to
correct the error is to override method finish and perform the re-
source releasing operations inside the method. This improper fix to
the reported bug highlights the challenge in correctly incorporating
RUOs into Android lifecycles and the value of this work.

VALA detected 8 bugs in 35 Android apps. VALA was effective in

revealing resource utilization bugs induced by variant lifecycles.

4.2.2 RQ2: Efficiency. Table 5 also lists, for each app onwhich VALA
did not terminate instantly, the numbers of activities/fragments
(#C𝐴) andmember fields (#F𝐴) that VALA actually analyzed, the total
detection time with VALA in seconds (Ttotal) and the breakdown

Yifei Lu, Minxue Pan, Yu Pei, and Xuandong Li

of that to time spent in PST construction (TPST) and bug detection
(Tdet), and the amount of memory used in megabytes (Mem). Recall
that VALA implements several optimizations to reduce the number
of activities, fragments, entrypoints, and member fields that it has
to analyze in bug detection (see Section 3.4). It took VALA 151
seconds in total to finish running on the 12 apps, with an average
memory consumption of 510MB. Most of the time was spent on
constructing the PST of the apps based on the Soot framework,
while the analysis and detection time was only 29 seconds, i.e.,
19.2% of the total running time. The main reason for VALA’s high
efficiency and low memory consumption lies in that the analysis in
VALA only takes into account variant lifecycle-relevant entrypoints
and member fields used in variant lifecycles, which accounts for a
small percentage of entrypoints and member fields defined in apps.
More concretely, VALA only analyzed 2 activities/fragments and 5
member fields for each app on average, which accounts for 3.2% of
all the activities/fragments and 1.4% of all the member fields.

It took VALA less than one minute to complete its analysis on each

app. VALA was efficient in revealing resource utilization bugs in-

duced by variant lifecycles.

4.2.3 RQ3: Comparison with Relda2. The detection results pro-
duced by Relda2 on the 12 apps are also included in Table 5.

Relda2 reported 177 resource leaks. However, manual inspection
of the detected leaks reveals that 165, or 93%, of them are false posi-
tives. The high false positive rate greatly diminishes the usefulness
of the tool. Compared with Relda2, VALA gathers RUO sequences
for only variant lifecycle-relevant entrypoints through a precise
context-sensitive interprocedural data-flow analysis, which greatly
reduces the false positive rate of its results.

The 12 real resource leaks found by Relda2 did not overlap with
the ones that VALA detected. In fact, none of the resource leaks re-
ported by Relda2 was related to variant lifecycles, probably because
the variant lifecycles were not included in Relda2’s lifecycle models
for Android activities and fragments. It took Relda2 7X longer time
to finish running on the 12 apps, but its memory consumption was
comparable with that of VALA.

None of the bugs detected by VALA was also revealed by Relda2.

VALA complements Relda2 in detecting resource utilization bugs in

Android apps.

4.2.4 Threats to Validity. In this section, we discuss possible threats
to the validity of our findings and show how we mitigate them.

Construct validity. Threats to construct validity are mainly con-
cerned with whether the measurements used in the experiment
reflect real-world situations.

In this work, we manually examined all the bugs reported by
VALA and Relda2. Programmers, however, may have different opin-
ions regarding whether a reported bug reflect real defects in apps.
To mitigate this risk, we submit 7 bugs reported by VALA to the
development teams of the corresponding apps. 4 of those bugs were
confirmed by the developers, while no response was received re-
garding the other 3 bugs, probably because the related projects are
no longer maintained.

Internal Threats. Threats to internal validity are mainly con-
cerned with the uncontrolled factors that may have also contributed
to the experimental results.

In our experiments, a major threat to internal validity is the
possible faults in the implementation of our approach and the inte-
gration of external libraries. To address the threat, we review our
code and experimental scripts to ensure their correctness before
conducting the experiments.

External Threats. Threats to external validity are mainly con-
cerned with whether the findings in our experiment are generaliz-
able for other situations.

A major threat to external validity is that, the apps used in our
experiments may not be good representatives of all the Android
apps in the market. To mitigate this threat, we selected from a wide
range of candidate apps hosted on GitHub. The subject apps used
in our experiments were popular and include widely used apps like
Wikipedia,ODK Collect, cgeo andWordPress, which are published on
the Google Play Store with millions of installations. Nevertheless,
we plan to conduct larger scale experiments to evaluate VALA more
thoroughly in the future.

5 RELATEDWORK

In this section, we review research studies from two areas that are
closely related to VALA.

5.1 Android Lifecycle Modeling

To produce high-quality lifecycle models for Android components
has always been an important task in static analyses for Android
apps, and a variety of approaches have been proposed so far to
tackle that task. Mainstream static analysis techniques like Flow-
Droid [3], IccTA [23], DroidSafe [14], AmanDroid [33], and Gator

[38, 39], tend to use manually constructed lifecycle models to sup-
port their specific analyses of Android components. These models,
however, usually do not cover the variant lifecycles studied in this
paper due to the modelers’ unawareness. Junaid et al. [20] auto-
matically built their lifecycle model via reverse engineering and
dynamic tracing, but the resultant model they constructed does
not include the variant lifecycles either. Cao et al. [4] and Chen
et al. [5] employed automated analyzer or machine learning tech-
niques to automatically identify implicit state transitions in the
Android framework. On the one hand, including all these implicit
state transitions will produce lifecycle models that are orders of
magnitude larger than the manually constructed ones. On the other
hand, although Cao et al. [4] showed that, to utilize these implicit
transitions in static analyzers such as FlowDroid is not extremely
expensive, since the implicit state transitions are not accompanied
by information regarding the conditions under which they will
be triggered (e.g., variant lifecycles of type Skip1 and the corre-
sponding implicit state transitions are only triggered when method
finish() is invoked in entrypont onCreate), analyses solely based
on those implicit state transitions most likely will produce results
of low accuracy.

5.2 Lifecycle Conformance Guarantee

Another realm of research related to VALA is lifecycle conformance
insurance, i.e., ensuring an app’s own correctness through reacting

Detecting Resource Utilization Bugs Induced by Variant Lifecycles in Android

appropriately to state changes of Android lifecycle. Resource leak
errors and data loss errors are two of main issues in these researches.
To detect resource leaks injected in Android lifecycle, several re-
searches have been conducted with dynamic testing [11, 28, 34],
while most choose to use static analysis. Zein et al. [42] present a
UML-based model to present lifecycle rules and system resources
and a novel algorithm to check whether system resources are re-
quested and released at correct entrypoints based on the model.
Guo et al. [15] proposed Relda, a lightweight though lifecycle-aware
static analysis tool to detect resource leaks based on call graphs
with resource requesting/releasing operations added as call nodes.
Based on Relda, Wu et al. [35, 36] present Relda2, which enhances
Relda in terms of using call graphs of higher precision, employing
flow-sensitive detection technique to eliminate false negatives, and
speeding up the analysis with multi-threading techniques. There
are also many other novel ideals in detecting or fixing such resource
utilization bugs [19, 24, 26, 37], however, none of them have ever
targeted these bugs induced by variant lifecycles, and certainly, as
our evaluation results show.

Particularly, a number of researches focus on data loss errors due
to state transitions of app restarting on rotation or app killing on
low memory [1, 9, 17, 22, 29, 41]. One of the state-of-the-arts rele-
vant to VALA is LiveDroid [10], which identifies only necessary part
of the app state that needs to be preserved across app lifecycles, and
automatically saves and restores it. LiveDroid also performs a pre-
cise data-flow analysis on app state preserving entrypoints, such as
onSaveInstanceState() involved in variant lifecycle Swap. How-
ever, LiveDroid is not aware of this variant lifecycle while only
focus on the whether app state are correctly preserved and restored
in app restarting and killing transitions. These transitions are a
part of the common lifecycles depicted in Figure 1, which have
already drawn great attentions from developers, researches and
the Google Android team. Regrettably, compared with the common
lifecycles, the resource utilization bugs induced in the variant life-
cycles illustrated in this paper, their importance and harmfulness
are underestimated or even ignored.

6 CONCLUSION

In this paper, we study variant lifecycles of Android activities and
fragments, i.e., lifecycles where execution orders of entrypoints
deviate from that in common lifecycles as highlighted in the official
Android lifecycle guidelines. We explain why variant lifecycles may
cause resource utilization bugs and identify three types of variant
lifecycles that Android activities and fragments may go through.We
also present the VALA technique that automatically detect resource
utilization bugs in Android apps due to these variant lifecycles.

VALA was able to detect 8 bugs in experiments conducted on 35
popular Android apps. All the 8 bugs were confirmed to be real
defects, 7 of those bugs were reported for the first time, and none
of these bugs were revealed by the state-of-the-art resource leak
detection tool Relda2. Such results strongly suggest that VALA is
highly effective in detection resource utilization bugs induced by
variant lifecycles.

In this work, we focused on detecting resource utilization bugs
because it is challenging to correctly utilize different kinds of re-
sources in conformity with the Android component lifecycles, and

we carefully devised VALA for high accuracy of the detection results
to reduce the costs of applying the technique. We plan to research
on the detection of other types of bugs due to variant lifecycles via
various techniques in the future.

ACKNOWLEDGMENTS

This research is supported by the National Natural Science Founda-
tion of China under Grant No.61972193 and the Hong Kong RGC
General Research Fund (GRF) PolyU 152002/18E.

REFERENCES

[1] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. Sys-
tematic execution of Android test suites in adverse conditions. In Proceedings of

the 2015 International Symposium on Software Testing and Analysis. 83–93.
[2] Joey Allen, Matthew Landen, Sanya Chaba, Yang Ji, Simon Pak Ho Chung, and

Wenke Lee. 2018. Improving accuracy of Android malware detection with
lightweight contextual awareness. In Proceedings of the 34th Annual Computer

Security Applications Conference. 210–221.
[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. ACM SIGPLAN Notices 49, 6 (2014), 259–269.

[4] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, and Yan Chen. 2015. EdgeMiner: Automatically de-
tecting implicit control flow transitions through the Android framework. In
NDSS.

[5] Xiupeng Chen, Rongzeng Mu, and Yuepeng Yan. 2018. Automated identifica-
tion of callbacks in Android framework using machine learning techniques.
International Journal of Embedded Systems 10, 4 (2018), 301–312.

[6] Alain Deutsch. 1994. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. ACM SIGPLAN Notices 29, 6 (1994), 230–241.

[7] Google Developers. 2020. Documentation of Android API references. https:
//developer.android.com/reference. [online, accessed 28-Aug-2021].

[8] Google Developers. 2021. Understand the Activity Lifecycle | Android De-
velopers. https://developer.android.com/guide/components/activities/activity-
lifecycle. [online, accessed 28-Aug-2021].

[9] Umar Farooq and Zhijia Zhao. 2018. Runtimedroid: Restarting-free runtime
change handling for Android apps. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. 110–122.

[10] Umar Farooq, Zhijia Zhao, Manu Sridharan, and Iulian Neamtiu. 2020. Livedroid:
Identifying and preserving mobile app state in volatile runtime environments.
Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–30.

[11] Dominik Franke, Stefan Kowalewski, CarstenWeise, and Nath Prakobkosol. 2012.
Testing conformance of life cycle dependent properties of mobile applications.
In Proceedings of the 2012 IEEE Fifth International Conference on Software Testing,

Verification and Validation. 241–250.
[12] Github. 2021. The world’s leading software development platform · GitHub.

https://github.com. [online, accessed 28-Aug-2021].
[13] Google. 2021. SimpleExoPlayer (ExoPlayer library). https://exoplayer.dev/doc/

reference/com/google/android/exoplayer2/SimpleExoPlayer.html. [online, ac-
cessed 28-Aug-2021].

[14] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information flow analysis of Android applications
in droidsafe. In Proceedings of the 2015 Annual Network and Distributed System

Security Symposium (NDSS), Vol. 15. The Internet Society, San Diego, CA, 110.
[15] Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang, and Yanli Zhang. 2013.

Characterizing and detecting resource leaks in Android applications. In Pro-

ceedings of the 28th IEEE/ACM International Conference on Automated Software

Engineering. 389–398.
[16] Noura Hoshieah, Samer Zein, Norsaremah Salleh, and John Grundy. 2019. A

static analysis of Android source code for lifecycle development usage patterns.
Journal of Computer Science 15, 1 (2019), 92–107.

[17] GangHu, Xinhao Yuan, Yang Tang, and Junfeng Yang. 2014. Efficiently, effectively
detecting mobile app bugs with appdoctor. In Proceedings of the Ninth European

Conference on Computer Systems. 1–15.
[18] Richard Johnson, David Pearson, and Keshav Pingali. 1994. The Program Struc-

ture Tree: Computing Control Regions in Linear Time. ACM SIGPLAN Notices

29, 6 (1994), 171–185.
[19] Ma Jun, Liu Sheng, Yue Shengtao, Tao Xianping, and Lu Jian. 2017. LeakDAF:

An automated tool for detecting leaked activities and fragments of Android
applications. In Proceedings of the 41st Annual Computer Software and Applications

Conference, Vol. 1. IEEE, 23–32.

https://developer.android.com/reference
https://developer.android.com/reference
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://github.com
https://exoplayer.dev/doc/reference/com/google/android /exoplayer2/SimpleExoPlayer.html
https://exoplayer.dev/doc/reference/com/google/android /exoplayer2/SimpleExoPlayer.html

Yifei Lu, Minxue Pan, Yu Pei, and Xuandong Li

[20] Mohsin Junaid, Donggang Liu, and David Kung. 2016. Dexteroid: Detecting
malicious behaviors in Android apps using reverse-engineered life cycle models.
Computers and Security 59 (2016), 92–117.

[21] William Landi and Barbara G Ryder. 1992. A safe approximate algorithm for
interprocedural aliasing. ACM SIGPLAN Notices 27, 7 (1992), 235–248.

[22] Niel Lebeck, Arvind Krishnamurthy, Henry M Levy, and Irene Zhang. 2020.
End the senseless killing: improving memory management for mobile operating
systems. In Proceedings of the 2020 USENIX Conference on Usenix Annual Technical

Conference. 873–887.
[23] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in Android apps.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, 280–291.

[24] Jierui Liu, Tianyong Wu, Jun Yan, and Jian Zhang. 2016. Fixing resource leaks in
Android apps with light-weight static analysis and low-overhead instrumenta-
tion. In Proceedings of the 27th International Symposium on Software Reliability

Engineering. IEEE, 342–352.
[25] Yepang Liu, Lili Wei, Chang Xu, and Shing-Chi Cheung. 2016. DroidLeaks:

benchmarking resource leak bugs for Android applications. arXiv preprint

arXiv:1611.08079 (2016).
[26] Jun Ma, Shaocong Liu, Yanyan Jiang, Xianping Tao, Chang Xu, and Jian Lu. 2018.

LESdroid: a tool for detecting exported service leaks of Android applications. In
Proceedings of the 26th Conference on Program Comprehension. 244–254.

[27] ReactiveX. 2021. CompositeDisposable (RxJava Javadoc 3.0.11) - Re-
activeX. http://reactivex.io/RxJava/javadoc/io/reactivex/disposables/
CompositeDisposable.html. [online, accessed 28-Aug-2021].

[28] Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino. 2018. Is this the
lifecycle we really want? an automated black-box testing approach for Android
activities. In Companion Proceedings for the ISSTA/ECOOP 2018Workshops. 68–77.

[29] Zhiyong Shan, Tanzirul Azim, and Iulian Neamtiu. 2016. Finding resume and
restart errors in Android applications. ACM SIGPLAN Notices 51, 10 (2016),
864–880.

[30] Statista. 2020. Global smartphone sales to end users from 1st quarter 2009 to 2nd
quarter 2018, by operating system. https://www.statista.com/statistics/266219/
global-smartphone-sales-since-1st-quarter-2009-by-operating-system/. [online,
accessed 28-Aug-2021].

[31] Statista. 2020. Tablet operating systems market share worldwide from 1Q’16
to 2Q’20. https://www.statista.com/statistics/273840/global-market-share-of-

tablet-operating-systems-since-2010/. [online, accessed 28-Aug-2021].
[32] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore

Guarnieri. 2013. ANDROMEDA: accurate and scalable security analysis of web
applications. In Proceedings of the 16th International Conference on Fundamental

Approaches to Software Engineering. 210–225.
[33] Fengguo Wei, Sankardas Roy, and Xinming Ou. 2018. Amandroid: A precise and

general inter-component data flow analysis framework for security vetting of
Android apps. ACM Transactions on Privacy and Security (TOPS) 21, 3 (2018),
1–32.

[34] Haowei Wu, Hailong Zhang, Yan Wang, and Atanas Rountev. 2020. Sentinel:
generating GUI tests for sensor leaks in Android and Android wear apps. Software
Quality Journal 28, 1 (2020), 335–367.

[35] Tianyong Wu, Jierui Liu, Xi Deng, Jun Yan, and Jian Zhang. 2016. Relda2: an
effective static analysis tool for resource leak detection in Android apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering. 762–767.
[36] Tianyong Wu, Jierui Liu, Zhenbo Xu, Chaorong Guo, Yanli Zhang, Jun Yan, and

Jian Zhang. 2016. Light-weight, inter-procedural and callback-aware resource
leak detection for Android apps. IEEE Transactions on Software Engineering 42,
11 (2016), 1054–1076.

[37] Zhiwu Xu, Cheng Wen, and Shengchao Qin. 2018. State-taint analysis for detect-
ing resource bugs. Science of Computer Programming 162 (2018), 93–109.

[38] Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-
nathan, Dacong Yan, and Atanas Rountev. 2018. Static window transition graphs
for Android. Automated Software Engineering 25, 4 (2018), 833–873.

[39] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android applications. In
Proceedings of the 37th International Conference on Software Engineering-Volume

1. 89–99.
[40] Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. 2017. Malware detection

in adversarial settings: Exploiting feature evolutions and confusions in Android
apps. In Proceedings of the 33rd Annual Computer Security Applications Conference.
288–302.

[41] Razieh Nokhbeh Zaeem, Mukul R Prasad, and Sarfraz Khurshid. 2014. Automated
generation of oracles for testing User-Interaction features of mobile apps. In Pro-

ceedings of the 2014 IEEE International Conference on Software Testing, Verification,

and Validation. 183–192.
[42] Samer Zein, Norsaremah Salleh, and John Grundy. 2017. Static analysis of

Android apps for lifecycle conformance. In 2017 8th International Conference on

Information Technology (ICIT). IEEE, 102–109.

http://reactivex.io/RxJava/javadoc/io/ reactivex/disposables/CompositeDisposable.html
http://reactivex.io/RxJava/javadoc/io/ reactivex/disposables/CompositeDisposable.html
https://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
https://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
https://www.statista.com/statistics/273840/global-market-share-of-tablet-operating-systems-since-2010/
https://www.statista.com/statistics/273840/global-market-share-of-tablet-operating-systems-since-2010/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 A Basic Lifecycle Model for Android Activities and Fragments
	2.2 Motivating Examples

	3 The VALA Technique
	3.1 Variant Lifecycles of Android Activities and Fragments
	3.2 Resource Utilization Operations
	3.3 Resource Utilization Operation Sequences from Entrypoints
	3.4 Detection of Resource Utilization Bugs Induced by Variant Lifecycles
	3.5 Implementation

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	5.1 Android Lifecycle Modeling
	5.2 Lifecycle Conformance Guarantee

	6 Conclusion
	Acknowledgments
	References

