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ABSTRACT

Recommender System (RS) is an important online application that
affects billions of users every day. The mainstream RS ranking
framework is composed of two parts: a Multi-Task Learning model
(MTL) that predicts various user feedback, i.e., clicks, likes, sharings,
and a Multi-Task Fusion model (MTF) that combines the multi-task
outputs into one final ranking score with respect to user satisfaction.
There has not been much research on the fusion model while it has
great impact on the final recommendation as the last crucial process
of the ranking. To optimize long-term user satisfaction rather than
obtain instant returns greedily, we formulate MTF task as Markov
Decision Process (MDP) within a recommendation session and pro-
pose a Batch Reinforcement Learning (RL) based Multi-Task Fusion
framework (BatchRL-MTF) that includes a Batch RL framework
and an online exploration. The former exploits Batch RL to learn an
optimal recommendation policy from the fixed batch data offline for
long-term user satisfaction, while the latter explores potential high-
value actions online to break through the local optimal dilemma.
With a comprehensive investigation on user behaviors, we model
the user satisfaction reward with subtle heuristics from two as-
pects of user stickiness and user activeness. Finally, we conduct
extensive experiments on a billion-sample level real-world dataset
to show the effectiveness of our model. We propose a conserva-
tive offline policy estimator (Conservative-OPEstimator) to test our
model offline. Furthermore, we take online experiments in a real
recommendation environment to compare performance of different
models. As one of few Batch RL researches applied in MTF task
successfully, our model has also been deployed on a large-scale
industrial short video platform, serving hundreds of millions of
users.
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1 INTRODUCTION

With the information explosion on the Internet, Recommender Sys-
tems (RS) that aim to recommend potentially interesting items for
users, are playing an increasing important role in various platforms
including E-commerce sites [11, 19, 37, 38], videos sharing sites [4],
social networks [13, 16], etc. There are usually two main stages
in industrial RS: candidate generation and ranking [35]. The first
stage selects hundreds or thousands of candidates from millions
or even billions of items, while the second stage returns several
top-ranked items for each user from the candidates.

Given a user query, the quality of the ranking results is a leading
factor in affecting user satisfaction. Early works [23, 25, 36, 37]
usually only consider a single instant metric, e.g., Click-Through
Rate (CTR), and train a ranking model over this metric. In practice,
it is usually hard to measure real user satisfaction with just one
metric. For example, in news recommendation scenario, users may
click the recommended news with click bait like the cover pictures
or titles but quickly exit when they are not interested in the con-
tent. Clearly, only considering CTR will cause a lot of improper
recommendations and this encourages us to explore multiple met-
rics through different user behaviors. When more than one metric
is considered, an essential question arises, as to how should these
metrics be combined to optimize ranking quality.

Model fusion is a popular approach to solve this problem [3, 6],
which is usually composed of two parts: 1) a Multi-Task Learning
model (MTL) [20, 29] that predicts multiple metrics associated with
user satisfaction; 2) a Multi-Task Fusion model (MTF) [15, 24] that
constructs a combination function based on those predicted scores
and produces the final ranking. Compared with the MTL works
on the first step, MTF algorithms are crucial for recommendation
quality but there has been little good research on it.

In this paper, we focus on the MTF algorithms in RS. Given
a fusion function f (01, 02, ..., 0x) with respect to ranking scores
01,02, . . ., 0 from different predicted tasks, a naive way to find out
the optimal fusion weights is to use hyper-parameter searching
techniques such as Grid Search and Bayesian Optimization [22].
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These methods fail in large RS not only because of their ineffi-
ciency but also because they can’t produce personalized weights
for different users and different contexts to make accurate recom-
mendations. One can solve these issues by bridging user states and
fusion weights through neural networks and turn to optimize the
network weight via Evolutionary Strategy [2]. However, all the
above methods still focus on optimizing instant user satisfaction in
a greedy way but ignore long-term user satisfaction. To reduce the
expected regret of recommendations and improve the long-term
rewards for RSs, we need to consider instant user satisfaction as
well as delayed user satisfaction brought by the long-term utility of
the recommendation. After all, the current recommendation may
affect user preference later.

Intuitively, Reinforcement Learning (RL) is usually designed to
maximize long-term rewards. However, applying RL in the large-
scale online RS to optimize long-term user satisfaction is still a non-
trivial problem. 1) The long-term user satisfaction is very compli-
cated and can be measured in various user behaviors. How to build
feasible reward according to different behaviors is challenging. 2)
In order to learn an optimal RL policy effectively, the recommender
agent requires a very large number of sequential interactions with
real users to trial and error. However, on-policy RL would harm
user experiences with the noise generated by online exploration
during learning. 3) An alternative is to build a recommender agent
offline through the logged data, which can mitigate the cost of the
trial-and-error exploration. Unfortunately, traditional off-policy
methods not only suffer from the Deadly Triad problem [30], i.e.,
the problem of instability and divergence arises whenever combin-
ing function approximation, bootstrapping, and offline training, but
also suffer from serious extrapolation error[9] where state-action
pairs not in the fixed batch data, also called out-of-distribution
(OOD) training data, are erroneously estimated to have unrealistic
values.

Considering the above problems, we propose a Batch RL based
Multi-Task Fusion framework (BatchRL-MTF) to optimize long-
term user satisfaction. Our model consists of two components: 1)
Batch RL framework learns an optimal recommendation policy
with high returns, strong robustness and less extrapolation error of-
fline, which provides the fusion function with a set of personalized
fusion weights trading off instant and long-term user satisfaction;
2) Online Exploration Policy interacts with real users online to
discover high-reward fusion weights as offline batch samples. In
particular, we formulate our MTF task as Markov Decision Process
(MDP) within a recommendation session to model the sequential
interaction between the user and the RS. We first comprehensively
investigate different user behaviors, and deliberately design the
reward based on these behaviors to optimize long-term user satis-
faction from two aspects of user stickiness and user activeness. To
reduce the learning costs of our model and the damage to user expe-
rience, we present Batch RL to enhance learning efficiency, mitigate
extrapolation error and optimize accumulated rewards according
to the history logs. In addition, we conduct online exploration that
can find more high-value state-action pairs to ensure the sufficient
training of our model, which not only reduces extrapolation error
but also prevents our model from falling into local optimum. In
experiments, we propose a conservative offline policy estimator
(Conservative-OPEstimator) to verify the outstanding performance
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Figure 1: The User-RS interaction within a session-based
recommendation.

Recommender System

of the model by evaluating the long-term rewards brought by it.
Meanwhile, we conduct online evaluations for BatchRL-MTF with
competitive baselines on a real-world short video platform. The
significant improvements on user stickiness and user activeness
exhibit the effectiveness of our BatchRL-MTF in practice. The major
contributions of our work include:

o We formulate the session-based MTF task as an MDP and exploit
Batch RL to optimize long-term user satisfaction, which is one
of the few works of Batch RL applied in MTF task successfully.

o We design our reward function with respect to multiple user be-
haviors that relate to user stickiness and user activeness, and train
our BatchRL-MTF based on history logs. Specially, our BatchRL-
MTF contains two components: Batch RL framework and online
exploration policy. The former learns an optimal recommenda-
tion policy offline and the latter explores potential high-value
state-action pairs online. We show that our framework can miti-
gate the deadly triad problem and extrapolation error problem
of traditional off-policy applied in practice RSs.

e We creatively propose a conservative offline policy estimator
(Conservative-OPEstimator) to test our model offline, while con-
ducting online experiments in real recommendation environ-
ment to demonstrate our model outperforms baselines greatly.
In addition, BatchRL-MTF has been deployed in the short video
recommendation platform and remarkably improved 2.550% app
dwell time and 9.651% user positive-interaction rate.

2 PROBLEM FORMULATION

As shown in Figure 1, in the short video recommendation scenario,
the RS agent interacts with a user u € U at discrete time steps
within a recommendation session. At each time step ¢, the RS feeds

()

a top-ranked item i) e I (or item list (i ..,,i(t))) to user u

and receives feedback vector () = (uit), .. .,U,,f)), where I is the

candidate set and vl.(t), 1 <i < mis a specific user’s behavior (e.g.,
video play time, like, sharing, etc.) on item i(®) The mainstream RS
ranking pipeline is composed of two parts: an MTL model that pre-
dicts various user behaviors and an MTF model that combines the
multi-task outputs, i.e., 0 = (01,. .., 0f), into one final ranking score.
We employ Progressive Layered Extraction (PLE) model [29] with
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excellent performance to conduct multi-task predictions. To output
the personalized recommendation matching user preferences, we
build a fusion function f(o) that aggregates these predicted scores
to model user satisfaction. Considering the effect of magnitude
difference among oy, . . ., o, we define the function as follow:

k
flola) = Z a;log(o; + fi), (1)

where a = (a1, ..., ax) is the fusion weights to be optimized and
B = (P1,...,Px) is a constant bias set by priori knowledge to
smooth those o1, . . ., 0f. In this paper, we aim to find out the optimal
weights a that maximize long-term user satisfaction.

In particular, we study the above problem as Markov Decision
Process (MDP) within the recommendation session, where an agent
(the RS) interacts with the environment (users) by sequentially
recommending items over time, to maximize the cumulative reward
within the session. Formally, the MDP consists of a tuple of five
elements (S, A, P, R, y):

o State space S: is a set of user state s, which is composed of two
parts: user profile feature (e.g., age, male, location, etc.) and user’s
interaction history feature (e.g., like, sharing, skipping, etc.). In our
RS, the latter is usually formulated by a user’s various interactions
with his/her watched last 500 videos.

e Action space A: The action determines the ranking of the
candidate list. In our problem, the action a is the fusion weight
vector & = (a1, ..., ) to be optimized in Equation (1). With the
fusion weights, the agent can further calculate the final ranking
scores and return recommendation item(s).

e Reward R: After the RS takes an action a; at the state s;, i.e.,
figure out the fusion scores and return a recommendation item to
response user’s request at time step ¢, a user will feedback with
different behaviors. We define the instant reward r(s;, a;) based on
these behaviors.

¢ Transition probability P: Transition probability p(ss+1|ss, ar)
defines the state transition from s; to sy41 after taking action a;.
As the user state is defined as user profile and his/her interaction
history, the next state sy41 is determined after user feedback.

e Discount factor y: Discount factor y € [0, 1] is introduced to
control the present value of future reward.

With the above notations and definitions, the task of Batch RL
applied in MTF can be defined as: given the interaction history logs
between RS agent and users in MDP form within the recommen-
dation session, how to find a policy obtaining the optimal fusion
weights a to maximize the cumulative reward of RS. In the rest of
this paper, we omit the superscript (¢) for simplicity.

3 PROPOSED FRAMEWORK

In this section, we propose a Batch RL framework for short video
RSs to optimize long-term user satisfaction. Specifically, we design
the reward based on multiple user behaviors and present our Batch
RL architecture. Firstly, we discuss how to train our BatchRL-MTF
offline via users’ behavior log. Secondly, we also conduct online
exploration to discover potential high-value state-action pairs in
real recommendation environment. More importantly, we briefly
describe the implementation of the proposed model on a real-world
short-video recommender platform.
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3.1 Reward Function

In a recommendation session, the RS interacts with users in turn,
i.e., the agent takes an action a at the state s (i.e., recommending a
video to a user with respect to MTL ranking scores) and then the
user provides his/her feedback v. To comprehensively measure the
instant satisfaction, we formulate the reward function as follow:

r(s,a) = ) wiv; (2)
i=1

where w; is the weight of feedback v;. In our RS, feedback vy, . .., v,
includes video play time, play integrity and interaction behav-
ior such as liking, sharing, commenting, liking, etc. And weights
wi, ..., Wn are set via extensive statistic analysis on relationships
between these feedback and future user app dwell time.

3.2 Batch Reinforcement Learning for MTF

Due to costly real-world interactions, it is difficult to apply on-
policy and off-policy algorithms in large-scale industrial RSs. An
alternative approach is learning an RL-based recommender agent
solely from historical logs, which is also known as Batch Reinforce-
ment Learning. However, a severe problem in Batch RL approaches
is extrapolation error, which is caused by the distribution difference
between training data and learned policy. To solve this problem,
we exploit Batch-Constrained deep Q-learning model (BCQ) [9],
based on the popular Actor-Critic architecture, to learn the optimal
fusion weights in our framework.

3.2.1  Actor Network. The Actor network includes two sub-network:
(a) the action generative network Gg = {Eg,, Dg, } and (b) the action
perturbation network P, (s, a, p).

Specially, network Gg = {Eg,, Dy, } is a conditional variational
auto-encoder (VAE) to generate candidate action set of which the
distribution is similar to that of training samples 8B, which reduces
extrapolation error and enhances our framework robustness. Gy can
be further divided into an encoder block Eg, (z|s, @) and a decoder
block Dy, (als, z). To be more specific, encoder Ey, (z|s, a) learns the
latent distribution of (s, a) € B and forces it to approximate A (0, 1)
via KL divergence. Eg, (z[s, a) has two outputs, i.e., the mean value
and standard deviation 8. Decoder Dy, (als, z) takes the latent vector
z ~ N (g, %) and the user state s as inputs to output the action d
that is similar to (s, a) € B. Formally, we train the VAE based on
the following objective on the log-likelihood of the dataset:

0 « argmin Z (a— Gg(s))2 + Dkr (Eg, (zls,a)IN(0,1)).
0 (s,0) €8 (s,a)eB
®3)

To increase the diversity of the actions from VAE, we use net-
work P, (s, a, p) to generate a perturbation & € [—p, p] with respect
to state s and action a. Specifically, given user state s, we gener-
ate n actions {d; ~ Gg(s)}}_, as candidates. Meanwhile, P, (s, a, p)
generates n perturbations {&}7, & = Py (s, d;, p) that updates
the actions as d; + &;. As shown in Figure 2, the optimal action is
selected from n perturbed actions as:

(s) = argmax Q(s, a; + &), (4)

a;+&;
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Algorithm 1: Offline Training of BatchRL-MTF.

Input :the transition dataset 8, mini-batch size M,
number of sampled actions n, perturbation bound
p, target network update rate 7;, discount factor y,
delay update step L, number of training epochs EP

1 Initialize generative network Gg = {Eg,, Dy, }, perturbation
network Py, and Critic network Qg = {Qy,, Qp, } with
random parameters 6, w, ¢;

2 Initialize target networks Py, Qp = {Q¢;, Q%} with
W' — w0, @] — 1,95 — o

3 foreach 1 < ep < Ep do

4 Sample mini-batch of M transitions (s, a,r,s’) from B
randomly;

5 Update Gy according to Equation (3);

6 Sample n actions {aAl' ~ Go(s")}L s

7 Generate n perturbed actions {aAl’ + Py, (s’, a: P)}?:ﬁ

8 Update P,, according to Equation (5);
9 Update Qg according to Equation (6);
10 if ep%L == 0 then

1 o —mno+(1-n)o’;

12 ¢ —medi+ (1 —ne)pf,i=12
13 end

14 end

and Py, (s, a, p) is optimized through the deterministic policy gradi-
ent algorithm [28]:

W — argmax Z Q(s,a+Py(s,a,p)). (5)
@ sEB
a~Go(s)

3.2.2  Critic Network. The Critic network Qg (s, a) aims to estimate
the cumulative reward of a state-action pair (s, a). Following the
common setting, we build four Critic networks during the learn-
ing process, i.e., two current networks Q¢1, Q¢2 and two target
networks Qg1> Qg - Specifically, the goal of Critic network is to
minimize TD-error in the bootstrapping way:

$j < argmin Z [y - Q¢j (ss@)]% je{12}, (6)
oy (s,a,s’)eB
and the learning target y is set according to the Clipped Double
Q-Learning [8] that reduces the overestimation bias:

=r+ymax[min Qg (s’,a’)],
y yma [j= in Qp; (s%,a")] "
a’ € {al+Py (s’ al,p),al ~Go(s )},
where a’ sampled from the generative model and outputted by the
target action perturbation network.

3.2.3  Offline Model Training. We train our Batch RL model offline
based on the pre-collected dataset and the learning algorithm is
shown in Algorithm 1. We first construct a transition dataset 8
based on history trajectories that record the online interaction
between the user and the recommender agent. To improve the
utilization efficiency of samples and speed up the convergence
of our model, we used replay buffer to store historical transitions
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Figure 3: The online exploration policy of BatchRL-MTF
framework.

during training process. Specially, replay buffer is a fixed-size queue,
where new transitions will replace old ones. Based on the mini-
batch sampled from B, we update sub-networks Gy, P,,, and Q¢
in order. In addition, we perform soft update on target networks
every L-iteration to reduce overestimation bias.

3.3 Online Exploration

Although the proposed Batch RL framework can reduce extrapola-
tion error, we have considered the Actor network learns a fine-tuned
policy based on training data generated by behavior policy. As a
result, the agent’s performance is limited by behavior policy. If
behavior policy doesn’t explore the real environment enough, it
will cause extrapolation error and local optimum problems in target
policy. To solve this problem, we propose an online exploration
policy to discover potential high-reward state-action pairs in online
serving. In particular, we first perform two types of exploration on
two groups of users separately.

¢ Random Exploration. The agent randomly samples an action
from Gaussian distribution to interact with real users while having
no priori knowledge.

o Action-Noise Exploration. To improve exploration efficiency
and exploit the priori knowledge of optimal actions, we conduct
action-noise exploration policy, which adds Gaussian noise to the
action outputted by the optimal target policy. Formally, we have:

Tep(s) = my (s) +€, € ~ N(0,0.1). (8)

where 7y (s) is exploration policy and 7/ (s) is the target policy
of current model. The random exploration policy can enrich the
diversity of actions, which prevents the local optimum problem; the
action-noise exploration policy makes full use of the priori knowl-
edge of optimal actions to explore nearby actions with potentially
high value. To exploit the advantages of these two exploration pol-
icy, we propose an online exploration policy that combines them,
called Mixed Multi-Exploration policy.

e Mixed Multi-Exploration is composed of random explo-
ration and action-noise exploration, shown in Figure 3. It constructs
the training dataset with equal amounts of trajectory samples col-
lected by random exploration and action-noise exploration.
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Different from exploration with simulators, online exploration
will receive feedback from real users, which results in more accurate
and unbiased rewards. In experiments, we will show that training
model with the dataset from our mixed multi-exploration policy
will exhibit better performance.

3.4 Short Video Recommender System with
BatchRL-MTF

We implement our model on a large-scale short video recommen-
dation platform. As shown in Figure 4, the RS is composed of two
components: offline training and online serving. The two compo-
nents are connected through user database and online MTF module,
which are used for collecting user-agent interaction logs and con-
ducting MTF task based on the BatchRL-MTF model.

The offline training component is responsible for data prepro-
cessing and BatchRL-MTF model training. To be more specific, data
processor pulls recent user data including user profile and user
history logs from user database and organises these data as interac-
tion trajectories {r; = (si<0), ago), ri<1),si(1), alfl), ri(z), )}fil where
each trajectory represents a user-agent interaction session. Then,
we exploit Algorithm 1 to learn a new model based on these trajec-
tories and update online model. In practice, we re-train our model
daily based on the trajectory data collected in the past three days.

The online serving component provides personalized recom-
mendations and collects user data. When receiving a user request,
request handler retrieves the relevant information of this user from
user database, constructs user state feature, and transfers user state
to MTF module. According to the user state, the MTF module pro-
duces a final ranking score for each video candidate. Finally, request
handler feeds top-ranked recommended video(s) to the user and
collect his/her feedback.

4 EXPERIMENTS
4.1 Dataset

Our batch data is collected from a real-world short video recom-
mendation platform, including about 3.142 million sessions and
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11.155 million user-agent interactions. For offline experiments, to
ensure that models fully learn the sequential information between
recommendation sessions, we take the first 90% user sessions of the
dataset in time order as the training dataset B to train the model
and the remaining 10% user sessions as testing dataset D to evalu-
ate the model. For online experiments, we exploit the batch dataset
to learn an optimal model and deploy it in our online short video
recommendation platform for one month to conduct A/B tests.

4.2 Implementation Details

In BatchRL-MTF, the input user state s is concatenated by user
profiles feature and interaction feature from last 500 watched videos.
Its output action a is 12-dimensional vector representing fusion
weights « in Equation (1). All networks in BatchRL-MTF are MLP
with ReLU activation function in hidden layers and are optimized
based on Adam optimizer. For action perturbation network P,,, we
use Tanh activation function maps its output ¢ to [-1, 1] and let
the perturbation bound p = 0.15. We set the reward discount factor
as y = 0.95. The initial learning rate 5 for the action generative
network, the action perturbation network and critic networks is set
t0 0.1 x 1072, 0.1 X 1073 and 0.2 x 1073 separately; the soft update
rate and the delay update step for target networks are n; = 0.05
and L = 10 separately. The above parameters are determined by
offline experiments for maximizing long-term returns. In addition,
the replay buffer size, mini-batch size and training epochs in our
training process are set to 100,000, M = 256, and Ep = 300, 000
respectively.

4.3 Evaluation Setting

4.3.1 Offline policy estimator. Online A /B testing, a general method
in the industry for evaluating new recommendation technologies,
is also one of our preferred methods in comparison experiments.
But it takes time and costs resources. Most importantly, the terrible
policy could hurt user experiences. To overcome the above prob-
lems and accelerate iteration of new technologies, we propose an
offline policy estimator to offline evaluate the performance of RL
model. Inspired by Fitted Q Evaluation (FQE) algorithm [18, 31] and
Conservative Q-Learning (CQL) algorithm [17], our Conservative
Offline Policy Estimator, also called Conservative-OPEstimator, is
designed as:

V(ne) = %Zl 9;( | 7e(als)O(, 0, 0) 9)

a~me(als)

where d°(s) is the initial state distribution; 7, (a|s) is the policy to
be evaluated; O(-, 0) is used to estimate how many present values of
long-term revenues within an online real recommendation session
will be produced by an initial state-action pair. To improve the accu-
racy of estimation, we resort to CQL algorithm to construct O(-, 0)
by function approximation, which punishes the estimated Q values
of state-action pairs not in the dataset D to prevent overestimation
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of the policy value. O(-, 0) = lim Oy where:
k—o0

N 1
Oks1 <« arggnaxa - R(0) + 2 ~E53a’r’srwg)7'2(9)

R(0) = Es~D,a~n'e(a|s) Qk (s,a,0) - Es,a~DQk(sa a,0) (10)
7(0) = Qk(3> a,0) - [r + YEs’~Z),a'~7re(a'ls’)Qk(sla a, 9)]

where R(6), called CQL regularizer, is used to penalize Q values of
OOD data and 7 (0) is the standard Temporal-Difference (TD) error.
D is the testing dataset collected from our online recommendation
platform, as mentioned in Section 4.1. « is the penalty factor that
regulates the punishment degree to the CQL regularizer. To reduce
the estimated error, we set a as 0.5 X 1073 to learn Q. such that
the expected value of a policy 7 (a|s) under this Q-function lower-
bounds its true value. We describe the implementation details of
Conservative-OPEstimator in Appendix A.

In our experiments, we take the output value of Conservative-
OPEstimator in Equation (9) as the offline evaluation metric. Spe-
cially, we use Long-term user satisfaction per session V() to
measure the average present value of long-term user satisfaction
generated by a recommendation policy during a session.

4.3.2 Online A/B testing. We deploy baselines to a large short
video platform over a month of online A/B test and focus on long-
term user satisfaction with the recommendation policies. We select
two online metrics as follows to comprehensively test the model
from two aspects of user stickiness and user activeness:

o App dwell time (ADTime) is the average APP usage time for
all users within a day.

e User positive-interaction rate (UPIRate) is the percentage of
video plays with positive user interactions during a day.

4.4 Compared Methods

4.4.1 Baselines. We compare our model with the common non-
reinforcement learning algorithms and the advanced reinforcement
learning algorithms.

e Bayesian Optimization (BO) fits the prior distribution of the
objective function based on Gaussian Process Regression and sam-
ples the optimal weight with upper confidence bound.

¢ Evolutionary Strategy (ES) uses a simple network whose inputs
are user state and outputs are personalized fusion weights. With
the network, ES turns to search the optimal network parameters
through natural gradient.

e Twin Delayed Deep Deterministic Policy Gradient (TD3)
[5] is an advanced off-policy algorithm, which also learns two
target networks to reduce the overestimation bias.

e UWAC+TD3 connects TD3 with Uncertainty Weighted Actor-
Critic(UWAC) [33] based on the well-established Bayesian uncer-
tainty estimation methods, so that it can identify OOD training
samples and reduce their weights to train a conservative Q function.
o CQL+SAC [17] combines CQL with Soft Actor-Critic (SAC) [14].
By regularizing the Q value of OOD action-state pairs, CQL al-
gorithm learns a conservative, lower-bound Q function to reduce
extrapolation error. SAC maximizes the cumulative rewards as well
as the entropy of the policy to increase the stochastic of the policy
and break away from the local optimum.
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Figure 5: The estimated Q value curve of different policy.

Table 1: Offline and Online Experimental results. The online
experiment results represents the improvement of other
methods on ADTime and UPIRate compared with Bayesian
Optimization (BO). ‘> means as the benchmark, BO results
is 0. The best result is bold. -’ means that the result is empty.

Metrics offline online
m V(%) | ADTime UPIRate
BO - * *
ES - +0.376% +0.402%
TD3 -648.162 - -
UWAC+TD3 -297.053 | -0.513% +16.061%
CQL+SAC 5.194 +2.322%  +10.258%
BatchRL-MTF 4.126 +2.216% +9.118%
BatchRL-MTF-RE 3.023 +0.862% -1.282%
BatchRL-MTF-Rtime - +2.254% +8.877%
BatchRL-MTF-Rintegrity - +1.996% +9.464%
BatchRL-MTF-Rinteraction - +2.550%  +9.651%

4.4.2  \Variations of our model. We also compare our model with
two types of variants designed to illustrate the effects of online ex-
ploration and reward function on model performance, respectively.
o BatchRL-MTF-RE is trained only with the data from random
exploration. We use this variant to illustrate the power of our mixed
multi-exploration.

o BatchRL-MTF-Rtime aims to improve user stickiness by setting
a larger affinity weight on video play time in Equation (2).

o BatchRL-MTF-Rintegrity aims to improve user stickiness by
setting a larger affinity weight on video play integrity in Equation
2).

e BatchRL-MTF-Rinteraction aims to improve user activeness
by setting larger affinity weights on interaction behaviors in Equa-
tion (2).

4.5 Offline Evaluation

In this section, we conduct extensive offline experiments to verify
the excellent performance of our Batch RL model with strong robust-
ness, high returns and less extrapolation error, while demonstrating
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our online exploration that can discover high-value training sam-
ples to prevent policy from falling into local optimum. In addition,
we test the sensitivity of parameters in our model and details of the
analysis results are presented in Appendix B.

4.5.1 Effectiveness of Our Batch RL Framework. As mentioned, the
traditional off-policy algorithms exhibit large error in the estimation
of Q value when we use the fixed dataset for offline learning. In
Figure 5, we show RL algorithms of the average estimated Q value
and its variance during training, and further show the policy action
distribution in Figure 6 to observe extrapolation error of RL models.
All models are trained by samples from mixed multi-exploration
policy and all action values are truncated within a pre-defined
interval and then normalized to [-1, 1].

Extrapolation error is the overestimation bias to Q value of OOD
data, and it is constantly accumulated by iterating the Bellman
backup operator. We notice that TD3 tends to output extreme action
values that are out of the distribution of batch data in Figure 6
because its Q function overestimates Q values of OOD actions. The
estimated Q value of TD3 in Figure 5 exponentially increases in
the early stage and can not converge to a stable and reasonable
value. In order to alleviate extrapolation error of TD3, we also try to
optimize TD3 with UWAC algorithm. In Figure 6, different from TD3
which only generates OOD actions, UWAC+TD3 exploits Monte
Carlo (MC) dropout to identify OOD actions and avoids learning
from these actions. As a result, the model has lower probability to
produce OOD actions. Unfortunately, UWAC+TD3 still have serious
extrapolation error problem.

Both BatchRL-MTF and CQL+SAC perform well on reducing
extrapolation error. However, these two methods apply different
strategies during training process. CQL+SAC model chooses to
penalize the Q values of unseen state and action pairs. In complex
RS with noisy user feedback, this soft constraint strategy may not
get rid of all OOD actions. Different from CQL+SAC, BCQ model
introduces the action generative network that hard constraints
the output actions around the seen ones and exploits online ex-
ploration to increase the diversity of actions. In Figure 5, we find
that, although BCQ produces lower Q value, it is more stable than
CQL+SAC and gives faster convergence during training, which is
benefited from the direct constraints on actions. In next section, we
also show that BCQ achieves stable improvements on both ADTime
and UPIRate on our online RS.

In addition, we take our Conservative-OPEstimator to evalu-
ate all models and the result are shown in Table 1. Conservative-
OPEstimator gives a negative evaluation value V (r,) to TD3 and
UWAC + TD3 both with large extrapolation error, and thinks these
models would hurt user experience. The above results also confirm
our policy takes effect that Conservative-OPEstimator tries to pun-
ish the estimated Q values of OOD actions to avoid overestimation.
Although CQL+SAC with a highest evaluation value, V(e), as an
average metrics, can only represents the overall rewards. Compared
to BCQ, which directly limits the distribution of actions, CQL+SAC
has a more volatile output, which is fatal to large-scale personalized
recommendation platforms that demand online stability. In a word,
the overall performance of our model is optimal in considering of
both stability and returns.
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4.5.2  Effectiveness of Online Exploration. We also compare the
output action distribution of our methods with different online
exploration policies, i.e., BatchRL-MTF and BatchRL-MTF-RE, in
Figure 7. Because Batch RL model based on behavior cloning con-
straints itself not to output OOD actions, the action distribution of
both Batchr-MTF and Batchr-MTF-RE is more concentrated than
that of their fixed batch data. However, the policy searches for the
optimal action in the batch dataset, which limits the improvement
of policy and causes the local optimal problem.

Therefore, our online exploration combines the extensive explor-
ing of random exploration with the priori knowledge of action-noise
exploration to construct high-quality dataset. It is obvious that the
action distribution of BatchRL-MTF is more concentrated than that
of behavior policy and BatchRL-MTF-RE. Compared with BatchRL-
MTE-RE, BatchRL-MTF explores potential high-value state-action
pairs based on the priori knowledge, which reduces those unneces-
sary exploration. The evaluation results of Conservative-OPEstimator
in Table 1 also verify the effectiveness of our online exploration pol-
icy that focuses on searching for high-value samples while ensures
the diversity of actions. Later, we will further show the efficiency
of our online exploration via an online comparison experiment.

4.6 Online Evaluation

In this section, we deploy all compared models and our BatchRL-
MTF on an online RS, except TD3 (it doesn’t work and could seri-
ously hurt user experience). We not only compare our model with
other baselines, but also discuss the weights w; in reward function
on their effect of our model.

4.6.1 Comparison against Other Methods. We use BO as the bench-
mark for comparison and show the improvements of ADTime and
UPIRate for other methods and the experimental results are shown
in Table 1, where all improvements have statistical significance
with p-value<0.05. ES slightly improves the performance by consid-
ering user preferences, but is still a performance gap to RL models
that aim to optimize long-term user satisfaction. For the evaluation
of RL models, the online evaluation results are completely consis-
tent with the offline evaluation results given by our Conservative-
OPEstimator. UWAC+TD3 performs poorly, dragging down AD-
Time by 0.513%; the ADTime and UPIRate returns of CQL+SAC are
both the highest in baselines, but not as stable as that of our model.
The specific reasons for their performance have been analyzed in
Section 4.5.1 and we will not repeat it.

Compared with BatchRL-MTF-RE, the mixed multi-exploration
of our model significantly outperforms Gaussian Noise random
exploration. To be more specific, random exploration increases
0.862% ADTime but decreases 1.282% UPIRate. The reason may lay
in the large amount of noisy exploration on the whole action space
that damaged the user experience. On the contrary, our BatchRL-
MTF explore around optimal actions and effectively learns the
optimal policy from the high-value samples.

4.6.2  Affinity Weight in Reward Function. To explore the impact of
different affinity weights w; in reward function, we deploy variants
described in Section 4.4.2 on our RS and compare real user feed-
back. As shown in Table 1, compared with BatchRL-MTF, BatchRL-
MTF-Rtime only gives a slight improvement on user stickiness,
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Figure 7: Action distribution of our model with different online exploration. We select the most representative 4-dimensional actions video
play time, play finish rate, exit rate and positive behavior rate for comparison.

i.e,, increasing ADTime by 0.037%; while harms user activeness
significantly, i.e., decreasing UPIRate by 0.241%. Similarly, BatchRL-
MTF-Rintegrity also exhibits a seesaw phenomenon between user
stickiness and activeness. Clearly, the weights increasing of video
play time or integrity may misleading the agent. For example, the
agent will recommend more long videos to increase video play time
or recommend more short videos to improve video play integrity.
We notice that BatchRL-MTF-Rinteraction performs best among
these variants, which improves ADTime and UPIRate by 0.333%
and 0.534% respectively. The probable reason may be that user in-
teraction behaviors are sparse but strong signals which can guide
the agent to learn user preferences and improve user satisfaction.

5 RELATED WORK

Although there have been extensive studies on reinforcement learn-
ing based recommender systems [1, 7, 32, 34], we note that their
problems are different from those studied in this paper. Particularly,
the output (action) of the above methods is usually recommenda-
tion item(s), while in this paper we aim to figure out the optimal
weights for model fusion of MTL predictions.

To figure out the optimal fusion weights, early works try to
solve this problem via parameter searching algorithms such as Grid
Search, Genetic Algorithm [21], and Bayesian Optimization [22]. For
example, [12, 27] use Grid Search to iterate over all combinations
of candidate parameter sets and select the optimal weights through
A/B Test. Galuzzi et al. [10] propose to use Bayesian Optimization to
optimize the number of latent factors, the regularization parameter,

and the learning rate. The main drawback of these methods is that
they always produce unified fusion weights across different users
and thus can not model user preferences. To search personalized
fusion weights, Ribeiro et al. [26] propose using evolutionary algo-
rithm to find Pareto-efficient hybrids. However, all above methods
focus on instant returns but ignore long-term user satisfaction.

Recently, to maximize long-term user satisfaction, a few works
try to search the optimal weights via reinforcement learning. Pei et
al. [24] propose a reinforcement learning based model to maximize
platform expected profit. To simplify the model, they use evolution-
ary strategy to solve the problem and thus the proposed method
are still limited to optimize the profile of current recommendation.
Han et al. [15] exploit off-policy reinforcement learning to find out
the optimal weights between the predicted click-through rate and
bid price of an advertiser. Because numerous interactions with the
immature agents will harm user experiences, they build an envi-
ronment simulator to generate users’ feedback for training their
model offline. However, the real recommendation environment is
so complex that the simulator can’t simulate it completely. In fact,
the RL model based on the simulator will be difficult to adapt to
the online environment and hurt user experience.

6 CONCLUSION

Multi-Task Fusion (MTF), which determines the final recommen-
dation, is a crucial task in large RSs but has not received much
attention by far in both academia and industry. In this paper, we
propose BatchRL-MTF framework for MTF recommendation task,
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which aims to optimize long-term user satisfaction. We first formu-
late our recommendation task as an MDP and deliberately design
the reward function involving multiple user behaviors that repre-
sent user stickiness and user activeness. In order not to hurt online
user experience, we exploit Batch RL model to optimize accumu-
lated rewards and online exploration policy to discover potential
valuable actions. Finally, we propose a Conservative-OPEstimator
to test our model offline, while conduct online experiments in real
recommendation environment for comparison of different models.
Experiments show that our model has the advantages of high re-
turns, strong robustness and small extrapolation error. In addition,
we also explore the effect of affinity weight in the reward function
on our model, and find that when the weight of user activeness
feedback is increased, our model will obtain higher returns. Fur-
thermore, we successfully implement our model in a large-scale
short video platform, improving 2.550% app dwell time and 9.651%
user positive-interaction rate.
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Algorithm 2: Offline Evaluation Steps of Conservative Of-
fline Policy Estimator V(7).

Input :the transition dataset D = {s;, a;, ri, sl.’}{.il,
training batch size m, testing batch size n, discount
factor y, the penalty coefficient «, the policy 7, to

be evaluated.
1 Initialize Qy (-, #) randomly;
2 foreach0 < k < K do
3 Sample training batch of m transitions {s;, a;, ri, slf M
from P randomly;
4 Compute current Qf = Qp (si, me(si)) and
O; = Ok (si, a;), target ij; = ri + YOk (s}, me(s]))  Vis

5 Construct training batch set:
Dy = {(si,a1), 0F, Qi Ui Y2y
6 Fit Q-function based on regression:

-1 520

i=1

3=

=
NgE

Qpy1 «—argmax a - (
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2

1 1
o Z (Qk(sirai) = )%
i=1
7 end
s Obtain fitted Q-function Q(-, 8) = khn}( Or;

9 Sample testing batch of n initial states {s? n, from D
randomly;

=

o Evaluate the offline policy 7,:
1 n
Vi) == >, D, me(als)Q(s),a).
i=1 a~m(als)

Output: the offline evaluation result V(e).

A IMPLEMENTATION DETAILS OF
CONSERVATIVE OFFLINE POLICY
ESTIMATOR

In Algorithm 2, we elaborate the training and evaluation steps of
our Conservative-OPEstimator. The Q network in Conservative-
OPEstimator are MLP with ReLU activation function in hidden
layers and are optimized based on Adam optimizer with the learning
rate set to 0.1 X 103, In addition, we set the training batch size, the
testing batch size, the discount factor, the penalty coefficient and
training epochs to m = 512,n = 5000,y = 0.95, & = 0.5 x 1073 and
K = 5000, respectively.

B SENSITIVITY ANALYSIS OF PARAMETERS

In this section, we will observe the influence on our model perfor-
mance of two important model parameters, the perturbation bound
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p and the learning rate n of the critic network, to figure out their
optimal values. We evaluate Batch RL model class with the different
value of p or 5, and visualize the offline evaluation results in Figure
8.

B.1 Sensitivity of the Perturbation Bound p

As the behavior cloning-based method, Our Batch RL model reduces
extrapolation error by constraining itself not to output OOD actions.
It is essentially a fine-tuned policy based on training data generated
by behavior policy. Once the batch data set constructed by the
behavior policy is not the optimal set, our model will fall into
the dilemma of local optimum. In order to explore potential high-
value state-action pairs but avoid the action with noise to hurt user
experience, we exploit the action perturbation network P, (s, a, p)
to perturb actions cloned by VAE model, as discussed in Section
3.2.1. The perturbation bound p is a critical parameter that controls
the range of exploration and influences the final output action.

As shown in Figure 8 (a), when p = 0.15, our model has the
best performance and can achieve stable and high returns. With
the decrease of p, the exploration for the action is conservative
and narrow, which is conducive to obtain the model with stable
returns but limits the model to seeking high returns; Instead, the
exploration is more random and extensive, which is conducive to
enrich the action candidate set but increases extrapolation error
and the action with noise of the model. The above phenomenon also
shows that p only adjusts the constraint range of the model on the
output action, and the Q network of our model still overestimates
the Q value of OOD actions. A large p means that there is a small
constraint on the action. Therefore, our model may output OOD
actions, resulting in extrapolation error.

B.2 Sensitivity of the Learning Rate 7 of the
Critic Network.

The critic network of our Batch RL model, which can evaluate the
value of state-action pairs, provides the actor network with the
optimization direction and the basis for decision making. Therefore,
it directly affects our model performance whether the critic network
learns adequately and effectively.

In Figure 8 (b), we research how the learning rate 5 of the critic
network influences the long-term rewards of our model. With the
increase of learning rate 1, the rewards of model fluctuates con-
stantly. We note that, when the learning rate # is around 0.2 X 1073,
the fluctuation flattens out and our model gains the highest returns.
This shows that it is so appropriate to set 5 = 0.2 X 1073 that the
critic network does not fall into the local optimal because of a small
1, nor miss the real optimal solution because of a large 1. Mean-
while, the result ensures the critic network trained adequately that
can accurately evaluate the value of state-action pairs.



Multi-Task Fusion via Reinforcement Learning for Long-Term User Satisfaction in Recommender Systems

Long-term user satisfaction per session V(m,)

/T
4.101 ; TO-— -Q
1
\.
4.05
400 1
&
3.95 -
\
\
390 L , ; ; 3
0.10 0.15 0.20 0.25 0.30

The perturbation bound p

Conference’17, July 2017, Washington, DC, USA

(b)

-
£ 4101 Pt
< ST
o =~ \
S - .
= \
2 4004 @ |
3
- \
& \ 2 \
g 3.0 3 AR
g \ /‘/ x
& . \
& A / N
5 3.80 1 X 7 N
8 \ / N\
= \ i N
g 3701 b S
g 3
7 v/
2 \ 7
S 3.60+ ®
0.01 0.02 0.04 0.08 0.16

The learning rate 7 of

the critic network (x 10~3)

Figure 8: Parameter sensitivity of the perturbation bound p and the learning rate n of the critic network. The best result is marked by a red

star.



	Abstract
	1 Introduction
	2 Problem Formulation
	3 Proposed Framework
	3.1 Reward Function
	3.2 Batch Reinforcement Learning for MTF
	3.3 Online Exploration
	3.4 Short Video Recommender System with BatchRL-MTF

	4 Experiments
	4.1 Dataset
	4.2 Implementation Details
	4.3 Evaluation Setting
	4.4 Compared Methods
	4.5 Offline Evaluation
	4.6 Online Evaluation

	5 Related Work
	6 Conclusion
	References
	A Implementation Details of Conservative Offline Policy Estimator
	B Sensitivity Analysis of Parameters
	B.1 Sensitivity of the Perturbation Bound 
	B.2 Sensitivity of the Learning Rate  of the Critic Network.


