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Modern software systems and products increasingly rely on machine learn-
ing models to make data-driven decisions based on interactions with users,
infrastructure and other systems. For broader adoption, this practice must
(𝑖) accommodate product engineers without ML backgrounds, (𝑖𝑖) support
finegrain product-metric evaluation and (𝑖𝑖𝑖) optimize for product goals. To
address shortcomings of prior platforms, we introduce general principles
for and the architecture of an ML platform, Looper, with simple APIs for
decision-making and feedback collection. Looper covers the end-to-end ML
lifecycle from collecting training data and model training to deployment
and inference, and extends support to personalization, causal evaluation
with heterogenous treatment effects, and Bayesian tuning for product goals.
During the 2021 production deployment, Looper simultaneously hosted 440-
1,000 ML models that made 4-6 million real-time decisions per second. We
sum up experiences of platform adopters and describe their learning curve.
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1 INTRODUCTION
With growing adoption of machine learning (ML), personalization
is proving essential to competitive user experience [18]. To support
users with different preferences, one needs good default tactics, user
feedback, prioritizing delivered content and available actions [37].
When managing limited resources, e.g., for video serving, similar
logic applies to network bandwidth, response latency, and video
quality [23, 34]. This paper explores the use of ML for personalized
decision-making in software products using what we call smart
strategies (Section 2). Making smart strategies available to product
engineers is challenging: 1 Long-term product objectives rarely
match closed-form ML loss functions. 2 Product-generated data
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drifts away from training data. 3 Capturing correlations in train-
ing data (via ML) does not imply causal improvement of product
metrics [10, 53]. 4 Clean data to evaluate the performance of ML
systems is often unavailable, necessitating A/B testing. 5 Tradi-
tional A/B tests neglect personalized treatments. 6 Platforms to
train, host and monitor hundreds of ML models are needed and
promise economies of scale. 7 Real-time feature extraction and
inference are needed, despite more efficient async batch processing.
8 Product engineers, many new to ML, need a simple, standard,
future-proof way to embed smart strategies into products.
Data-centric ML development is a recent concept of refocusing
ML development from models to data [35]. It supports software per-
sonalization with off-the-shelf models, where collecting the right
data and selecting the appropriate class of models become primary
differentiators [37]. Compared to developing and training ML mod-
els, data adequacy is often overlooked [45], and product platforms
must use automation to compensate. Per Andrew Ng, “everyone
jokes that ML is 80% data preparation, but no one seems to care” [44].
Yet, directly handling data sets and ML models in product code is
cumbersome. Instead, software-centric ML integration with data
collection and decision-making APIs offers a front-end to MLOps
automation (Sections 2.2 and 3.2). Additionally, ML development
often neglects structure in product evaluation data (Section 3.4).
Vertical ML platforms lower barriers to entry and support the
entire lifecycle of ML models (Figure 1) in a repeatable way. Hor-
izontal ML platforms provide storage, support data pipelines and
offer basic services, whereas vertical platforms foster the reuse of
not only ML components, but also workflows. At firms like Google,
Meta, LinkedIn, Netflix, specialized end-to-end vertical platforms
drive flagship product functionalities, such as recommendations.
They have also been applied to software development, code qual-
ity checks, and even to optimize algorithms such as sorting and
searching [15]. Platforms are built on ML frameworks like Tensor-
Flow [1] and PyTorch [33] that focus on modeling for generic ML
tasks, support hardware accelerators, and act as toolboxes for appli-
cation development [24, 36]. Supporting smart strategies requires
general-purpose vertical platforms to offer end-to-end ML lifecycle
management. General-purpose vertical ML platforms can be inter-
nal to a company — Apple’s Overton [41] and Uber’s Michelangelo
[27], — or broadly available to cloud customers — Google’s Vertex,
Microsoft’s Azure Personalizer [2] and Amazon Personalize. A com-
mon theme is to help engineers “build and deploy deep-learning
applications without writing code” via high-level, declarative ab-
stractions [37]. Improving user experience and system performance
with ML remains challenging [40] as correlations in data found by
ML models might not lead to causal improvements. Little is known
about optimizing for product goals [37, 52].
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domain-specific ML tasks, e.g., 
ranking for a product surface

different ML tasks across variety of product 
domains

app specific data transforms; 
extensive customization

multiple transforms available for different 
apps; limited customization

● large custom models
● manual feature selection & eng
● custom model optimization
● transfer learning possible
● a small set of use cases

● modular architecture
● many standard model types
● smaller model sizes
● automated feature selection
● automated model optimization
● large variety of use cases

● app specific monitoring and alerts
● custom deployment; co-optimized 
   with app stack

● flexible monitoring and alerts
● co-hosted deployment; modular interface 

with multiple apps

Specialized Vertical Platform for 
App Performance & Scalability
used for images, videos, speech, 
custom recommendation systems

General-purpose Vertical Platform 
for Usability & End-To-End Management
used for smart strategies, configurable 
recommendation systems

● end metrics rarely changed ● modularized & configurable APIs 
● easy to add new metrics 

Problem 
type

Data 
preparation

Product impact 
eval. & opt.

● domain- & problem-specific data sources
● data collection via custom APIs
● extreme data capacity possible

● diff. data sources for diff. apps
● data collection via standard APIs
● data capacity often limited by co-hosting

Data sources 
& collection

Horizontal ML Platforms for Problem Space Coverage, ML Performance and Scalability

Model 
selection & 
optimization

Deployment & 
maintenance

Fig. 1. Categories of applied ML platforms: horizontal vs. vertical, specialized vs. general-purpose (back arrows show vertical optimizations
based on product metrics, see Section 3.3). Specialized platforms are limited in their support for diverse applications.

We develop support for data-driven real-time smart strategies
via a general-purpose vertical end-to-end ML platform called Looper,
internal to Meta, for rapid, low-effort deployment of moderate-
sized models. Looper is a declarative ML system [27, 36, 37, 41] with
coding-free full-lifecycle management of smart strategies via a GUI.
Our technical contributions include 1 a full-stack real-time
ML platform (Section 3) with causal product-impact evaluation
and optimization and handling of heterogeneous treatment effects
(Sections 3.4, 4.2) via an experiment optimization system and meta-
learners, 2 a generic framework for targeting long-term outcomes
by parameterized policies using plug-in supervised learning models
and Bayesian optimization (Sections 3.3, 3.4, 4.2), 3 the strategy
blueprint abstraction to optimize not only models, but the entire ML
stack (Figures 1, 3 and Section 3.3), 4 capturing decision inputs and
observations online via the succinct Looper API for product code;
not only predicting what’s logged by the API, but also optimizing
black-box product objectives (Section 3.2), 5 broad deployment
and substantial impact on product metrics (Section 4), 6 analysis
of resource-usage bottlenecks (Appendix A), 7 qualitative analysis
of our platform via a survey of adopters (Appendix B).

Specialized verticalML platforms limit application diversity, while
Looper hosts hundreds of production use cases thanks to its general-
purpose architecture. Many vertical platforms [2, 15, 36, 41], don’t
solve as wide a selection of ML tasks as Looper does (classification,
estimation, value and sequence prediction, ranking, planning) us-
ing supervised and reinforcement learning. Unlike platforms with
asynchronous batch-mode feature extraction and inference [25, 27],
Looper runs in real time and optimizes resource usage accordingly
(Appendix A). To balance model quality, size and inference time,

Looper AutoML selects models and hyperparams, and performs
vertical optimizations via strategy blueprints (Section 3.3).
In the remainder of the paper, Section 2 explores ML-driven
smart strategies and relevant platform needs. Section 3 covers de-
sign principles for the Looper platform, introduces the architecture,
the API, the blueprints, and specializations. Section 4 summarizes
product impact at Meta, comparisons to baselines and adoption
statistics. Appendices provide data to foster reproduciibility.

2 ML FOR SMART STRATEGIES
Compared to benchmark-driven research, ML that interacts with
the world runs into additional challenges. In this paper, we target
smart strategies at key decision points in software products, e.g.,

• application settings and preferences: selecting between de-
faults and user-specified preferences

• adaptive interfaces — certain options are shown only to users
who are likely to pursue them

• controlling the frequency of ads, user notifications, etc
• prefetching or precomputation to reduce latency
• content ranking and prioritizing available actions

User preferences and context complicate decision-making. Sim-
plifying a UI menu can boost product success, but menu preferences
vary among users. Prefetching content to a mobile device can en-
hance user experience, but may require predicting user behavior.

While human-crafted heuristic strategies often suffice as an initial
solution, ML-based smart strategies tend to outperform heuristics
upon sufficient engineering investment [15, 29]. The Looper plat-
form aims to lower this crossover point to broaden the adoption
of smart strategies and deliver product impact over diverse appli-
cations. In this section, we discuss modeling approaches to enable
smart strategies and cover the priorities in building such a platform.
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2.1 Modeling approaches for smart strategies
Smart strategies are backed by supervised learning, contextual ban-
dits (CB), and/or MDP-style reinforcement learning (RL). Given a
model type, product decision problems need (1) ML optimization
objectives to approximate the product goal(s) and (2) a decision
policy to convert objective predictions into a single decision.
Approximating product goals with predictable outcomes (al-
ternatively referred to as proxy or surrogate objectives) is a major
difference between industry practice and research driven by existing
ML models with abstract optimization objectives [48]. Good proxy
objectives should be readily measurable and reasonably predictable.
In recommendation systems, the “surrogate learning problem has
an outsized importance on performance in A/B testing but is diffi-
cult to measure with offline experiments” [16]. We note a delicate
tradeoff between easy-to-measure objectives directly linked to the
decision vs. more complex objectives, e.g., ad clicks vs. conversions.
Furthermore, product goals often implicitly have different weighting
functions than the ML objective (e.g., the feedback provided by most
prolific product users does not always represent other users [12]).
Objectives can be modeled directly using supervised learning; alter-
natively, using CBs can model uncertainty in predictions across one
or more objectives, which may then be used for exploring the set of
optimal actions, e.g., in Thompson sampling [2, 3, 19, 32]. The use
of RL enables the optimization of long-term, cumulative objectives,
helping use cases with sequential dependencies [7, 24, 32]. To evalu-
ate any one of these types of models and decision rules, true effects
of the ML-based smart strategies can be estimated via A/B tests.
Decision policies postprocess the raw model outputs into a final
product decision or action. For single-objective tasks in supervised
learning this may be as simple as making a binary decision if the
objective prediction exceeds a threshold, e.g. turning the probability
of a click into a binary prefetch decision (Section 4.3). For tasks with
multiple objectives and more complex action spaces, the template
for a decision policy is to assign a scalar value or score to all possible
actions in the decision space, which can then be ranked through
sorting. In recommendation systems, a standard approach is to use
a combination function (usually a weighted product of objective
predictions) to generate a score for each candidate [55]. When using
reinforcement learning, reward shaping [31] weighs task scores in
the reward function to optimize for the true long-term objective.
Optimizing this weighting for multi-objective tasks is explored in
Section 3.3. More sophisticated policies also use randomization to
explore the action space, e.g. Thompson sampling in contextual
bandits [19], or 𝜀-greedy approaches for exploration in ranking [3].

2.2 Extending end-to-end ML for smart strategies
Traditional end-to-end ML systems go as far as to cover model pub-
lishing and serving [27, 36, 37, 41], but to our knowledge rarely
track how the model is used in the software stack. Assessing and
optimizing the impact of smart strategies, especially with respect
to product goals, requires experimentation on all aspects of the
modeling framework – from metric and model selection to policy
optimization. To streamline this experimentation and reap its bene-
fits, smart-strategies platforms must extend the common definition
of end-to-end into the software layer.

Software-centric ML integration [2, 15] – where data collection
and decision-making are fully managed through platform APIs – en-
ables both high-quality data collection and holistic experimentation.
Notably, the platform can now keep track of all decision points and
support A/B tests between different configurations. Well-defined
APIs improve adoption among product engineers with limited ML
background, and ML configuration can be abstracted via declarative
programming or GUI without requiring coding [37].
End-to-end AutoML. Hyperparameter tuning is often automated
per model via black-box optimization [11]. But optimizing the loss
function of SOTA models by 1% often brings no long-term product
gains, whereas tuning decision policy params usually helps, e.g.,
by better reflecting penalties for false positives/negatives. In our
full-stack (extended end-to-end) regime, we enable AutoML for the
entire ML pipeline via declarative strategy blueprints (Section 3.3)
and an adaptive experiments framework tied to product metrics [9].

2.3 Additional requirements for smart strategies
Metadata features for product-specific models (e.g., account type,
time spent online, interactions with other accounts) introduce new
aspects to learning smart strategies in addition to traditional content
features (images, text, video) commonly handled by ML platforms.
Unlike image pixels, metadata features are diverse, uncorrelated,
require non-uniform preprocessing, and are often joined from dif-
ferent sources. Patterns in metadata change quickly, necessitating
regular retraining of ML models on fresh data, as well as monitoring
and alerts. Interactions between dense metadata features can often
be handled by GBDTs or shallow neural nets. Sparse and categorical
features need adequate representations [42] and special provisions
if used by neural network architectures [38].
Non-stationary environments are typical for deployed products
but not for research prototypes and SOTA results.
Logging and performance monitoring are important capabili-
ties for a production system. Dashboards monitor system health
and help understand model performance in terms of statistics, dis-
tributions and trends of features and predictions, automatically
triggering alerts for anomalies [4, 13]. Our platform integrates with
Meta ’s online experimentation framework, and production models
can be withdrawn quickly if needed.
Monitoring and optimizing resource usage flags inefficiences
across training and inference. Our monitoring tools track resource
usage to components of the training and inference pipeline (Section
3.2), and help trade ML performance for resources and latency.

3 THE LOOPER PLATFORM
To support a smart strategy, a vertical ML platform (Figure 1) col-
lects features and labels from a running product, trains a model, and
produces predictions in real time for use in the product. Such "loops"
need operational structure — established processes and protocols
for model revision and deployment, evaluation and tracking of prod-
uct impact, and overall maintenance. We now introduce insights,
design principles and an architecture for a vertical smart-strategies
platform to address the needs outlined in Sections 1 and 2.
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3.1 Design principles and a concept inventory
In contrast to heavy-weight ML models for vision, speech and NLP
that favor offline inference (with batch processing) and motivate
applications built around them, we address the demand for smart
strategies within software applications and products. These smart
strategies operate on metadata — a mix of categorical, sparse, and
dense features, often at different scales. Respective ML models are
lightweight, they can be re-trained regularly and deployed quickly
on shared infrastructure in large numbers. Downside risks are re-
duced via (𝑖) simpler data stewardship, (𝑖𝑖) tracking product impact,
(𝑖𝑖𝑖) failsafe mechanisms to withdraw poorly performing models.
Smart strategies have a good operational safety record and easily
improve naive default behaviors.
The human labeling process common for CV and NLP fails for

metadata because relevant decisions and predictions (a) only make
sense in an application context, (b) in cases like data prefetch (Section
4.3) only make sense to engineers, (c) may change seasonally, and
even daily. Instead of human labeling, our platform interprets user-
interaction and system-interaction metadata as either labels for
supervised learning or rewards for reinforcement learning. To
improve operatonal safety and training efficiency, we rely on batch-
mode (offline) training, even for reinforcement learning. Given real-
time inference, model agility beyond daily re-training is supported
by real-time engineered features, such as event counters.
Our platform ensures fast onboarding, robust deployment and

low-effort maintenance of multiple smart strategies where posi-
tive impacts are measured and optimized directly in application
terms (Appendix B). To this end, we separate application code from
platform code, and leverage existing horizontal ML platforms with
interchangeable models for ML tasks (Figure 1). Intended for com-
pany engineers, our platform benefits from high-quality data and
engineered features in the company-wide feature store [39]. To sim-
plify onboarding for product teams and keep developers productive,
we automate and support

• Workflows avoided by engineers [45], e.g., feature selection
and preprocessing, and tuning ML models for metadata.

• Workflows that are difficult to reason about, e.g., tuning ML
models to product metrics.

We first introduce several concepts for platform design.
The decision space captures the shape of decisions within an ap-
plication which can be made by a smart strategy. It can be just {0,1}
to indicate whether a notification is shown. It can be a continuous-
value space for time-to-live (TTL) of a cache entry. It can be a data
structure with configuration values for a SW system, such as a live-
video stream encoder. With reinforcement learning, the decision
space matches well with the concept of action space.
Application context captures necessary key information provided
by a software system at inference time to make a choice in the
decision space. The application context may be directly used as
features or it may contain ID keys to extract the remaining features
from the feature store (Section 3.3).
Product metrics evaluate the performance of an application and
smart strategies. When specific decisions can be judged by product
metrics, one can generate labels for supervised learning, unlike for
metrics that track long-term objectives.

A proxy ML task casts product goals in mathematical terms to
enable (𝑖) reusableMLmodels that optimize formal objectives and (𝑖𝑖)
decision rules that map ML predictions into decisions (Section 2.1).
Setting proxy tasks draws on domain expertise, but our platofrm
simplifies this process.
Evaluation of effects on live data verifies that solving the proxy
task indeed improves product metrics. Access to Meta’s monitoring
infrastructure helps detect unforeseen side effects. As in medical
trials, (1) we need evidence of a positive effect, (2) side-effects should
be tolerable, and (3) we should not overlook evidence of side-effects.
On our platform, product developers define the decision space, al-
lowing the platform to automatically select model type and hyper-
parameter settings. The models are trained and evaluated on live
data without user impact, and improved until they can be deployed.
Newly trained models are canaried (deployed on shadow traffic)
before product use – such models are evaluated on a sampled subset
of logged features and observations, and offline quality metrics (e.g.,
MSE for regression tasks) are computed. This helps avoid degrading
model quality when deploying newer models.

3.2 Platform architecture: the core
Traditional ML pipelines build training data offline, but our platform
uses a live feature store and differs in two ways:

• Software-centric vs. data-centric interfaces. Rather than
passed via files or databases, training data are logged from
product surfaces as Looper APIs intercept decision points
in product software. Product engineers delegate training-
data quality concerns (missing or delayed labels, etc) to the
platform. Missing data are represented by special values.

• An online-first approach. Looper API logs live features
and labels at the decision and feedback points, then joins and
filters them via real-time stream processing. This immediate
materialization avoids data hygiene issues [2] and storage
overhead: it keeps training and inference consistent and lim-
its label leakage by separating features and labels in time.
Looper’s complete chain of custody for data (without exposing
data tables or files) helps prevent engineering mistakes.

The Looper RPC API relies on two core methods:
I. getDecision(decision_id, application_context) returns
a decision-space value, e.g., True/False for binary choices or a
floating-point score for ranking. Unlike in the 3-call APIs in [2, 15],

getDecision
① 

Extract features
③

Canary
System

Joining
System

Predictor 
System

Client 
API

Blueprint
②

Publish model
⑧

⑩
Promote canary

Training
System

Feature Store

Predict
④

Log data
⑤

Training 
Tables

Publish canary
⑨

Monitoring
System

Train
⑦

Config
System

ETL
⑥

Experimentation
System

Meta infrastructure
Looper system

Fig. 2. Data flow in the Looper platform. Figure 3 expands the left side.
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Training Table

Features Labels Version

page_fans: 123
description_emb: 
[1.2, 2.0, ...]

click: true
rating: 4.0 2

page_fans: 123 click: true 1

Strategy Blueprint (version 1)

Strategy Blueprint (version 2)

Feature Config Label Config
● click (binary)
● rating (float)

Model Config
Model: neural_network

Layers: [256, 128]

Policy Config

value(x) = click(x) + 2.0 * log(rating(x))

page_id
Context

page_features
Group

SIF_text_embedding
Transform description

description_emb

Training 
System

API

Experimentation
System

Logging Trained Model
[blueprint v2]

Inference

Filter

Blueprint
Version

To Feature 
Store

Policy
Evaluator

Adaptive 
Experimentation

System

A/B test
results

Generated
blueprints &
experiments

Target product metrics

①

②

③

④

⑤

Fig. 3. The strategy blueprint and how it controls different aspects of the end-to-end model lifecycle. Continuation of Figure 2.

null is returned before a model is available (to trigger default be-
havior). User-defined decision_id ties each decision with observa-
tion(s) logged later (II); it may be randomly generated for clients to
use. application_context is a dictionary representation of the ap-
plication context (Section 3.1), e.g., with the user ID (used to retrieve
additional user features), current date/time, etc.
II. logObservations(decision_id, observations) logs labels
for training proxy ML task(s), where decision_id must match a
prior getDecision call. Observations capture users’ interactions,
responses to a decision (e.g., clicks or navigation actions), or envi-
ronmental factors such as compute costs.

Though deceptively simple in product code, this design fully sup-
ports the MLOps needs of the platform. We separately walk through
the online (inference) and offline (training) steps of the pipeline in
Figure 2. 1 Product code initializes the Looper client API with
one of the known strategies registered in the UI. getDecision() is
then called with the decision_id and application_context. 2
Looper client API retrieves a versioned configuration (the “strategy
blueprint”, Section 3.3) for the strategy to determine the features,
the model instance, etc. The exact version used may be controlled
through an external experimentation system. 3 The client API
passes the application context to the Meta feature store (Section 3.3),
which returns a complete feature vector. 4 The client API passes
the feature vector and production model ID to a distributed model
predictor system (cf. [47]), which returns proxy task predictions to
the client. Then, the client API uses a decision policy (Section 2.1) to
make the final decision based on the proxy predictions. Decision poli-
cies are configured in a domain-specific language (DSL) using logic
and formulas. 5 Asynchronously, the anonymized feature vector
and predictions are logged to a distributed online joining system (c.f.

[5]), keyed by the decision ID and marked with a configurable and
relatively short TTL (time-to-live). The logObservations API also
sends (from multiple request contexts) logs to this system. Com-
plete “rows" with matching features and observations are logged to
a training table, with retention time set per data retention policies.
The remaining steps are performed offline and asynchronously.

6 Delayed and long-term observations are logged in a table
and then joined offline via Extract, Transform, and Load (ETL)
pipelines [6]. These pipelines perform complex data operations
such as creating MDP sequences for reinforcement learning. The
logged features, predictions, and observations are sent for logging
and real-time monitoring as per Section 2.2. 7 An offline training
system [22] retrains new models nightly or when sufficient data are
available, addressing concerns from Section 3.1. 8 Trained models
are published to the distributed predictor for online inference. 9
Models are then registered for canarying (Section 3.1). 10 A canary
model that outperforms the prior model is promoted to production
and added to the loop configuration.

3.3 Product optimization with strategy blueprints
The end-to-end nature of the Looper platform brings its own set
of challenges regarding data and configuration management in the
system. Existing ML management solutions [49] primarily focus on
managing or versioning of data and models, which is insufficient
in covering the full lifecycle of smart strategies. In this section we
introduce the concept of a strategy blueprint, a version-controlled
configuration that describes how to construct and evaluate a smart
strategy. Blueprints are immutable, and modifications (typically
through a GUI) create new versions that can be compared in produc-
tion through an online experimentation platform, allowing for easy
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rollback if needed. The strategy blueprint (Figure 3) controls four
aspects of the ML model lifecycle and captures their cross-product:
Feature configuration. Modern ML models can use thousands of
features and computed variants, which motivates a unified repos-
itory — a feature store — usable in model training and real-time
inference [26, 39]. Features within a feature group are associated
with the same application context (e.g., a Web page id) and are com-
puted together. Feature variants are produced by feature transforms,
e.g., pre-trained or SIF [8] text embeddings. The Looper blueprint
leverages feature stores for feature management and tracks (𝑖) fea-
ture groups via a computational graph and (𝑖𝑖) downstream feature
transforms. Blueprint modifications often try to improve model
quality by experimenting with new features.
Label configuration controls how ML objectives are proxied by
clicks, ratings, etc, as per Section 2.1. Faithful proxies for product
metrics are hard to find [48], hence experimentation with label sets.
Model configuration helps product teams explore model architec-
ture tradeoffs (DNNs, GBDTs, reinforcement learning). The blue-
print only specifies high-level architecture parameters, while lower-
level hyperparameters (e.g., learning rates) are delegated to AutoML
techniques invoked by the training system (Section 2.2).
Policy configuration controls how raw objective predictions are
translated into decisions (Section 2.1). It uses a lightweight domain
specific language (DSL). Figure 3 illustrates a ranking decision,
where the click and rating objectives are weighted and combined to
generate a single score per candidate. Smart strategies often need
to optimize the importance weights embedded in decision policies.

Blueprints capture compatibility between versions, e.g., the train-
ing pipeline for ver.𝐴may use data from ver. 𝐵 if features and labels
in 𝐴 are subsets of those in 𝐵. Tagging each training row with the
originating blueprint version enables data sharing between versions.

Figure 3 illustrates the lifecycle of a blueprint. From left to right:
1 An experimentation system enables different blueprint versions
to be served across the user population to facilitate A/B testing
(optionally, in concert with a “blueprint optimizer", described later
below). 2 The client API uses the blueprint feature configura-
tion to obtain a complete feature vector from the feature store. 3
Completed training examples are logged to training tables, tagged
with the originating blueprint version. 4 The training system
filters data by compatible version and executes the pipeline per
the blueprint’s feature, label, and model configurations. The policy
configuration may be needed as well for more sophisticated model
types (reinforcement learning). 5 Trained models are published in
the blueprint version. So, the client API uses only models explicitly
linked to its served blueprint version. To generate the final product-
facing decision, the client also uses the policy configuration.
Vertical optimizations with the blueprint abstraction capture de-
pendencies between the four configuration types. Since long-term
product metrics are rarely available in closed form, such an opti-
mization requires (𝑖) a sequence of A/B tests that evaluate product
metrics and (𝑖𝑖) parameter adjustment between these tests. Given
that each A/B test (experiment) can take significant time and impact
many end-users, very few A/B tests can be used in practice. This
calls for (multi-objective) Bayesian optimization: to tune parame-
ters in a blueprint and optimize product metrics w/o closed-form

representation, Looper leverages an adaptive experimentation plat-
form [9], see Section 4.2 for details. Product outcomes often improve
even by just tuning weights in the policy configuration, e.g., for
recommendation scores and reward shaping.
Bookkeeping for product groups using Looper is performed in
terms of use cases tied to an application context and an ML task (Sec-
tion 3.1). Multiple candidate configurations are maintained to train
and evaluate candidate model instances and define decision policies.
While only one blueprint (and model) per use case is in production,
many model instances may be undergoing shadow evaluation.

3.4 Platform specializations
The core platform (Sections 3.2 and 3.3) goes a long way to ad-
dress the challenges listed in the Introduction. However, additional
structures are needed because (𝑖) product-metric evaluation and
optimization have serious blind spots, while (𝑖𝑖) some classes of
application are cumbersome to support. Platform specializations
that address these deficiencies add significant value to the platform.
Integrated experiment optimizations. Evenwhen a productmet-
ric is approximated well by anML loss function, the correlations cap-
tured by the model might not lead to causal product improvements.
Hence, A/B testing estimates the average treatment effect (ATE) of
the change across product users. Shared repositories of product
metrics are common [10, 28, 53], and product variants are systemat-
ically explored by running many concurrent experiments [9]. While
dealing with non-stationary measurements, balancing competing
objectives, and supporting the design of sequential experiments [9],
a common challenge with A/B tests is to find subpopulations where
treatment effects differ from the global ATE – heterogeneous treat-
ment effects (HTE). Common neglect for HTEs in A/B testing leaves
room for improvement [10, 12] [50], likely delivering suboptimal
treatments. The Looper platform and its support for A/B testing
dramatically simplify HTE modeling on the Meta online experimen-
tation platform, and help deploying treatment assignments based
on HTE estimates.

In an initial training phase, Looper’s getDecision() API acts as
a drop-in replacement for the standard A/B testing API, and falls
through to a standard randomized assignment while still logging
features for each experiment participant. Then, metrics from the
standard A/B testing repertoire help derive the treatment outcome
(observations) for each participant, and the Looper platform trains
specializedHTEmodels (meta-learners such as T-, X-, and S- learners
[30]). In a final step, the HTE model predictions can be used in a
decision policy to help getDecision() make intelligent treatment
assignments and measurably improve outcomes compared to any
individual treatment alone. In this scenario, the best HTE estimate
for a given user selects the actual treatment group. Our integration
links Looper to an established experiment optimization system [9]
and creates synergies discussed in Section 4.2. A further extension
relaxes the standard A/B testing contract to support fully dynamic
assignments and enables reinforcement learning [7].
Looper for ranking. The getDecision() + logObservations()
API is general enough to implement simple recommendation sys-
tems, but advanced systems need finer support. Higher-ranked items

6



Looper: an end-to-end ML platform for product decisions KDD ’22, August 14–18, 2022, Washington, DC, USA

0 100 200 300 400
frequency

M
L 

ta
sk

BC

Regression

CB

MC

MT

RL

0 500
frequency

m
od

el
 ty

pe

GBDT
SparseNN

RL
Pytorch Mobile

Fig. 4. ML tasks and model types on our platform. On the outer plot —
ML tasks: Reinforcement Learning (RL), multitask (MT), multiclass (MC)
and binary classification (BC), contextual bandit (CB), regression. Multitask
models blend classification or regression sub-tasks. On the inner plot —
model types: PyTorch Mobile, RL, NN, Gradient Boosted Decision Trees.

are more often chosen by users, and this positional bias can be han-
dled (in the API) by including the displayed position as a special in-
put during training [17]. To derive a final priority score for each item,
the multiple proxy task predictions are often combined through a
weighted combination function [55]. Recommender systems learn
from user feedback, as long ass lesser-explored items are occassion-
ally included among top results (the explore/exploit tradeoff [54]). A
specialized Looper ranking system abstracts these considerations in
a higher-level API (getRanking) allowing the ordering of an entire
list of application contexts, and also allows recording of display-time
observations such as the relative screen position of each item.

4 PRODUCTION DEPLOYMENT
Looper supports real-time inference with moderate-sized models
to improve various aspects of software systems. These models
are trained and deployed quickly and maintained on the platform,
whereas our two-call RPC API (Section 3.2) decouples platform code
from application code. Deployed in production at Meta during the
entire year 2021, Looper improved product metrics, made use of
compute resources more efficient, and streamlined maintenance. To
enhance the reproducibility of our work, we describe empirical ob-
servations and prominent applications, outline adoption and impact,
and summarize adopter survey results (in Appendix B). Resource
estimates are in "server" units (we do not use GPUs). For smart strate-
gies that learn from end-users, performance and impact inevitably
depend on the user base and product metrics infrastructure. Hence,
we report Looper impact as a fraction of product teams’s half-year
results. Resource savings are reported as percent vs. baselines.

4.1 Statistics for ML tasks and models in Looper
Given nonstationary application environments, Looper retrains
models on the day when 20% fresh training data become available (or
on a set schedule). Choosing appropriate ML models requires trad-
ing off performance metrics with resource usage, inference latency,
and configuration effort. SVM packages struggle with multimodal
data and scale poorly to voluminous data. DNNs scale to 1B+ data
rows, handle sparse features, but use more memory than simpler
models. DNNs are sensitive to architecture configuration and are

currently less explored for tabular data, making configuration chal-
lenging without ML expertise. Gradient-Boosted Decision Trees
(GBDT, XGBoost) are compact and robust, handle multimodal tabu-
lar data naturally (including sparse features and missing values), do
not require architecture search or GPUs, and scale to 100M rows.
Typical inference latency with GBDT and XGBoost is in low single
𝑚𝑠 for server-side models and 1-2 ms for (smaller) mobile models.
Inference with DNN-based models, especially those using latent
embeddings, is an order of magnitude slower. That’s why the mean
inference latency (10ms) across Looper use cases is greater than
the median (2ms). 90%le and 99%le latencies are 20ms. Figure 4
summarizes ML tasks deployed on Looper and the models selected
for them. Figure 6 shows that models typically use 50-200 features,
and most features are used by many models. Feature extraction la-
tency has median 45ms and mean 120ms. Latencies for extr†acting
synthetic/engineered features are greater (90%le and 99%le is 240
ms). For a broader picture, Figure 5 summarizes 29 utilization rates
for system resources. In particular, feature extraction tends to be a
bottleneck. This data is further discussed in Appendix A and used
to optimize resource utilization in Looper.

4.2 Application deep dive – personalized experiments
Section 3.4, while focusing on our platform architecture, outlined a
special application of smart strategies — embedding them into the
standard experimentation framework to automate the personaliza-
tion of A/B treatments when HTEs are detected and captured by ML
models. As A/B testing APIs are common and accessible [10, 53],
Looper’s integration with the standard experimentation APIs makes
training and deploying personalized smart strategies as easy as
changing one or two lines of code by product teams. In practice,
exposing smart strategies through such APIs brings several benefits:

• Client code and the learning curve are simplified by repur-
posing the decision API as the A/B testing API.

• Dataset preparation and modeling flow are automated for
the task of optimizing metric responses based on end-users
exposed to each treatment. Metric responses can be auto-
matically sourced from the experimentation measurement
framework without manual labeling.

• Product metrics are traded off across many strategies, offline
and online, via multi-objective optimization (MOO) [9, 20].

• Smart strategies are automatically compared against all base-
line treatments (i.e., A or B), making the tradeoff between
metric impact and costs explicit.

Previously such experiment optimization needed dedicated engi-
neering resources. Now the tight integration of the Looper plat-
form with the experimentation framework allows product engineers
quickly evaluate a smart strategy and optimize its product impact
in several weeks. With automatic MOO, engineers find tradeoffs ap-
propriate to a given product context. For example, during a server
capacity crunch, one team traded a slight deterioration in a product
metric for a 50% resource savings. Predicating product deployment
on such experiments creates safeguards against ML models that gen-
eralize poorly to live data. This also helps tracking product impact.
For example, a user authentication use case [7] reduced SMS cost
by 5% while remaining neutral for engagement metrics.
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4.3 Application deep dive – data prefetching
Online applications strive to reduce response latency for user inter-
actions. Optimized resource prefetching based on user history helps
by proactively loading application data. Modern ML methods can
accurately predict the likelihood of data usage, minimizing unused
prefetches. Our Looper platform supports prefetching strategies
for many systems within Meta, often deeply integrated into the
product infrastructure stack. For example, Meta’s GraphQL [14]
data fetching subsystem uses our platform to decide which prefetch
requests to service, saving both client bandwidth and server-side
resources. It yields around 2% compute savings at peak server load.
As another example, Meta’s application client for lower-end devices
(with a “thin-client” server-side rendering architecture [43]) also
uses our platform to predictively render entire application screens.
Our automated end-to-end system helps deploying both models
and threshold-based decision policies then tune them for individual
GraphQL queries or application screens, with minimal engineer-
ing effort. Based on numerous deployed prefetch models, we have
also developed large-scale modeling of prefetching. User-history
models have proven to be helpful for this task [51]; building up
on this idea, we created application-independent vector embed-
dings based on users’ surface-level activity. To accomplish this, we
train a multi-task auto-regressive neural-network model to predict
how long a user will stay in each application surface (e.g., news
feed, search, notifications), based on a sequence of (application
surface, duration) events from the user’s history. As is common
in CV and NLP, intermediate-layer outputs of this DNN predict
prefetch accesses well and make specialized features unnecessary.
Optimized prefetching illustrates how secondary, domain-specific
platforms are enabled by the core Looper platform; infrastructure
teams only need to wire up the prediction and labeling integration
points while Looper provides full ML support.

4.4 Adoption and impact
Several internal vertical platforms at Meta [26] compete for a rich
and diverse set of applications. Product teams sometimes relocate
their ML models to a platform with greater advantages, while a few
high-value applications are run by dedicated infrastructure teams.
Looper was chosen and is currently used by 90+ product teams at
Meta. On any day in 2021, these teams deployed 440-1K models that
made 4-6 million decisions per second. Application use cases fall
into five categories in decreasing order of usage (Figures 5 and 7):

• Personalized Experience is tailored based on the user’s
engagement history. For example, we display a new feature
prominently only to those likely to use it.

• Ranking orders items to improve user utility, e.g., to person-
alize a feed of candidate items for the viewer.

• Prefetching/precomputing data/resources based on pre-
dicted likelihood of usage (Section 4.3).

• Notifications/prompts can be gated on a per-user basis, and
sent only to users who find them helpful.

• Value estimation predicts regression tasks, e.g., latency or
memory usage of a data query.

The impact of ML performance on product metrics varies by appli-
cation. For a binary classifier, increasing ROC AUC from 90% to 95%

Fig. 5. Resource utilization rate by resource type and application category
(see Section 4.4). The Service API category includes API calls other than
feature extraction and prediction service.

might not yield large product gains when such decisions contribute
little to product metrics if bottlenecks lie elsewhere. But increasing
ROC AUC from 55% to 60% is impactful when each percent trans-
lates into tangible resource savings or other metrics, as it would
be for online payment processing. Looper use cases contributed to
compute savings (server utilization), user engagement (e.g., daily
active users) and other top-line company reporting metrics. Many
product teams at Facebook and Instagram adopted Looper without
additional staffing, and it is common for Looper to contribute 20-40%
of improvements to product goal metrics. In several cases, Looper
helped product teams outperform their goals by over 2x.

5 CONCLUSIONS
Weoutline opportunities to embed data-driven self-optimizing smart
strategies for product decisions into software systems, so as to
enhance user experience, optimize resource utilization, and support
new functionalities. We describe the deployment of smart strategies
(at an unprecedented scale) through software-centric ML integration
where decision points are intercepted and data is collected through
APIs [2]. This process requires infrastructure and automation to
reduce operational mistakes and maintain ML development velocity.
Our ML platform Looper addresses the complexities of product-

driven end-to-end ML systems and facilitates at-scale deployment
of smart strategies through technical insights, platform-level ab-
stractions, a novel architecture, the use of Bayesian optimization,
and interfaces with an adaptive experimentation system. As an im-
portant simplification, inference input processing matches that for
training. The Looper product RPC API is simplified down to two
calls. The Looper platform treats end-to-end ML development more
broadly than prior work [37, 52], providing extensive support for
product impact evaluation of smart strategies via causal inference.
Looper learns heterogenous treatment effects (HTE) from product
evaluation data by repurposing the Looper RPC API as a drop-in
replacement for a standard A/B testing API. Vertical optimizations
with long-term product objectives are enabled by our strategy blue-
print abstraction and the use of Bayesian optimization.

As observed during production deployment in 2021, Looper offers
immediate, tangible benefits in terms of data availability, easy con-
figuration, judicious use of available resources, reduced engineering
effort, and ensuring product impact. It makes smart strategies easily
accessible to product engineers at large scale and enables product
teams to build, deploy and improve ML-driven capabilities in a self-
serve fashion without ML expertise. We observed product teams
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launch smart strategies within their products in one month (Ap-
pendix B). The lower barriers to entry and faster deployment lead
to more pervasive use of ML to optimize user experience in new
products and old products not designed with ML in mind. Support
for prefetching and personalized A/B testing have been in demand,
whereas end-to-end management enables holistic resource account-
ing and optimization [52]. The overall impact in product metrics
and resource-efficiency is substantial. We also provide empirical
insights into usage by resource types and application category.
Long-term benefits of our platform approach include effort and

module reuse, end-to-end reproducibility, consistent reporting, reli-
able maintenance, and being able to upgrade ML libraries and offer
new ML model types with consistent interface. Successful Looper
adopters often launch additional data-driven smart strategies, and
this virtuous cycle encourages designing SW systems with built-in
ML to enhance user experience and adaptation to the environment.
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A RESOURCE UTILIZATION AND ITS OPTIMIZATION
Smart strategies tend to provide significant benefits but sometimes
need serious computational resources, Therefore product deploy-
ment requires judicious resource management. Looper is deployed
in numerous and diverse applications at Meta, some of which opti-
mize performance of other systems and some enhance functionality
(Figure 7). Such economies-of-scale infrastructure enables resource
reuse and load-balancing. Figure 5 shows that different use cases
exhibit different model-lifecycle bottlenecks, with feature extraction
drawing the largest share of resources for demanding use cases.1
Based on this trend, we developed a feature reaping optimization
that removes unimportant features. This optimization estimates the
importance of individual features, removes features in groups, then
checks the results by training a reduced model and evaluating it.
When we deployed feature reaping in production, it and provided
overall 11% resource-cost savings (10-30% per use case) with no
adverse product impacts. Figure 8 illustrates the resource savings
(28%) for one use case via feature reaping. It distinguishes 3 stages
that experience constant decision traffic: (𝑖) offline model training
that runs feature reaping and trains a reduced model, (𝑖𝑖) the online
stage that uses the old and the revised (20% traffic only) model to
evaluate product impact, and (𝑖𝑖𝑖) the production stage that uses only
the new model whose performance had been validated by online
evaluation (which took 2 weeks to collect statistically significant
results). Sharing such AutoML optimizations across multiple use
cases makes our platform competitive with specialized platforms.

Ranking (22%)Personalize Experience
(27%)

Notifs
(8%)

Precompute/ Prefetch
(22%) Other (15%)Estim

(6%)

Ranking (32%)Personalize Experience (31%) Notifications/
Prompts (21%)

Precom
(10%)

Other
(6%)

Fig. 7. Product adoption of smart strategies by use case count (top) and by
resource consumption (bottom). Resource consumption during training is
correlated with data amount, but resource consumption at inference reflects
decision rates in applications, the number of features used by models and
the presence of synthetic/engineered features.

1We note that Looper deploys moderate-complexity models with diverse metadata
features, whereas advanced deep learning models with homogeneous image pixels, word
embeddings, etc may exhibit different trends.

Fig. 8. The three phases of resource optimization via feature reaping.
Resource consumption is decreased without adverse product impacts.

B A SURVEY OF PLATFORM ADOPTERS
The article “Why Machine Learning Strategies Fail” [21] lists com-
mon barriers to entry:

• lacking a business case,
• lacking data,
• lacking ML talent,
• lacking sufficient in-house ML expertise for outsourcing,
• failing to evaluate an ML strategy.

When talking to prospective clients, we advise against using Looper
when there is no need for an end-to-end platform. For example, in a
Kaggle-like environment with well-defined data, the goal is to train
a model to optimize closed-form objectives for model performance.
A second example is tasks without a clear product metric, such as
building latent-space embeddings and other self-supervised tasks.
Yet another reason not to use Looper is the efficiency of special-case
platforms, e.g., for ranking and image-processing.
To clarify when Looper is relevant and to clarify the adoption

process of smart strategies, we interviewed product teams at Meta
that adopted our platform and saw product impacts (Figure 7). All
the teams had tried heuristic approaches but with poor results,
hence their focus on ML. Simple heuristics proved insufficient for
user bases spanning multiple countries with distinct demographic
and usage patterns. The following challenges were highlighted: 1
manually optimizing parameters in large search spaces, 2 figuring
out the correct rules to make heuristics effective, 3 trading off
multiple objectives, 4 updating heuristic logic quickly, especially
in on-device code.

The spectrum of ML expertise varied across product teams from
beginners to experiencedML engineers, and only 15% of teams using
our platform include ML engineers. For teams without production
ML experience, an easy-to-use ML platform is often the deciding
factor for ML adoption, andML investment continues upon evidence
of utility. An engineer mentioned that a lower-level ML system had
a confusing development flow and unwieldy debugging. They were
unable to set up recurring model training and publishing. Looper ab-
stracts away concerns about SW upgrades, logging, monitoring, etc
behind high-level services and unlocks hefty productivity savings.
For experienced ML engineers, a smart-strategies platform im-

proves productivity by automating repetitive time-consuming work:
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writing database queries, implementing data pipelines, setting up
monitoring and alerts. Compared to narrow-focus systems, it helps
product developers launch more ML use cases. An engineer shared
prior experience writing custom queries for features and labels, and
manually setting up pipelines for recurring training and model pub-
lishing without an easy way to monitor model performance and
issue emergency alerts. Some prospective clients who evaluated our
platform chose other ML platforms within our company or stayed
with their custom-designed infrastructure. They missed batched
offline prediction with mega-sized data and needed exceptional per-
formance possible only with custom ML models. These issues can
be addressed with additional platform development efforts.

Successful platform adopters configured initial ML models in two
days and started collecting training data. Training the model using
product feedback and revising it over 1-2 weeks enabled online prod-
uct experiments that take 2-4 weeks. HTE analysis and impact opti-
mization take 1-3 weeks. Product launch can occur 1-3 months after
initial data collection. Among platform adopters, experienced engi-
neers aware of ML-related technical debt and risks [2, 21, 40, 45, 46]
appreciated the built-in support for recurring training, model pub-
lishing, data visualization, as well as monitoring label and feature
distributions over time with data-drift alerts. Also noted was the
canarying mechanism for new models (Section 3.2). Surprisingly
important was helping adopters share model insights (such as fea-
ture importance) with leadership and product managers. Among
possible improvements, adopters mentioned development velocity.

C IMPROVING PRODUCT-DEVELOPMENT VELOCITY
As a platform used primarily by product engineers, Looper aims to
reduce friction while users modify parameters and model configu-
rations. This is accomplished in two ways:

(1) a GUI to easily edit all Looper parameters, and
(2) automatic optimization of configuration parameters.

Every aspect of configuration is represented in the UI. Each use
case has a landing page to manage all related models, data ver-
sions, and experiments. All parameters including features, labels,
and current production models are displayed in an editable form
for users to modify and immediately push changes to production.
Experiments can be launched from the use case landing page and
the UI allows users to select baseline and experiment models to
immediately compare them using integrated A/B tests.

All parameters are stored in configuration and this enables auto-
matic optimization of parameters. Using the integrated experiment
optimization system [9], several values for a parameter are opti-
mally selected to immediately test in our integrated A/B experimen-
tation platform. These values can then be tested against product
metrics. Since most parameters required for experimentation are
already stored in strategy blueprints, including eventual support
for product metrics, it is possible to automatically improve various
parameter values using the experiment optimization system and
A/B test to check if the config optimization benefits product, system,
and resource usage metrics without affecting production models
and without use case owner input.

D DEVELOPMENT EFFORT
The Looper platform described in this paper was developed at Meta
over several years. It uses several types of software infrastructure,
such as databases, horizontal ML platforms, reusable ML models
and frameworks, product metrics, and support for product A/B test-
ing. The overall design was revised to better adapt to the needs of
applications. On the other hand, a team of ten experienced software
engineers should be able to implement our core platform design in
half a year using relevant open-source and/or company infrastruc-
ture. In such development, it is important to focus on representative
product use cases and guide software development within a well-
defined scope. Avoiding common problems, rather than developing
comprehensive solutions, can reduce time to first application. In
particular, the complete chain of custody of data in Looper helps
avoid or reduce many common problems with data quality, such as
delayed and missing data, mismatches between training and testing,
etc.
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