2205.15795v1 [cs.LG] 31 May 2022

arxXiv

A Meta Reinforcement Learning Approach for Predictive
Autoscaling in the Cloud

Sigiao Xue*,Chao Qu** Xiaoming Shi, Cong Liao, Shiyi Zhu, Xiaoyu Tan, Lintao Ma, Shiyu Wang,
Shijun Wang*, Yun Hu, Lei Lei, Yangfei Zheng, Jianguo Li, James Zhang
{sigiao.xsq,peter.sxm,liaocong.lc,zhushiyi.zsy, yulin.txy,lintao.mlt, weiming.wsy,shiyu.wang}@antgroup.com
{huyun.h,jason.1l,yangfei.zyf lijg.zero,james.z}@antgroup.com
+{chaoqu.technion,sjwang05}@gmail.com
Ant Group
Hangzhou, China

ABSTRACT

Predictive autoscaling (autoscaling with workload forecasting) is
an important mechanism that supports autonomous adjustment
of computing resources in accordance with fluctuating workload
demands in the Cloud. In recent works, Reinforcement Learning
(RL) has been introduced as a promising approach to learn the re-
source management policies to guide the scaling actions under the
dynamic and uncertain cloud environment. However, RL methods
face the following challenges in steering predictive autoscaling,
such as lack of accuracy in decision-making, inefficient sampling
and significant variability in workload patterns that may cause
policies to fail at test time. To this end, we propose an end-to-end
predictive meta model-based RL algorithm, aiming to optimally
allocate resource to maintain a stable CPU utilization level, which
incorporates a specially-designed deep periodic workload predic-
tion model as the input and embeds the Neural Process [11, 16] to
guide the learning of the optimal scaling actions over numerous
application services in the Cloud. Our algorithm not only ensures
the predictability and accuracy of the scaling strategy, but also
enables the scaling decisions to adapt to the changing workloads
with high sample efficiency. Our method has achieved significant
performance improvement compared to the existing algorithms
and has been deployed online at Alipay, supporting the autoscaling
of applications for the world-leading payment platform.

CCS CONCEPTS

» Computing methodologies — Machine learning; « Informa-
tion systems — Process control systems.

KEYWORDS
autoscaling, reinforcement learning

ACM Reference Format:
Sigiao Xue*,Chao Qu**,Xiaoming Shi, Cong Liao, Shiyi Zhu, Xiaoyu Tan,
Lintao Ma, Shiyu Wang, Shijun Wang?, Yun Hu, Lei Lei, Yangfei Zheng,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08....$15.00
https://doi.org/10.1145/3534678.3539063

Jianguo Li, James Zhang. 2022. A Meta Reinforcement Learning Approach
for Predictive Autoscaling in the Cloud. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °22), Au-
gust 14-18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3534678.3539063

1 INTRODUCTION

One of the key characteristics of operating in the Cloud is autoscal-
ing !, which elastically scales the resources horizontally (the number
of virtual machines (VMs) assigned is changed) or vertically (the
CPU and memory reservations are adjusted), to match the chang-
ing workload. According to the timing of scaling, the autoscaling
strategies can be divided into responsive and predictive strategies.
Compared to the responsive ones, predictive strategies forecast
the workloads and prepare the resources in advance to meet the
future demands, therefore yielding better scaling timeliness [29]
and becoming popular in industrial practises [5, 21].

In this paper, we focus on building the predictive horizontal
scaling strategies at the Cloud of Alipay, the world’s leading digital
payment platform, to ensure this large-scale system meets its strin-
gent service level objectives (SLOs) 2. The system consists of over
3000 running applications/services 3 on over 1 million VMs. The
operator allocates VMs to applications based on performance indica-
tors (e.g., CPU utilization) dependent on workloads. The workload
of applications in Alipay is mainly driven by the traffic of several
subtypes, e.g, Remote Procedure Calls (RPC), Message Subscription
(MsgSub), etc, and we formulate it as a multi-dimensional vector
throughout the paper. Figure 1a illustrates the evolution of two sub-
types of the workload of an online application and Figure 1b shows
that its CPU utilization fluctuates with the workload. Without the
scaling, the operator usually allocates resources based on the peak
CPU utilization, which produces notably wastage because most of
the time, the utilization is far below the peak. Therefore, we aim
at timely adjusting the number of VMs according to the needs of
workload to keep the CPU utilization of applications running
stably at the desired target level to maximize resource savings.

“These authors contributed equally to this work

!Please see Appendix A.1.1- A.1.2 for a detailed introduction on autoscaling.
2Please see Appendix A.1.3 for a detailed description of the cloud system.
3In this paper, we interchangeably use these two terms.

https://doi.org/10.1145/3534678.3539063
https://doi.org/10.1145/3534678.3539063

KDD ’22, August 14-18, 2022, Washington, DC, USA

— RPC
@ 4000 MsgSub
@
S 3000
Q
o
5 2000
E
5
Z 1000
o o
o £3° o x50
(a) The RPC and MsgSub traffic of a cloud application.

040)
5035 —— no scaling
T 0.30 after scaling
=025
> 0.20
o
S 0.15

0.10

&® o® &® o® &® o® *®
(b) The CPU utilization of the same application.

Figure 1: The multidimensional workload and CPU utiliza-
tion of a cloud application from July 29th to Aug 1st, 2021.

Considering the Cloud is a dynamic and uncertain environment,
Reinforcement Learning (RL) serves as a good candidate for au-
toscaling since it is capable of learning transparent (with no hu-
man intervention), dynamic (no static plans) and adaptable (con-
stantly updated) resource management policies to execute scaling
actions. Recently, several RL-based methods have been proposed
[7, 8,14, 22, 29], achieving excellent performance in resource saving.
However, the existing RL-based methods face several challenges: (i)
The prediction of workloads relies on classical time series models
(e.g., ARIMA), which have been proven to have limited learning
ability compared to the deep learning models [19, 23, 30]; (ii) Most
of existing RL algorithms for autoscaling are model-free, which in-
volves prohibitively risky and costly operations in the cloud because
they require numerous and direct interactions with the online en-
vironment during training; (iii) The variability in the performance
of VMs across different applications is neglected. Previous works
either naively think all VMs perform identically or cope with this
heterogeneity by modeling them separately, but neglecting the
commonalities across them.

Contributions: In this paper, we propose a novel RL-based predic-
tive autoscaling approach:

o We develop a deep attentive periodic model for multi-dimensional
multi-horizon workload prediction, which provides high-precision
and reliable workload information for scaling.

e We employ a meta-learning model to train a dynamic prior of the
map from the workload to CPU utilization, with rapid adaptation
to the changing environment, embedded to guide the learning of
optimal scaling actions over thousands of online applications. The
meta model-based RL algorithm enables safe and data-efficient
learning.

e To the best of our knowledge, our approach is the first fully
differentiable RL-based predictive autoscaling strategy, which
has been successfully deployed to support autoscaling at Alipay,
the world-leading payment platform.

Xue and Qu, et al.

L ——
150 300 75 90 105 1500 3000 4500
RPC (App 1) RPC (App 2) RPC (App 3)

(a) The fitted correlation between RPC traffic and CPU Utilization.

0.25 feet
c o

200 400 40 80 120 160

200 400 600 800 1000

MsgSub (App 1) MsgSub (App 2) MsgSub (App 3)

(b) The fitted correlation between MsgSub traffic and CPU Utilization.

Figure 2: The correlation between two subtypes of the work-
load and CPU utilization of three randomly chosen applica-
tions from July 29th to Aug 1st, 2021.

2 PRELIMINARIES

In this section, we firstly present three key insights on the problem
as background and motivations and then briefly introduce Neural
Process and Markov Decision Process that are building blocks
of our proposed approach.

2.1 Background and Characterization

Insight 1: The workload patterns usually have a complex
composition of various periodicity. The workloads of the most
applications at Alipay Cloud are driven by repeatable business
behavior (e.g., daily payment during rush hours) with occasional
interventions from the platform (e.g., online marketing campaign),
and hence usually exhibit a composition of periodicity with abrupt
changes, as shown in Figure 1a. Many existing works use either clas-
sical regression techniques [29] or simple neural networks [15, 24]
to forecast the workload, which are ineffective in capturing either
inherent periodicity or complex temporal dependencies. We re-
sort to deep time series models that have achieved notable success
recently [19, 30].

Insight 2: The workload has heterogeneous impact on CPU
utilization. As illustrated in Figure 2, the heterogeneity exists in
two perspectives: (i) The mapping from workload to CPU utiliza-
tion varies for different applications; (ii) For the same application,
the subtypes of workload have diverse correlation with the CPU
utilization. A naive solution is to train a model to learn such map-
ping for each application, which may have high performance but
suffers from unaffordable time and maintenance cost. By defining
the learning of the mapping for an application as a task, we are
motivated to apply the meta-learning techniques [10] to train a
universal model for all the tasks which exploits commonalities and
differences across tasks simultaneously.

Insight 3: Finding optimal resources given CPU utilization
estimation forms a dynamic decision process. The ultimate
goal of our approach is to decide accurate resources allocation (VMs)
for the application according to the estimation of CPU utilization.
The relationship between resources and CPU utilization is complex
and adjusting the resources usually incur certain costs in the Cloud

A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud

(e.g., engineering cost when switching VMs for applications). We
resort to RL to find such optimal numbers of VMs while minimizing
cost over the long term. Noted that model-based RL is more reliable
than model-free methods for large scale Cloud systems because it
samples efficiently and effectively avoids the potential risk caused
by direct interactions between the scaling model and the online
environment during training.

2.2 Neural Processes and Meta learning

By taking the meta-learning framework, Neural Process (NP)
learns to learn a regression method that maps a context set of
observed input-output (x;,y;) to a distribution over regression
function [11]. Each function models the distribution of the output
given an input, conditioned on the context. In particular, condition
on observed Contexts (xc, yc) := (xi, yi)iec each function mod-
els Targets (x1,yr) := (Xi, yi)ieT, Which is p(y7|xT, xC, yc). The
latent version of NP includes a global latent variable z to account
for uncertainty in the predictions of yr for a given context:

plyrlr.xc.ye) = / pyrlrreDaGkeyodzs ()

with r¢ := r(xc, yc) where r is a deterministic function that aggre-
gates (xc, yc) into a finite dimensional representation with permu-
tation invariance in C. The parameters of the encoder q(z|sc) and
the decoder p(yr|xT, rc,) are learned by maximising the ELBO:

log p(yrlxr, xc,yc) = By(zisp) [log p(yrlxr, re, 2)]

—Dy(q(zls)llq(zlsc))-)
NP can be interpreted as a meta learning approach [11, 16, 25], since
the probabilistic representation z captures the current uncertainty
over the task, allowing the network to explore in new tasks in a
similarly structured manner.

2.3 Markov Decision Process

Markov Decision Process (MDP) is described by a 5-tuple (S, A, r, p, y):

S is the state space, A is the action space, p is the transition proba-
bility, r is the expected reward, and y € [0, 1) is the discount factor
[26]. That is, for s € S and a € A, r(s, a) is the expected reward,
p(s’|s, a) is the probability to reach the state s”. A policy is used to
select actions in the MDP. In general, the policy is stochastic and
denoted by 7, where 7 (a;|s;) is the conditional probability density
at a; associated with the policy. The state value evaluated on policy
7 can be represented by V7 (s) = Ex[X}2, Yir(se, ar)lso = s] on
immediate reward return r with discount factor y € (0,1) along
the horizon t. The agent aims to seek a policy that maximizes the
long term return. In model-based RL, the agent uses a predictive
model of the world to ask questions of the form “what will happen
if I do action a?” to choose the best policy. In the alternative model-
free approach, the modeling step is bypassed altogether in favor
of learning a control policy directly through the interaction with
the environment. In general, the model-based RL is more sample-
efficient than the model-free counterpart [9].

3 PROBLEM SETUP

Given the historical workload of an application x;_r.; at time t,
we aim to find the optimal VM allocations a;41.;+5 over the future
period H to make the CPU Utilization running stably at a target level

KDD ’22, August 14-18, 2022, Washington, DC, USA

Symbol Description
I The set of applications
L HeR, The lengths of historical and forecast windows
ID e Ry The unique identifier of each application
x; € RY d-dim workload of an application at ¢
u; € R2 2-dim time-based covariate at ¢
ct €Ry CPU utilization of an application at ¢
¢r e Ry Predicted CPU utilization of an application at ¢
c[te+1) € R+ | Average CPU of an application at [t,¢ +1)
I; e R4 The number of allocated VMs
a; € [-0.5,2] | The adjustment rate of # allocated VMs
s¢ € Rim The state of MDP for an application at ¢
x; € RY The unit workload of an application at ¢
X; € R4 The unit workload of an application
after the adjustment at t
}_(t € Rd+2)_(t = (ut,fct)
Xt’ € Rd+2 X; = (ut,JZ’t)

Table 1: Table of Notations

(e.g., in Figure 1b the target CPU utilization is 40%). In addition, we
want to build a universal controller for thousands of heterogeneous
tasks which can adapt to the rapidly changing environment or even
unseen tasks, guaranteeing the flexibility and the robustness of the
controller in the real industrial system. To satisfy the demanding
requests, we propose one reasonable assumption to simplify the
problem that is generally satisfied in practise:

Assumption 1: The workload of an application are evenly allocated
in VMs, e.g., if the workload is represented as a 2-dim vector of
traffic (RPC, MsgSub) = (100, 50) running on 5 VMs, then the unit
workload per VM is (20, 10).

We leverage the assumption to build the latent dynamic model
in model-based RL. The notation used throughout the paper is in
Table 1. In general, we use the bar over the alphabet to denote
the unit value, e.g., the unit workload x;. The superscript ” stands
for the value after the adjustment.

4 END-TO-END LEARNING TO AUTOSCALE

Three primary components comprise our approach:

(1) A deep attentive periodic time series model that that holds
sufficient capacity to capture complex periodicity of workload
patterns discussed in Insight 1.

(2) A neural process model that meta-learns the map from the
workload to the CPU utilization of applications, which addresses
the heterogeneous effect discussed in Insight 2.

(3) An MDP with the above two models embedded to seek the
optimal numbers of VMs so that the CPU utilization is kept
at a target level, resulting in a model-based RL that avoids the
potential deficiencies described in Insight 3.

The three components are marked as (1),(2),(3) in Figure 3 and
described below respectively. Different from the previous works
[20, 29], the components are all amenable to auto-differentiation,
which effectively avoid issues of convergence stability and data-
efficiency, constituting a single global autoscaling strategy.

KDD ’22, August 14-18, 2022, Washington, DC, USA Xue and Qu, et al.

i g N S _————————-——-—-—-—=-=-—== F————F-—-—-———=- —--
| | | | I h | 1- Scaling !
| Workload Forecaster X | CPU Utilization Meta Predictor | Task i Decider
: ! | : I I Embedding | Policy !
/\—/: : Periodicity Attention | ! Latent Task ! z Reward | Network L a :
: !
—‘_’t 1| Extractor Decoder | t | Encoder Decoder I cpu : t+h
| il Value |
Historical Workload| : Woikload Prediction : Ccﬁ]text Set Iarget : Utlcjtzil;)ln : Function |
Tt—L:t ! | Tt+1t+H Tt, Ct Tt+h I | !
e e e e e e e e -) |
______________ - - Update
— e —
Back-Propagation
(a) Synergy diagram of Workload Forecaster, CPU Utilization Meta Predictor, and Scaling Decider.
Keys Query
[~ aiiii=teieil | AT T . =
'el e2 er ! 'Ll Ty H {— Deterministic Path | CACHA]
H P P L | ! |-+-» Latent Path } = =
: I hp : : } @ Concatenation ! u2®:172 UteTy
H I vImee| o mep | o LoD TTEEEIT L) ~ ‘ .
[Periodicity Extractor : : : Val Uz®T3 State Hidden Layer Action
1 1 5 ! Keys I Periodicity Attn 1 alues
1 n Valu —
| ey ey e ! ! ! Ly '
1 L1 Attention Self r Cross = _
""f ______________ ; ! e S) UeF, C1| | A 2 Attn Tt —HMLP == C¢ U@ Ty
Period 1 Period n Target Period — T3
ptabalaidaded \ —)
1 U2dTo C2 1.7 z
e (maem 2] f— a
I : | =951 &
i - o Self
i E | * atin [~ 52 S Z A
1 1 o H | ¥ S
1T Tp, | \Ugt1 .. U L~es
: : : : : G t+H5 Context Set | By |
! 1 1
:‘ _U:l_ :u_p_: . :u_t:p_+{ _1_Lf _: [_ Encoder Decoder
Past Inputs Known Future Inputs @ Attentive Neural Process @ Deep Policy Network

@ Deep Attentive Periodic Model . . 3
(c) The architecture of CPU Utilization Meta Pre-

dictor

(d) The architecture of Scaling De-

(b) The architecture of Workload Forecaster. cider.

Figure 3: The end-to-end predictive autoscaling framework.

4.1 Stage 1: Predict Workload Pattern via Deep
Attentive Periodic Time Series Model

In our approach, workload prediction is needed to estimate the
incoming workload of the applications for future periods. As men-
tioned in Insight 1, most of the previous works utilize classical time
series models and the application of advanced deep models are less
well studied. Nonetheless, instead of directly applying the state-
of-the arts, such as Informer [30] and ConvTransformer [19], we
propose Deep Attentive Periodic Model (DAPM) with two distinc-
tive characteristics for workload predictions:

o A lightweight periodicity extractor that captures inherent season-
ality of the workload, where the data exhibits constant patterns
of rises and falls, as seen in Figure 1a.

o A periodicity attention module that learns complicated periodic
dependencies of the workload.

We reduce the problem to learning a universal prediction model
for all applications

Xerl:+H = Jo (XLt Wp—Lip2H) > (3

where 0 is the parameters of the function f and u;_j ;4 is a set
of 2-dim covariates u; = {u; 4,u; 5} assumed to be known over the
entire time period: day-of-the-week u; 4 and hour-of-the-day u; .
We firstly initialize a feature embedding layer to generate input

embedding e; € R™ at each timestamp
er = We[xy; fo, (ur)] + b%, 4)

where f is an embedding map of the covariates. Secondly, we cluster
all the e; into n groups with p vectors in each. Then we construct
n LSTM layers with the i-th LSTM layer taking {e{ ,j=1:n}as
the input. The rationale behind is, by setting p to be the seasonality
length of the workload, we can utilize LSTM to learn the dynamics
of inherent periodical behaviors, e.g., rise and fall pattern every 24
hours, explicitly at each snapshot.

Finally, we pass the last hidden state of each LSTM layers into
the multihead attention [28] as K = V = {hy,..,hp} with em-
beddings form known future covariates are taken as Queries Q =
{€t+1, ..., €r+pr}, which learns a weighted combination of hidden
representations of periodicity:

oweo(kwk)T
Vd

where W}? € Rdoxd Wf € R9xxd apd Wg/ € RW*d gre learned
linear transformation matrices for query, key and value respectively.
The multihead lies in using different sets of weight {WQ, Wf R le }le
to compute a set of attention output {S1, ..., Sy } and the final output
of the attention is § = [S1, ..., S]W©, which is followed by MLP to
produce the multi-step predictions X;41.s+5. The model is trained
by minimizing the RMSE loss between x;41.,457 and X;41..+H-

S = Multihead(Q, K, V) = softmax(vwY), (5)

A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud

4.2 Stage 2: Learn the Mapping From Workload
to CPU Utilization via Neural Process

As discussed in Insight 2, the fact that VMs perform heterogeneously
across the applications motivates the use of meta-learning on the
uncertainty over tasks of learning the heterogeneous map-
ping from the unit workload x; := 7_: to CPU utilization c;.
We choose Attentive Neural Process (ANP), a state-of-the-art NP
from DeepMind [16]. As depicted in Figure 3c, ANP uses an at-
tention module to encode complex dependencies between the con-
text along with a probabilistic representation vector capturing the
global distribution of uncertainty over tasks, helping automate
downstream scaling decision-making problem.

Considering the existence of heterogeneity among applications,
we introduce the covariate u; as an auxiliary feature to the model
input along with the unit workload: X; = (u;, X;). Then we de-
fine the context set as C = {(X, cs)}ﬁDEI] and target set as

elt-L:t

T ={(Xs, cs)}ﬁg[et{hHH]. An input embedding layer is designed
to transform X; into a dense vector before feeding into the model.
In particular, we map the context information (X;, ¢;) into a finite di-
mensional representation r; through a self-attention module. Given
the target input, i.e., the query in Figure 3c, we do the cross multi-
head attention, whose formulation is described in Equation 5, over
the key-value pairs to predict the target output r;.

As depicted in Figure 3c, besides this deterministic represen-
tation, ANP has a stochastic path, where the output z is a global
latent variable to account for uncertainty in the prediction of c; for
a given observed (Xj, cs). The structure is similar to the determin-
istic one, but now we aggregate s; into a single vector s by taking
the mean. z is modelled as a factorized Gaussian distribution using
the reparameterization trick with its mean and variance [18].

The encoder g outputs the hidden representation z and the refer-
ence r while the decoder p aggregates the information of r¢, z, X7
and outputs the target output y;. ANP is trained by optimizing
Equation 2 over the context and target sets, with two folds of out-
put:

o Predicted CPU utilization é; on the target set %,

o A global probabilistic latent representation z, which can be seen
as the task embedding encoding salient information of the task
given the context information. Intuitively, it tells the agents what
kind of tasks they face.

In the following, we demonstrate how to leverage the learned ANP
in the dynamic model of the model-based RL.

4.3 Stage 3: Autoscale via Meta Model-based RL

Based on Insight 3, we establish the scaling process as a model-based
RL algorithm. Given the workload prediction from Stage 1, the agent
learns to continually scale the number of VMs by interacting with
the CPU utilization estimator trained from Stage 2. The goal is to
keep the CPU utilization stable in the future period.

4.3.1 The MDP Formulation. We define the MDP of the scaling
strategy as:

4The input of target set uses ground truths of Xs,s € [t — L : £] in training stage
while using predicted X5, s € [+ 1 : ¢ + H] in the test stage.

KDD ’22, August 14-18, 2022, Washington, DC, USA

e State space S: State s; := (Xt,2,61,1;)isa tuple of unit workload,
task embedding z, the corresponding estimated CPU utilization,
and the number of allocated VMs.

o Action space A: We design the adjustment rates a;, so that the
number of VMs allocated I; typically takes the form of l;11 =
I; X (1 + a;) where a; is the adjustment rate. In practice, we set
the lower bound and the upper bound of the a; to be —0.5 and 2,
respectively.

e Reward r;: The immediate reward at time step ¢ is defined as r; :=
—(craes1) = Ctarget)2 —n(lp41 — 1;)2, which is the weighted sum
of two terms: (i) a distance between current CPU utilization and
the target one; (ii) a switching cost to penalize the adjustments
of VMs, which makes our strategy applicable in the real-world
setting. The hyper parameter 7 is a positive constant to balance
between the two terms.

e Discount factor y: In our case we set to y = 0.95.

Assumption 1 indicates X; = and we use ANP trained in

X
l,(l-it—a,)
Stage 2 to predict the CPU utilization ¢; after the adjustment. In

particular,

)

~ > — Xt

_— X = uy,) = uy, ——
¢ = fanp(X7) = fanp((us, x7)) = fanp((ue d+an
Recall that the first term of reward function is —(cy s41) — cmrggt)2
and in practice, we use the predicted value ¢; to replace c[; ;41)-
Then we plug l;+1 = I;(1 + a;) into the second term, and we have
the reward function:

re = _(é; - Ctarget)2 - U(atlt)2~ (6)

Notice that r; is a function of s; and ay, i.e., rr = r(ss, ar). After
imposing the action a;, the system arrives at the next state s;+1 =
(X¢+1, 2, €141, lt+1)- Regarding the term X;11 and é441, we use the
predicted workload at ¢ + 1 obtained from the time series model to
estimate X1, which is then fed into f4np to obtain é;41. z is a time
invariant term to characterize the property of tasks. ly41 = I (1+a;)
is the dynamics over the allocated VMs. To ease the exposition, we
denote overall dynamics over the state by

Ste1 = g(st, ar).

Key observations: Both reward and dynamic models are differ-
entiable w.r.t. the input action a;. In particular, ¢ is differentiable
w.r.t. the action a; through the mapping of fsnp and therefore the
ry is also a differentiable function w.r.t. a;. We will leverage these
key properties in the derivation of the following model-based RL
algorithm.

4.3.2 Policy Learning. The policy n(a;|s;) is a mapping from the
state to the distribution of action. For simplicity, we assume the
policy is deterministic and is parameterized by a neural network,
ie., ar = my(st), where ¢ are the weights of the neural network.
Different from the model-free RL algorithm such as Q-learning [27]
and Actor-Critic [26], we do not learn the optimal policy from the in-
teractions with environment by TD-learning. Remind that we have
already obtained the dynamic model s;+1 = g(st, a;) and reward
model r(s;t, a;). To find the optimal ¢/ to maximize the long term
reward, we embed above two models into the Bellman equation.
Recall that Bellman equation for the value function:

V7 (st) = El[r(ss, ar) + YV (st41)], (7)

KDD ’22, August 14-18, 2022, Washington, DC, USA

where the expectation is over the randomness of the dynamic model.
We unroll the Bellman equation H steps, which is

V7 (s¢) = E[r(ss, ar) +Y7(St41 Qe)y e HY P (Sp41, Qram)

+ VT (spm4)], ®)

In practice, we discard the term yH Ly (5,1 H+1). On one hand, we
have the a discount factor y*! < 1 and this term has a negligible
effect. On the other hand, the length of forecast window is H in
Section 4.1 and we do not know the dynamics and reward beyond
H steps. Therefore, we have a simplified form:

V7 (st) ~ E[r(st, ar) + yr(seet, age1)+ oo v 0r (seem, arer)] (9)

We simulate the trajectory from ¢ to t + H using the dynamic
model and current policy 7 as that in [12] to obtain a Monte-
Carlo approximation. In particular, we have s;+1 = g(st, Ty (s¢)),
se+2 = g9(g(sz, ar), IT]//(SH.])) and so on. The next step is to conduct
the policy improvement over the current policy. Remark that the
right hand side of Equation 9 is a differentiable function w.r.t. and
we can carry out the gradient ascent to improve the policy by the
automatic differentiation in Tensorflow [1], known as stochastic
value gradient [13].

av”
Ve—y+ W (10)
We combine all pieces together to obtain our Meta Model-based
Predictive Autoscaling (MMPA), with the pseudocode presented in
Algorithm 1.

Algorithm 1 Learning Algorithm of MMPA

Input: 1) The dataset {x;_r.7, X¢4+1.,+5} to train DAPM (Section
4.1). 2) Context set C and target set 7 to train the ANP Model
(Section 4.2).
Pretrain DAPM:
Optimize the RMSE loss between x¢41.¢+H and X417+ H-
Pretrain ANP:
For each iteration, we randomly sample tasks from context set C
and target set T to train the ANP model by optimizing the ELBO
in Equation 2. Finish the training until ANP converges.
Train Policy:
for each RL step do
Unroll the dynamic model and calculate reward:
Using dynamic model g to simulate the state s;41 to sy and
corresponding reward r;11 to ryg. Obtain a Monte-Carlo
approximation of Equation 9.
Update policy:
Update policy ¢ using stochastic value gradient, i.e., Equation
10.
end for

5 EXPERIMENTS
5.1 Setup

5.1.1 Dataset. We collected one month 10min-frequency data of
the workload and CPU utilization of 50 core applications from the
cloud system of Alipay for offline evaluation of the workload and
CPU prediction. The workload is constructed as a 7-dimensional

Xue and Qu, et al.

vector, containing traffics of Remote Procedure Calls (RPC), Mes-
sage Subscription (MsgSub), Message Push (MsgPush), External
Application (EA), Database Access (DA), Write Buffer (WB) and
Page View (PV). The details of dataset could be found in Appendix
A2.1.

The first three weeks are the train period while the last week
is the test period. Illustrated in Table 2, we perform the online
evaluation of 5 representative applications for the end-to-end
scaling over the period of a week, where we scale the application
every 4 hour based on predicted workload, i.e., the historical and
predictive windows are set to 288 and 24, respectively.

Symbol | Service domain Dominant traffic
Al file service RPC, EA
A2 database DA, WB
A3 web RPC, PV
A4 tool RPC, DA
A4 messaging RPC, MsgSub, MsgPush

Table 2: Descriptions of 5 sample applications

5.1.2 Baselines and Metrics. Firstly we compare the workload pre-
diction performance of DAMP with two state-of-the-arts: Informer
[30] and ConvTransformer [19]. Then we validate NP by comparing
its capability of CPU utilization estimation with two widely-applied
classic methods including LR and XGBoost in the context of autoscal-
ing. Finally, we compare our end-to-end scaling approach against
two industrial benchmarks:

e Autopilot [8]: a workload-based autoscaling method proposed
by Google, which builds the optimal resource configuration by
seeking the best matched historical time window to the current
window. We implement Autopilot based on its public paper [8].
FIRM [22]: a RL-based autoscaling method, which solves the
problem through learning feedback adjustment with the online
cloud environment. Specifically, FIRM finds applications with
abnormal response time (RT) through SVM-based anomaly de-
tection algorithms and adjusts multiple resources for the service
through RL algorithms. We implement FIRM using the author’s
gitlab code https://gitlab.engr.illinois.edu/DEPEND/firm.

We evaluate the workload and CPU utilization prediction by
MAE and RMSE. For end-to-end autoscaling, we set the target CPU
utilization at 40% and evaluate the performance of the strategy by
RCS (Relative CPU Stability rate) with a 2% error, i.e., the percent-
age of time the CPU utilization is within 40% + 2%.

5.1.3 Implementation of Our Approach. We implemented our ap-
proach based on Python 3.6.3 and Tensorflow 1.13.1. The details of
the implementation and sample code ° can be found in Appendix
A2.2.

5.2 Experiment Results

5.2.1 Effectiveness of Workload Prediction. Generally, Informer and
ConvTransformer have failed to capture certain complex temporal
patterns of the time series, e.g, in Figure 4a, change points at 3 am

5 https://github.com/iLevyFan/meta_rl_scaling

A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud

Target Method MAE | RMSE
Informer 1.75 202.10
(0.15) | (19.8)
1.50 172.84
Workload | ConvTransformer (0.19) | (18.9)
Ours 1.10 112.59
v (0.09) | (13.1)
1.40 2.48
LR (0.15) | (0.24)
CPU 1.23 1.93
XGBoost
Utilization 008 (0.14) | (0.20)
Ours 0.86 1.11
(0.09) | (0.11)

(a) Workload and CPU utilization prediction evaluation.

Method | Al A2 A3 Ad A5
077 | 075 |065 |066 | 084
(0.056) | (0.044) | (0.062) | (0.059) | (0.041)
0.81 079 |085 |080 |086
(0.086) | (0.084) | (0.069) | (0.077) | (0.061)
095 093 |092 |09 |0091
(0.076) | (0.094) | (0.083) | (0.099) | (0.071)

Autopilot

FIRM

Ours

(b) Relative CPU stability rate of autoscaling strategy evaluation.

Test Applications | 50 100 200 500
1.11 1.19 1.31 1.33
(0.14) | (0.13) | (0.13) | (0.15)

RMSE

(c) CPU utilization prediction error over large-size test set.

Table 3: Mean and standard deviation (in bracket) of experi-
ment results on test period

of Application A1 are not well captured. Instead, our approach gen-
erates predictions that follows closely in the rise and fall of various
periodicity because we employ modules especially designed to bet-
ter capture composition of temporal patterns and periodicities. As
a result, our model achieves a better MSE/RMSE ratio summarized
in Table 3a.

5.2.2 Effectiveness of CPU Utilization Prediction. As in Figure 4b
and Table 3a, both LR and XGboost perform relatively poor due to
their inability to handle complex nonlinear data.

To validate the effectiveness of the meta-learning in our model,
we firstly use t-SNE to plot the dense representations of all training
inputs specified in Section 4.2, which shows 6 cluster centroids
in the latent space, illustrated in Figure 4c, suggesting that when
a new CPU utilization prediction task comes, its inputs may be
possibly categorized into one of the groups in the latent space so
that we can perform the prediction in a similarly structured manner.
Then we train our model ANP, the-state-of-art meta model in the
domain of CV, and run the prediction on the target set. The results
in Table 3a demonstrate that our approach obtains smaller errors
in the test period with around 25% improvement in MSE/RMSE,

KDD ’22, August 14-18, 2022, Washington, DC, USA

—— True OurApproach
35
s PN UNE
20 \ / \ 4/ N / \
15 A\ N /
10 J/\/ \‘/\ \\/\ v >
5
0
35 —— True Informer ConvTransformer
30 A 75\ = 7N
% / N /R / N
20 >\ \ \ ’\
15 \\ A \/ _\ / \~\/ \
12 N = \/ \/ \
0
Q Q N N N Q Q
@° WO N NS R NS @°
(a) The workload (RPC traffic) forecast of application A1l.
0.30 — True OurApproach
0.25 /\
0.20 — = A
010 \\/ \/
0.10 NS
0.05
030 —— True XGBoost LR
0.25 J\
0.20 \ p N —— = \
0.15 N \//
0.10
0.05
N N N Q N
RS S ® 2° °
(b) The CPU utilization prediction of application A1.
40
20
, T S
’ 5 e g
s -t S -
20 'ﬁﬁﬂ“ &5 .‘%{%"
RS 7 k| Ao AR T
FOa g
40 A AT N
-80 60 40 -20 0 20 40 60 80

(c) Visualization of dense representations of input X; in the training set
of ANP with t-SNE.

Figure 4: Experiment results on workload and CPU utiliza-
tion prediction.

which more effectively learns the heterogeneous relation between
the workload and the CPU utilization.

5.2.3 Effectiveness of Online Predictive Scaling. Due to space limi-
tation, we only show the scaling results of A1 and A2 in Figure 5.
The summary of all five services are presented in Table 3b. As in
Figure 5, our approach achieves a steady CPU utilization around the
target level during the entire day while Autopilot and FIRM have
substantial fluctuations, e.g., Application 1 experiences utilization
swings (rise and fall) under FIRM from 23:00-6:00 and is always
under target level from 19:00-6:00.

Overall, our approach obtains a higher CPU utilization steady
rate and a less total number of VMs: estimated from Table 3b
and related statistics, the average steady rate of our approach is
19%/10% higher than Autopilot/FIRM and number of VMs of our

KDD ’22, August 14-18, 2022, Washington, DC, USA

—— OurApproach AutoPilot FIRM
c
506
g0.5
04 — o N
203
0.2
. OurApproach AutoPilot FIRM
o
o =
530 T NN
®25 ~ /
20 ==X 7
515 S
z v
\,\,90 »\690 \q.QQ 1,590 0,5,90 6‘.90 ’\,\,90
(a) CPU utilization of application A1.
0.7 —— OurApproach AutoPilot FIRM
06
Sos —
=04 S N A T N SO
503
.02
0.1
=30 OurApproach AutoPilot FIRM
3.
o
S20
aer " a - S) —
215 o i T /
210 — SN s vl
505 —
Z0.0 -
N N N W N Q0 Q0
@9 0 A0 ,LQ,Q 099 0‘*9 Q%,Q

(b) CPU utilization of application A2.

Figure 5: CPU utilization trend of application A1 and A2 on
a test period.

method is 21%/9% lower than Autopilot/FIRM. We summarize the
reasons in three-folds:

o Autopilot and FIRM adjust the resource based on exception detec-
tion instead of high-performance predictive techniques, therefore
when encountering CPU utilization fluctuations, it takes time
to bring it back to the target level by adjusting the numbers of
VMs, during which the changing workload patterns may lead to
swings in CPU utilization again.

o Our approach, based on effective predictions of workload and
CPU utilization, is able to adjust the VMs in advance with minor
error, which stabilizes the CPU utilization.

e With the embedded meta model of utilization estimation, our
agent makes more accurate scaling decisions than that of FIRM
trained in a model-free manner.

5.2.4 Scalability. Our approach has two particular characteristics
that help with scalability:

o We have trained a meta CPU utilization predictor ANP, facil-
itating fast adaptation to solve new prediction tasks without
retraining the whole data again. As seen from Table 3¢, the RMSE
only increases by 20% while the number of predicted applica-
tions increase by 10 times, which proves that our approach can
be effectively applied to performing the prediction on a large
scale of applications.

e As discussed in Section 4.3, our approach forms a fully differ-
entiable scaling strategy that adequately avoid issues of conver-
gence stability and data-efficiency, and is therefore applicable in
large scale cloud systems.

Xue and Qu, et al.

5.2.5 Deployment. Evidenced by the effectiveness and scalibility ,
our framework has been deployed in the real-world daily practices
of Alipay Cloud. Compared to the rule-based method in production,
the CPU stability rate has been improved by over 20% with around
50% cloud resources saved.

6 RELATED WORK

The recent works of autoscaling can be categorized into rule-based
approaches and learning-based approaches. In typical rule-based
approaches [5, 21], the key goal is to find the threshold that triggers
the scaling mechanism, such as a fixed CPU value or an average re-
sponse time. However such approaches usually require significant
human efforts and experience and may fail to respond to chang-
ing workload swiftly. The learning-based approaches [2-4, 24, 29],
which apply machine learning models to find abnormal states (e.g.,
CPU utilization is too high) of the system and optimize the resource,
help to address these challenges. For example, [2] applies regression
trees to model the relationship between the number of machines
and response time and then generates the recommended number
of machines to avoid service response time over time.

Considering the scaling decision is taken under dynamic and un-
certain environment in the online cloud, RL-based learning methods
[6-8, 22] have been proposed to model the autoscaling as decision-
making problems. A distinctive difference between our method
and theirs is that we build a high-performance fully differentiable
framework with a meta model-based RL algorithm to perform an
end-to-end scaling strategy. It is noted that traditional model-based
RL works [9, 12, 13] can not be directly applied because their al-
gorithms only aim to solve a single task, which is impractical in
dealing with numerous different applications in the industrial con-
text. Instead, our RL algorithm is specially tailored for an industrial
autoscaling system, incorporating specially-designed modules such
as workload forecaster and CPU utilization meta predictor.

7 CONCLUSION

We proposed a novel meta RL-based model, which is, to the best of
our knowledge, the first RL-based fully differentiable framework
for predictive scaling in the Cloud. Our approach is effective in
stabilizing CPU utilization of applications and has been deployed
in the real world to support the scaling in the Cloud of a world-
leading mobile payment platform, with around 50% resource saved
compared to the rule-based method in production.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI). 265-283.

[2] Muhammad Abdullah, Waheed Igbal, Josep Lluis Berral, Jorda Polo, and David
Carrera. 2020. Burst-Aware Predictive Autoscaling for Containerized Microser-
vices. IEEE Transactions on Services Computing (2020), 1-1. https://doi.org/10.
1109/TSC.2020.2995937

[3] Muhammad Abdullah, Waheed Igbal, Abdelkarim Erradi, and Faisal Bukhari.

2019. Learning Predictive Autoscaling Policies for Cloud-Hosted Microservices

Using Trace-Driven Modeling. In 2019 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). 119-126. https://doi.org/10.1109/

CloudCom.2019.00028

Giovanni Acampora, Mario Luca Bernardi, Marta Cimitile, Genoveffa Tortora, and

Autilia Vitiello. 2017. A fuzzy-based autoscaling approach for process centered

cloud systems. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE). 1-8. https://doi.org/10.1109/FUZZ-IEEE.2017.8015768

—_
=t

https://doi.org/10.1109/TSC.2020.2995937
https://doi.org/10.1109/TSC.2020.2995937
https://doi.org/10.1109/CloudCom.2019.00028
https://doi.org/10.1109/CloudCom.2019.00028
https://doi.org/10.1109/FUZZ-IEEE.2017.8015768

A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud

(5]
(6]

(71

[10]

[11]

[12]

[13]

[14

[15]

[16]

[17

(18]

=
o

[20]

[21]

[22]

[23]

[24

[25]

[26

[27]

[28]

[29]

[30]

Amazon. 2020. AWS auto scaling documentation. https://docs.aws.amazon.com/
autoscaling/index.html

Hamid Arabnejad, Pooyan Jamshidi, Giovani Estrada, Nabil El Ioini, and Claus
Pahl. 2016. An Auto-Scaling Cloud Controller Using Fuzzy Q-Learning - Imple-
mentation in OpenStack. In ESOCC.

J. V. Bibal Benifa and D. Dejey. 2019. RLPAS: Reinforcement Learning-Based
Proactive Auto-Scaler for Resource Provisioning in Cloud Environment. Mob.
Netw. Appl. 24, 4 (2019), 1348-1363.

Mingxi Cheng, Ji Li, and Shahin Nazarian. 2018. DRL-Cloud: Deep Reinforcement
Learning-Based Resource Provisioning and Task Scheduling for Cloud Service
Providers. In Proceedings of the 23rd Asia and South Pacific Design Automation
Conference (ASPDAC ’18). 129-134.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. 2018.
Deep reinforcement learning in a handful of trials using probabilistic dynamics
models. In Advances in Neural Information Processing Systems (NeurIPS).
Chelsea Finn, Kelvin Xu, and Sergey Levine. 2018. Probabilistic model-agnostic
meta-learning. In Advances in neural information processing systems (NeurIPS).
Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton,
Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, and S. M. Ali Eslami. 2018.
Conditional Neural Processes. In International Conference on Machine Learning
(ICML).

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. 2020.
Dream to control: Learning behaviors by latent imagination. In International
Conference on Learning Representations (ICLR).

Nicolas Heess, Greg Wayne, David Silver, Timothy Lillicrap, Yuval Tassa, and Tom
Erez. 2015. Learning continuous control policies by stochastic value gradients.
In Advances in Neural Information Processing Systems (NIPS).

Pooyan Jamshidi, Amir Sharifloo, Claus Pahl, Hamid Arabnejad, Andreas Metzger,
and Giovani Estrada. 2016. Fuzzy Self-Learning Controllers for Elasticity Man-
agement in Dynamic Cloud Architectures. In 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA).

Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. 2012. Workload charac-
terization and prediction in the cloud: A multiple time series approach. In IEEE
Network Operations and Management Symposium. 1287-1294.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan
Rosenbaum, Oriol Vinyals, and Yee Whye Teh. 2019. Attentive Neural Processes.
In International Conference on Learning Representations (ICLR).

Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-
tion. https://arxiv.org/pdf/1412.6980.pdf

Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes. In
International Conference on Learning Representations (ICLR).

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the Locality and Breaking the Memory Bottle-
neck of Transformer on Time Series Forecasting. In Advances in Neural Informa-
tion Processing Systems (NeurIPS).

Duc-Hung Luong, Huu-Trung Thieu, Abdelkader Outtagarts, and Yacine Ghamri-
Doudane. 2018. Predictive Autoscaling Orchestration for Cloud-native Telecom
Microservices. In IEEE 5G World Forum (5GWF). 153-158.

Microsoft. 2020. Azure auto scaling documentation. https://azure.microsoft.
com/en-us/features/autoscale/

Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Rav-
ishankar K. Iyer. 2020. FIRM: An Intelligent Fine-Grained Resource Management
Framework for SLO-Oriented Microservices.

David Salinas, Valentin Flunkert, and Jan Gasthaus. 2019. DeepAR: Probabilistic
Forecasting with Autoregressive Recurrent Networks. In Advances in Neural
Information Processing Systems.

Ashraf A Shahin. 2016. Automatic Cloud Resource Scaling Algorithm based on
Long Short-Term Memory Recurrent Neural Network. International Journal of
Advanced Computer Science and Applications 7, 12 (2016).

Gautam Singh, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. 2019. Sequential
Neural Processes. In Advances in Neural Information Processing Systems (NeurIPS).
Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge.

Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double g-learning. In Proceedings of the AAAI conference on artificial
intelligence.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in neural information processing systems (NIPS). 5998-6008.
Shubo Zhang, Tianyang Wu, Maolin Pan, Chaomeng Zhang, and Yang Yu. 2020. A-
SARSA: A Predictive Container Auto-Scaling Algorithm Based on Reinforcement
Learning. In IEEE International Conference on Web Services (ICWS).

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for Long Se-
quence Time-Series Forecasting. In The Thirty-Fifth AAAI Conference on Artificial
Intelligence, Vol. 35. 11106-11115.

KDD ’22, August 14-18, 2022, Washington, DC, USA

https://docs. aws.amazon.com/autoscaling/index.html
https://docs. aws.amazon.com/autoscaling/index.html
https://arxiv.org/pdf/1412.6980.pdf
https://azure.microsoft. com/en-us/features/autoscale/
https://azure.microsoft. com/en-us/features/autoscale/

KDD ’22, August 14-18, 2022, Washington, DC, USA

A APPENDIX

A.1 Background on Autoscaling

A.1.1 Why Autoscaling. Autoscaling is a cloud computing feature
that enables operators to scale cloud services such as server capaci-
ties or VMs up or down automatically, based on defined situations
such as traffic or utilization levels. The overall benefit of autoscaling
is that it eliminates the need to respond manually in real-time to
traffic spikes that merit new resources and instances by automati-
cally changing the active number of VMs.

[
[| Auto Scaling adjusting
— | < capacity as needed

[

Capacity :
|

|

|
L

Su M T W Th F Sa
Day of the Week

Figure 6: An illustration of autoscaling, adopted from Inter-
net.

A.1.2 Why Predictive Autoscaling. Predictive scaling uses certain
models to analyze each resource’s historical workload and regularly
forecasts the future load. Using the forecast, predictive scaling
generates scheduled scaling actions to make sure that the resource
capacity is available before the application needs it, therefore
yielding better scaling timeliness [29]. In industrial practises [5, 21],
predictive scaling works to maintain the utilization at the target
value specified by the scaling strategy.

A.1.3 The Cloud system. Our work is performed in the context
of a large-scale production cloud service system from a world-
leading online mobile payment provider. The system consists of
over 3000 services/applications running on over 1 million VMs
while the workload typically has millions of access request per
minute. The payment service requires 7 X 24 hours availability and
the SLO in terms of the success rate for accesses every second is
required to be higher than 99.9995%. In this paper, we primarily
focus on autoscaling, to ensure that this large-scale system meets
its stringent SLOs.

A.2 Experiment Details

In this section, we present the details of the experiment deferred
from the main text.

A.2.1 Dataset. The workload is defined as a 7-dimensional vector,
each of the element corresponds to a subtype of the traffic, which
is described below:

e Remote Procedure Calls (RPC): the traffic of external access
through the system.

e Message Subscription (MsgSub): the traffic of message subscrip-
tion throughout the system.

Xue and Qu, et al.

o Message Push (MsgPush): the traffic of message push throughout
the system.

e External Application (EA): the traffic of access from external
applications.

e Database Access (DA): the traffic of database access.

e Write Buffer (WB): the traffic of write buffers throughout the
system.

e Page View (PV): the traffic caused by user page view.

The data does not contain any Personal Identifiable Information
(PII), is desensitized, encrypted, is only used for academic research,
it does not represent any real business situation. Adequate data
protection was carried out during the experiment to prevent the
risk of data copy leakage, and the data set was destroyed after the
experiment.

A.2.2 Implementation details. We implemented our approach based
on Python 3.6.3 and Tensorflow 1.13.1. The size of all hidden states
in DAPM are set to 64, i.e, m = d = dQ = dg = dy = 64 while
the number of heads of the attention module is set to 2. The ANP
module uses the hidden size 64 in the encoder and the decoder. The
main part of ANP is borrowed from open-source code of DeepMind
https://github.com/deepmind/neural-processes. The RL module uses
the discount factor y = 0.95 and hidden size 64 in the policy net-
work. Durign training, we set batch size 128, use early stopping
and weight decay for regularization and apply Adam [17] to opti-
mize the model. A sample code can be found at https://github.com
/iLevyFan/meta_rl_scaling.

A.2.3 Environment. All experiments run on a Linux server (Ubuntu
16.04) with Intel(R) Xeon(R) Silver 4214 2.20GHz CPU, 16GB memory,
with a V100 GPU.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background and Characterization
	2.2 Neural Processes and Meta learning
	2.3 Markov Decision Process

	3 Problem Setup
	4 End-to-End Learning to Autoscale
	4.1 Stage 1: Predict Workload Pattern via Deep Attentive Periodic Time Series Model
	4.2 Stage 2: Learn the Mapping From Workload to CPU Utilization via Neural Process
	4.3 Stage 3: Autoscale via Meta Model-based RL

	5 Experiments
	5.1 Setup
	5.2 Experiment Results

	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Background on Autoscaling
	A.2 Experiment Details

