2202.05387v2 [cs.Sl] 5 Sep 2022

arXiv

TwHIN: Embedding the Twitter Heterogeneous Information
Network for Personalized Recommendation

Ahmed El-Kishky*

Twitter Cortex
Seattle, WA, USA

Thomas Markovich
Twitter Cortex
Boston, MA, USA

Baekjin Kim
Twitter
San Francisco, CA, USA

Ramy Eskander
Twitter Cortex
New York, NY, USA

Sofia Samaniego
Twitter Cortex
San Francisco, CA, USA

ABSTRACT

Social networks, such as Twitter, form a heterogeneous information
network (HIN) where nodes represent domain entities (e.g., user,
content, advertiser, etc.) and edges represent one of many entity
interactions (e.g, a user re-sharing content or “following” another).
Interactions from multiple relation types can encode valuable infor-
mation about social network entities not fully captured by a single
relation; for instance, a user’s preference for accounts to follow may
depend on both user-content engagement interactions and the other
users they follow. In this work, we investigate knowledge-graph
embeddings for entities in the Twitter HIN (TwHIN); we show that
these pretrained representations yield significant offline and online
improvement for a diverse range of downstream recommendation
and classification tasks: personalized ads rankings, account follow-
recommendation, offensive content detection, and search ranking.
We discuss design choices and practical challenges of deploying
industry-scale HIN embeddings, including compressing them to re-
duce end-to-end model latency and handling parameter drift across
versions.

CCS CONCEPTS

+ Computing methodologies — Learning latent representa-
tions; « Information systems — Social networks.

KEYWORDS

heterogeneous information network, social network, recommenda-
tion system, embedding, graph embedding, twitter

* Corresponding author: aelkishky @twitter.com.
" Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9385-0/22/08....$15.00
https://doi.org/10.1145/3534678.3539080

Ying Xiao'
Twitter Cortex
San Francisco, CA, USA

Chetan Verma
Twitter Cortex
San Francisco, CA, USA

Serim Park
Twitter Cortex
San Francisco, CA, USA

Frank Portman
Twitter Cortex
Boston, MA, USA

Yury Malkov

Twitter Cortex
San Francisco, CA, USA

Aria Haghighi®
Twitter Cortex
Seattle, WA, USA

ACM Reference Format:

Ahmed El-Kishky*, Thomas Markovich, Serim Park, Chetan Verma, Baekjin
Kim, Ramy Eskander, Yury Malkov, Frank Portman, Sofia Samaniego, Ying
Xiao', and Aria Haghighi. 2022. TwHIN: Embedding the Twitter Heteroge-
neous Information Network for Personalized Recommendation. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD °22), August 14—18, 2022, Washington, DC, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3534678.3539080

1 INTRODUCTION

Twitter is an online social network where users post short messages
called Tweets. When users visit Twitter, they can perform a variety
of actions — apart from “Favoriting”, “Replying” and “Retweeting”
tweets (Figure 1); users can also “Follow” other users, search for
tweets, click on ads, and open personalized notifications sent to
mobile devices. With hundreds of millions of users, and billions of
interactions per day, it is a challenging machine learning task to
develop holistic (i.e., leverage all our data, independent of modality)
and general representations that allow us to understand user pref-
erences and behaviours across the entire platform. Such an under-
standing is critical in any number of personalized recommendation
tasks at Twitter, and for providing compelling user experiences.

Large pretrained embedding tables! have become an important
tool in recommender systems; they have allowed ML practitioners
to understand user behavior. When pretrained embeddings are used
as features, they have been shown to improve ranking models [7,
8, 55, 56]. In particular, pretrained user embeddings have been
used in a variety of industry recommender systems such as for
app and video recommendation for Google Play and Youtube [7,
8], personalized search at AirBnB [16], pin recommendation at
Pinterest [31, 55, 56], connecting users based on interest at Etsy [61],
stance detection at Twitter [33], and news article recommendation
at Yahoo! Japan [30].

The above methods have largely focused on utilizing user-item
relations to learn embeddings for an associated recommendation
task. For example, PINSAGE [55] exclusively utilizes the “click” or

!We make the distinction between pretrained parameters, which are built indepen-
dently of a downstream task, and trainable embeddings, which are tuned as part of
end-to-end task training. We focus on the former case here and do not consider cases
of fine-tuning where pretrained parameters are used to initialize task parameters, but
tuned discriminatively per task.

https://doi.org/10.1145/3534678.3539080
https://doi.org/10.1145/3534678.3539080

KDD ’22, August 14-18, 2022, Washington, DC, USA

Kerry Hanna @ reluctant_learning_theorist- 12m
Shameful secret: I've never computed the VC dimension of anything in my
life.

Q 01 Q7 &

@ You might like -

E Ralph Lin @ optimization_guru - 1h

Follow Topic X

My favorite optimizer is the Heavy Ball Method...because that's how | roll!

QO 4 0 12 O n o
Show this thread

@ You mightlike - Follow Topic X
Joao Rose @ why so_many_activations- 4h
Relu, selu, elu, swish...why can't we just have the one true activation
function?
Q 39 n 3 Q 844 &

Figure 1: A mock-up of a Twitter feed. Notice the “Reply”,
“Retweet” and “Favorite” icons at the bottom of each Tweet.

“repin” actions that Pinterest users take on pins (i.e, content items)
to create user embeddings for pin recommendation. While these
approaches are successful for the item recommendation task for
which they were designed, it may not generalize or be applicable to
related recommendation tasks. Returning to the example of Pinter-
est, there are other entity-relations beyond the user-pin interactions
which may be relevant for recommendations. For instance, a user
choose to "follow" a variety of other entity-types (another user,
board, or topic). A representation which capture all these entity-
type relations may be more useful in downstream tasks (such as
user-topic or user-board recommendations) than representations
learned from user-item interactions alone. These follow relations
may also benefit item recommendation, since they are indications
of the type of content a user is seeking. In general, leveraging a
rich diversity of relations between entities can have many signif-
icant advantages to learning representations across many tasks
simultaneously:

Data Supplementation: For some tasks, there may simply be
fewer data points for training models (e.g., there are gener-
ally fewer ad than organic content engagements, or a new
product feature may have low density of interactions). In
these cases, supplementing low-density relations with infor-
mation from “denser” relations in the network may improve
predictive ability of embeddings derived from the network.

Task Reusability: Often-times, we do not even know all the
downstream tasks ahead of time; building ‘universal’ repre-
sentations reduces the labour-intensive process of identify-
ing, training, and managing multiple embeddings.

To address these weaknesses, we model multi-type multi-relational

networks at Twitter as a heterogeneous information network (HIN) [36,

38], and apply scalable techniques from knowledge graph embed-
dings (KGE) to embed our heterogeneous networks [1, 22, 42].

Ahmed El-Kishky et al.

Much of the literature in this area either focuses on small-scale
embeddings without deploying models to production or industry-
scale recommender systems that are trained on simple networks
with only a few distinct types of entities and relationships, thereby
limiting the embedding’s utility to a small number of applications.
In this work, we present an end-to-end outline of embedding the
Twitter Heterogeneous Information Network (TwHIN). Our end-
to-end system is deployed in production at Twitter, across a variety
of product areas; training is scalable, operating on more than 10°
nodes and 10! edges, and can incorporate many disparate network
sources for richer embeddings. TWHIN embeddings capture signals
such as social signals (follow-graph), content engagement signals
(Tweet, image, and video engagement), advertisement engagements,
and others to learn embeddings for users, tweets, and advertise-
ments and other types. We evaluate TWHIN embeddings in online
(A/B) tests and offline experiments, demonstrating improvement in
multiple tasks.

Compared to previous papers on learning industry-scale embed-
dings for Web recommender systems, our contributions are:

e We demonstrate simple KGE techniques offer a scalable, flex-
ible scheme for embedding large heterogeneous graphs. This
is in contrast to previous industry efforts [55] which require
complex alternating CPU-GPU rounds, multiple MapReduce
jobs, and custom OpenMP extensions; the KGE embeddings
we use need only a single multi-GPU machine.

e We demonstrate how heterogeneous embedding approaches
combine disparate network data to effectively leverage rich,
abundant unlabeled data sources to learn better represen-
tation while simultaneously addressing data sparsity. We
show this approach yields gains in multiple downstream
recommendation and classification tasks

o We detail practical insights, design considerations and learn-
ings in developing and productionizing a single heteroge-
neous network embedding for use in a variety of disparate
recommender systems within Twitter.

2 RELATED WORKS

Network embedding (a.k.a., graph embedding) techniques have
been proposed as a means to represent the nodes of large networks
into low-dimensional dense representations [19, 53]. The informa-
tion contained within these node embeddings has proven useful in a
variety of data mining tasks including classification, clustering, link
prediction, and recommendation [2, 15, 50]. A family of approaches,
starting from DEEPWALK, provide a scalable approach to graph em-
bedding by performing a random walk to create a node sequence,
and then applying SkipGram to learn node embeddings [32, 43].
Node2vec extended DeepWalk by applying a biased random walk
procedure with a controllable parameter between breadth-first and
depth-first sampling strategies [17]. Later methods such as LINE,
SDNE, and GraRep incorporate second and higher-order proximity
in the node embedding objective [3, 41, 45]. More complex ap-
proaches have applied stacked denoising autoencoders to learn
node embeddings [4]. Despite the plethora of popular network em-
bedding techniques, these methods largely cater to homogeneous
networks — those with a single type of edge relation — with no clear
adaptation to type-rich heterogeneous networks.

TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

Generalizing beyond homogeneous networks, heterogeneous
information networks have been proposed as a formalism to model
rich multi-typed, multi-relational network data [36, 38, 44, 51]. In
this setting, one common use-case has been to perform similarity
computation between nodes based on structural similarities; sev-
eral path-based methods have been proposed for this similarity
search [35, 39]. Recognizing the utility of HINs in recommenda-
tions, there have been many approaches to combining these two
ideas. One method addresses the cold-start problem by incorporat-
ing heterogeneous network data in social tagging [13]. Another
work uses heterogeneous relations in a collaborative filtering social
recommendation system [25]. Other approaches have exploited
multi-hop meta-paths over HINs to develop collaborative filtering
models for personalized recommendation [37]. Additional methods
have used these multi-hop meta-paths as latent features within
recommender systems [59]. Meta-path similarities were later ap-
plied as regularization within matrix factorization recommender
systems [57]. Follow-up works have leveraged the rich plethora of
entity relationships to perform personalized recommendation [58].
Our approach differs from these methods in that we leverage the
plethora of heterogeneous relationships to learn better entity rep-
resentations (embeddings); these embeddings can then be directly
incorporated as dense features in state-of-the-art deep-learning-
based recommender models.

Instead of directly operating on the HIN for recommender sys-
tems, several papers have investigated learning representations
from heterogeneous networks. Several approaches have been devel-
oped to learn content-enriched node representations [54, 60]. These
methods address data sparsity by leveraging all content associated
with nodes. Other methods have been developed to directly embed
nodes in a HIN [5, 6, 10, 40, 52]. This work is the closest to our task,
however many of these techniques do not easily scale to industry-
scale networks such as TwHIN; additionally, several embedding
techniques are custom-derived for specific network schema. As
an alternative, we apply knowledge graph embedding (KGE) tech-
niques to embed our networks [1, 42, 46]. As KGEs can incorporate
mutli-typed nodes and edges, they translate naturally to embedding
HINs. Additionally, several frameworks have been developed to
scale KGE:s to billions of nodes and trillions of edges [22, 62, 63].

3 PRELIMINARIES

Twitter contains a plethora of multi-typed, multi-relational net-
work data. For example, users can engage with other users (ie.,
the ‘following’ relation), which forms the backbone of the social
follow-graph. Additionally, users can engage with a variety of non-
user entities (e.g., Tweets and advertisements) within the Twitter
environment using one of several engagement actions (Favorite,
Reply, Retweet, Click). We model these networks as information
networks [39, 58]:

DEFINITION 1 (INFORMATION NETWORK). An information net-
work is defined as a directed graph G = (V,E, $,) where V is the set
of nodes, E is the set of edges, ¢ is an entity-type mapping function
(¢ :V — T)andy is an edge-type mapping function (y : E — R).
Each entityv € V belongs to an entity type $(v) € T, and each edge
e € E belongs to a relation type /(e) € R

KDD ’22, August 14-18, 2022, Washington, DC, USA

‘- ________ ('Aatr“;r; TS @
AN

Follows

N

(Favorites)
N
e N
|- — (Retweets - —
- /
/

_—
(Replies)

7
/
v ‘Adver- —
Promotes —§
tisery C D

Figure 2: An example heterogeneous information network
(HIN) where |V| = 8 and |E| = 9. There are four entity types
(7): ‘User’, “Tweet’, ‘Advertiser’, and ‘Ad’. There are seven
types of relationship (R): ‘Follows’, ‘Authors’, ‘Favorites’,
‘Replies’, ‘Retweets’, ‘Promotes’, and ‘Clicks’. See Section 3
for more details.

An information network is a heterogeneous information network
when |7 > 1 or |R| > 1. For consistency with recommender
system terminology, we refer to entities being recommended as
items. In Figure 2, we give a small example HIN.

Given an input HIN, G and an input dimension d, our goal is
to learn embeddings for each entity in G. We define these HIN
embeddings as follows:

DEerINITION 2 (HIN EMBEDDINGS). Given a networkG = (V,E, ¢,),
the heterogeneous information network embedding uses self-supervised
structure prediction tasks in G to map entities in V and relations in
R onto a low-dimensional space RY, whered < |V|.

In particular, our goal is to learn HIN embeddings that provide
utility as features in downstream recommendation tasks.

4 TWHIN EMBEDDINGS

In this section, we describe our approach to extracting information
from the rich multi-typed, multi-relation Twitter network through
large-scale knowledge-graph embedding. We then describe our use
of clustering to inductively infer multiple embeddings for each
user, and out-of-vocabulary entities such as new tweets without
retraining on the new graph. Finally, we describe the overall end-
to-end scheme, from the raw data sources to downstream task
training.

4.1 HIN embedding approach

We apply knowledge graph embedding to embed the Twitter HIN
(TwHIN) [1, 23, 42, 49]. We represent each entity, as well as each
edge type in a HIN as an embedding vector (i.e., vector of learnable
parameters). We will denote this vector as 6. A triplet of a source
entity s, edge type r, and target entity ¢ is scored with a scoring
function of the form f(6s, Oy, 0;). Our training objective seeks to
learn 6 parameters that maximize a log-likelihood constructed from
the scoring function for (s,r,t) € E and minimize for (s,r,t) ¢ E.

KDD ’22, August 14-18, 2022, Washington, DC, USA

For model simplicity, we apply translating embeddings (TRANSE)
to embed entities and edges in a HIN [1]. For an edge e = (s, 7, 1),
this operation is defined by:

fe)=f(s,r,t) =(0s+6,)70; (1)

As seen in Equation 1, TRANSE operates by translating the source
entity’s embedding with the relation embedding; the translated
source and targets embeddings are then scored with a simple scor-
ing function such as a dot product.

We formulate the learning task as an edge (or link) prediction
task. We consume the input HIN G as a set of triplets of the form
(s, r, t) which represent positive, observed edges. The training ob-
jective of the translating embedding model is to find entity represen-
tations that are useful for predicting which other entities directly
are linked by a specific relation. While a softmax is a natural for-
mulation to predict a linked entity, it is impractical because of the
prohibitive cost of computing the normalization over a large vo-
cabulary of entities. As such, following previous methods [14, 27],
negative sampling, a simplification of noise-contrastive estimation,
is used to learn the parameters 8. We maximize the following nega-
tive sampling objective:

argmax) lloga(f(e)) + Y loga(-f(e))| (@)
0 eeG e’eN(e)

where: N(s,r,t) = {(s,r,t’) : t' € V} U {(s/,r,t) : s € V}. Equa-
tion 2 represents the log-likelihood of predicting a binary “real" or
“fake" label for the set of edges in the network (real) along with a set
of the "fake" negatively sampled edges. To maximize the objective,
we learn 6 parameters to differentiate positive edges from nega-
tive, unobserved edges. Negative edges are sampled by corrupting
positive edges via replacing either the source or target entity in a
triple with a negatively sampled entity of the same entity type. As
input HINs are very sparse, randomly corrupting an edge in the
graph is very likely to be a 'negative’ edge absent from the graph.
Following previous approaches, negative sampling is performed
both uniformly and proportional to entity prevalence in the training
HIN [1, 22]. Optimization is performed via Adagrad [11].

4.2 Computational considerations

As an input HIN for Twitter can include more than 10° nodes
such as Users, Tweets, and other entities, learning an embedding
vector for each entity presents both system and GPU memory
challenges. We apply the framework PyTorch-Biggraph [22] to
address the large memory footprint. This framework randomly
partitions using a partition function x each node v into one of P
partitions (7(v) € {0,...P—1}), where P was selected based on
the memory available on the server and the GPUs for training. As
each node is allocated to a partition, edges e = (s, r, t) are allocated
to buckets based on the the source and target nodes (s and t). As
such the partitions form P? buckets and an edge falls into bucket
By (s),x(r)- Buckets of edges and their associated source and target
entities’ embedding tables are loaded into memory and embeddings
are trained. As such, a maximum of approximately 2V /P entities’
embeddings are loaded into memory at any point.

Algorithm 1 is then applied to scalably learn 8. The algorithm
simply selects a random bucket and loads the associated partitions’

Ahmed El-Kishky et al.

Algorithm 1: HIN Embedding

Input: G = (V,E, §, ¥), epochs, P
Output: 6 (learned embeddings)

1 let 0: initialized embedding vectors entities in V relations in R
2 for each {1...epochs} do
3 for each bucket (i, j) : 0<i<P; 0<j<P)do

4 load bucket B; ; edges onto memory

5 load {6, : 7(v) =iV 7(v) = j} onto GPU
6 train embeddings on edges using Equation 1
7 end

s end

embedding tables onto GPU memory. Negative examples for each
bucket edge are sampled as described above, but limited only to
entities present in the current buckets. Gradients from the edge
prediction among negative samples task is backpropagated to learn
appropriate embedding vectors.

4.3 HIN at Twitter: TwHIN

When applying Algorithm 1, we must take care to make a cru-
cial distinction between relation types. Within TwHIN we identify
relations that are high-coverage in the number of users that partic-
ipate in the relation, and contrast them to low-coverage relations
that are overall sparse. For example, most users follow at least
one other user and engage with at least a small number of Tweets.
However, many users may not engage with advertisements at all.
Recognizing this distinction, we ensure that high-coverage rela-
tions are co-embedded with low-coverage relations, but not with
other high-coverage relations. This ensures that high-coverage
relations benefit entities in low-coverage relations by addressing
sparsity, while preserving entities in high-coverage relations from
cross-entity type interference.

We form two heterogeneous networks centered around the two
high-coverage relations: (1) follow-graph and (2) User-Tweet en-
gagement graph. We refer to these two networks as TwWHIN-Follow
and TwHIN-Engagement. For each network we augment the high-
coverage relation with low-coverage relations with entities such
as promoted Tweets (Advertisements), advertisers, and promoted
mobile apps. We performed TwHIN embedding on a single com-
puter which allowed for fast prototyping, experimentation, and
productionization. We used the Pytorch BigGraph? framework to
perform embedding at scale [22].

4.4 Inductive multi-modal embeddings

While classical knowledge graph embedding techniques provide
a scalable way to embed large HINS, they suffer from two major
shortcomings: (1) entites are represented by only a single embed-
ding, which can fail to capture complex behaviour where a user
might have disparate multi-modal interests (2) entity embeddings
are transductive and only defined for entities present at training
time and retraining is required on the full graph to support any
novel out-of-vocabulary nodes. This latter shortcoming is signif-
icant for application to TWHIN since the set of Tweets and Users
change rapidly over time.

Zhttps://github.com/facebookresearch/PyTorch-BigGraph

https://github.com/facebookresearch/PyTorch-BigGraph

TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

Embed and
Concat

User-tweet
engagement

DB
~——— J

.| 030
0.56
0.22

KDD ’22, August 14-18, 2022, Washington, DC, USA
Downstream task 1:

/' prediction \
Ranking Model C]

DNN training
01 =0, —nVL®O,)
-0.13

Used as input

}
|

5
|
v
O

0.91
Downstream task 2:
Candidate Generation
(KNN index)

\
-
\

TwHIN Graph Pretraining

Y

Downstream tasks

Figure 3: The end-to-end framework aggregates disparate network data to construct TwWHIN, joint-embedding is performed
and embeddings are consumed in downstream tasks and ML models.

We address both of these short-comings by introducing a fast
post-processing step that can represent TwHIN entities as mixture
over multiple embeddings. This technique is flexible enough to

inductively embed new, out-of-vocabulary, nodes such as Tweets.

To create these embeddings for a node type we (1) cluster existing
unimodal embeddings (2) compute multiple embeddings for a node
by aggregating the most engaged-with clusters for a node.

To illustrate this approach, let us focus on transforming User
embeddings into multi-modal mixtures of embeddings. We first
consider set T of non-user entities that have some engagement with
users; we think of T as the set of “targets” and will seek embeddings

for users that summarize a user’s engagement with elements of T.

We first take the set of targets and perform k-means clustering [34]
to create a set of clusters C over T. We then associate each user u;
with a probability distribution over elements of C proportional to
the amount of engagement the user has with each cluster:

count(u;, ¢)
>, count(uj,c’)
c’ e M(u;)
Where, count(u;, ¢) is the number of times u; engages with a
target in cluster ¢ and, for computational efficiency, we take M (u;)
to be u;’s top m most engaged clusters. We normalize these cluster

P(eclui) = ®)

engagements to obtain a proper cluster-engagement distribution.

In addition to each user’s TWHIN entity embedding, we can now
represent each user with a mixture distribution over their top m
most engaged cluster with each cluster represented by a dense
vector of its centroid or medoid. This multi-modal representation
addresses both of the short-comings since different clusters of target
entities may better capture complex behavior and they can also be
generated for entities that were unseen during training.

The multi-modal embeddings here have similar motivations as
those in PINNERSAGE [31], but have some key differences. In that
work a user’s target engagements are clustered and individual items
capturing disparate interests are used to represent the user for
recommendation retrieval. By contrast, in the approach here, we are
clustering the entire universe of items (Tweets and other non-user

entities) and representing users according to which of these global
clusters their engagements coincide. So rather than run clustering
for each user on just their engagement, we instead run a single
large clustering job over non-user entities.

5 TWHIN FOR RECOMMENDATION

In Figure 3, we show our end-to-end framework including col-
lecting disparate data sources to organize TWHIN, learning entity
embeddings through a self-supervised KGE objective, and finally
using the TWHIN embeddings in downstream tasks. In this section
we discuss using TwHIN embeddings for two families of tasks: (1)
candidate generation and (2) as features in deep-learning models
for recommendation and prediction.

5.1 TwHIN candidate generation

Candidate generation is the first step in most recommender systems;
the aim is to retrieve a user-specific high-recall set of relevant
candidates using a light-weight strategy. Within Twitter, we use
an approximate nearest neighbor (ANN) system that indexes items
to be suggested such as Users to Follow or Tweets to engage with.
Two internal systems use HNSW [26] or FAISS [21] with Product
Quantization [20] to index items and retrieve candidates.

We then use an entity’s TWHIN embedding to query candidate
entities of any type (assuming a distinct index per entity-type).
However, when indexing a large number of items such as users or
Tweets, many of the retrieved items may be very similar. These
are not desirable as users get diminishing value from being pre-
sented near duplicate items. To address this, we use multi-modal
embeddings (see Section 4.4) to generate diverse candidates. Given
an entity’s multimodal representation as a mixture over multiple
embeddings with non-negative mixture coefficients normalized to
one, we can query candidates from each vector in its mixture rep-
resentation and select a number of candidates proportional to the
query vector’s mixture weights. This adds diversity as candidates
are explicitly queried from different areas of the embedding space.

KDD ’22, August 14-18, 2022, Washington, DC, USA

5.2 TwHIN for ranking and prediction

Many supervised machine learning models at Twitter employ pre-
trained TWHIN embeddings as features. These models are used in
a variety of tasks from recommendations ranking, to content clas-
sification, and other predictive tasks. Many standard deep neural
network (DNN) models have been applied to predictive model-
ing [7, 47, 48]. Recommendation ranking models typically take as
input a set of user and contextual information, and output is a
ranked list of items from the candidate generation step based on
objectives such as engagement or purchase probability. Predictive
classification models take similar features and predict a classifica-
tion label such as topic or other content classification.

At Twitter, predictive models take in users and/or items as de-
scribed by many continuous and categorical features. Categorical
features are then associated with an emebdding vector via a look-up
table; these embedding vectors are task-specific and learned while
training each DNN model. Continuous features are then appended
to these embeddings and the concatenated feature-set is fed into a
DNN (e.g., MLP) and trained on a task-specific objective. To incor-
porate TWHIN embeddings, we employ a look-up table to map an
entity id to its associated pretrained TWHIN embedding. However,
unlike with other categorical features, these pretrained embeddings
are frozen and not trained with the unfrozen embeddings.

6 EXPERIMENTS & RESULTS

We experimentally demonstrate the generality and utility of TWHIN
embeddings via online and offline experimentation on several Twit-
ter internal ML models and tasks.

6.1 Candidate generation

Our first family of tasks are candidate generation tasks; these are
tasks that select a high-recall pool of items that are then ranked
by more complex downstream ranking models. We demonstrate
offline and online gains in using TWHIN embeddings on a “Who to
Follow” task.

Who to Follow Suggestions: We describe results from leveraging
TwHIN embeddings for the Who to Follow [12, 18] user recommen-
dation task which suggests Twitter accounts for a user to follow.
We utilize TWHIN user embeddings as a query to retrieve highly fol-
lowed users via approximate nearest neighbor search. We compare
using a single user embedding for querying to using multi-modal
“mixture of embeddings” as described in Section 4.4 and Section 5.1.

Approach R@10 R@20 R@50

Unimodal 0.58% 1.02% 2.06%
Mixture 3.70% 5.53% 8.79%

Table 1: Comparing candidate generation using a single
TwHIN embedding vs a mixture of embeddings with multi-

querying.

Table 1 compares the performance of multi-modal mixtures of
TwHIN user embeddings vs unimodal user embeddings. Across
all thresholds (recall at 10, 20, and 50), multi-modal mixtures with
multi-querying significantly outperform single unimodal represen-
tations. This confirms the hypothesis that mixtures of embeddings

Ahmed El-Kishky et al.

better model users and their multiple interests. Explicitly querying
from different parts of the embedding space consistently yielded
over 300% improvement in recall over unimodal representation

querying.

6.2 Recommendation and prediction

We incorporate TWHIN embeddings in several supervised recom-
mendation and prediction tasks: (1) Predictive Advertisement Rank-
ing (2) Search Ranking, and (3) Offensive Content Detection

Predictive Advertisement Ranking: Following procedures in
Section 5, we add TWHIN embeddings for different entities to several
ads recommendation models [29]. We are unable to disclose specific
details of each model, or the timeline in which they were deployed.
As such, we simply refer to these models as Adsy, Adsy and Adss;
each targets a different ads target objective, but does share some,
but not all, hand-crafted features. In particular, each model has
many features about users and their interactions with ads.

We evaluate our model quality using Relative Cross Entropy
(RCE). This metric measures how much better an ads engagement
predictor is compared to a naive prediction using the prior of each
label. This is computed as follows:

RCE = 100 X Reference Cross Entropy — Cross Entropy

Reference Cross Entropy @)
where the reference cross entropy is that of the prior, and the cross
entropy term is that of the treatment.

During online A/B experiments, where the approaches were
tested on live traffic, we computed the pooled RCE (using both
control and treatment traffic) and noticed a significant improve-
ment when adding TwHIN embeddings over the baseline model.
Adding TwHIN embeddings yielded an average 2.38 RCE gain over
the baseline resulting in a 10.3% cost-per-conversion reduction
in the new production model. These results allowed us to deploy
TwHIN embeddings for several additional advertisement models
which all demonstrated online improvement. To further validate
our hypothesis as to the importance of heterogeneity in TwHIN,
we perform offline entity ablation studies for a set of advertise-
ment models. Note that in some of our experiments, we observe
that corresponding online RCE increase is a lot more significant
than what is measured offline due to differences between offline
and online environment. Notwithstanding, the offline results are
directionally monotonic with those measured online. In particular,
any offline results should be used to compare utilizing different
entity embeddings within the same model.

Model Baseline 0] U+A U+T U+A+T
Ads, 21.23 2132 2143 2146 21.48
Ads; 13.53 13.61 13.54 13.63 13.59
Adss 17.11 17.26 17.27 17.27 17.26

Table 2: Offline RCE for ads models with feature ablation.
We investigate performance when using TwHIN embed-
dings for User (U), Advertiser (A), and Target entity (T) such
as app to install, video to watch, or advertisement to click.

TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

As a general trend, we notice the most improvement arises from
user embeddings. However, we do see further improvements when
adding entity embeddings for Advertiser and the exact target (e.g.,
promoted app for installation, promoted video, or promoted Tweet).
This supports our intuition that leveraging multi-type embeddings
can improve downstream predictive models.

We also ran experiments (not shown) where we directly embed-
ded low-coverage relationships without augmenting with denser
relationships. This yielded much lower improvements, and some-
times even model degradation. This further supports our claim that
denser relations can supplement less dense relations.

Search Ranking: We investigate using TwHIN embeddings to
improving personalized search ranking. Personalized search rank-
ing consists of a search session for a user where they provide an
input query and the system ranks a set of Tweets based on engage-
ment. Our baseline ranking system takes as input a large set of
hand-crafted features that represent the underlying user, query and
candidate Tweets. In addition, the input features also include the
outputs of an mBERT [9] variant fine-tuned on in-domain query-
Tweet engagements to encode the textual content of queries and
Tweets. The hand-crafted and contextual features are fed into an
MLP, where the training objective is to predict whether a Tweet
triggers searcher engagement or not.

We augment this baseline model with three TwWHIN embeddings:
User embeddings from both follow-base (Ug) and engagement-base
(Ue), as well as Author embeddings (A).

Metric Baseline +Us +U. +A +Ur+Ue +Upr+Uc+A

MAP 55.7
ROC 57.9

56.2 56.6 55.8 56.6 57.0
58.6 59.0 579 59.0 59.6

Table 3: Search engagement-based ranking with TWHIN em-
beddings: TWHIN user embeddings, both follow-base (Uy)
and engagement-base (Ue), and TWHIN author embeddings

()

We train our models on search-engagement data. We fine-tune
the hyper-parameters on search sessions from a held-out validation
day and report ranking performance in Table 3 for both MAP and
averaged ROC using search sessions from a held-out test day.

As seen in Table 3, combining the three types of TWHIN embed-
dings as additional inputs to the baseline system yields the best
ranking performance with relative error reductions of 2.8% in MAP
and 4.0% in averaged ROC. Note also that TwHIN user embeddings
(U and Ue), either independently or in conjunction, yield perfor-
mance gains, unlike TWHIN author embeddings (A), which only
help when combined with user embeddings.

Detecting Offensive Content: We evaluate TwHIN embeddings
for the task of predicting whether a Tweet is offensive or promotes
abusive behavior.> While the definition of this problem is purely
concerned with the Tweet content, we hypothesize that a key ele-
ment of interpreting intent of a Tweet is understanding the social
context and community of the Tweet author. These experiments

3See help.twitter.com/en/rules-and-policies/abusive-behavior for a fuller
discussion of what is considered abusive behavior in Tweets.

KDD ’22, August 14-18, 2022, Washington, DC, USA

RoBERTa BERTweet +TwHIN-Author
Collection; 0.4123 0.4692 0.5161
Collectiony 0.688 0.7274 0.7174

Table 4: PR-AUC results for detecting offensive content. We
compare the performance of content-based models to lever-
aging a TWHIN author embedding in addition to content.

are purely academic, and TwHIN is not currently being applied to
detecting offensive content at Twitter.

For our experimental purposes, we construct a baseline approach
that fine-tunes a large-scale language model for offensive content
detection using linear probing and binary categorical loss; we com-
pare the performance of RoBERTa [24] and BERTweet [28] language
model, the latter of which has been pretrained on Twitter-domain
data. We evaluate on two collections of tweets where some tweets
have been labeled “offensive" or violating guidelines. The baselines
leverage pretrained language models to embed the textual content.
We supplement the stronger baseline by concatenating TwHIN au-
thor embedding to the language model content embedding; linear
probing is used for fine-tuning.

Results in Table 4 confirm our hypothesis showing that adding
TwHIN embedding increases PR-AUC by an average relative gain
0f 9.09% on Collection; with neutral results on Collectiony, likely
stemming from Collection; containing a very high proportion of
offensive tweets. This experimental result confirms unrelated re-
lationships (e.g., Follows and Tweet engagements) can be used to
pretrain user embeddings that can improve unrelated predictive
tasks such as offensive content or abuse detection validating our
claim on the generality of our TWHIN embeddings. While TwHIN
was constructed without any data from this task, the learned em-
beddings were able to significantly improve performance on this
task.

7 PRACTICAL CONSIDERATIONS

We discuss design decisions made in productionizing TwHIN with
regards to (1) latency concerns and (2) mitigating technical debt by
minimizing parameter drift.

7.1 Compression for low latency

Performance in downstream ranking task often improves substan-
tially as we increase the embedding dimension. Since, TWHIN em-
beddings are designed to be used in many latency-critical online
recommender systems such as advertisement ranking and content
ranking, we apply a simple and effective lossy data-based compres-
sion scheme via product quantization [20]:

(1) After generating the embeddings, we train a product quanti-
zation scheme (we use the FAISS package? [21]), and export
the product quantization codebook (centers).

(2) Upon encountering a new downstream task, we make the
codebook available to the training process, decoding the
compressed embeddings using a codebook lookup.

(3) Atinference time, we once again perform a codebook lookup.

*https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss

KDD ’22, August 14-18, 2022, Washington, DC, USA

Ahmed El-Kishky et al.

1.0
0.051 m==== \Narm Start
0.600 == = Regularization
0.9 B}
So.04
0.595 s
o i S
— 0.8 8 2
]
g ﬂi ;8 0.03
S @ 0.590 o
Q0.7 > <
- < @
< 0.02
&
0.585
0.6
no TwHIN embeddings 0.01
0.580
05 4x 8x 12x 16x 20x 0 5 10 15 25 30 35 40 0 5000 10000 15000 20000 25000 30000

Compression Factor

(a) Recall@10 for k-nearest neighbors with
varying levels of compression for TWHIN.

Compression Factor

(b) Ave. ROC for search ranking model Iwith
varying levels of compression for TWHIN.

Vertex Index

(c) Deviation between consecutive TwHIN
versions with parameter drift mitigation.

Figure 4: Experiments exploring effects of compression on performance, and parameter drift mitigation strategies on drift.

This scheme reduces the input size and network IO significantly,
yields essentially identical downstream model performance, and
introduces negligible latency. In Figure 4a, we consider the tradeoff
between compression factor and the accuracy of decompressed em-
beddings in a k-nearest neighbors task. Even at high compression
levels (20x), we still maintain reasonable accuracy in the k-nearest
neighbor task. Similarly, the effects of compression on the super-
vised search ranking task from Section 6.2, show negligible effect on
model performance even up to 30X compression. These results moti-
vate our approach to utilizing product quantization with model-side
codebook decompression in our latency-critical recommendation
tasks.

7.2 Addressing parameter drift across versions

Since the underlying information network contains user behaviors
(e.g, follow or engagement actions) that evolve over time, TWHIN
embeddings must be updated regularly to accurately represent
entities. However, in doing so, we do not want the embeddings
to drift too much from their current values, since we do want to
simultaneously re-train all the downstream models.

Naively re-training the TWHIN embedding will lead to very
large drifts caused by random initialization and stochasticity of
optimization. In response, we have tried two natural approaches to
achieving stability for embeddings: warm start and regularization.
In the warm start approach, we simply initialize embeddings in the
new version with the prior version’s values. When we encounter
new vertices that weren’t previously seen, we either randomly
assign them vectors, or initialize the vectors according to:

1
9, = —— 0. + 0. , 5
TN ,,ZEM e ©

where 8, is the embedding vector for node v, N is the graph
neighborhood around v, and 0y, ., the relationship vector learned
between vertices v and v’.

Alternatively, adding regularization is a more principled way of
addressing this issue, allowing us to directly penalize divergence

from a past version. The simplest way is to apply L2 regulariza-
o (90 - 9{,’”“) i . Although
this method is notionally simple, it presents the disadvantage of
doubling the memory requirements, since we must also use 6P"¢?.

We evaluate these two methods in terms of (1) parameter changes
in L2 distance (2) the effect on downstream tasks. To assess parame-
ter changes in L2 distance, we first generated a TWHIN embedding
while optimizing for 30 epochs. Afterwards, we re-trained for 5
epochs, separately applying warm-starting and L2 regularization. In
Figure 4c, warm-starting is better at minimizing deviations except
in instances where the vertices have very high degree. Intuitively,
this makes sense because the high-degree nodes are able to ‘over-
whelm’ the regularizer with their loss. Even still, a maximally 0.05%
deviation is more than sufficient to fulfill our stability requirements.

tion to the previous embedding: o ‘

Metric Control Warm Start Regularizer

R@10 21.71 21.75 21.74
MRR 0.0635 0.0635 0.0638

Table 5: Performance of various parameter-drift minimiza-
tion strategies on Who to Follow task.

To evaluate the effect on downstream tasks, in Table 5, we present
a comparison on the Who to Follow task (Section 5.1). As we see
in the above results, both warm start and regularization preserve
stability in this downstream task. In practice, we have internally
chosen to update TwHIN versions using the warm start strategy
due to its space efficiency and simplicity.

8 CONCLUSION

In this work, we describe TwHIN, Twitter’s in-house joint embed-
ding of multi-type, multi-relation networks with in-total over a
billion nodes and hundreds of billions of edges. We posit that joint
embeddings of heterogeneous nodes and relations is a superior
paradigm over single relation embeddings to alleviate data sparsity
issues and improve generalizability. We demonstrate that simple,
knowledge graph embedding techniques are suitable for large-scale

TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

heterogeneous social graph embeddings due to scalability and ease
at incorporating heterogeneous relations. We deployed TwHIN at
Twitter and evaluated the learned embeddings on a multitude of
candidate generation and personalized ranking tasks. Offline and
online A/B experiments demonstrate substantial improvements
demonstrating the generality and utility of TWHIN embeddings. Fi-
nally, we detail many “tricks-of-the-trade” to effectively implement,
deploy, and leverage large scale heterogeneous graph embeddings
for many latency-critical recommendation and prediction tasks.

REFERENCES

(1]
(2]

(]
[10]
(1]
[12]

(13

[14]

[15

[16]

[17

(18

[19]
[20]
[21]

[22

[23]

[24]

[25]
[26]

[27]

[28]

[29]

A. Bordes, N. Usunier, A. Garcia-Duran,] Weston, and O. Yakhnenko. 2013.
Translating embeddings for modeling multi-relational data. NeurIPS 26 (2013).
H. Cai, V. Zheng, and K. Chang. 2018. A comprehensive survey of graph embed-
ding: Problems, techniques, and applications. TKDE 30, 9 (2018), 1616-1637.

S. Cao, W. Lu, and Q. Xu. 2015. Grarep: Learning graph representations with
global structural information. In CIKM. 891-900.

S. Cao, W. Ly, and Q. Xu. 2016. Deep neural networks for learning graph repre-
sentations. In AAAL

S. Chang, W. Han, J. Tang, G. Qi, C. Aggarwal, and T. Huang. 2015. Heterogeneous
network embedding via deep architectures. In SIGKDD. 119-128.

T. Chen and Y. Sun. 2017. Task-guided and path-augmented heterogeneous
network embedding for author identification. In WSDM. 295-304.

H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,
G. Corrado, W. Chai, M. Ispir, et al. 2016. Wide & deep learning for recommender
systems. In DLRS. 7-10.

P. Covington, J. Adams, and E. Sargin. 2016. Deep neural networks for youtube
recommendations. In RecSys. 191-198.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805 (2018).
Y. Dong, N. Chawla, and A. Swami. 2017. metapath2vec: Scalable representation
learning for heterogeneous networks. In SIGKDD. 135-144.

J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive subgradient methods for online
learning and stochastic optimization. JMLR 12, 7 (2011).

Ahmed El-Kishky, Thomas Markovich, Kenny Leung, Frank Portman, Aria
Haghighi, and Ying Xiao. 2022. kNN-Embed: Locally Smoothed Embedding
Mixtures For Multi-interest Candidate Retrieval. arXiv preprint arXiv:2205.06205
(2022).

W. Feng and J. Wang. 2012. Incorporating heterogeneous information for person-
alized tag recommendation in social tagging systems. In SIGKDD. 1276-1284.
Y. Goldberg and O. Levy. 2014. word2vec Explained: deriving Mikolov et al’s
negative-sampling word-embedding method. arXiv:1402.3722 (2014).

P. Goyal and E. Ferrara. 2018. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems 151 (2018), 78-94.

M. Grbovic and H. Cheng. 2018. Real-time personalization using embeddings for
search ranking at airbnb. In SIGKDD. 311-320.

A. Grover and J. Leskovec. 2016. node2vec: Scalable feature learning for networks.
In SIGKDD. 855-864.

P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. 2013. Wtf: The who
to follow service at twitter. In WWW. 505-514.

P. Hoff, A. Raftery, and M. Handcock. 2002. Latent space approaches to social
network analysis. JASA 97, 460 (2002), 1090-1098.

H. Jegou, M. Douze, and C. Schmid. 2010. Product quantization for nearest
neighbor search. IEEE TPAMI 33, 1 (2010), 117-128.

J. Johnson, Ma. Douze, and H. Jégou. 2017. Billion-scale similarity search with
GPUs. arXiv preprint arXiv:1702.08734 (2017).

Ad. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich.
2019. Pytorch-biggraph: A large-scale graph embedding system. arXiv preprint
arXiv:1903.12287 (2019).

Y. Lin, Z.n Liu, M. Sun, Y. Liu, and X. Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In AAAL

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692 (2019).

C. Luo, W. Pang, Z. Wang, and C. Lin. 2014. Hete-cf: Social-based collaborative
filtering recommendation using heterogeneous relations. In ICDM. 917-922.

Y. Malkov and D. Yashunin. 2018. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. PAMI (2018).
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed
representations of words and phrases and their compositionality. NeurIPS 26
(2013).

D. Nguyen, T. Vu, and A. Nguyen. 2020. BERTweet: A pre-trained language

model for English Tweets. arXiv preprint arXiv:2005.10200 (2020).
C. O’Brien, K. Liu, J. Neufeld, R. Barreto, and J. Hunt. 2021. An Analysis Of Entire

Space Multi-Task Models For Post-Click Conversion Prediction. In RecSys.

(30]

(31]

"
&,

"~
&

S
&

[59]

[60]

[61

[62

KDD ’22, August 14-18, 2022, Washington, DC, USA

S. Okura, Y. Tagami, S. Ono, and A. Tajima. 2017. Embedding-based news recom-
mendation for millions of users. In SIGKDD. 1933-1942.

A. Pal, C. Eksombatchai, Y. Zhou, B. Zhao, C. Rosenberg, and J. Leskovec. 2020.
PinnerSage: multi-modal user embedding framework for recommendations at
pinterest. In SIGKDD. 2311-2320.

B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. Deepwalk: Online learning of social
representations. In SIGKDD. 701-710.

J. Pougué-Biyong, A. Gupta, A Haghighi, and A El-Kishky. 2022. Learning Stance
Embeddings from Signed Social Graphs. arXiv:2201.11675 [cs.SI]

D. Sculley. 2010. Web-scale k-means clustering. In WWW. 1177-1178.

C. Shi, X. Kong, Y. Huang, Y. Philip, and B. Wu. 2014. Hetesim: A general
framework for relevance measure in heterogeneous networks. TKDE (2014).

C. Shi, Y. Li, J. Zhang, Y. Sun, and Y. Philip. 2016. A survey of heterogeneous
information network analysis. TKDE 29, 1 (2016), 17-37.

C. Shi, Z. Zhang, P. Luo, P. Yu, Y. Yue, and B. Wu. 2015. Semantic path based
personalized recommendation on weighted heterogeneous information networks.
In CIKM. 453-462.

Y. Sun and J. Han. 2013. Mining heterogeneous information networks: a structural
analysis approach. Acm Sigkdd Explorations Newsletter (2013).

Y. Sun, J. Han, X. Yan, P. Yu, and T. Wu. 2011. Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. VLDB (2011).

J. Tang, M. Qu, and Q. Mei. 2015. Pte: Predictive text embedding through large-
scale heterogeneous text networks. In SIGKDD. 1165-1174.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. 2015. Line: Large-scale
information network embedding. In WWW. 1067-1077.

T. Trouillon, J Welbl, S. Riedel, E. Gaussier, and G. Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML. PMLR, 2071-2080.

C.Tu, W. Zhang, Z. Liu, M. Sun, et al. 2016. Max-margin deepwalk: Discriminative
learning of network representation.. In IJCAI Vol. 2016. 3889-3895.

C. Wang, Y. Song, A. El-Kishky, D. Roth, M. Zhang, and J. Han. 2015. Incorpo-
rating world knowledge to document clustering via heterogeneous information
networks. In SIGKDD. 1215-1224.

D. Wang, P. Cui, and W. Zhu. 2016. Structural deep network embedding. In
SIGKDD. 1225-1234.

Q. Wang, Z. Mao, B. Wang, and L. Guo. 2017. Knowledge graph embedding: A
survey of approaches and applications. TKDE 29, 12 (2017), 2724-2743.

R. Wang, B Fu, G Fu, and M. Wang. 2017. Deep & cross network for ad click
predictions. In ADKDD. 1-7.

R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin, L. Hong, and E. Chi. 2021. DCN V2:
Improved Deep & Cross Network and Practical Lessons for Web-scale Learning
to Rank Systems. In WWW. 1785-1797.

Z. Wang, J. Zhang, J. Feng, and Z. Chen. 2014. Knowledge graph embedding by
translating on hyperplanes. In AAAI Vol. 28.

X. Wei, L. Xu, B. Cao, and P. Yu. 2017. Cross view link prediction by learning
noise-resilient representation consensus. In WWW. 1611-1619.

D. Xin, A. El-Kishky, D. Liao, B. Norick, and]J. Han. 2018. Active learning on
heterogeneous information networks: A multi-armed bandit approach. In ICDM.
L. Xu, X. Wei, J. Cao, and P. Yu. 2017. Embedding of embedding (EOE) joint
embedding for coupled heterogeneous networks. In WSDM. 741-749.

S. Yan, D. Xu, B. Zhang, and H. Zhang. 2005. Graph embedding: A general
framework for dimensionality reduction. In CVPR, Vol. 2. IEEE, 830-837.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang. 2015. Network representation
learning with rich text information. In IJCAL

R. Ying, R. He, K. Chen, P. Eksombatchai, W. Hamilton, and J. Leskovec. 2018.
Graph convolutional neural networks for web-scale recommender systems. In
SIGKDD. 974-983.

Ji. You, Y. Wang, A. Pal, P. Eksombatchai, C. Rosenburg, and J. Leskovec. 2019. Hi-
erarchical temporal convolutional networks for dynamic recommender systems.
In WWW. 2236-2246.

X. Yu, X. Ren, Q. Gu, Y. Sun, and J. Han. 2013. Collaborative filtering with entity
similarity regularization in heterogeneous information networks. IJCAI HINA 27
(2013).

X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han. 2014.
Personalized entity recommendation: A heterogeneous information network
approach. In WSDM. 283-292.

X. Yu, X. Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu, B. Norick, and J. Han. 2013.
Recommendation in heterogeneous information networks with implicit user
feedback. In RecSys. 347-350.

D. Zhang, J. Yin, X. Zhu, and C. Zhang. 2016. Homophily, structure, and content
augmented network representation learning. In ICDM. IEEE, 609-618.

X. Zhao, R. Louca, D. Hu, and L. Hong. 2018. Learning item-interaction embed-
dings for user recommendations. arXiv preprint arXiv:1812.04407 (2018).

D. Zheng, X. Song, C. Ma, Z. Tan, Z. Ye, J. Dong, H. Xiong, Z. Zhang, and G.
Karypis. 2020. DGL-KE: Training Knowledge Graph Embeddings at Scale. In
SIGIR. 739-748.

Z.Zhu, S. Xu, J. Tang, and M. Qu. 2019. Graphvite: A high-performance cpu-gpu
hybrid system for node embedding. In WWW. 2494-2504.

https://arxiv.org/abs/2201.11675

	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	4 TwHIN embeddings
	4.1 HIN embedding approach
	4.2 Computational considerations
	4.3 HIN at Twitter: TwHIN
	4.4 Inductive multi-modal embeddings

	5 TwHIN for recommendation
	5.1 TwHIN candidate generation
	5.2 TwHIN for ranking and prediction

	6 Experiments & results
	6.1 Candidate generation
	6.2 Recommendation and prediction

	7 Practical Considerations
	7.1 Compression for low latency
	7.2 Addressing parameter drift across versions

	8 Conclusion
	References

