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ABSTRACT
With the surging development of information technology, to pro-
vide a high quality of network services, there are increasing de-
mands and challenges for network analysis. As all data on the Inter-
net are encapsulated and transferred by network packets, packets
are widely used for various network tra�c analysis tasks, from
application identi�cation to intrusion detection. Considering the
choice of features and how to represent them can greatly a�ect
the performance of downstream tasks, it is critical to learn high-
quality packet representations. In addition, existing packet-level
works ignore packet representations but focus on trying to get good
performance with independent analysis of di�erent classi�cation
tasks. In the real world, although a packet may have di�erent class
labels for di�erent tasks, the packet representation learned from
one task can also help understand its complex packet patterns in
other tasks, while existing works omit to leverage them.

Taking advantage of this potential, in this work, we propose a
novel framework to tackle the problem of packet representation
learning for various tra�c classi�cation tasks. We learn packet
representation, preserving both semantic and byte patterns of each
packet, and utilize contrastive loss with a sample selector to opti-
mize the learned representations so that similar packets are closer
in the latent semantic space. In addition, the representations are
further jointly optimized by class labels of multiple tasks with loss
of reconstructed representations and of class probabilities. Evalu-
ations demonstrate that the learned packet representation of our
proposed framework can outperform the state-of-the-art baseline
methods on extensive popular downstream classi�cation tasks by a
wide margin in both the close-world and open-world scenario.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Networks → Network properties.
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1 INTRODUCTION
With the surging development of information technology, even in
the local area network of an Internet company (e.g., in the data
center, o�ce Intranet, et. al.), there can be various computers, IoT
devices, routers, and even their own domain name systems. To pro-
vide high-quality network services, there are increasing demands
and challenges for tra�c analysis. Tra�c classi�cation, character-
izing network tra�c with appropriate class labels, is important to
many analysis demands, such as quality of service (QoS) control, se-
curity control, pricing, resource usage planning, and access control
[19]. As all data on the Internet are encapsulated and transferred by
network packets, packets are the fundamental elements to o�er rich
information for these downstream tasks. It is important to learn
packet representations to capture latent information gleaned from
datasets of diverse classi�cation tasks, which will also help further
studies on network tra�cs, such as zero-day attack detection [15].

Existing works learn the representations independently for dif-
ferent tra�c data formats (e.g., plaintext, encrypted, compressed)
and di�erent classi�cation tasks (e.g., intrusion detection, applica-
tion classi�cation). We roughly categorize them into feature-based
and byte-based ones. For feature-based models, Ashfaq et al. [2]
construct packet representations with header features and utilize
unlabeled samples to improve the performance of intrusion detec-
tion. Hypolite et al. [8] utilize the deep packet inspection (DPI) with
both header and payload information to match the speci�c regex of
each class. However, these works are only applicable to plaintext
tra�c and require extra cost and labor for feature engineering. To
tackle these problems, recent byte-based methods have aroused
great attention. Lotfollahi et al. [14] and Wang et al. [25] make the
initial trials to learn packet representations with the hex number
of each byte, and utilize CNN for application classi�cation. Casino
et al. [4] utilize hex bytes of each packet, and further distinguish
between encrypted and compressed tra�c. As there are always
new packet patterns in the real world (i.e., open-world problem),
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<IP  version=4 ihl=5 tos=0x8 len=1360 id=14677 flags=DF 
frag=0 ttl=37 proto=tcp chksum=0x4928 src=204.236.238.164 
dst=10.8.8.138 |<TCP  sport=1639 dport=41005 
seq=4157736792 ack=86048704 dataofs=8 reserved=0 flags=A 
window=235 chksum=0x255f urgptr=0 options=[('NOP', None), 
('NOP', None), ('Timestamp', (447078848, 2304838))] |<Raw  
load='\xc4\x95\x94\xd8\x02\xaa\xa62\xcf\xf4\xae\x0c\x9c\x9a\
x97\xeb\x06\xe8\x1f\x98\x7f\x13\x9e\x0f\x8d\xc7\xf0\x0f\xe9\x
ca\x82\xbe\xa7\x81\x07\xe7\xc9\x15\x85\x0e\xb5\x85\xca\xc8
\xdf\xd5\x1a\xd4\x92\x8a\xd5\x16\xf7\x14\xa4\xeb\x92\xf9\xc
a\xf1\xb9\xd8\x80\xad\x1f\xa7\xb7…’|>>>

Figure 1: A packet example, where the raw payload data are
packed with TCP and IP headers at the corresponding proto-
col layers. It contains both unencrypted and encrypted data,
and has class labels like “benign”, “FTP”, “�le transfer” and
“VPN” for di�erent classi�cation tasks.

Zhang et al. [28] add a step of �ltering unknown packets after the
hex byte representation learning for application classi�cation.

Despite the remarkable progress made towards tra�c classi�ca-
tion, we argue that although each packet has di�erent characteris-
tics (e.g., class labels) from the perspectives of di�erent tasks, the
packet representation learned from one task can help understand
its complex packet patterns in the other tasks, while existing works
ignore to leverage them. For example, as illustrated in Figure 1, a
“benign” packet of “�le transfer” tra�c by “ FTP” through the “VPN”
connection has four labels for classi�cation tasks of “intrusion de-
tection”, “application classi�cation”, “service identi�cation” and
“VPN detection”, respectively. These labels of diverse classi�cation
tasks will help learn the complex packet patterns and even help
�nd new packet patterns, which will not only bene�t the existing
tasks but also the further studies on tra�c. As such, in this work,
we propose to investigate the novel problem of learning packet
representations for diverse tra�c classi�cation tasks.

However, learning packet representations for diverse classi�-
cation tasks remains non-trivial, mainly owing to the following
reasons: (1) From the perspectives of learning packet representa-
tions, it is di�cult to generally encode di�erent types of packets. As
illustrated in Figure 1, packet data are encapsulated at each protocol
layer from down to top [12]. With di�erent protocols, the packets
can be in di�erent header structures, packet lengths, and data for-
mats. (2) From the perspectives of diverse tra�c classi�cation tasks,
it is hard to utilize the uniformed packet representations to adapt
to di�erent classes and tasks. Even for the same packet, di�erent
classes and di�erent tasks pay attention to di�erent parts of its
representation. For example, for protocol identi�cation, header in-
formation will make more contributions; while for attack detection,
header information may be more important for land attacks while
payload information may be more vital for XSS attacks.

To address the aforementioned challenges, in this work we pro-
pose PacRep, a novel framework to learn Packet Representations
for tra�c classi�cation. PacRep is composed of two modules, i.e.,
a packet encoding module and a joint tuning module. In the packet
encoding module, we regard each packet as a text with tokens, and
learn an e�ective encoder regularized from contrastive loss of se-
lected positive and negative samples. In the joint tuning module,
we optimize the model by the adaptive hidden representations and
the predicted probability for each class. Also, since packets can be

classi�ed into only one class for each task, to keep the e�ective-
ness among diverse downstream classi�cation tasks, we also jointly
regularize the predicted probability for multiple tasks, which will
also further optimize the encoder in turn. To summarize, our main
contributions are three-fold:

• Problem: To the best of our knowledge, we are the �rst to
investigate the novel problem of general packet representa-
tion learning for diverse tra�c classi�cation tasks with both
encrypted and unencrypted information.

• Algorithm: We propose a novel PacRep framework, which
learns e�ective packet representations optimized by con-
trastive loss from positive and negative samples, and further
tuned by labels from multiple classes and tasks.

• Evaluation: We perform extensive experiments to demon-
strate the e�ectiveness of our PacRep on six downstream
tasks, showing that PacRep outperforms state-of-the-art
baselines on all these classi�cation tasks by a wide margin.

2 RELATEDWORK
In this section, we brie�y review prior works on tra�c classi�cation
and contrastive representation learning methods.

2.1 Tra�c Classi�cation
Tra�c classi�cation is important to many applications [19], and
recent years have witnessed increasing deep learning approaches
[4, 14–20, 27, 28, 30].We roughly categorize them into feature-based
and byte-based ones.

For the feature-based approaches, they extract representative
features as input data for the models [15, 16, 18, 20, 27, 30]. As fea-
tures of individual packets are limited, most feature-based models
collect statistical features of multiple packets from perspectives of
�ows, sessions and time series. For example, Shen et al. [20] learn a
fusion feature selection method to construct a strong classi�er for
encrypted �ows of decentralized applications. Also, as classi�cation
is a traditional machine learning task, some general classi�cation
models can be directly used for tra�c classi�cation based on fea-
tures [18, 27]. For example, Pang et al. [18] leverage a few labels
to learn anomaly scores based on a feature representation learner.
However, except for the di�culty of feature engineering, for net-
work tra�c, the statistic features of nodes, time series, �ows and
sessions are relatively hard to obtain, and the tra�c encryption
further increases the di�culty of �nding representative features.

For the byte-based approaches, these works directly use bytes in
each raw packet, thus do not need complicated feature processing
[4, 14, 17, 28]. However, most of them translate bytes into �xed
lengths of hex numbers, treating them as a pixel in an image [1, 9],
thus the rich semantic information (especially the plaintext of the
unencrypted parts) is wasted. For example, Lotfollahi et al. [14]
identify di�erent application tra�c by CNN with packet contents
in hexadecimal format. To better adapt to the real world with new
classes, Zhang et al. [28] add a step of �ltering unknown packets
before the application classi�cation. Specially, some of them notice
the similarity of packets and texts, and utilize natural language
processing techniques to learn the semantic meaning of the hex
data. Min et al. [17] make an initial trial to treat each hex as a token
and utilize the textCNN [11] to learn token embeddings. However,
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it can make limited improvement with a small vocabulary space of
the hex number.

Most of these feature-based and byte-based approaches are trained
to achieve good performance for a speci�c task. Huang et al. [7]
notice the mutual improvement of di�erent tasks, and train a multi-
task learning model to obtain labels for these tasks. However, it is
still limited to speci�c multiple tasks. Although we can produce
labels like multi-task learning, we have two main di�erences: (1)
Our target is to learn an encoder for better packet representation.
The tuning components for these tasks are only used to help learn
a more accurate representation encoder; (2) With the well-trained
encoder, we can train di�erent tuning components for new tasks
and new labels, and does not need to be limited by the tasks we
used for training. These can not be accomplished by multi-task
learning. It is still challenging to learn packet representations for
these diverse downstream tasks.

2.2 Contrastive Representation Learning
Contrastive representation learning learns discriminative repre-
sentations by contrastive positive and negative samples, and has
been successfully applied for computer vision (CV) and natural
language processing (NLP) in recent years [24]. The high-level idea
is to encourage the model to maximize the mutual information of
positive instance pairs so that two views or augmentations of the
similar samples are close to the source in latent semantic space [13].
For comparison, it is important to get suitable positive and nega-
tive samples. For example, there are many works that learn image
representations with generated negative samples using a multiple-
state augmentation pipeline, consisting of color jitter, random �op,
and cropping [3]. Zhu et al. [31] learn graph representations with
designed augmentation schemes of selecting positive samples from
both topological and semantic perspectives. Kang et al. [10] learn
balanced feature spaces for self-supervised learning by randomly
selecting 𝑘 instances with the same labels as the positive samples.

However, for network data, there are di�erent criteria of im-
portance for di�erent tra�c tasks for both positive and negative
samples. The uniformed strategy of sample selection can not adapt
to the diverse downstream tasks. For example, even in the same
class, there are di�erent packet patterns (e.g., there are di�erent
kinds of attacks in the abnormal class in malware detection), we
can not simply randomly utilize 𝑘 samples with the same class as
positive samples. Thus, except for the data format, the existing
strategies of sample selection can not work well for network data.

3 PROBLEM DEFINITION
In this paper, we aim to learn high-quality packet representations
for downstream tasks. In detail, our objective is to learn a packet
encoder that can be used to produce packet representations and
hidden representations of input tokens for any unknown packet,
and lay a good foundation for downstream tasks, such as application
classi�cation, intrusion detection, and malware detection.

Suppose we have a packet set A = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, where 𝑎𝑖 is
the 𝑖-th packet and |A| = 𝑛. As shown in Figure 1, in each packet,
there are headers and payloads information, where both can be
encrypted or unencrypted. The unencrypted is retained as text
and the encrypted is kept as hexadecimal bytes. To utilize both the

encrypted and unencrypted data, we represent each packet 𝑎𝑖 as
an input sequence x𝑖 = [𝑤𝑖,1,𝑤𝑖,2, . . . ], where𝑤𝑖, 𝑗 is 𝑗-th token in
x𝑖 . For the unencrypted part, the plaintext is split by the tokenizer
to generate tokens. Also, for the encrypted part, the hexadecimal
bytes split by the same tokenizer are treated as tokens. Since packet
length is un�xed, the vector x𝑖 has un�xed numbers of tokens.

What’s more, each packet 𝑎𝑖 has its label vector y𝑖 . Specially,
in di�erent tasks, each packet has di�erent labels. With labels for
𝑆 downstream tasks, we have y𝑖 ∈ R𝑆 for each packet x𝑖 . For
each task, the numbers of classes are un�xed, and we de�ne y𝑖, 𝑗 ∈
{1, 2, . . . , |T𝑗 |}, where the classi�cation task 𝑗 has class set T𝑗 and
the number of classes in this task is |T𝑗 |. Also, with limited labels,
not all tasks will be available for all packets, and we set y𝑖, 𝑗 = None
if we do not have a label for packet 𝑎𝑖 in task 𝑗 . What’s more, as
classes in the downstream tasks can be overlapped, we do not need
to separate them based on speci�c tasks, and the total number
of classes is denoted as 𝐶 = |T1 ∪ T2 ∪ · · · ∪ T𝑗 ∪ · · · ∪ T𝑆 |. In
summary, along with the packet setA, we have the input sequence
set X = {x1, x2, . . . , x𝑛}, and the label set Y = {y1, y2, . . . , y𝑛},
where the 𝑖-th packet 𝑎𝑖 has x𝑖 and y𝑖 . In addition, we denote
the latent vector of packet 𝑎𝑖 as v𝑖 ∈ R𝑑 , where 𝑑 is the hidden
dimension of packet representations. Suppose there are 𝐿 tokens in
𝑎𝑖 , the latent matrix is presented as H𝑖 ∈ R𝑑×𝐿 , and each token is
in 𝑑 dimension.

With these notations, we can formally de�ne the target of packet
representation learning as follows:

Given the input set X and the label set Y of multiple tasks, the
goal of this work is to: (1) learn a packet representation encoder
𝑓 : x𝑖 → H𝑖 , v𝑖 ; and (2) obtain accurate y𝑖 on downstream clas-
si�cation tasks by a probability function 𝑔 : H𝑖 , v𝑖 → y𝑖 .

4 PROPOSED FRAMEWORK
In this section, we will present our proposed PacRep. The overall
framework is introduced �rst.

4.1 Framework Overview
The overall architecture for the proposedmodel is shown in Figure 2.
PacRep consists of two novel modules: packet encoding module and
joint tuning module. Aiming at learning packet representations for
diverse downstream classi�cation tasks, the solution is two-fold. On
one hand, we learn the encoder to provide e�ective representations
of each packet by the packet encoding module. On the other hand,
we tune the representations to jointly adapt to each class and each
task by the joint tuning module.

For the packet encoding module, the packet data can be regarded
as a text with di�erent kinds of tokens. Given packets with their
input sequences, the transformer-style [23] encoder will produce
the latent representation, with regularization from contrastive loss
of selected positive and negative samples. For each packet 𝑎𝑖 , the
latent representation H𝑖 and v𝑖 will serve as the input to following
classes in the joint tuning module, which can also be regarded as a
pre-training procedure for downstream tasks.

For the joint tuning module, we tune the encoder for classes and
tasks, inspired by the capsule design in [26]. To tune for classi�ca-
tion, we learn the adaptive representation vector v𝑖,𝑐 for each class 𝑐
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wi,L

<latexit sha1_base64="jfXG4IHFlDJwCqw3Ef/N4UWR2ps=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgIeFOIloGbSwsIpgPSELY2+wlS/b2jt05JRz5ETYWitj6e+z8N26SKzTxwcDjvRlm5vmxFAZd99vJrayurW/kNwtb2zu7e8X9g4aJEs14nUUy0i2fGi6F4nUUKHkr1pyGvuRNf3Qz9ZuPXBsRqQccx7wb0oESgWAUrdR86qXi7G7SK5bcsjsDWSZeRkqQodYrfnX6EUtCrpBJakzbc2PsplSjYJJPCp3E8JiyER3wtqWKhtx009m5E3JilT4JIm1LIZmpvydSGhozDn3bGVIcmkVvKv7ntRMMrrqpUHGCXLH5oiCRBCMy/Z30heYM5dgSyrSwtxI2pJoytAkVbAje4svLpHFe9irli/tKqXqdxZGHIziGU/DgEqpwCzWoA4MRPMMrvDmx8+K8Ox/z1pyTzRzCHzifPypej3c=</latexit>

Hi

<latexit sha1_base64="zyXokYfVWIUo7QS8YBJPionukNk=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakosuimy4r2Ad0hpJJM21oJjMkGaEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWMdwI1k8UI1EgWC+Y3ud+74kpzWP5aGYJ8yMyljzklBgreV5EzCQIs9Z8yIfVmlN3FsDrxC1IDQq0h9UvbxTTNGLSUEG0HrhOYvyMKMOpYPOKl2qWEDolYzawVJKIaT9bZJ7jC6uMcBgr+6TBC/X3RkYirWdRYCfzjHrVy8X/vEFqwls/4zJJDZN0eShMBTYxzgvAI64YNWJmCaGK26yYTogi1NiaKrYEd/XL66R7VXcb9euHRq15V9RRhjM4h0tw4Qaa0II2dIBCAs/wCm8oRS/oHX0sR0uo2DmFP0CfPziIkdA=</latexit>

…

…

x1

<latexit sha1_base64="3ARUwaDoeo/BHshdXS9eQQ0sqmg=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakosuiG5cV7AM6Q8mkmTY0kxmSjFiG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtMbnO/+8iU5rF8MNOE+REZSR5ySoyVPC8iZhyE2dNs4A6qNafuzIFXiVuQGhRoDapf3jCmacSkoYJo3XedxPgZUYZTwWYVL9UsIXRCRqxvqSQR0342zzzDZ1YZ4jBW9kmD5+rvjYxEWk+jwE7mGfWyl4v/ef3UhNd+xmWSGibp4lCYCmxinBeAh1wxasTUEkIVt1kxHRNFqLE1VWwJ7vKXV0nnou426pf3jVrzpqijDCdwCufgwhU04Q5a0AYKCTzDK7yhFL2gd/SxGC2hYucY/gB9/gAs+JHI</latexit>

xi

<latexit sha1_base64="QfxBs7YUn3UYheCnnNz9eA3n+io=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakosuiG5cV7AM6Q8mkmTY0kxmSjFiG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtMbnO/+8iU5rF8MNOE+REZSR5ySoyVPC8iZhyE2dNswAfVmlN35sCrxC1IDQq0BtUvbxjTNGLSUEG07rtOYvyMKMOpYLOKl2qWEDohI9a3VJKIaT+bZ57hM6sMcRgr+6TBc/X3RkYiradRYCfzjHrZy8X/vH5qwms/4zJJDZN0cShMBTYxzgvAQ64YNWJqCaGK26yYjoki1NiaKrYEd/nLq6RzUXcb9cv7Rq15U9RRhhM4hXNw4QqacActaAOFBJ7hFd5Qil7QO/pYjJZQsXMMf4A+fwCB2JIA</latexit>

xn

<latexit sha1_base64="KGNgqJ06CdmAsIt3fn8CPbfEXH4=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakosuiG5cV7AM6Q8mkmTY0kxmSjFiG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtMbnO/+8iU5rF8MNOE+REZSR5ySoyVPC8iZhyE2dNsIAfVmlN35sCrxC1IDQq0BtUvbxjTNGLSUEG07rtOYvyMKMOpYLOKl2qWEDohI9a3VJKIaT+bZ57hM6sMcRgr+6TBc/X3RkYiradRYCfzjHrZy8X/vH5qwms/4zJJDZN0cShMBTYxzgvAQ64YNWJqCaGK26yYjoki1NiaKrYEd/nLq6RzUXcb9cv7Rq15U9RRhhM4hXNw4QqacActaAOFBJ7hFd5Qil7QO/pYjJZQsXMMf4A+fwCJbJIF</latexit>

Positive 
Samples

v�
i

<latexit sha1_base64="VVTrbC3wW6CgaQq2/7N3247M4c8=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgxpJIRZdFNy4r2Ae0aZlMJ+3QySTMTCol9D/cuFDErf/izr9xkmahrQcGDufcyz1zvIgzpW372yqsrW9sbhW3Szu7e/sH5cOjlgpjSWiThDyUHQ8rypmgTc00p51IUhx4nLa9yV3qt6dUKhaKRz2LqBvgkWA+I1gbqd8LsB57fjKdD1j/YlCu2FU7A1olTk4qkKMxKH/1hiGJAyo04ViprmNH2k2w1IxwOi/1YkUjTCZ4RLuGChxQ5SZZ6jk6M8oQ+aE0T2iUqb83EhwoNQs8M5mmVMteKv7ndWPt37gJE1GsqSCLQ37MkQ5RWgEaMkmJ5jNDMJHMZEVkjCUm2hRVMiU4y19eJa3LqlOrXj3UKvXbvI4inMApnIMD11CHe2hAEwhIeIZXeLOerBfr3fpYjBasfOcY/sD6/AGl4ZKd</latexit>

Negative 
Samples

Input
Packets

<IP version=4 ihl=5 tos=0x0 
len=489 id=27758 flags=DF 
frag=0 ttl=64 proto=tcp 
chksum=0x8055 src=… dst=… |
<TCP sport=… dport=… 
seq=210457347 ack=610530779 
dataofs=8 reserved=0 flags=PA 
window=253 chksum=0xc4e2 
urgptr=0 options=[('NOP', None), 
('NOP', None), ('Timestamp', 
(140576, 4100209386))] |<Raw 
load='POST' HTTP/1.1 … 
00111001010001111000 …' |>>>

vi,2

<latexit sha1_base64="5qyp32oyNxl6AAD+gTQj6aw9dvY=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgQkpSKrosunFZwT6gDWEynbRDJ5MwMymU0D9x40IRt/6JO//GSZuFth4YOJxzL/fMCRLOlHacb6u0sbm1vVPereztHxwe2ccnHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk/vc706pVCwWT3qWUC/CI8FCRrA2km/bgwjrcRBm07mfsav63LerTs1ZAK0TtyBVKNDy7a/BMCZpRIUmHCvVd51EexmWmhFO55VBqmiCyQSPaN9QgSOqvGyRfI4ujDJEYSzNExot1N8bGY6UmkWBmcxzqlUvF//z+qkOb72MiSTVVJDloTDlSMcorwENmaRE85khmEhmsiIyxhITbcqqmBLc1S+vk0695jZq14+NavOuqKMMZ3AOl+DCDTThAVrQBgJTeIZXeLMy68V6tz6WoyWr2DmFP7A+fwCnNJOt</latexit>

vi,3

<latexit sha1_base64="LGthcb9je7BU/F0OAQNwZh4Plgg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgQkqiFV0W3bisYB/QhjKZTtqhk0mYmRRKyJ+4caGIW//EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VaW9/Y3CpvV3Z29/YP7MOjtooSSWiLRDySXR8rypmgLc00p91YUhz6nHb8yX3ud6ZUKhaJJz2LqRfikWABI1gbaWDb/RDrsR+k02yQsourbGBXnZozB1olbkGqUKA5sL/6w4gkIRWacKxUz3Vi7aVYakY4zSr9RNEYkwke0Z6hAodUeek8eYbOjDJEQSTNExrN1d8bKQ6VmoW+mcxzqmUvF//zeokObr2UiTjRVJDFoSDhSEcorwENmaRE85khmEhmsiIyxhITbcqqmBLc5S+vkvZlza3Xrh/r1cZdUUcZTuAUzsGFG2jAAzShBQSm8Ayv8Gal1ov1bn0sRktWsXMMf2B9/gCouZOu</latexit>

vi,4

<latexit sha1_base64="ZDlreG5yyWAuA+8DmrjROnA72LE=">AAAB+XicbVBNS8NAFHypX7V+RT16WSyCBymJVPRY9OKxgrWFNoTNdtMu3WzC7qZQQv6JFw+KePWfePPfuGlz0NaBhWHmPd7sBAlnSjvOt1VZW9/Y3Kpu13Z29/YP7MOjJxWnktAOiXksewFWlDNBO5ppTnuJpDgKOO0Gk7vC706pVCwWj3qWUC/CI8FCRrA2km/bgwjrcRBm09zP2EUz9+2603DmQKvELUkdSrR9+2swjEkaUaEJx0r1XSfRXoalZoTTvDZIFU0wmeAR7RsqcESVl82T5+jMKEMUxtI8odFc/b2R4UipWRSYySKnWvYK8T+vn+rwxsuYSFJNBVkcClOOdIyKGtCQSUo0nxmCiWQmKyJjLDHRpqyaKcFd/vIqebpsuM3G1UOz3rot66jCCZzCObhwDS24hzZ0gMAUnuEV3qzMerHerY/FaMUqd47hD6zPH6o+k68=</latexit>

vi,C

<latexit sha1_base64="82DNpOB+C54DhUOdx5fKx0ueIDY=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgQkoiFV0Wu3FZwT6gDWEynbRDJ5MwMymU0D9x40IRt/6JO//GSZuFth4YOJxzL/fMCRLOlHacb6u0sbm1vVPereztHxwe2ccnHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk2bud6dUKhaLJz1LqBfhkWAhI1gbybftQYT1OAiz6dzP2FVz7ttVp+YsgNaJW5AqFGj59tdgGJM0okITjpXqu06ivQxLzQin88ogVTTBZIJHtG+owBFVXrZIPkcXRhmiMJbmCY0W6u+NDEdKzaLATOY51aqXi/95/VSHd17GRJJqKsjyUJhypGOU14CGTFKi+cwQTCQzWREZY4mJNmVVTAnu6pfXSee65tZrN4/1auO+qKMMZ3AOl+DCLTTgAVrQBgJTeIZXeLMy68V6tz6WoyWr2DmFP7A+fwDBCZO+</latexit>

vi,c

<latexit sha1_base64="9qAABYNdVzDihQNXdkR2UzymcCc=">AAAB+XicbVBNS8NAFHypX7V+RT16WSyCBymJVPRY9OKxgrWFNoTNdtMu3WzC7qZQQv6JFw+KePWfePPfuGlz0NaBhWHmPd7sBAlnSjvOt1VZW9/Y3Kpu13Z29/YP7MOjJxWnktAOiXksewFWlDNBO5ppTnuJpDgKOO0Gk7vC706pVCwWj3qWUC/CI8FCRrA2km/bgwjrcRBm09zP2AXJfbvuNJw50CpxS1KHEm3f/hoMY5JGVGjCsVJ910m0l2GpGeE0rw1SRRNMJnhE+4YKHFHlZfPkOTozyhCFsTRPaDRXf29kOFJqFgVmssiplr1C/M/rpzq88TImklRTQRaHwpQjHaOiBjRkkhLNZ4ZgIpnJisgYS0y0KatmSnCXv7xKni4bbrNx9dCst27LOqpwAqdwDi5cQwvuoQ0dIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB/Gpk94=</latexit>

pi,1

<latexit sha1_base64="6DzOD6xsY4xvp0Xxskq7oUpc9UI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqeix6MVjBfsB7VKyabYNzSYhyQpl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzIsWZsb7/7RXW1jc2t4rbpZ3dvf2D8uFRy8hUE9okkkvdibChnAnatMxy2lGa4iTitB2N72Z++4lqw6R4tBNFwwQPBYsZwdZJbdXP2EUw7ZcrftWfA62SICcVyNHol796A0nShApLODamG/jKhhnWlhFOp6VeaqjCZIyHtOuowAk1YTY/d4rOnDJAsdSuhEVz9fdEhhNjJknkOhNsR2bZm4n/ed3UxjdhxoRKLRVksShOObISzX5HA6YpsXziCCaauVsRGWGNiXUJlVwIwfLLq6R1WQ1q1auHWqV+m8dRhBM4hXMI4BrqcA8NaAKBMTzDK7x5ynvx3r2PRWvBy2eO4Q+8zx/2go9V</latexit>

pi,2

<latexit sha1_base64="EMOyzt52UT1jg8AR2pGxrjnejdw=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBE8SNktFT0WvXisYD+gXUo2zbah2WxIskJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8UAlurOd9o7X1jc2t7cJOcXdv/+CwdHTcMkmqKWvSRCS6ExLDBJesabkVrKM0I3EoWDsc38389hPThify0U4UC2IylDzilFgntVU/45fVab9U9ireHHiV+DkpQ45Gv/TVGyQ0jZm0VBBjur6nbJARbTkVbFrspYYpQsdkyLqOShIzE2Tzc6f43CkDHCXalbR4rv6eyEhszCQOXWdM7MgsezPxP6+b2ugmyLhUqWWSLhZFqcA2wbPf8YBrRq2YOEKo5u5WTEdEE2pdQkUXgr/88ippVSt+rXL1UCvXb/M4CnAKZ3ABPlxDHe6hAU2gMIZneIU3pNALekcfi9Y1lM+cwB+gzx/4B49W</latexit>

pi,3

<latexit sha1_base64="WFPCKx8vnMcbnXd0y/jzN04c/Lk=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBE8SNnVih6LXjxWsB/QLiWbZtvQbDYkWaEs/RFePCji1d/jzX9j2u5BWx8MPN6bYWZeqAQ31vO+0crq2vrGZmGruL2zu7dfOjhsmiTVlDVoIhLdDolhgkvWsNwK1laakTgUrBWO7qZ+64lpwxP5aMeKBTEZSB5xSqyTWqqX8fPLSa9U9ireDHiZ+DkpQ456r/TV7Sc0jZm0VBBjOr6nbJARbTkVbFLspoYpQkdkwDqOShIzE2Szcyf41Cl9HCXalbR4pv6eyEhszDgOXWdM7NAselPxP6+T2ugmyLhUqWWSzhdFqcA2wdPfcZ9rRq0YO0Ko5u5WTIdEE2pdQkUXgr/48jJpXlT8auXqoVqu3eZxFOAYTuAMfLiGGtxDHRpAYQTP8ApvSKEX9I4+5q0rKJ85gj9Anz/5jI9X</latexit>

pi,4

<latexit sha1_base64="tSErVUd2wDbAab+RrlWSJh9uAz4=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgQcquVPRY9OKxgv2AdinZNNuGZrMhyQpl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzQiW4sZ73jQpr6xubW8Xt0s7u3v5B+fCoZZJUU9akiUh0JySGCS5Z03IrWEdpRuJQsHY4vpv57SemDU/ko50oFsRkKHnEKbFOaqt+xi9q03654lW9OfAq8XNSgRyNfvmrN0hoGjNpqSDGdH1P2SAj2nIq2LTUSw1ThI7JkHUdlSRmJsjm507xmVMGOEq0K2nxXP09kZHYmEkcus6Y2JFZ9mbif143tdFNkHGpUsskXSyKUoFtgme/4wHXjFoxcYRQzd2tmI6IJtS6hEouBH/55VXSuqz6terVQ61Sv83jKMIJnMI5+HANdbiHBjSBwhie4RXekEIv6B19LFoLKJ85hj9Anz/7EY9Y</latexit>

pi,c

<latexit sha1_base64="Ev4qoD4fDPdaIG1kob7kp3dDYHo=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqeix6MVjBfsB7VKyabYNzSYhyQpl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzIsWZsb7/7RXW1jc2t4rbpZ3dvf2D8uFRy8hUE9okkkvdibChnAnatMxy2lGa4iTitB2N72Z++4lqw6R4tBNFwwQPBYsZwdZJbdXP2AWZ9ssVv+rPgVZJkJMK5Gj0y1+9gSRpQoUlHBvTDXxlwwxrywin01IvNVRhMsZD2nVU4ISaMJufO0VnThmgWGpXwqK5+nsiw4kxkyRynQm2I7PszcT/vG5q45swY0KllgqyWBSnHFmJZr+jAdOUWD5xBBPN3K2IjLDGxLqESi6EYPnlVdK6rAa16tVDrVK/zeMowgmcwjkEcA11uIcGNIHAGJ7hFd485b14797HorXg5TPH8Afe5w9Ci4+H</latexit>

pi,C

<latexit sha1_base64="j2707kr9+Q2G3GIt+dCZtLMu6k8=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5Rdqeix2IvHCtYW2qVk02wbmk1CkhXK0h/hxYMiXv093vw3pu0etPXBwOO9GWbmRYozY33/2yusrW9sbhW3Szu7e/sH5cOjRyNTTWiLSC51J8KGciZoyzLLaUdpipOI03Y0bsz89hPVhknxYCeKhgkeChYzgq2T2qqfsYvGtF+u+FV/DrRKgpxUIEezX/7qDSRJEyos4diYbuArG2ZYW0Y4nZZ6qaEKkzEe0q6jAifUhNn83Ck6c8oAxVK7EhbN1d8TGU6MmSSR60ywHZllbyb+53VTG9+EGRMqtVSQxaI45chKNPsdDZimxPKJI5ho5m5FZIQ1JtYlVHIhBMsvr5LHy2pQq17d1yr12zyOIpzAKZxDANdQhztoQgsIjOEZXuHNU96L9+59LFoLXj5zDH/gff4AEeuPZw==</latexit>

yi

<latexit sha1_base64="YzNRNybnOWUNjd39dDfPUluiKNk=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWZE0WXRjcsK9gGdoWTSTBuayQxJRhiG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnSATXxnG+UWVtfWNzq7pd29nd2z+oHx51dZwqyjo0FrHqB0QzwSXrGG4E6yeKkSgQrBdM7wq/98SU5rF8NFnC/IiMJQ85JcZKnhcRMwnCPJsN+bDecJrOHHiVuCVpQIn2sP7ljWKaRkwaKojWA9dJjJ8TZTgVbFbzUs0SQqdkzAaWShIx7efzzDN8ZpURDmNlnzR4rv7eyEmkdRYFdrLIqJe9QvzPG6QmvPFzLpPUMEkXh8JUYBPjogA84opRIzJLCFXcZsV0QhShxtZUsyW4y19eJd2LpnvZvHq4bLRuyzqqcAKncA4uXEML7qENHaCQwDO8whtK0Qt6Rx+L0Qoqd47hD9DnD4NfkgE=</latexit>

…

v+
i

<latexit sha1_base64="tJR9tyc/8O4urWfAOjjfb4IU3Po=">AAAB9XicbVDLSsNAFL2pr1pfVZduBosgCCWRii6LblxWsA9o0zKZTtqhk0mYmVRK6H+4caGIW//FnX/jJM1CWw8MHM65l3vmeBFnStv2t1VYW9/Y3Cpul3Z29/YPyodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG17k7vUb0+pVCwUj3oWUTfAI8F8RrA2Ur8XYD32/GQ6H7D+xaBcsat2BrRKnJxUIEdjUP7qDUMSB1RowrFSXceOtJtgqRnhdF7qxYpGmEzwiHYNFTigyk2y1HN0ZpQh8kNpntAoU39vJDhQahZ4ZjJNqZa9VPzP68bav3ETJqJYU0EWh/yYIx2itAI0ZJISzWeGYCKZyYrIGEtMtCmqZEpwlr+8SlqXVadWvXqoVeq3eR1FOIFTOAcHrqEO99CAJhCQ8Ayv8GY9WS/Wu/WxGC1Y+c4x/IH1+QOi2ZKb</latexit>

Task 1 with
Task 2 with

Task S with

… …

…

vi,1

<latexit sha1_base64="sdZ8RmF4dHfnRTLj/i8GLUGBBRw=">AAAB+XicbVBNS8NAFHypX7V+RT16WSyCBymJVPRY9OKxgrWFNoTNdtMu3WzC7qZQQv6JFw+KePWfePPfuGlz0NaBhWHmPd7sBAlnSjvOt1VZW9/Y3Kpu13Z29/YP7MOjJxWnktAOiXksewFWlDNBO5ppTnuJpDgKOO0Gk7vC706pVCwWj3qWUC/CI8FCRrA2km/bgwjrcRBm09zP2IWb+3bdaThzoFXilqQOJdq+/TUYxiSNqNCEY6X6rpNoL8NSM8JpXhukiiaYTPCI9g0VOKLKy+bJc3RmlCEKY2me0Giu/t7IcKTULArMZJFTLXuF+J/XT3V442VMJKmmgiwOhSlHOkZFDWjIJCWazwzBRDKTFZExlphoU1bNlOAuf3mVPF023Gbj6qFZb92WdVThBE7hHFy4hhbcQxs6QGAKz/AKb1ZmvVjv1sditGKVO8fwB9bnD6Wvk6w=</latexit>

ai

<latexit sha1_base64="Jn6FYpyZuS3DsL/IZYDFieJ9eXA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPu8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6tWql/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP0Aejck=</latexit>

a1

<latexit sha1_base64="CcOlsYip8mvLuZmMk549+Po4C1g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSR qj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDrL42R</latexit>

an

<latexit sha1_base64="oC5OI+xmMUNL1nf2jx9utDyfu5E=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9pX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWql/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP0eyjc4=</latexit>

… …

C
ontrastive Loss

T1

<latexit sha1_base64="HBBNez692syCebi7xypIWT8ObJo=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWakosuiG5cV+oJ2KJk004ZmMmOSKZSh3+HGhSJu/Rh3/o2ZdhbaeiBwOOde7snxY8G1cZxvVNjY3NreKe6W9vYPDo/KxydtHSWKshaNRKS6PtFMcMlahhvBurFiJPQF6/iT+8zvTJnSPJJNM4uZF5KR5AGnxFjJ64fEjCkRaXM+cAflilN1FsDrxM1JBXI0BuWv/jCiScikoYJo3XOd2HgpUYZTwealfqJZTOiEjFjPUklCpr10EXqOL6wyxEGk7JMGL9TfGykJtZ6Fvp3MQupVLxP/83qJCW69lMs4MUzS5aEgEdhEOGsAD7li1IiZJYQqbrNiOiaKUGN7KtkS3NUvr5P2VdWtVa8fa5X6XV5HEc7gHC7BhRuowwM0oAUUnuAZXuENTdELekcfy9ECyndO4Q/Q5w+9aZIW</latexit>

TS

<latexit sha1_base64="8QWudMBSEUqLlQJGbahQiztxtSo=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV+4J2KJk004ZmkjHJFMrQ73DjQhG3fow7/8ZMOwttPRA4nHMv9+QEMWfauO63U1hb39jcKm6Xdnb39g/Kh0ctLRNFaJNILlUnwJpyJmjTMMNpJ1YURwGn7WB8l/ntCVWaSdEw05j6ER4KFjKCjZX8XoTNiGCeNmb9x3654lbdOdAq8XJSgRz1fvmrN5AkiagwhGOtu54bGz/FyjDC6azUSzSNMRnjIe1aKnBEtZ/OQ8/QmVUGKJTKPmHQXP29keJI62kU2MkspF72MvE/r5uY8MZPmYgTQwVZHAoTjoxEWQNowBQlhk8twUQxmxWREVaYGNtTyZbgLX95lbQuqt5l9erhslK7zesowgmcwjl4cA01uIc6NIHAEzzDK7w5E+fFeXc+FqMFJ985hj9wPn8A8PGSOA==</latexit>

T2

<latexit sha1_base64="NSyV9y72yDsOuQqu1FN764lygsU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6LblxW6ENoh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS0TJRhLaJ5FI9BlhTzgRtG2Y4fYwVxVHAaTeY3GV+d0qVZlK0zCymfoRHgoWMYGMlvx9hMyaYp635oDYoV9yquwBaJ15OKpCjOSh/9YeSJBEVhnCsdc9zY+OnWBlGOJ2X+ommMSYTPKI9SwWOqPbTReg5urDKEIVS2ScMWqi/N1IcaT2LAjuZhdSrXib+5/USE974KRNxYqggy0NhwpGRKGsADZmixPCZJZgoZrMiMsYKE2N7KtkSvNUvr5NOrerVq1cP9UrjNq+jCGdwDpfgwTU04B6a0AYCT/AMr/DmTJ0X5935WI4WnHznFP7A+fwBvu2SFw==</latexit>

pi

<latexit sha1_base64="kwB3kXs77j3TyPzSP40KYPBX5yY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPR5v1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBW+I3Y</latexit>

select

select

vi

<latexit sha1_base64="eQaINbepmUfDSsVMoPtZRaeV2+4=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakosuiG5cV7AM6Q8mkmTY0kxmSTKEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6DhVlLVpLGLVC4hmgkvWNtwI1ksUI1EgWDeY3Od+d8qU5rF8MrOE+REZSR5ySoyVPC8iZhyE2XQ+4INqzak7C+B14hakBgVag+qXN4xpGjFpqCBa910nMX5GlOFUsHnFSzVLCJ2QEetbKknEtJ8tMs/xhVWGOIyVfdLghfp7IyOR1rMosJN5Rr3q5eJ/Xj814a2fcZmkhkm6PBSmApsY5wXgIVeMGjGzhFDFbVZMx0QRamxNFVuCu/rlddK5qruN+vVjo9a8K+oowxmcwyW4cANNeIAWtIFCAs/wCm8oRS/oHX0sR0uo2DmFP0CfP37Kkf4=</latexit>

Figure 2: Our proposed Packet Representation framework PacRep. With 𝑛 packets, 𝐶 classes and 𝑆 tasks, we take the packet
𝑎𝑖 with 𝐿 tokens as an example. We �rst learn to encode the packet into H𝑖 and v𝑖 with help of selected positive and negative
samples. To joint tune for downstream classes and tasks, we learn to predict y𝑖 with each class set T𝑗 in each task 𝑗 .

by attention mechanism, and output the corresponding probability
𝑝𝑖,𝑐 . These adaptive representations v𝑖,𝑐 and corresponding 𝑝𝑖,𝑐 will
also in turn help optimize the encoder. With 𝐶 classes and 𝑆 tasks,
although not all tasks will be active for all packets, each packet can
have several labels for the active tasks. Among the active tasks, the
packet can be classi�ed into only one class for each task.

In addition, to tune for tasks, we adjust to downstream tasks
with the probability 𝑝𝑖,𝑐 and the adaptive importance of the class
sets {T1, . . . ,T𝑆 }. During training, the objective is to maximize the
probability corresponding to the ground truth class labels, and to
minimize the probability of the rest classes for all tasks. As di�erent
tasks have di�erent convergence rates, the importance of each task
will be weighted based on the corresponding class sets. Also, in the
testing process, each packet can be classi�ed into several classes
for the corresponding active tasks, and in each task, only one class
with the highest probability will be retained.

4.2 Packet Encoding
As packet data can be regraded as text, we can utilize the natural
language processing techniques to encode packets. In essence, the
packet encoding module is composed of three key building blocks,
including an initial encoder, a sample selector, and a contrastive
loss. The details are as follows.

4.2.1 Initial Encoder. As shown in Figure 1, packet data can be
both encrypted and unencrypted. The unencrypted plaintext can
be directly separated by tokenizer to generate tokens. While for the
encrypted data, we utilize the straightforward way to translate each
byte into a hex number, and then use tokenizer to generate tokens.
However, with hex format, some tokens are just numbers, which
may make it hard to encode them into semantic latent vectors. Also,
each byte can only represent 255 kinds of tokens in the vocabulary
space (i.e., the maximal hex number is “�”), which may be not
big enough for their underlying semantic information. To learn
e�ective packet representations, it requires further analysis, and
we also conduct experiments on the token strategies in Section 5.4.

Given the input sequence x𝑖 = {𝑤𝑖,1,𝑤𝑖,2, . . . ,𝑤𝑖,𝐿} for each
packet 𝑎𝑖 with token length 𝐿, we utilize a pre-trained transformer
as the text encoder to obtain the initial representations, as shown

in the left of Figure 2. With a pre-trained transformer encoder such
as BERT [5], we can obtain

H𝑖 , v𝑖 = Encoder(x𝑖 ), (1)

where in the latent matrix H𝑖 ∈ R𝑑×𝐿 , each token is encoded in 𝑑
dimension, and the packet is encoded as latent vector v𝑖 ∈ R𝑑 .

4.2.2 Sample Selector. We utilize triplets for encoder training, to
semantically regularize it with positive and negative samples to
pull close neighbors together and push apart non-neighbors [6].
Since the sampling strategy directly a�ects the regularization per-
formance, we present the sample selector �rst.

For each packet 𝑎𝑖 , we have the positive samples D+
𝑖
and the

negative samples D−
𝑖
. For D+

𝑖
, each 𝑎 𝑗 ∈ D+

𝑖
should have the

same labels as the anchor sample 𝑎𝑖 among all the 𝑆 tasks. For each
𝑎 𝑗 ∈ D−

𝑖
, none of their labels should be the same as the anchor

sample 𝑎𝑖 among all the 𝑆 tasks. However, with insu�cient labels,
we can not ensure all packets have labels of all 𝑆 tasks, and it
might lead to mistakes with the existing labels. For example, for an
anchor packet with the label “malicious”, its positive sample may be
“malicious” from di�erent Malware. It will a�ect the accuracy of the
representation, and make bad e�ects on the corresponding tasks.
To tackle this problem, we separately regularize the encoder for
di�erent tasks. For each packet 𝑎𝑖 , we randomly select 𝑘 positive
and negative samples based on its labels in y𝑖 . For tasks satisfying
y𝑖, 𝑗 ≠ None, all packets in D+

𝑖
have the same labels as 𝑎𝑖 , and

packets in D−
𝑖
do not. Also, we do not utilize packet 𝑎𝑖 for task 𝑗

satisfying y𝑖, 𝑗 = None. In this way, we utilize the mutual impacts
of available labels while avoiding bad impacts of unavailable ones.

4.2.3 Contrastive Learning. With the selected 𝑘 positive and nega-
tive samples, we expect a well-trained encoder to capture similarity
in the latent semantic space, which can be achieved by

ℓ𝑐 =

𝑛∑
𝑖=1

max(0, 1−
𝑘∑
𝑗=1

sim(v𝑖 , v+𝑗 ))+
𝑛∑
𝑖=1

max(0, 𝜏+
𝑘∑
𝑗=1

sim(v𝑖 , v−𝑗 )),

(2)
where 𝜏 is a hyper-parameter for margin, and v+

𝑗
and v−

𝑗
represent

the packet representation of the 𝑗-th sample from the D+
𝑖
and D−

𝑖
respectively. 𝑠𝑖𝑚(v𝑖 , v+𝑗 ) is the similarity between v𝑖 and v+

𝑗
, and
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we use cosine similarity here. For simpli�cation, we set 𝑘 = 1 in
this paper.

4.3 Joint Tuning
With the optimization by the contrastive learning objective, we
semantically regularize the packet encoder to provide the represen-
tations H𝑖 and v𝑖 for each packet 𝑎𝑖 . To adapt to classes and tasks,
we further tune the encoder accordingly.

4.3.1 Tuning for Classes. Since each token has di�erent importance
for recognizing di�erent classes, directly utilizing the same v𝑖 for all
the classes cannot utilize this characteristic. To e�ectively weight
the importance of each class, we utilize the attention mechanism
[26] based on H𝑖 by

𝑧𝑖,𝑙 = h𝑖,𝑙w𝛾,𝑐 ,

𝛾𝑖,𝑙 =
𝑒𝑥𝑝 (𝑧𝑖,𝑙 )∑𝐿

𝑘=1 𝑒𝑥𝑝 (𝑧𝑖,𝑘 )
,

v𝑖,𝑐 =

𝐿∑
𝑙=1

𝛾𝑖,𝑙h𝑖,𝑙 ,

(3)

where h𝑖,𝑙 is the embedding vector of the 𝑙-th token in H𝑖 , andw𝛾,𝑐

is the projection parameter of class 𝑐 . The attention score 𝛾𝑖,𝑙 eval-
uates the importance of the 𝑙-th token. The adaptive update of the
packet representation v𝑖 for class 𝑐 is a weighted summation over
all the positions using the attention importance scores as weights.
Also, other attention mechanisms such as [5] can be utilized here.

After getting the adaptive representation vector v𝑖,𝑐 , we can get
the probability 𝑝𝑖,𝑐 for each class by the linear layer and sigmoid
activation function:

𝑝𝑖,𝑐 = 𝜎 (W𝑐v𝑖,𝑐 + b𝑐 ), (4)

r𝑖,𝑐 = 𝑝𝑖,𝑐v𝑖,𝑐 , (5)
whereW𝑐 and b𝑐 are the parameters of the sigmoid layer 𝜎 (·) for
class 𝑐 . The reconstruction representation is denoted as r𝑖,𝑐 for the
𝑖-th packet.

To evaluate the similarity of the packet representation from the
encoder and the tuned one from classes, we include the reconstruc-
tion loss ℓ𝑟 based on the Eq. (1) and Eq. (3) by

ℓ𝑟 =

𝑛∑
𝑖=1

max(0, 1 −
𝐶∑
𝑐=1

𝑞𝑖,𝑐v𝑖r𝑖,𝑐 ), (6)

where 𝑞𝑖,𝑐 serves as an indicator of the ground truth of class 𝑐 . For
any task 𝑗 , if y𝑖, 𝑗 = 𝑐 , i.e., the 𝑖-th packet can be classi�ed into class
𝑐 in this task, we have 𝑞𝑖,𝑐 = 1, and the remaining 𝑞𝑖,𝑐 (𝑠) in this
task are −1; or if y𝑖, 𝑗 = None, then all 𝑞𝑖,𝑐 (s) for this task are 0.
Hinge loss is used to pull close the general representation v𝑖 and
the reconstructed representation r𝑖,𝑐 when 𝑞𝑖,𝑐 = 1. Also, it pushes
them away when 𝑞𝑖,𝑐 = −1.

4.3.2 Tuning for Tasks. As each packet can only have one class
label in each task, the parameters are learned based on the ground-
truth labels. For task 𝑗 with class set T𝑗 , we have

ℓ𝑝,𝑗 =

𝑛∑
𝑖=1

max(0, 1 −
∑
𝑐∈T𝑗

𝑞𝑖,𝑐𝑝𝑖,𝑐 ) . (7)

Algorithm 1 PacRep Framework

Input: input sequence set X, label set Y
Output: encoding function 𝑓 , probability function 𝑔
1: Initialize D+

𝑖
and D−

𝑖
for each packet 𝑎𝑖 based on Y;

2: Initialize H𝑖 , v𝑖 for each 𝑎𝑖 by Eq. (1);
3: for each iteration 𝑡 = 1, 2, ..., do
4: Update parameters of 𝑓 and 𝑔 by Eq. (9);
5: end for
6: Obtain 𝑓 which can encode each packet 𝑎𝑖 to latent representa-

tion H𝑖 and v𝑖 for diverse downstream tasks
7: Obtain 𝑔 which can attach each 𝑎𝑖 with labels of trained tasks

In the testing, a packet can be classi�ed into a class 𝑐 if 𝑝𝑖,𝑐 is the
largest among other classes of the corresponding task.

As there are plenty of tasks, and not all packets have labels for
all the 𝑆 tasks, we also need to jointly tune for the tasks, thus we
have the probability loss ℓ𝑝 with ℓ𝑝,𝑗 in Eq. (7) by

ℓ𝑝 =

𝑆∑
𝑗=1

𝑛∑
𝑖=1

𝑤 𝑗 max(0, 1 −
∑
𝑐∈T𝑗

𝑞𝑖,𝑐𝑝𝑖,𝑐 ), (8)

where the contribution of each task is regularized by𝑤 𝑗 . Here, we
de�ne𝑤 𝑗 as 1

|T𝑗 | .

4.4 Training Objective
Based on the contrastive loss ℓ𝑐 for the encoder in Eq. (2), the
reconstruction loss in Eq. (6) and the probability loss in Eq. (8), the
complete loss function of PacRep can be formulated as follows:

ℓ = 𝜆1ℓ𝑐 + 𝜆2ℓ𝑟 + 𝜆3ℓ𝑝 , (9)

where 𝜆1, 𝜆2 and 𝜆3 balance the contributions of three losses. The
joint training algorithm for PacRep is summarized in Algorithm 1.
In the training process, we update parameters for each module of
our PacRep. In the testing process, for each packet 𝑎𝑖 , the represen-
tations H𝑖 and v𝑖 can be obtained by the encoder based on updated
parameters of Eq. (1), i.e., the encoding function 𝑓 . The classi�ca-
tion results y𝑖 of all the tasks can be obtained by the probability 𝑝𝑖,𝑐
based on the learned parameters of Eq. (4), i.e., the probability func-
tion 𝑔. If 𝑝𝑖,𝑐 is the largest among other classes of the corresponding
task, and the packet 𝑎𝑖 can be classi�ed into a class 𝑐 .

Specially, among the tasks we provide, the representations will
help predict labels not only for those with abnormal patterns (or
classes) which have appeared in the training set (i.e., close-world
problem), but also for those which have not appeared in the training
set (i.e., open-world problem [28]). We will provide classi�cation
results for both close and open world in Section 5.2. Note that,
inspired by the big success of pre-trained encoders like BERT in
various NLP tasks, with our learned encoder, we can also improve
the performance of more downstream tasks (even tra�c clustering
tasks, such as the protocol reverse analysis [29]), and are not limited
to those we provide in this paper.

5 EXPERIMENTS
In this section, we aim to answer the following questions:
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• RQ1: Compared to the state-of-the-art models, can the pro-
posed PacRep achieve better classi�cation performance for
downstream tasks in the close world and the open world
with the learned packet representations?

• RQ2: How does each part (e.g., ℓ𝑐 , ℓ𝑟 and ℓ𝑝 ) in PacRep con-
tribute to the performance?

• RQ3: How does the format of tokens (e.g., hex, base64, plain-
text) a�ect the performance of PacRep? and

• RQ4: How does the text length a�ect the performance?

5.1 Experimental Setup
5.1.1 Datasets. We utilize the following three publicly available
datasets in our experiments.

• ISXW20161: Each Packet in this dataset has two labels, i.e.,
the VPN label and the application label. For the VPN label,
there are two classes (VPN and NonVPN), and all packets
over VPN are encrypted. For the application label, there are
12 classes (Youtube, Facebook, et al.).

• DoHBrw20202: This dataset is made up of tra�c from DoH
(DNS over HTTPS), thus all packets are encrypted. Each
packet has two labels, i.e., the query abnormality label and
the query generator label. For the query abnormality label,
there are two classes (malicious and benign). For the query
generator label, there are 5 classes (DNSCat2, Iodine, et al.).

• USTCTFC20163: In this dataset, each packet has two labels,
i.e., the software abnormality label and the software label.
For the software abnormality label, there are two classes
(malware and normal). For the software label, there are 19
classes (Cridex, Geodo, et al.).

Based on the labels, we have six tasks and each dataset can con-
tribute more than one task, i.e., with ISXW2016, we have VPN
detection task (task 1, binary classi�cation) and application classi�-
cation task (task 2, multi-class classi�cation); with DoHBrw2020,
we have malicious DoH query detection task (task 3, binary clas-
si�cation) and DoH query generator identi�cation task (task 4,
multi-class classi�cation); and with USTCTFC2016, there are ab-
normality detection task (task 5, binary classi�cation) and software
identi�cation task (task 6, multi-class classi�cation). Although there
are overlapped classes in task 2 and task 6, for simpli�cation, we
train them independently among di�erent tasks in the experiments,
which can still a�ect the encoder together. Also, we can record the
indexes of overlapped classes, and share the same parameters to
avoid redundant training.

Note that, for each packet, we delete the strong indicators like IP
addresses, MAC addresses and port numbers, since some of these
datasets utilize the same IP/MAC address or port number to produce
some speci�c classes of tra�c, which are easy to change in the real
world. Table 1 summarizes the datasets we use in these experiments.

5.1.2 Comparison Methods. We compare our proposed framework
PacRep with two categories of tra�c classi�cation methods in
the six tasks, including: (1) feature-based methods (i.e., APPS, SMT,
Meta-AAD, DevNet) where only features in the unencrypted packet
headers (e.g., header information like protocol, packet length, �ags,
1https://www.unb.ca/cic/datasets/vpn.html
2https://www.unb.ca/cic/datasets/dohbrw-2020.html
3https://github.com/yungshenglu/USTC-TFC2016

Table 1: Statistics of the datasets.

Dataset ISXW2016 DoHBrw2020 USTCTFC2016
# tasks 2 2 2
# classes 14 7 21
# packets 192,741 134,195 300,222

et al.) are considered; and (2) byte-based methods (i.e., Deep Packet,
TR-IDS, HEDGE, 3D-CNN) where raw bytes are involved. Details
of these compared baseline methods are as follows:

• APPS [21]: This method learns to select representative fea-
tures, and utilize them with a random tree classi�er for ap-
plication classi�cation.

• SMT [20]: Thismethod fuses features of di�erent dimensions
by a kernel function and utilizes them with classi�ers like
SVM for application classi�cation.

• Meta-AAD [27]: This method utilizes reinforcement learn-
ing to adaptively detect anomalies from di�erent distribu-
tions of features.

• DevNet [18]: Thismethod synthesizes neural network, Gauss-
ian prior and Z-Score-based deviation loss to obtain anomaly
scores based on instance features.

• Deep Packet [14]: This method utilizes raw data of pack-
ets to train the autoencoder and Convolution Neural Net-
work (CNN) for application classi�cation.

• TR-IDS [17]: This method treats each byte as a token in the
text, and utilizes the Text-CNN to get payload features. With
features from headers and payloads, a random tree classi�er
is trained for intrusion detection.

• HEDGE [4]: This threshold-based method is based on the
evaluation of the randomness of the data bitstreams and can
classify each packet without the need to have access to the
entire stream.

• 3D-CNN [28]: This method utilizes the byte data as input
for 3D-CNN and can classify packets from both known and
unknown patterns.

5.1.3 Evaluation Metrics. With six tasks, the data distributions of
classes are not the same. Some of them are roughly balanced while
some are very imbalanced. To have a comprehensive evaluation of
the performance of baselines for each task, we use the following
metrics in this paper: (1) macro F1: It calculates the precision and
recall separately for each class, and report the average F1 results of
each class as macro F1; and (2) micro F1: It calculates the precision
and recall of all classes as a whole, and obtain the micro F1 results
based on this precision and recall.

Note that although it is important to evaluate the recall for some
tasks with imbalanced distribution (e.g., the recall of detected ab-
normality in task 3 and 5), as we can obtain F1=1 for both abnormal
and normal classes in these tasks, we do not show the recall results
due to the page limit.

5.1.4 Implementation Details. We follow the criteria of the repre-
sentation learning models [5, 13], and utilize the majority as the
training set. As each dataset has a task with more than two classes,
in each dataset, the training set is randomly extracted based on the
labels of this task. We have 191541, 600 and 600 packets for training,
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Table 2: Comparison results in a close world.

Methods Task 1 Task 2 Taks 3 Task 4 Task 5 Taks 6
macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1

APPS 0.9349 0.9350 0.8168 0.8133 1.0000 1.0000 0.3885 0.4960 0.9532 0.9537 0.7780 0.7895
SMT 0.8929 0.8933 0.7631 0.7600 0.9747 0.9760 0.4193 0.4720 0.9532 0.9537 0.7812 0.7937

Meta-AAD 0.7067 0.7067 * * 1.0000 1.0000 * * 0.6622 0.6632 * *
DevNet 0.7766 0.7767 * * 1.0000 1.0000 * * 0.6309 0.6316 * *

Deep Packet 0.8550 0.8550 0.6506 0.6670 0.9747 0.9760 0.8301 0.8320 0.9768 0.9768 0.7548 0.7516
TR-IDS 0.9433 0.9433 0.5498 0.5766 0.8850 0.8960 0.8630 0.8720 0.9494 0.9411 0.5276 0.5452
HEDGE 0.8105 0.8133 0.2967 0.3400 0.9832 0.9840 0.6525 0.6480 0.8544 0.8547 0.6376 0.6421
3D-CNN 0.8946 0.8950 0.5434 0.5700 0.9747 0.9760 0.8169 0.8160 0.9958 0.9958 0.5509 0.5305
PacRep 0.9929 0.9929 0.9151 0.9153 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9002 0.9174

validation and testing on ISXW2016. Similarly, on DoHBrw2020, the
numbers are 133945, 125, 125; on USTCTFC2016, the numbers are
299272, 475, 475. We train the model with the training set, tuned hy-
perparameters with the validation set, and report the performance
on the testing set.

Note that, as the baselines need to learn speci�c data for speci�c
tasks, six tasks are trained separately with their corresponding
datasets. However, our proposed framework jointly tunes the model
for these classes and tasks. We train all of the six tasks of the three
datasets together, and the numbers of the training, validation and
testing sets for our model are the summation of these three datasets,
i.e., 624758, 1200 and 1200. To support research, we release our code
at https://github.com/ict-net/PacRep.

5.2 Performance Comparison (RQ1)
We conduct comparisons on the six tasks in both the close-world
and the open-world scenario.

5.2.1 Close World. For the close-world scenario, all data patterns
of all tasks in the testing set have appeared in the training set. To
compare with the state-of-the-art methods, we also include some
new methods (i.e., Meta-AAD and DevNet) which are designed for
speci�c tasks. However, they can not work for all six tasks, thus
we will not report the results of tasks they can not work on. The
results of the proposed framework PacRep along with the baseline
methods are shown in Table 2.

We can make the following observations. (1) Compared to the
state-of-the-art baseline methods, in terms of macro F1 and micro
F1, our proposed PacRep outperforms all the others by a signi�cant
margin in all six tasks, which demonstrates the e�ectiveness of
our PacRep. (2) Both feature-based and byte-based methods have
their adept tasks. For example, most feature-based methods achieve
better performance in task 3; while byte-based methods perform
the feature-based ones in task 4. It demonstrates the importance
of both header and payload information, considering that feature-
based methods fully depend on header features but ignore payload
information; while byte-based methods pay more attention to pay-
load information and some of them even remove much header
information (e.g., Deep Packet). (3) Compared to the byte-based
methods, PacRep not only utilizes these encrypted byte data but
also maintains those plaintext words, which can further enhance
the performance of packet representations.

new
pattern

(a) Based on header features

new 
pattern

(b) Ours with binary labels (c) Ours with multiple labels

Figure 3: Scatter plots for packet representations with labels
of task 1 and task 2 on ISXW2016. Di�erent colors denote
di�erent labels (or classes). In (a) and (b), the edge color of
packets from new patterns is cyan.

Table 3: Comparison results in an open world.

Methods Task 1 Taks 3 Task 5
macro F1micro F1macro F1micro F1macro F1micro F1

APPS 0.9181 0.9183 1.0000 1.0000 0.9468 0.9474
SMT 0.8683 0.8683 1.0000 1.0000 0.9489 0.9495

Meta-AAD 0.6867 0.6867 0.6000 0.6160 0.6369 0.6379
DevNet 0.7482 0.7483 0.9312 0.9360 0.6063 0.6063

Deep Packet 0.9044 0.9050 0.9832 0.9840 0.9789 0.9789
TR-IDS 0.7901 0.7966 0.8082 0.8320 0.8222 0.8232
HEDGE 0.7989 0.8017 0.9916 0.9920 0.8459 0.8463
3D-CNN 0.9333 0.9333 0.9916 0.9920 0.9894 0.9895
PacRep 0.9929 0.9929 1.0000 1.0000 0.9979 0.9979

5.2.2 Open World. For the open-world scenario, not all data pat-
terns (or classes) in the testing set have appeared in the training
set. In this scenario, the e�ectiveness of packet representations is
important, and it will greatly improve the performance of tra�c
classi�cation. To analyze why the learned representations from
the packet encoding module are useful, we take ISXW2016 as an
example. To simulate new patterns, in the training set, we remove
all “email” packets in the “VPN” class. With the learned packet
encoder, we obtain packet representations of packets in the testing
set, and we show the low-dimensional representations learned by
t-SNE [22] in Figure 3 based on the packet representation v𝑖 for
each packet 𝑎𝑖 , where Figure 3(b) and Figure 3(c) denote the same
representations colored by di�erent labels. For comparison, we also
show the representation distribution based on header features in

 

3552

https://github.com/ict-net/PacRep


KDD ’22, August 14–18, 2022, Washington, DC, USA Xuying Meng et al.

Table 4: Ablation study on PacRep and its variants.

Methods Task 1 Task 2 Taks 3 Task 4 Task 5 Task 6
macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1

PacRep 0.9929 0.9929 0.9151 0.9153 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9002 0.9174
w/o ℓ𝑟 0.9581 0.9582 0.2101 0.2893 1.0000 1.0000 0.5794 0.6371 0.9470 0.9470 0.1298 0.2458
w/o ℓ𝑐 0.9929 0.9929 0.8693 0.8829 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8497 0.8898

Table 5: Impacts of di�erent token formats on PacRep.

Methods Task 1 Task 2 Taks 3 Task 4 Task 5 Task 6
macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1

hex 0.9765 0.9765 0.8504 0.8677 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5876 0.6624
base64 0.9429 0.9430 0.8015 0.8124 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5703 0.6427

word+hex 0.9929 0.9929 0.9151 0.9153 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9002 0.9174

Figure 3(a). We observe that: (1) In Figure 3(a), both two classes
(i.e., “VPN” and “NonVPN”) are mixed up, while based on our rep-
resentations, there is a clear boundary in Figure 3(b). (2) Although
packets of the new pattern are not in the training set, the represen-
tations of these packets are much closer to the right class (“VPN”)
in Figure 3(b). (3) Except for the clear boundary for two classes in
Figure 3, packets of di�erent patterns (including the new pattern)
are separated, and labels for multiple patterns in Figure 3(c) further
demonstrate the e�ectiveness of the packet encoding.

Also, we provide classi�cation results in Table 3. Considering that
these need additional strategies to decide if there are new classes
[28] and it is not the focus of this paper, we will only simulate new
patterns for binary classi�cation in this section, i.e., task 1, task
3 and task 5. In detail, in the training set, we remove all “email”
packets in the “VPN” class, all “dns2tcp” packets in the “Malicious”
class, and all “Shifu” packets in the “Malware”, which are the fewest
packet patterns on the ISXW2016, DoHBrw2020 and USTCTFC2016
separately. With the same testing set without removal, we will
evaluate if all packets, including those removed patterns from the
training set, are accurately classi�ed into the corresponding class.
From Table 3, we can observe that (1) PacRep still outperforms the
baseline methods, and can almost make the perfect classi�cation
in these tasks, which demonstrates the robustness of our proposed
method. With the success of adapting new data patterns, we can
help deal with many di�culties for tra�c analysis in the real world.
(2)Mostmethods decrease in the open-world scenario, which is easy
to understand since some data patterns are missed from the training
set but appeared in the testing set. Also, some methods receive
better performance in the open world, which may be because the
removal data has similarities to data patterns of the opposite class
and has a bad impact on original classi�cation results.

5.3 Ablation Study (RQ2)
To evaluate the contribution of each component to the six tasks,
we conduct an ablation study. In addition to PacRep, we include
the variant “w/o ℓ𝑟 ” that only includes the contrastive loss ℓ𝑐 for
the encoder and probability loss ℓ𝑝 for class prediction, and the
variant “w/o ℓ𝑐” that only includes the reconstruction loss ℓ𝑟 and
probability loss ℓ𝑝 . Since the class prediction results are based on
the probability loss, thus we can not remove ℓ𝑝 like the other two
objectives.

The results are presented in Table 4, and we can observe that (1)
PacRep receives the best performance in all the six tasks, showing
that each component can make positive contributions to the �nal re-
sults. (2) Compared to PacRep without the reconstruction loss (i.e.,
w/o ℓ𝑟 ), PacRep without the contrastive loss (i.e., w/o ℓ𝑐 ) performs
better, which is because the reconstruction loss utilizes the probabil-
ity of each class (can be regarded as explicit labels) to regularize the
packet representation model of the encoder, while the contrastive
loss only optimizes the packet representations based on the positive
and negative samples (can be regarded as implicit labels). (3) PacRep
without the contrastive loss (i.e., w/o ℓ𝑐 ) can perform as well as
the PacRep in some tasks, which further demonstrates the great
positive impacts of tuning for the encoder representation results
based on respective classes and tasks.

5.4 Token Format Analysis (RQ3)
In this section, we further analyze the impacts of token formats on
the classi�cation performance in the six tasks. To take advantage of
both header and payload information, most existing works utilize
the “hex” (or base16) format, where they translate each byte (8
bits) in the packet to be a hex number with two characters (i.e.,
from \x00 to \x�). In addition to this popular format, we include
the “base64” format where we translate every 12 bits into a base64
number with two characters; and the “word+hex” format where we
keep those unencrypted words and only translate that encrypted
information into hex numbers.

From the results in Table 5, we can �nd that: (1) PacRep with the
“word+hex” format achieves the best performance in all these six
tasks, which is because words can hold more semantic information
and can greatly improve the learned packet representations; and
(2) PacRep with the “base64” format achieves similar performance
to that with the “hex” format, which is because although there
are more tokens represented as characters in “base64” format than
“hex” format, these characters can not provide extra semantical
information. The vocabulary space is not enlarged for NLP-based
models with only base changes.

5.5 Text Length Sensitivity (RQ4)
To evaluate the impacts of text length, we conduct experiments
on di�erent numbers of words we used (text length) varying in
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{16, 64, 256}. The performance of sensitivity to the text length is
presented in Figure 4. We can observe that: (1) Generally, longer
text length performs better. Specially, for those greatly increasing
with text length (task 4 and 6), at �rst, the performance increases
with text length quickly, which is because, with longer text length,
more information in the payload will be included to help improve
the packet representations. After that, the increase becomes steady,
which is because data at the bottom of the packet may make less
contribution to the classi�cation performance. With smaller text
lengths, there is lower computing complexity. It may help to achieve
high performance with relatively small text length in practice. (2)
For task 2, PacRep with text length 16 achieves better performance
to that with 64, which may because extra biased data can have bad
impacts on the classi�cation. With more data reducing the bias,
PacRep with text length 256 regains the best performance.

(a) macro F1 (b) micro F1

Figure 4: Impacts of text length.

6 CONCLUSION
In this paper, we make the �rst investigation on the problem of
learning packet representations for various downstream classi�ca-
tion tasks. To tackle this problem, we propose the PacRep, a novel
encoding-based model to learn packet representations. Both seman-
tic and byte information is maintained, and the latent semantic
space among similar packets is close via contrastive loss. Further-
more, we jointly optimize the learned representations for di�erent
classes of multiple tasks by combining reconstruction loss and
probability loss. Through extensive experimental evaluations, we
demonstrate the superiority of PacRep over state-of-the-art meth-
ods on various classi�cation tasks. For further work, we focus on
classi�cation task in this paper. We would like to tune the encoder
with other kinds of tasks. Second, this work aims at increasing
e�ectiveness performance. We will work on e�ciency with low
complexity.
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