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ABSTRACT

Federated learning (FL) is an important paradigm for training global
models from decentralized data in a privacy-preserving way. Exist-
ing FL methods usually assume the global model can be trained on
any participating client. However, in real applications, the devices
of clients are usually heterogeneous, and have different computing
power. Although big models like BERT have achieved huge suc-
cess in Al it is difficult to apply them to heterogeneous FL with
weak clients. The straightforward solutions like removing the weak
clients or using a small model to fit all clients will lead to some
problems, such as under-representation of dropped clients and in-
ferior accuracy due to data loss or limited model representation
ability. In this work, we propose InclusiveFL, a client-inclusive fed-
erated learning method to handle this problem. The core idea of
InclusiveFL is to assign models of different sizes to clients with
different computing capabilities, bigger models for powerful clients
and smaller ones for weak clients. We also propose an effective
method to share the knowledge among local models with different
sizes. In this way, all the clients can participate in FL training, and
the final model can be big and powerful enough. Besides, we pro-
pose a momentum knowledge distillation method to better transfer
knowledge in big models on powerful clients to the small mod-
els on weak clients. Extensive experiments on many real-world
benchmark datasets demonstrate the effectiveness of InclusiveFL in
learning accurate models from clients with heterogeneous devices
under the FL framework.
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1 INTRODUCTION

Nowadays, huge amounts of data are generated every day from a
wide range of devices such as mobile phones, autonomous vehicles,
or servers [26]. Exchanging data from different sources to train
machine learning models is attractive but challenging under the
privacy regularization such as GDPR!. Based on the principles of
focused collection and data minimization to avoid privacy issues,
federated learning (FL) [25] emerges as a privacy-aware paradigm
to train a global model while keeping decentralized data stay on
local devices. In each round, sampled clients pull a copy of the global
model and optimize models in parallel on local datasets. Then, the
server aggregates local models to update the global model. Hence,
conventional federated learning methods [25, 31] make an essential
assumption that all clients have sufficient local resources to train
models with the same architecture.

However, as shown in Fig. 1, in the real world, devices of clients
are usually heterogeneous and they may have the significantly dif-
ferent computing power and memory size [16, 37, 47]. Although a
large global model (e.g., BERT with 12-layer Transformer [18, 23])
is promising to achieve a good performance, it is difficult to apply
it in heterogeneous FL because weak clients that are constrained
by hardware resources cannot afford the cost of local training. A

Uhttps://gdpr-info.eu/
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Figure 1: InclusiveFL over heterogeneous devices.

straightforward way [1] is to drop weak clients and only aggre-
gate parameters from powerful clients with sufficient resources.
But excluding data on weak devices in training leads to fairness
issues [13, 28] because weak clients would be underrepresented in
the final global model. Furthermore, the loss of data on weak clients
causes an inferior accuracy [29], especially when the amount of
weak clients is enormous (e.g., in less developed areas). Alterna-
tively, a client-inclusive baseline is choosing a small global model
to fit the minimum capability that all clients can offer. However,
the representation ability of the final global model would be largely
limited by the small model architecture [24].

Due to the limitations of the above methods, it is attractive to
include all clients with heterogeneous devices while utilizing the
capabilities of large models. Thus, an intuitive way is training bigger
local models on powerful clients and smaller local models on weak
clients. To exchange knowledge over heterogeneous models, several
works [5, 20, 36] utilize the knowledge distillation technique [15]
to enhance the global model with an ensemble of local predictions.
However, they assume clients share a public proxy dataset, which
is impractical for weak clients with a limited memory. A recent
work HeteroFL [7] does not require a proxy dataset and proposes to
train heterogeneous local models by averaging the overlapped sub-
matrices of all parameter matrices across various models. However,
this method is not beneficial for retaining large models’ knowledge
in smaller models because the width pruning operation breaks the
original model structure. In addition, even the same sub-matrix
may have different behaviors in the small and large models due to
the model structure differences, which may lead to a suboptimal
performance due to the mismatch of feature spaces. Moreover,
simply sharing parts of parameters across different models cannot
effectively transfer useful knowledge encoded by strong models to
other weaker models [15]. Thus, how to learn models with different
sizes and aligned feature spaces via effective knowledge transfer is
a challenging problem in FL with heterogeneous devices.

In this paper, we propose a client-inclusive federated training
solution InclusiveFL that can train a large model over devices with
heterogeneous capabilities, and address the above key challenges.
InclusiveFL assigns models of different sizes to clients with different
computing capabilities, bigger models for powerful clients and
smaller ones for weak clients. To eliminate the mismatch between
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small and large models, we propose to share shallow bottom model
layers in the largest model with other smaller models. It has been
empirically investigated that the lower layers are most critical for
retaining the pre-trained knowledge in downstream tasks [32], and
the feature spaces among different layers have much consistency [8].
We propose a layer-wise heterogeneous aggregation method to
update the parameters of shared bottom layers. Furthermore, since
the small model on weak clients may not be strong enough, we
propose to transfer the knowledge learned by large models on
powerful clients to small models on weak clients via a momentum
distillation method [46]. Intuitively, by encouraging the top encoder
layer in small models to imitate the behavior of top encoder layers
in a larger model, we can achieve effective knowledge transfer in
InclusiveFL. Contributions of this paper are summarized as follows:

e We propose InclusiveFL for effective federated learning over
heterogeneous client devices. Clients with different comput-
ing capabilities are assigned models of different sizes, and
all of them can contribute to learning a large and powerful
global model.

e We propose an effective method to share the knowledge
in the heterogeneous models from heterogeneous clients.
Besides, we propose a momentum knowledge distillation
method to boost knowledge sharing from large models to
small models.

e We conduct extensive experiments to verify the effectiveness
of the proposed method in learning an accurate global model
from heterogeneous clients in the FL framework.

2 BACKGROUND AND RELATED WORK

Federated learning [25] is a machine learning technique that trains
an algorithm across multiple decentralized edge devices (cross-
device) [14, 27, 48] or servers holding local data samples (cross-
silo) [6, 41, 45], without exchanging them. Conventional federated
learning protocol typically adopts FedAvg [25] to aggregate local
parameters as follows:

K n
k. k
Wi+l < Z — Wi
n
k=1

where n = ZII<<=1 ng denotes the total number of local samples. For
a better training convergence, FedAdam [31] is recently proposed
to use adaptive methods on the server and SGD on the clients.
For each round, a sampled client i computes the local update gi
after iterating over several rounds of local SGDs. Then, the server
averages local updates g; «— ﬁ Zie|S| gi and updates the global
model as follows:
my «—Pime—1+ (1= P1)gs

ot —Povi—1 + (1= Pa)g?
m

Wil <Wr +1) t .
U+ T

Basic federated learning methods make an essential assumption
that all clients have sufficient local resources to train models with
the same architecture. However, weak clients cannot even compute
over the global model when local hardware is constrained. Pre-
vious works [5, 20] provide solutions for federated learning with
heterogeneous local models based on knowledge distillation[15].
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A server student model is updated by distilling from the ensemble
of predictions [21]. Alternatively, local models are optimized se-
quentially [20] or jointly [5] over the augmented dataset and the
local private dataset. However, it is hard to guarantee the domain
and quality of the public data. And it is impractical for weak clients
with limited hardware to store the public dataset.

Recently, HeteroFL [7] removes this assumption and conduct
parameter-averaging over heterogeneous models. Authors scale
model architectures for clients with variant local resources with
variant widths. For each matrix W € R%*Xs in the large model,
they reduce the parameters for a smaller model as the upper left
sub-matrix Ws = W|: ds, : ks] with size ds X ks. To exchange knowl-
edge, heterogeneous models share the overlapped matrix with a
parameter averaging. However, HeteroFL has limitations of a bi-
ased initial pruning and parameter mismatch across heterogeneous
models. Instead, we reduce number of layers for small models and
propose methods to solve these problems.

Other related works that consider weak capabilities include so-
lutions to reduce the communicational cost [20, 33]. Several works
aim to mitigate the up-link communication bottlenecks from client
to server[10, 19, 22, 39, 40]. Local model updates can be sparsified,
quantized or randomly sub-sampled before uploading to the central
server. Kone¢ny et al. [19] performs a lossy compression on the
model updates and reduces the error incurred by the subsequent
quantization with the randomized Hadamard transform. To reduce
the server-to-client communication, Caldas et al. [3] extends the
idea of dropout [35] and drops a fixed number of activation units at
each full-connected layer before distributing a local model to each
client. Bouacida et al. [2] adopts an adaptive strategy and selects
the dropped activation based on the activation score map. It should
be noted that local optimization is conducted on decompressed
models. Also, above works do not consider federated training over
heterogeneous models and are compatible to our solution when
aggregating local models with the same architecture in InclusiveFL.

3 METHODOLOGY

In this section, we introduce our solution InclusiveFL, which trains
a global model across client devices with heterogeneous capabil-
ities. We will first introduce the layer-wise heterogeneous aggre-
gation framework in InclusiveFL, and then introduce details of our
proposed momentum distillation in federated learning for more
effective knowledge exchange in the heterogeneous setting.

3.1 Layer-wise Heterogeneous Aggregation
Framework

The overview of InclusiveFL framework is shown in Fig. 2. Without
loss of generality, we denote three groups that hold different device
capabilities as weak, medium, and strong clients. Our core idea is to
assign models of different sizes to clients with different computing
capabilities, bigger models for strong clients and smaller models
for weak clients. We reduce the number of parameters for weaker
clients by decreasing the depth of network. Since the bottom layers
are most critical for retraining the pre-trained knowledge [32], the
sub-model with pre-trained bottom layers would benefit from the
pre-trained parameters, which results in better initialization for
small models. Accordingly, the clients in weak, medium or strong
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Algorithm 1 Framework of InclusiveFL.

Server executes:
1: Initialize 65, £2, £2, £, m8 — 0,mS « 0 i
2: Set shared layers 6§ «— 95’”‘“,95’ — Gg’l' b
3: Get models w@ « 6% o £3, wh — 0% o fb, W — 65 o f€
4: fort € {1,---,T} do
5: Uy « (randomly sample a portion of r users)

6 US, Utb , Uy « (group Uy into the same device type)

7: ng,np, ne < (the number of users for each group)

8: // Homomorphic aggregation

9:  for device type j € {a,b,c} do
10: for useri € Utj do

11: Pull the sub-global model wt]

12: g;’J — LocalUpdate(w[], D;) »D; is the local dataset
13: end for

: / 1 b

14: g{ — |Utj‘ ZieUt] 9

15: if j is not ¢ then
16: k « (the device type that is greater than j )

i,L; j.L;

17: g = peomk v (1-p) g

18: end if o ) ) )
19: W‘t/+1 — FedAdam(g], wt]) W, includes 9i+1 oft]+1
20: if j is not a then
21: L™ « (the number of layers in the next smaller model)

j j.l
22: m, — ﬁ 'Zle[L*:LjJ 9{«
23: end if
24:  end for
25:  // Heterogeneous aggregation
1 n; i,l

2 0 — Yietabe} WG;H forle[1,---,Lg—1]

. c,l n; il
27 0 < Dietbe) nptne 0,1

forl € [Lg,---,Lp —1]

R a c,1:Lg—1 a,La pb c,1:Lp—1 b.Ly,
28 Update 07, < 0, ) ° 9t+}7 > 9t+1b‘_ 01 00,41

. a a a c c c
290wl = 07 0 fRL Wy < 00 0 filn Wi < 0 o fla

30: end for

client groups own small, medium or a large local models with
Lqg, Ly, L¢ layers, where L, < Ly, < L. In general, we conduct a
homomorphic aggregation within the same client group and denote
the aggregated model as the sub-global models w?, w?, and w°.
Then we run a heterogeneous aggregation across different client
groups to update all sub-global models.

As shown in Algorithm 1, in the tth round of communication, the
server first randomly samples a subset of clients with heterogeneous
devices. The sampled clients are grouped by the device type as
Uz, Utb and Uf and the proportion n, : np, : n¢ for each device type
is dynamic for each round. Then, for a client i in the group of device
J, we conduct the local optimization with SGD as in conventional
FL [25] and get the local update as g;’] . Within each client group,

we average the update as g/, where j € {a, b, c}. Then we update

J
t+1

momentum m’f_l to merge local knowledge from clients with the

the sub-global model into w7_, with the averaged updates and the

same device type. The momentum mltil is distilled from a larger
model on client group k and we explain details in Section 3.2.
; a b c ;
With sub-models w, |, w;,;, wi, after the homomorphic aggre-
gation over local models with an identical architecture, we start
the heterogeneous aggregation from Line 25 in Algorithm 1 to ex-

change knowledge across variant model architectures. It should be



KDD ’22, August 14-18, 2022, Washington, DC, USA

Ruixuan Liu et al.

Server Update wfyy with g
c 1
Update iy with gf and mé. s = Bl .
gt Classifier ]—-
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Figure 2: Overview of InclusiveFL.

noted that we decompose the model w into a shared module 6 and
an isolated module f for each group. The shared module includes
bottom encoding layers 8 and the isolated module includes the last
encoder layer and top task-specific layers, such as the pooling and
dense layer and the classifier layer in Fig. 2. InclusiveFL is a general
framework for other tasks by only changing the architecture of
the top layers f. Thus, we first exclude the updated f;41 in the
heterogeneous parameter aggregation and conduct the standard

FedAvg for each overlapped layer in shared module 07, ,, as shown

in Line 26 and 27. Specifically, we use the notation 0;’_51 to indicate
the 1" encoder layer in the model for device type j € {a, b, ¢}. Sim-
ilarly, layers from 1 to L, — 1 in the sub-global model with type ¢
is denoted as fol:L“_l. Combining with the within-group updated
top layers f;41 for {a, b, ¢} in Line 29, the server derives the updated
sub-global model and distributes to clients for the next round.
Intuitively, the bottom layers can be shared because they can
capture basic features across heterogeneous models. Also, the over-
lapped layers across three models have the same initialization,
which help to align them keep aligned from the beginning of train-
ing. We are motivated to isolate the last encoder layer and top layers
for two considerations. First, isolating top layers help mitigate the
parameter mismatch in each sub-global model. For the example of a
text classification task in Fig. 2, the bottom L, — 1 layers in w? will
produce a sequence of hidden states as the input to a pooling and
dense layer for getting a sentence embedding. However, the output
of the bottom L, — 1 layers in wy, can be further extracted with other

Ly — Lg + 1 layers before the pooling and dense layer. Thus, the
top parameters behave differently due to the heterogeneous model
architectures. If sharing ﬁH with ftlﬂrl and ftc+1 the averaged model
applied to w® would lack several layers of feature extraction, which
would lead to a poor performance of w,. Second, isolating top lay-
ers makes InclusiveFL capable of training separate local model with
different target labels. For example in the cross-silo scenario such
as federated named entity recognition [11], medical data stored at
different medical institutions may have different characteristics and
annotation criterion, which leads to personalized top layers.

3.2 Momentum Distillation

Now we introduce details of the momentum distillation for accel-
erating the heterogeneous federated training, as shown from Line
15 to 23 in Algorithm 1. Intuitively, a larger model is more capable
of extracting knowledge from data than a small model. Thus, we
are motivated to distill knowledge from larger models to smaller
models. The knowledge distillation [15] in the centralized setting
typically uses a hidden loss to align hidden representations of a
small student model and a large teacher model. However, the hid-
den loss does not apply to the heterogeneous federated learning
with data separated for the small model and teacher model.
Instead, we notice that the key to align small models and large
models when bottom layers are shared is to align the behaviors of
the isolated encoder layer in a small model to the corresponding
top layers in the larger model. Hence, taking the small model and
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the medium model for instance, we calculate a gradient momentum
as the average over updates for a stack of layers from L, to L

in the medium sub-global model. For the averaged update g7, we

inject a distilled gradient momentum mi’_l to the update g?’L“ of

the isolated encoder layer L,, which helps the L, layer in the small
model imitate the block of layer L, to Lj in the medium model.
Similarly, we use the averaged update from the large model as
the gradient momentum for the layer L, in the medium model. In
general, the distillation transfers knowledge from a larger model
to a smaller model without the limitation on the number of model
types. The gradient momentum is initialized as zero and applied
with a momentum factor f, which is an important hyper-parameter
to tune the strength of the distillation.

4 EXPERIMENTS

In this section, we evaluate InclusiveFL for federated learning over
heterogeneous devices on IID and non-IID datasets and compare
with both naive baselines and HeteroFL [7]. To simulate the het-
erogeneous device scenario, we set up three types of clients: weak
clients, medium clients and powerful clients. Accordingly, they can
store and compute over 4-layer, 8-layer and 12-layer transformer
models, respectively.

Datasets. Our experiments are conducted on the text classifi-
cation task in the GLUE benchmark and token classification task
(NER) on three medical corpora. GLUE benchmark [38] is a collec-
tion of multiple natural language understanding tasks, including
MNLI [44] (inference), SST-2 [34] (sentimental analysis), MRPC [9]
(paraphrase detection), CoLA [42] (linguistic acceptability), QNLI
[30] (inference), QQP? (question-answering), RTE 3 (inference),
and STSB [4] (textual similarity). The generality makes the GLUE
dataset a standard benchmark to evaluate NLU models.

Three medical datasets includes SMM4H [43], CADEC [17] and
ADE [12], which are widely used to evaluate NER tasks. The statis-
tics of the medical datasets are shown in Table 1.

Table 1: Statistics of the medical NER datasets.

Dataset ‘ # Sentences ‘ Entity Types ‘ # Entity
SMM4H | 3,824 ADE (1,707) | 1,707
ADE ‘ 4483 ADE (5,678), Drug (5.076), | |0 o

Dosage (222)

ADE (5,937), Drug(1,796),
Disease(282), Finding(425), | 8,535
Symptom(268)

CADEC | 7,683

Evaluation Protocols. For the evaluation on cross-device [26]
federated learning with IID data, we randomly split the training
dataset of each GLUE benchmark to 1000 clients and report the best
performance of the evaluation dataset. By default, we report the
matched accuracy for MNLI, the Matthew’s correlation for CoLA,
Pearson correlation for STSB, F1-score for MRPC and the accuracy
metric for all other tasks. Higher value indicates better performance.
To evaluate over non-IID data distribution, we take each medical

Zhttps://quoradata.quora.com/First-Quora- Dataset-Release- Question-Pairs
3https://huggingface.co/datasets/glue/viewer/rte/train
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corpus as the local dataset of one client (e.g. a hospital) and simulate
the cross-silo [26] federated setting. We set SMM4H as the local
data for a weak client, ADE as the local data for a medium client
and CADEC as the local data for the powerful client. We validate
the generality of this setting by rotating datasets and client types
and draw similar observations. For each client, we randomly take
80% of the local dataset as the training dataset and the rest as the
evaluation dataset. We use the seqeval framework? to report the
maximum averaged F1-score, precision, recall and accuracy on
the evaluation dataset to indicate the overall performance or the
performance over each type of entity for each client. Results for the
two settings are reported by averaging over 5 independent repeats.

Baselines. We compare our proposed InclusiveFL solution with
the following naive baselines:

o AllLarge: an ideal baseline to indicate the performance upper
bound of training over heterogeneous devices. We remove
the resource limitation on weak and medium clients and
conduct federated training over all clients participant with a
12-layer RoBERTa model.

AllSmall: a naive baseline to include all clients with heteroge-

neous devices and conduct training over the smallest model

with 4 layers.

o ExclusiveFL: a naive baseline where weak and medium clients
are dropped off in federated training due to the resource
limitation on the largest model.

o Local: a naive baseline for cross-silo setting where each client

trains the model with the size that fits their local resources.

HeteroFL [7]: the most related work for training across all

clients over heterogeneous devices. The number of param-

eters in smaller models are reduced in width by cropping
each parameter matrix of the largest model into sub-matrix
with various reduction radio.

Hyper-Parameter Settings. For federated training over het-
erogeneous devices, we assign each client a client type with equal
probability before training and fix it during training by default. The
effect of different ratios of device types is investigated in our hyper-
parameter analysis. For a fair comparison, we keep the number of
parameters for each model type in HeteroFL equal to 4-layer, 8-layer
and 12-layer models in other baselines by reducing the hidden size
from 768 to 456, 624 for weak and medium clients respectively.
For InclusiveFL, we set the momentum factor f = 0.2 for all GLUE
benchmark and § = 0.5 for medical NER datasets.

For GLUE dataset, we randomly sample a fraction of 0.02 clients
in each round with R = 1000. For NER datasets, we conduct 5 local
steps with batch size 64 in each communication round with R = 100.
We set the same learning rate for each type of the model over all
baselines. We use FedAdam [31] as the global aggregation protocol
over homogeneous models for all baselines.

4.1 Performance Evaluation

We evaluate the effectiveness of proposed methods by comparing
the averaged best performance that each method can achieve after
convergence within 1,000 training rounds. Then we evaluate the
efficiency and analyze the reason for improvement by showing the

“https://github.com/chakki-works/seqeval
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Table 2: Performance comparison of federated learning methods on the GLUE benchmark for text classification tasks. Perfor-
mance is evaluated on the final large model in a global inference scenario. Bold faces indicate the best method for inclusive
FL training with heterogeneous devices.

Inclusive? | COLA MNLI MRPC ONLI QQP RTE SST2 STSB | Avg.

All-Large N/A 63.03 86.48 9150 92.09 9149 76.12 9443 90.60 | 85.72
ExclusiveFL No 37.77 8598 89.87 91.24 8947 62.17 94.06 89.26 | 79.98
All-Small Yes 3491 7883 8250 8593 7937 5894 90.14 83.68 | 74.29
HeteroFL Yes 8.15 31.83 8151 6270 7379 52.71 84.98 30.54 | 53.28
InclusiveFL Yes 54.85 86.36 91.42 91.76 90.55 66.14 94.17 89.94 | 83.15

Table 3: Performance comparison of federated learning methods on medical datasets for named entity recognition. Perfor-
mances are evaluated for each named entity on each local model (SMM4H with 4-layer model, ADE with 9-layer model and
CADEC with 12-layer model) in the local inference scenario. Best method for heterogeneous training is shown in bold face.

Methods | Inclusive? SMM4H ADE CADEC Av
) ADE Drug ADE Dose | ADE Symptom Drug Disease Finding &
AllLarge N/A 55.08 95.21 8091 1897 | 71.23 43.37 90.43 33.55 29.85 57.62
Local No 46.77 95.12 80.14 11.25 | 44.15 19.90 53.53 20.58 16.53 43.11
AllSmall Yes 49.56 92.76  75.67 13.51 | 64.82 26.71 87.91 21.07 20.23 40.89
HeteroFL Yes 27.94 73.90 37.57 11.57 | 59.90 26.92 84.58 25.77 19.88 42.51
InclusiveFL Yes 49.90 95.49 80.34 13.91 | 71.10 40.91 90.21 39.34 22.97 56.02
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Figure 3: Federated training convergence and best performance. Error band shows the standard error of 5 independent repeats.

Table 4: Averaged number of rounds for achieving the best performance in Table 2.

Methods ‘ CoLA MNLI MRPC OQNLI QQP RTE SST2 STSB NER
InclusiveFL-w/o0 MD 630 665 616 600 850 620 810 870 90
InclusiveFL 580 570 515 585 740 510 520 805 75

convergence curve and the average rounds required to achieve the

best performance.

Effectiveness. Results of IID setting on GLUE datasets and re-
sults of non-IID setting on medical NER datasets are shown in

Table 2 and 3 respectively. We observe that for all datasets, AllLarge
achieves the overall best performance, which indicates that training
a large global model with all clients’ data can achieve the optimal
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Figure 4: Local inference performance in cross-device federated learning,.

performance. However, it is impractical for training participants
with less resources to train large models locally.

For all other approaches that can be implemented across hetero-
geneous devices, our proposed approach InclusiveFL achieves the
best performance. It is reasonable because involving large models
(InclusiveFL) is better than only utilizing small models (AllSmall)
and training over all data (InclusiveFL) is better than only train-
ing over partial data (ExclusiveFL / Local). This observation also
validates the effectiveness of our proposed momentum distillation.

We find that the most related work HeteroFL [7] performs worse
than the naive baselines AllSmall and ExclusiveFL on all GLUE
datasets. And the averaged performance of HeteroFL is also inferior
to AllSmall and ExclusiveFL on medical datasets as shown in Table
3. This indicates that the method of sharing the top-left sub-matrix
across heterogeneous devices in HeteroFL may work for simple
models with shallow layers (such as CNN in [7]) but not for more
complex deep models (such as 12-layer RoBERTa). Furthermore, we
observe in Fig. 3 that the starting performance of local models on
weak and medium clients InclusiveFL is better than HeteroFL, which
indicates that the small model in InclusiveFL has a better parameter
initialization than HeteroFL. Thus, one reason of the inferior utility
is that cropping the network in HeteroFL cannot fully utilized the
pre-trained parameters while a layer-wise sharing in InclusiveFL
can better maintain the utility of a pre-trained model naturally.

In addition, we observe that ExclusiveFL performs better than
AllSmall on GLUE benchmark and Local performs worse than AlIS-
mall. Thus, the performance gain from including more data and the
gain from utilizing a large global model depends on the task and
are hard to trade-off. This observation enhances the contribution
of InclusiveFL for finding an effective way to aggregate over hetero-
geneous models and utilize performance gain from both inclusive
data training and large models.

Efficiency. By observing the convergence curve in Fig. 3, we
find InclusiveFL is approaching the performance of AllLarge with
a faster speed than InclusiveFL-w/o MD, especially for the largest
model with 12 layers. For the IID setting as shown in Fig. 3a, In-
clusiveFL achieves the F1-score of 89.43 within 400 rounds while
InclusiveFL-w/o MD requires 550 rounds. For the non-IID setting in
Fig. 3f, InclusiveFL achieves the accuracy of 60.5 within 650 while
InclusiveFL-w/o MD requires 950 rounds. For all datasets, we list
the averaged number of rounds required by InclusiveFL with or
without momentum distillation to achieve the best performance in
Table 2 and 3. Thus, we can conclude that the proposed momentum

Table 5: Influence of different proportions of device types

on the CoLA dataset.

1:1:1 1:2:7 7:2:1

AllLarge 63.03 63.03 63.03
AllSmall 3491 3491 34.91
ExclusiveFL 37.77 59.15 36.87
HeteroFL 8.15 9.60 N/A
InclusiveFL w/o MD | 52.69  60.35 N/A

InclusiveFL 54.85 61.23 34.96*

distillation accelerates the performance of the largest global model
by requiring less communication rounds.

Discussion on the local model inference. To further inves-
tigate the reason for performance improvement, we observe the
evaluation results on the local model for each group of clients. For
the cross-silo setting, local model inference is essential because each
client has her own top layers of classifier for fitting local targets.
For the medium model in Fig. 3g and small model in 3h, we find
the effect of boosting convergence is less obvious but still exists
and leads to a higher performance in Table 3 when the local model
(8-layer for ADE and 4-layer for SMM4H) converges.

In the cross-device setting, the local model inference is also nec-
essary when the inference is conducted on personal devices. As
shown in Fig. 4, the final global model of ExclusiveFL can only be
deployed on devices of powerful clients while client-inclusive fed-
erated learning solutions (InclusiveFL, HeteroFL) and AllSmall can
be deployed on other clients with less storage and computation
power. We notice that InclusiveFL performs best on each sub-global
model, which validates the advantage of InclusiveFL in local infer-
ence. This also explains the performance advantage than another
heterogeneous aggregation method HeteroFL in a global inference
scenario, because better sub-global models lay the foundation for a
better large inference model. In addition, the averaged rounds for
achieving the best F1-score for MRPC and best accuracy for RTE
is less for InclusiveFL than InclusiveFL-w/o MD, which shows the
advantage of the proposed momentum distillation.

4.2 Ablation Study

To validate the principle of “No one left behind”, we conduct the
ablation study in Fig. 5 by ignoring each type of devices in hetero-
geneous federated learning on both GLUE benchmark and medical
NER datasets. For non-IID setting, InclusiveFL-w/o weak for SMM4H,
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InclusiveFL-w/o medium for ADE and InclusiveFL-w/o strong for
CADEC are not applicable because each client has different lo-
cal token classification task and cannot be trained without the
local dataset. Among the three device types, we notice that In-
clusiveFL w/o strong performs worse than InclusiveFL-w/o medium
and InclusiveFL-w/o weak, which indicates that the contribution of
powerful clients, medium clients and weak clients decrease progres-
sively. Powerful clients with more resources can learn knowledge
with a larger model and contribute more. We can observe that the
client-inclusive federated learning (InclusiveFL and InclusiveFL-w/o
MD) perform better than excluding each type of device, which vali-
dates our motivation that every single device should be included
and contribute to federated training.

4.3 Hyper-Parameter Analysis

At last, we analyze two important hyper-parameters for InclusiveFL.
Device type proportion. To investigate the effectiveness of In-
clusiveFL under different proportions of strong, medium, and weak
devices, we present results with 1:2:7, 7:2:1 and a default setting
of 1:1:1 on the CoLA dataset in Table 5. In general, increasing the
proportion of strong devices results in a better performance of
ExclusiveFL and HeteroFL. We can observe that the performance
advantage of InclusiveFL is consistent for two device proportions,
compared with naive baselines and HeteroFL. But we notice that
when the powerful client group is the minority (e.g., 7:2:1), the
convergence of the largest model is slow and aggregating over het-
erogeneous devices is not stable. Thus, we indicate one result in
Table 5 with a superscript of * when only adopt the momentum
distillation without sharing layer-wise parameters across heteroge-
neous models. And the performance is slightly worse than the best
baseline ExclusiveFL with a Matthew’s correlation of 36.87.

Momentum factor . Then we tune the momentum factor
of InclusiveFL with various choices of {0,0.2,0.5,0.8, 1}. This pa-
rameter indicates the weight of gradient from larger model when
applying the homophobic gradients to update each sub-global. And
B = 0 equals the the version of InclusiveFL-w/o MD. We conduct
evaluation on each type of sub-global model for the two cases: 1)
InclusiveFL* that only applies the momentum distillation without
heterogeneous parameter exchange on CoLA dataset in the IID
cross-device setting. 2) InclusiveFL on Medical NER dataset in non-
IID cross-silo setting. In Fig. 6, we indicate results that are superior
than ExclusiveFL, AllSmall and HeteroFL with the circle dot. We
notice that the optimal value of f is around 0.5 for powerful clients
under both settings. The model on medium and weak devices also
performs well when f = 0.2 or 0.5. The performance of a § > 0.8
may be ruined by injecting too much momentum from larger model
to smaller model’s gradients.

5 CONCLUSIONS

In this paper, we propose a client-inclusive framework InclusiveFL
for federated training over heterogeneous devices and remove the
ideal assumption in conventional FL that all clients have sufficient
device capability. InclusiveFL enables us to train a large global model
with contributions from all clients by assigning models of differ-
ent sizes to clients with different computing capabilities. Thus, we
avoid problems caused by ignoring weak clients or training with
a small model. Then, we propose an effective method to share the
knowledge among multiple local models with different sizes by
a layer-wise heterogeneous aggregation. Besides, we propose a
momentum knowledge distillation method for better transferring
knowledge in big models of strong powerful clients to small models
on weak clients. Extensive experiments are conducted on bench-
mark data and real-world medical corpora with comparisons of
both naive baselines and the existing state-of-the-art work under
IID and Non-IID settings. Results validate the accuracy improve-
ment of InclusiveFL on the large global model as well as smaller
models when inference is conducted on local devices.
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