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ABSTRACT
In large-scale online services, crucial metrics, a.k.a., key perfor-
mance indicators (KPIs), are monitored periodically to check their
running statuses. Generally, KPIs are aggregated along multiple di-
mensions and derived by complex calculations among fundamental
metrics from the raw data. Once abnormal KPI values are observed,
root cause analysis (RCA) can be applied to identify the reasons for
anomalies, so that we can troubleshoot quickly. Recently, several
automatic RCA techniques were proposed to localize the related di-
mensions (or a combination of dimensions) to explain the anomalies.
However, their analyses are limited to the data on the abnormal
metric and ignore the data of other metrics which may be also
related to the anomalies, leading to imprecise or even incorrect root
causes. To this end, we propose a cross-metric multi-dimensional
root cause analysis method, named CMMD, which consists of two
key components: 1) relationship modeling, which utilizes graph
neural network (GNN) to model the unknown complex calcula-
tion among metrics and aggregation function among dimensions
from historical data; 2) root cause localization, which adopts the
genetic algorithm to efficiently and effectively dive into the raw
data and localize the abnormal dimension(s) once the KPI anomalies
are detected. Experiments on synthetic datasets, public datasets
and online production environment demonstrate the superiority of
our proposed CMMD method compared with baselines. Currently,
CMMD is running as an online service in Microsoft Azure.
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1 INTRODUCTION
In the digital era, many companies and organizations monitor the
status of their products, services, and business through data intel-
ligence. A general pipeline is shown in Fig. 1: 1) collect the huge
volume of data streams; 2) integrate the raw data into KPI metrics
related to the performance and reliability issues; 3) monitor KPI met-
rics periodically and detect the anomalies intelligently; 4) diagnose
root causes to prevent anomalies becoming customer-impacting
incidents. In this paper, we focus on the last but the essential part,
root cause analysis (RCA). Formally, given the multi-dimensional
streaming data as input, RCA localizes which dimension(s) of the
data as the reason to the anomaly detected in KPIs.

Figure 1: General pipeline of KPI monitoring.

There are two main challenges because the raw data contains
many multi-dimensional metrics, while the monitored KPI metric
is highly aggregated and often derived. For a certain metric, there
could be multiple dimensions, e.g., region and channel. There exist
numerous values in each dimension, such as Region={US, UK,...}.
Given 𝐿 dimensions and 𝑉 values in each dimension, we have 𝑉 𝐿
dimension value combinations (e.g., Region=US ∩ Channel=Search).
It is too resource-consuming to monitor each of the combinations
independently when 𝐿 and 𝑉 are large. Thus, the best practice
is to aggregate the value along the dimension. Fig. 2(a) shows a
dimension tree, and “AGG” indicates we conduct an aggregation
function (e.g., SUM or MEAN) on all values in that dimension. As
long as the root node is monitored, we can check the status of
all the dimensions. Overall, the first challenge for RCA is how to
accurately and quickly find a set of dimension value combinations
(leaf nodes) to resolve the anomaly detected in the root node.

Besides, the monitored KPI metric often requires the complex
calculation of the raw data. Some applications include the total
error rate to check whether a large-scale software is running nor-
mally, profitability index to decide the performance of a company
product, and overall equipment effectiveness to evaluate how well
a manufacturing operation is utilized. Take a business system as a
detailed instance: the system monitors the conversion rate of adver-
tisements as its KPI to measure the success of advertisements. The
raw streaming data contain the fundamental metrics (e.g., #views,
#conversions), and the derived KPI metrics (e.g., conversion rate =
#conversions

#views ). It is obvious that the deviations of derived KPI metrics
are caused by the changes of fundamental metrics. Thus, the second
challenge is how to explain the anomaly occurred in the derived
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Table 1: A Snapshot of business metrics at timestamp 𝑡 . We show the real value (forecast value in parentheses) for each metric
in each possible dimension. The monitored metric Conversion Rate is abnormal because of a 27% decrease (colored in red).
Previous methods found two root causes colored in yellow. CMMD believed the real root cause is Search|US colored in green.

Dimensions Fundamental Metrics Derived Metrics
Channel Region #Views #Conversions Cost Conversion Rate Cost per Conversion

Search US 51949(57328) 14651(25741) 219765(249067) 0.28(0.45) 15(17)
Search Norway 3152(2627) 783(1228) 13311(12528) 0.25(0.47) 17(16)
Search Brazil 3125(2981) 341(980) 6820(7502) 0.11(0.33) 20(22)
Search Others 64351(59721) 19321(25931) 618272(579630) 0.30(0.43) 32(30)

Social Media US 43949(39312) 21525(24057) 344400(322875) 0.49(0.59) 16(15)
Social Media Norway 20453(18327) 8731(9068) 139696(148427) 0.43(0.50) 16(17)
Social Media Brazil 1957(1512) 1023(1001) 17391(16368) 0.52(0.66) 17(16)
Social Media Others 70384(60413) 32253(35912) 903084(838578) 0.46(0.59) 28(26)

AGG US 95898(96640) 36176(49798) 564165(614992) 0.38(0.50) 16(17)
AGG Norway 23605(20954) 9514(10296) 153007(161738) 0.40(0.49) 16(17)
AGG Brazil 5082(4493) 1364(1981) 24211(25916) 0.27(0.44) 18(19)
AGG Others 134735(120134) 51574(61843) 1521356(1598794) 0.38(0.50) 29(31)
Search AGG 122577(122657) 35096(53880) 858168(877400) 0.28(0.43) 24(25)

Social Media AGG 136743(119564) 63532(70038) 1404571(1397704) 0.46(0.59) 22(22)

AGG AGG 259320(242221) 98628(123918) 2262739(2268444) 0.38(0.52) 22(23)

metric by considering all the metric data, even if we do not know
the exact calculation among metrics.

Recently, several works were proposed to automatically identify
root causes by regarding each root cause as the combination of
values from different dimensions, which cannot address the above
challenges. For instance, iDice [9] and HotSpot [14] only works
when the monitored metric is fundamental. Adtributor [1] and
Squeeze [8] considered the derived metrics. But Adtributor [1] as-
sumes the root cause is only in one dimension. Squeeze [8] supports
multiple dimension value combinations, but it needs to know the
number of root causes as a prior.

Most importantly, all the existing methods focused on the single-
metric instead of cross-metric scenario, i.e., they only consider the
data related to the abnormal metric and ignore the data of other
metrics which are also related to the anomaly. We illustrate it with
the following example. Tab. 1 shows a snapshot of a business system.
We sum up all the values in a dimension as a tree based on Fig. 2(a),
and calculate two derived metrics Conversion Rate and Cost per
Conversion based on Fig. 2(b). To see whether the system is running
normally, we monitor two KPIs, Conversion Rate of AGG|AGG and
Cost per Conversion of AGG|AGG. At timestamp t, an anomaly is
detected in Conversion Rate of AGG|AGG due to a 27% decrease
(0.52 → 0.38). Traditional methods only focus on the changes of
conversion rate (the data in the column of conversion rate), so they
regard the root cause as Search|Norway and Search|Brazil since
47% and 67% decline are detected in their conversion rate (0.47→
0.25, 0.33 → 0.11). However, from the absolute value of #Views
and #Conversions, we find that the decrease of #Conversions of
Search|US contributes most to the anomaly. If we recover #Conver-
sions of Search|US (14651 → 25741), #Conversions of AGG|AGG
becomes 109718, and then Conversion Rate of AGG|AGG is changed
from 0.38 to 0.42. If we recover Search|Norway and Search|Brazil,
Conversion Rate of AGG|AGG is almost not changed. Search|US
has a higher recovery ratio. In summary, this example shows that

it is hard to find the accurate root cause when fundamental metrics
are not considered.

To this end, we propose a cross-metric multi-dimensional root
cause analysis approach, named CMMD, which can identify precise
root causes with fewer assumptions. Firstly, we do not assume that
we know the exact calculation among metrics and aggregation func-
tion among dimensions. We automatically model the relationship
among metrics of different dimensions by graph neural network
from historical data. Secondly, there is no assumption of the num-
ber or range of root causes. We adopt the genetic algorithm and
design a novel fitness score based on the trained GNN to compute
the probability of a candidate to be a real root cause. The candidate
could be any possible dimension value combinations of all the met-
rics related to the anomaly. Besides, we also utilize the attention
weights in the trained GNN to speed up. Thirdly, CMMD could
do fine-grained analyses for the raw data. Since we aggregate all
the dimensions as a tree, we can monitor the status of any node
at any level, not only the root node. Further, after we obtain the
root causes searched by the genetic algorithm, we backtrack and
aggregate these root causes in the dimension tree to make the re-
sult succinct and fine-grained. Finally, CMMD is evaluated by three
types of dataset. For online production datasets where anomalies
are detected in the derived metric while root causes are in the fun-
damental metric, we achieve at least 9% improvement compared
with baselines. For public datasets where anomalies and root causes
are both in the same metric, a competitive performance is also
exhibited. The major contributions are summarized as follows:

• To our best knowledge, CMMD is the first RCA approach for
the cross-metric scenario and can analyze the root causes
for both fundamental and derived metrics.

• We model the unknown relationship among metrics and
dimensions based on graph neural networks.

• We utilize the genetic algorithm with designed fitness score
to search out the precise root cause.
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Figure 2: Dimensions and metrics of a business system: an example.

Table 2: Notations and corresponding examples used in this paper.

Notation Definition Example

𝑎𝑖 𝑗 a value of each dimension US, Norway for Region; Social Media, Search for Channel
T dimension tree An aggregated tree among dimensions

a node in T a dimension value combination Social Media|US, Search|Norway, AGG|US
root cause a set of dimension value combinations {Search|US, Social Media|AGG}
𝑀𝐹 /𝑀𝐷 fundamental metric / derived metric #Views, #Conversions, Cost / Conversion Rate, Cost per Conversion
𝑣𝑖,𝑚 / 𝑓𝑖,𝑚 real/expected values of the metric𝑚 in the node 𝑖 In Tab. 1, 𝑣 = 341 and 𝑓 = 980 of the node Search|Brazil for the metric #Conversions

• We demonstrate the industrial practice in Microsoft Azure.

2 RELATEDWORKS
In this section, we introduce existing approaches for root cause
analysis and multivariate time-series tasks, and summarize the
differences between these approaches and CMMD.

2.1 Root Cause Analysis
The goal of root cause analysis in multi-dimensional data is to lo-
calize a combination of dimension values to explain the anomaly
that happened in the monitored metric. Adtributor [1] is firstly
proposed under the assumption that the root cause lies in only
one dimension. Based on the Jensen-Shannon divergence between
real and expected values of abnormal metrics, Adtributor selected
the dimension value with the highest divergence as the root cause.
Adtributor can be applied recursively, named RAdtributor, to find
several dimension values to be the root cause. iDice [9] removed the
assumption and considered the root cause is a combination of di-
mension values, i.e., the anomaly occurs with the coaction of many
dimensions. Thus, iDice utilized a tree-based method to evaluate the
dimension value combinations by Fisher distance between real and
expected values of abnormal metrics. At the same time, the pruning
strategy is also adopted to filter the most effective dimension com-
bination. ImAPTr [13] used a similar tree-based method to analyze
root causes for declining success rate and replaced Fisher distance
with Jensen-Shannon divergence. HotSpot [14] defined ripple effect
to propagate the anomaly into different dimensions and proposed
potential score to evaluate a set of dimension value combinations by
replacing their real values with corresponding expected values and
calculating the difference with or without the replacement. HotSpot
also adopted the Monte Carlo Tree Search and a hierarchical prun-
ing strategy to improve search efficiency. According to HotSpot,
Squeeze [8] proposed generalized ripple effect and generalized po-
tential score for both fundamental and derived metric. Differently,
Squeeze first grouped potential abnormal dimension value combi-
nations into clusters based on generalized ripple effect, and then
searched for the root causes based on generalized potential score
within those clusters. To improve the clustering performance in
Squeeze, AutoRoot [7] used the kernel density estimation to cluster

adaptively and proposed a new method to calculate generalized
potential score for insignificant deviation magnitude. However,
Squeeze and AutoRoot need to assume the number of root causes
in a cluster as a prior. Given the dependency among dimensions,
HALO [18] formed a hierarchy structure of dimensions instead of
the dimension tree based on conditional entropy and searched root
causes by walking in this structure. MID [5] improved the efficiency
of iDice by an evolution-based search framework. HALO and MID
are specially designed for the cloud system.

iDice and HotSpot work when the monitored metric is fun-
damental, while Adtributor, Squeeze and AutoRoot support the
analysis of derived metrics. However, all the existing methods are
focused on the single-metric situation. They only consider the
multi-dimensional data of the abnormal metric and ignore the data
of other metrics which are also related to the anomalies. CMMD
takes all the multi-dimensional data among various metrics into
consideration and thus achieves more precise root cause analysis.

2.2 Multivariate Time-series Tasks

Forecasting. Time-series forecasting aims to better understand
the data by predicting future values in the time series. Traditional
univariate time-series methods, such as auto regression (AR) [6],
moving average (MA) [11] and auto regressive integrated moving
average (ARIMA) [2] predict the data behavior based on the histori-
cal data in a linear way. Considering nonlinearity, neural networks
including CNN [10] and LSTM [12] have been successfully applied.
Recently, some GNN-based methods [3, 17] were proposed to cap-
ture both intra-series and inter-series correlations for multivariate
time-series forecasting, which obtained outstanding performance.

Different from multivariate time-series data, CMMD is focused
on multi-dimensional streaming data. If there are millions or bil-
lions of dimension value combinations, it is impossible to train a
multivariate model to learn the relationship in practice. Thus, based
on the observation that multi-dimensional data is conducted by the
same aggregation function and calculation at each timestamp, we
simplify the problem and propose a single-layer GNN model. Note
that this observation is universal in many industrial applications.
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Figure 3: Framework of the proposed method. The main al-
gorithm is described by the components colored in grey.

Anomaly Detection. Many multivariate time-series anomaly de-
tection approaches [4, 12] have been studied recently. However, we
regard the module of anomaly detection as a black box in the paper.
We consider the situation where the anomaly is already detected.

3 PROBLEM FORMULATION
Here we formulate the problem for cross-metric multi-dimensional
root cause analysis. Tab. 2 lists the notions and examples. In the raw
streaming data, there are multiple dimensions and each dimension
contains numerous values. We denote 𝑎𝑖 𝑗 as the 𝑗-th value in the
𝑖-th dimension. Besides, the raw data also contain two kinds of
metrics, fundamental metrics𝑀𝐹 =

{
𝑚𝐹

1 ,𝑚
𝐹
2 , ...,𝑚

𝐹
𝑝

}
and derived

metrics𝑀𝐷 =

{
𝑚𝐷1 ,𝑚

𝐷
2 , ...,𝑚

𝐷
𝑞

}
. At each timestamp, we have the

real numerical value of each 𝑎𝑖 𝑗 for every metric𝑚 as the input.
Dimension values are often aggregated as a dimension tree T, as

shown in Fig. 2. AGG represents a summary of all the values in a
dimension. Each node in T is a combination with specific values in
the dimension, i.e., a vector

[
𝑎11, 𝑎23, ..., 𝑎𝑖 𝑗 , ...

]
. For non-leaf nodes,

𝑎𝑖 𝑗 in some positions could be AGG, which represents that the 𝑖-th
dimension is already aggregated. For the root node, all the positions
in the vector are AGG that means all the dimensions are aggregated.

After that, the most representative status, the derived KPI metric
of the root node is monitored periodically. When the anomaly
is detected by Anomaly Detection module, the main objective of
Root Cause Analysis is to analyze which set of dimension value
combinations is the root cause of the anomaly. In other words,
we need to identify a set of nodes in T as the root cause, such as
{[𝑎11, 𝑎21, ...] , [𝑎14, 𝑎27, ...] , ...}.

4 METHODOLOGY
In the section, we first present the framework of CMMD, and then
introduce the two important modules in CMMD, training and in-
ference modules. Finally, we describe two extra functions for fine-
grained analysis and speed-up.

4.1 Framework
The overall framework of CMMD is presented in Fig. 3. In the
stream processing, we collect and store the raw data in the database.
Anomaly detection is used to monitor KPI metrics integrated from
the streaming data. Once it detects the anomaly, it sends the signal to
the root cause analysis service. RCA is batch-processingwhere tasks
are managed in the task controller. There are two kinds of tasks: 1)
we offline periodically trigger the training module to train/update
themodel for the relationship between themonitoredmetric and the
fundamental metrics obtained from the raw streaming data; 2) once
there exists the anomaly signal, we trigger the inference module to
search out the precise root cause and output a troubleshoot report.

In detail, we construct a dimension tree by aggregating dimen-
sions in the offline training module, and a graph attention net-
work [15] is used to learn the tree-based relationship. In the online
inference module, a bottom-up search strategy is adopted based
on the genetic algorithm [16]. We design a fitness function based
on the graph attention model to evaluate the probability of the
candidate dimension value combination to be a root cause.

4.2 GNN-Enhanced Relationship Modeling
We often monitor the root node in the dimension tree for derived
metrics. However, we need to localize the root cause in the raw
streaming data, i.e., the leaf nodes for fundamental metrics. Thus,
the first step is to model the complex relationship. In this section,
we introduce how to utilize the graph attention network (GAT) to
learn the relationship from historical data automatically.

Although we do not know the detailed calculation used to get the
value of derived metrics from fundamental metrics and the exact
aggregation function to aggregate the value along the dimension,
we find the calculation and aggregation are the same in any two-
layer subtree. As shown in Fig. 4(a), we extract several two-layer
subtrees from the dimension tree in Fig. 2. The data processing
in each subtree is the same: at each timestamp, the raw data are
collected in child nodes for fundamental metrics. Then these data
are aggregated along the dimensions to generate the value of the
parent node. Meanwhile, the value of fundamental metrics is cal-
culated to obtain the value of derived metrics in each node. Since
the number of child nodes is uncertain, graph neural network is
suitable to learn the pattern in the subtree.

Formally, we define 𝑣𝑡,𝑖,𝑚 as the values of node 𝑖 for eachmetric𝑚
at timestamp 𝑡 . Suppose that we have 𝐿 dimensions, 𝑃 fundamental
metrics and 𝑄 derived metrics. For each node 𝑖 , the value of funda-
mental metrics is the input 𝑥𝑖 = [𝑣𝑡,𝑖,𝑚𝐹

1
, 𝑣𝑡,𝑖,𝑚𝐹

2
, ..., 𝑣𝑡,𝑖,𝑚𝐹

𝑃
], and the

value of derivedmetrics is the output𝑦𝑖 = [𝑣𝑡,𝑖,𝑚𝐷
1
, 𝑣𝑡,𝑖,𝑚𝐷

2
, ..., 𝑣𝑡,𝑖,𝑚𝐷

𝑄
].

Since the relationship is the same at each timestamp, we omit the
subscript 𝑡 . For each subtree, we utilize the single-layer graph
attention G to model the relationship between the child nodes and
the parent node: 𝑦𝑖 = G({𝑥 𝑗 |node 𝑖 is the parent of node 𝑗}). If we
conduct 𝐿 graph convolutions, we iteratively learn the relationship
between the leaf nodes and the root node in the dimension tree, i.e.,
𝑦root = G𝐿 ({𝑥 𝑗 |node 𝑗 is the leaf node}).
Single-layer graph attention. According to the tree structure,
we specify the neighbors N as the child nodes of each parent node.
As shown in Fig. 4(b), the representation 𝑧𝑖 of node 𝑖 after message
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Figure 4: The key components of CMMD.

passing is calculated as follows:

𝑧𝑖 = 𝜎
©­«
∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗𝑾𝑥 𝑗
ª®¬ , (1)

where𝑾 and 𝜎 are the parameters and activation function in GAT.
Please note that we add the depth of node 𝑗 into the input feature
𝑥 𝑗 to enrich the information. The attention coefficients 𝛼𝑖 𝑗 between
node 𝑖 and node 𝑗 can be computed as follows:

𝛼𝑖 𝑗 =

𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝜽𝑇

[
𝑾𝑥𝑖 ∥𝑾𝑥 𝑗

] ))
∑
𝑘∈N𝑖 𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝜽𝑇 [𝑾𝑥𝑖 ∥𝑾𝑥𝑘 ]

)) , (2)

where 𝜽 is the learnable parameter of a single-layer feedforward
neural network indicating the attention mechanism and ∥ means
concatenation of vectors. We also implement the multi-head atten-
tion to learn more useful information:

𝑧𝑖 = ∥𝐾
𝑘=1𝜎

©­«
∑︁
𝑗∈N𝑖

𝛼𝑘𝑖 𝑗𝑾
𝑘𝑥 𝑗

ª®¬ . (3)

Objective function. After aggregating information from child
nodes and obtain the representations 𝑧𝑖 , we finally apply a multi-
layer perceptron to fit the function between the representations
and the real value of derived metrics 𝑦 ∈ R𝑞 . Here we use the Mean
Squared Error (MSE) to guide the GAT training:

L𝑀𝑆𝐸 =
∑︁
𝑡=1..𝑇

∑︁
𝑖=1..𝑁 ′

| |𝑦̂𝑡,𝑖 −𝑀𝐿𝑃
(
𝑧𝑡,𝑖

)
| |22, (4)

where 𝑇 is the total number of timestamps and 𝑁 ′ is the number
of non-leaf nodes in the dimension tree.

4.3 GA-Based Root Cause Localization
Based on the above model, we are able to get the effect of funda-
mental metrics in the leaf nodes on a specific monitored metric.
Therefore, we can analyze the causes for the abnormal metrics once
detected. However, it is time-consuming because of a large scale of
dimension value combinations in practice. In this way, tree-based
search methods are popular in root cause analysis. If we utilize the
top-down search strategy, there may exist many assumptions and
pruning thresholds, and some root causes will be missing. Thus,
we introduce a heuristic search framework based on the genetic
algorithm for this combinatorial optimization problem and the
bottom-up search strategy is applied with few assumptions about
the root cause.

Figure 5: Chromosome Encoding.

Anomaly detection in a metric is based on the deviation between
the real value 𝑣 and the predicted value 𝑓 . Such prediction can be
implemented by most of the time-series algorithms (e.g., AR, MA,
ARIMA). Considering the efficiency and accuracy in root cause
analysis, AR is adopted to obtain the forecast value of each node in
this work. When an anomaly is detected, we conduct the GA-based
search which is shown in Fig. 4(c).
Encoding. First of all, we encode root cause candidates, i.e., all the
leaf nodes in the dimension tree, into a vector (chromosome). As
shown in Fig. 5, the chromosome is a binary bit string, which can
be represented as:

𝑠 = [𝑠1, · · · , 𝑠𝑖 , · · · , 𝑠𝑛] 𝑠𝑖 ∈ {0, 1} , 1 ≤ 𝑖 ≤ 𝑛. (5)

Each bit 𝑠𝑖 indicates the status of a dimension value combination,
such as Search|US. 𝑠𝑖 = 1 means that this dimension value com-
bination is chosen as the root cause and 𝑠𝑖 = 0 means that it is
excluded. Obviously, the number of root causes can be more than
one, which means that the abnormality is due to the coaction of
multiple abnormal dimension value combinations. Note that we
do not assume the number of root causes, and it is decided in the
search process automatically.
Evaluation. Based on the encoding mechanism, we randomly sam-
ple multiple chromosomes as an initial population. The next step is
to compute the probability of each chromosome to be an accurate
root cause set. We design the fitness score, whose motivation is to
evaluate whether the abnormality still exists if we ’troubleshoot’
the root cause set indicated by the chromosome.

We denote the deviation as Δroot,𝑚 = |𝑣root,𝑚 − 𝑓root,𝑚 | where
𝑣root,𝑚 and 𝑓root,𝑚 are the real value and forecast value of the root
node for the abnormal metric𝑚. Since the chromosome 𝑠 indicates
abnormal dimension value combinations, we replace the values of
abnormal dimension value combinations with the predicted values,
maintain the values of normal dimension value combination, and
obtain the new input 𝑿 (𝑠). Next, we could obtain the new output
value G𝐿 (𝑿 (𝑠)) based on the graph model G𝐿 learned in Sec. 4.2.
To evaluate whether eliminating the abnormal dimension value
combinations indicated by 𝑠 is enough to troubleshoot the target
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metric, we define the fitness score as:

Fitness score =
|G𝐿 (𝑿 (𝑠)) − 𝑓root,𝑚 |
|𝑣root,𝑚 − 𝑓root,𝑚 | + 𝛽 | |𝑠 | |1 . (6)

Obviously, chromosome with smaller score is considered to be the
root cause set with higher probability. Besides, we need to consider
the succinctness of the root causes to avoid selecting all of them. 𝛽
is a trade-off parameter between the deviation and succinctness.
Evolution. The core of the genetic algorithm is the iterative evalu-
ation and evolution which is made up of three behaviors, selection,
crossover and mutation.

Given a population with the fitness score of each chromosome,
the selection operator aims to choose chromosomes for the next
iteration based on the roulette and a chromosome with a smaller fit-
ness score is more likely to be selected obviously. After selection, we
perform crossover andmutation to enrich chromosome diversity.
The crossover operation is controlled by the cross rate 𝑡𝑐 . For a pair
of chromosomes, if the probability we randomly generated exceeds
𝑡𝑐 , we swap part of these two chromosomes at a random bit. 𝑡𝑐
determines the frequency of new chromosomes. A small 𝑡𝑐 leads to
the slow generation of new chromosomes and affects the diversity.
Meanwhile, a large 𝑡𝑐 results in the unstable heredity of chromo-
somes and makes GA similar to random algorithm. Therefore, we
set 𝑡𝑐 = 0.5. The mutation operation is controlled by another mu-
tation rate 𝑡𝑓 . Similarly for each chromosome, if the probability
exceeds 𝑡𝑓 , then we randomly pick a bit in this chromosome and
reverse 0 and 1. Since mutation is a small probability event and
the influence of mutation should be much less than crossover, 𝑡𝑓 is
usually recommended to be less than 0.2 and we set 𝑡𝑓 = 0.1. We
summarized the whole search process in Alg. 1 in Appendix.

4.4 Extra Functions
4.4.1 Backtrack for Fine-grained Analysis. In the previous sections,
we find out the root causes based on the optimal chromosome 𝑠∗
with the smallest fitness score. Furthermore, we could obtain the
fine-grained result by aggregating these chosen leaf nodes into
their parent nodes. For example, if the leaf nodes Social Media|US
and Search|US are both chosen as the root cause, the result can be
compacted as their parent node, AGG|US. To achieve this goal, we
backtrack in the dimension tree.

We summarized the whole process in Alg. 2 in Appendix. Assume
that we have a set of chosen leaf nodes S and a backtrack threshold
𝑡𝛾 as input. Then, we conduct a bottom-up aggregation layer by
layer. For a parent node, if the percentage of its child nodes in
S is more than 𝑡𝛾 , we remove these child nodes from S and add
the parent node into S. 𝑡𝛾 is a user-defined which determines the
succinctness of results and large 𝑡𝛾 will make root causes include
more leaf nodes. 𝑡𝛾 ≥ 0.5 is usually preferred and we set 𝑡𝛾 = 0.6
in the experiments. We stop when there is no parent node added in
a layer. Finally, the new root cause set S∗ is succinct.

4.4.2 Filtering for Speed-up. The efficiency of root causes analysis
depends largely on the number of dimension value combinations,
i.e., the chromosome length. Given the fact that not all dimension
value combinations are abnormal when the anomaly is detected,
we filter out the normal dimension value combinations to obtain
the candidates for the genetic algorithm. Considering the deviation

between real value 𝑣𝑖,𝑚 and expected value 𝑓𝑖,𝑚 of the leaf node 𝑖
of the abnormal metric𝑚, and the importance of leaf node 𝑖 to the
root node, we design the following score to measure whether it can
be a candidate:

Filtering score𝑖 =
|𝑣𝑖,𝑚 − 𝑓𝑖,𝑚 |

|𝑣𝑖,𝑚 | ∗
𝛼𝑖,root∑
𝑗 𝛼 𝑗,root

. (7)

The importance to the root node 𝛼𝑖,root is computed iteratively by
the average 𝑘-head attention score 1

𝐾

∑
𝑘 𝛼

𝑘
𝑖 𝑗
in the graph model. If

filtering score𝑖 is smaller than the filtering threshold 𝑡𝛿 , we filter
the node 𝑖 .

5 EXPERIMENT
In the section, we conduct extensive experiments to verify both the
effectiveness and efficiency of the proposed CMMD on multiple
datasets. Due to the space limitation, we move the implementation
detail (including hyper-parameter setting of CMMD and baselines)
and parameter study to Appendix.

5.1 Experimental setup
Datasets. To comprehensively assess the effectiveness of ourmethod,
we conduct experiments on three types of situations, production
datasets (obtained from online services atMicrosoft), public datasets
(released by the previous work) and synthetic datasets.
Production datasets D1. Here we have 5 production cases. The
first 3 cases came from a business analysis scenario. Conversion rate,
cost per conversion, and cost per view are three important metrics
to track the marketing effort and analyze the results. They are
generated by three fundamental metrics, the number of conversions,
the number of views and cost. The calculations are conversion rate
= #conversions

#views , cost per conversion = cost
#conversions , and cost per view

= cost
#views . We collected 3-month data with 91 timestamps, consisting

of two dimensions (Region and Channel). There are 249 countries
or regions in Region and 3 values in Channel. Except the undefined
combinations, there are 503 leaf dimension value combinations, and
270 aggregated dimension value combinations in the tree.

The remaining 2 cases are from an alerting service. We gath-
ered 1-year metrics with 300 timestamps. There is one dimension
notification channel which has 5 different values. Alert open rate
and click-through rate are monitored to bring to light the quality
and the engagement of the alerts, which is calculated based on
the number of alerts, the number of opened alerts and the num-
ber of click-through alerts. The calculations are alert open rate =
#opened alerts

#alerts , and click-through rate = #click-through alerts
#alerts .

Public datasets D2. The public dataset is released by Squeeze [8].
D2 is a semi-synthetic dataset constructed based on the real-world
dataset from an Internet Company. Here we select its derived sub-
dataset asD2. The derived metric is the success rate in transactions
which is calculated by successful transaction number and total
transaction number. There are 100 timestamps in each case with 4
dimensions and 21600 leaf dimension value combinations. In this
way, anomalies are injected as (p,q) where p, q mean the number of
abnormal dimensions and the number of root causes respectively.
We set p = 1,2,3 and q = 1,2,3 to test 9 cases respectively.
Synthetic datasets D3. Apart from the production and public
datasets, we also conduct experiments on a synthetic datasetD3.We
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have two fundamental metrics 𝑏 and 𝑐 , and two derived metrics 𝑎 =

𝑔(𝑐) and 𝑑 = 𝑓 (𝑎, 𝑏). For evaluation on more complex relationships
among metrics, we set function 𝑓 as

1) 𝑎
𝑏
, 2) 𝑎 × 𝑏, 3) log𝑎

log𝑏 , 4) 𝑎 × 𝑒𝑏 and 5) log(𝑎+1)
log(𝑏+1) . The function 𝑔

is randomly selected from
{
𝑐, sin(𝑐), 𝑒𝑐 , 𝑐2,

√
𝑐
}
. In each case, 200

timestamps are simulated. The detailed simulation process is de-
scribed in Appendix.

Evaluation metrics. In the following experiments, F1-score is
used to evaluate the performance in cross-metric multiple dimen-
sional root cause analysis. Since current methods only focus on the
dimensions, we only compare the result whether the root causes are
the accurate set of dimension value combinations. The calculation
of F1-score is mathematically described as follows.

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall , (8)

where Precision (P) = TP
TP+FP and Recall (R) = TP

TP+FN . TP (true posi-
tive) is the number of dimension value combinations both reported
by the algorithm and the ground truth. FP (false positive) is the
number of dimension value combinations reported by algorithm
but not in the ground truth. FN (false negative) means the number
of root causes in ground truth but not reported by the algorithm.

The ground truth of D2 is provided in [8]. In other two datasets,
since we know the exact calculation amongmetrics and aggregation
function among dimensions, the ground truth is determined by the
recovery ratio of specific dimension value combinations. Please see
the detailed description in Appendix.

Comparative methods. We compare the proposed CMMD with
four baselines, Adtributor [1], HotSpot [14], Squeeze [8] and Au-
toRoot [7]. The detailed information for baselines is introduced in
Appendix.

5.2 Overall Performance
Firstly, we conduct experiments on the production datasets D1 and
present the results of the compared methods in Tab. 3. In the results,
CMMD outperforms other methods in these five cases and achieves
nearly 9% higher than the second-best performance on average
F1 score. In these methods, Squeeze obtains the highest Recall, es-
pecially in the case of cost per conversion. HotSpot, Squeeze and
AutoRoot exhibit similar F1 scores with competitive Recall in indus-
trial practice, but the Precision of the detected root causes needs to
be further improved especially for Squeeze. These methods do not
consider the cross metrics which will result in multiple false posi-
tives since many abnormal dimension value combination does not
contribute to the monitored metrics. Although Adtributor provides
a better Precision than HotSpot, Squeeze and AutoRoot, the Recall
of root causes cannot meet the requirements of practical applica-
tion which means some root causes are undetected by Adtributor.
Overall, the proposed CMMD provides the best performance and
demonstrates that fundamental metrics can improve the accuracy
of root cause analysis when monitoring the derived metrics.

Next, we evaluate these five methods on the public datasets D2.
The results in Tab. 4 suggest that CMMD can still exhibit better
F1 scores on average. It is worth noting that the anomalies are
injected directly into the derived metrics rather than the fundamen-
tal metrics and this mechanism leads to a single-metric scenario.

Therefore, HotSpot, Squeeze and AutoRoot for the single-metric
task can also exhibit competitive performance. Similarly, Adtributor
is not effective in Recall. With the increasing number of dimensions
in a root cause p and the increasing number of root causes q, the
performance of all methods gradually deteriorates. The clustering
algorithms in Squeeze and AutoRoot can help determine the num-
ber of root causes and thus they have better results compared with
Adtributor and HotSpot. Although CMMD is not good as AutoRoot
in some cases, it still obtains a competitive performance.

Finally, we provide the Precision, Recall and F1 score in Fig. 6(a-
c) for the five synthetic datasets. Overall, CMMD can still achieve
better F1 scores and is flexible for different calculations between
fundamental and derived metrics. In these datasets, Adtributor ex-
hibits a better Precision but a bad Recall since it tends to consider
fewer root causes. The performance of Squeeze and AutoRoot is
more balanced in Precision and Recall. HotSpot presents a closer
performance to our method with higher Precision in a few cases.
The good performance on synthetic datasets demonstrates the gen-
eralizability of our proposed CMMD.

Besides, the efficiency of root cause analysis is also important
for industrial practice. We also conduct experiments on synthetic
datasets with an increasing number of dimensions and set each di-
mension consisting of ten dimension values. Therefore, we evaluate
these methods with up to 105 leaf dimension value combinations.
The result is shown in Fig. 6(d). For the sake of analysis, the time in
the figure is logarithmic. Obviously, all the methods will cost more
inference time and exhibit the exponential trends to analyze the
root causes when more dimensions are collected. In these methods,
Adtributor is the most time-consuming method in all the situations
which is followed by HotSpot. These two methods cost more than
500 seconds for 105 leaf dimension value combinations. Although
Squeeze and AutoRoot may be quick in less dimension value combi-
nations, our CMMD can also provide competitive performance and
achieve the best efficiency in the largest case. This is mainly due to
the effect of the genetic algorithm on such combinatorial explosion
problems to save the tedious traversal time in the tree-based search.

6 INDUSTRIAL PRACTICE
CMMD has been released as a private preview feature on an on-
line service in Microsoft Azure which provides users to detect the
anomaly and analyze root causes. Currently, it has been used by
several customers from different backgrounds, including business
marketing, AIOps(artificial intelligence for IT operations), and net-
working. In this section, we will analyze two real cases and share
some lessons we learned from practice.

6.1 Case 1: Business marketing
Conversion rate is one of the most commonly used and valuable
KPIs to understand and effectively analyze the results of the mar-
keting campaigns, which is derived by #Conversions

#Views . In this case, we
monitor the Conversion Rate of a business system. There are two
dimensions (Region and Channel) aggregated.

Fig. 7 shows the interface of our service based on CMMD. At the
top of Fig. 7, Conversion Rate of AGG|AGG was monitored with
a 26.92% decrease on January 10, 2020. The module of root cause
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Table 3: Experimental results on production datasets.

Adtributor HotSpot Squeeze AutoRoot CMMD
Datasets P R F1 P R F1 P R F1 P R F1 P R F1

Conversion rate 0.7679 0.5939 0.6698 0.7036 0.8591 0.7736 0.6136 0.7459 0.6733 0.6005 0.7182 0.6541 0.7339 0.9144 0.8143
Cost per conversion 0.7202 0.6205 0.6667 0.6572 0.7733 0.7105 0.6844 0.8902 0.7739 0.6693 0.8019 0.7296 0.8054 0.8496 0.8269

Cost per view 1.0000 0.5000 0.6667 1.0000 0.6154 0.7619 1.0000 0.8077 0.8936 0.9524 0.7693 0.8511 1.0000 0.8462 0.9167
Alert open rate 0.4400 0.3200 0.3721 0.4800 0.9600 0.6400 0.4386 1.0000 0.6098 0.4310 1.0000 0.6024 0.8333 0.8000 0.8164

Click-through rate 1.0000 0.3143 0.4783 1.0000 0.7714 0.8525 1.0000 0.8571 0.9231 1.0000 0.8286 0.9063 1.0000 0.8857 0.9394

Average 0.7856 0.4697 0.5707 0.7682 0.7958 0.7477 0.7473 0.8602 0.7747 0.7306 0.8236 0.7487 0.8745 0.8592 0.8627

Table 4: Experimental results on public real-world datasets.

Adtributor HotSpot Squeeze AutoRoot CMMD
Root cause type P R F1 P R F1 P R F1 P R F1 P R F1

(1,1) 0.8000 0.9500 0.8686 0.7882 1.0000 0.8815 0.9200 0.9200 0.9200 0.9000 0.9000 0.9000 0.9000 0.9500 0.9243
(1,2) 0.9855 0.7083 0.8240 0.5394 0.7500 0.6275 0.9540 0.8300 0.8877 0.9253 0.8050 0.8610 0.9242 0.9150 0.9196
(1,3) 0.9171 0.6700 0.7743 0.3322 0.6575 0.4414 0.9336 0.7226 0.8146 0.9115 0.7055 0.7954 0.8793 0.8500 0.8644
(2,1) 0.4826 0.8384 0.6125 0.6899 0.7200 0.7042 0.8700 0.8200 0.8443 0.8700 0.8700 0.8700 0.8519 0.9200 0.8846
(2,2) 0.5472 0.7323 0.6264 0.4462 0.5200 0.4803 0.8955 0.9000 0.8977 0.8955 0.9000 0.8977 0.8974 0.8750 0.8861
(2,3) 0.6735 0.5556 0.6089 0.4181 0.4000 0.4088 0.8930 0.8930 0.8930 0.8930 0.8930 0.8930 0.8970 0.8700 0.8833
(3,1) 0.2908 0.8200 0.4294 0.4502 0.5300 0.4869 0.8700 0.8900 0.8799 0.8911 0.9000 0.8955 0.8762 0.8500 0.8629
(3,2) 0.4255 0.6061 0.5000 0.3500 0.4100 0.3776 0.9250 0.8900 0.9059 0.9200 0.9200 0.9200 0.9333 0.9200 0.9266
(3,3) 0.4580 0.4511 0.4545 0.3550 0.3533 0.3541 0.8896 0.8867 0.8881 0.8896 0.8867 0.8881 0.8616 0.8800 0.8707

Average 0.6200 0.7035 0.6332 0.4855 0.5934 0.5291 0.9056 0.8614 0.8812 0.8996 0.8645 0.8801 0.8912 0.8922 0.8914

(a) Precision (b) Recall (c) F1 score (d) Inference time

Figure 6: Experimental results on synthetic datasets.

analysis is triggered to find out the abnormal dimensions. Tradi-
tional methods solved this task only based on Conversion Rate data.
Squeeze found two root causes: Search|Brazil with a 66.67% decrease
and Search|Norway with a 46.81% decline both in Conversion Rate.
HotSpot and Adtributor also regarded Search|Brazil as the root
cause. AutoRoot searched out an aggregated result Search|AGG
with a 34.88% drop. However, Search|Brazil or Search|AGG are not
the real root cause because: 1) Although Search|Brazil changed
much in Conversion Rate, its changes in #Conversions have less
impact (2.53%) on #Conversions of AGG|AGG. Thus, it also has a
lower proportion to influence Conversion Rate of AGG|AGG; 2) 220
leaf dimension value combinations are involved in Search|AGG and
only 3.2% of them were abnormal at that timestamp.

Different from previous works, CMMD believed that Search|US
is the real root cause. The 43.08% decrease in #Conversions of
Search|US caused a 20.41% drop in #Conversions of AGG|AGG, and
then led to a 26.92% decrease in Conversion Rate of AGG|AGG.
Therefore, we show that Search|US is the root cause in the bottom
left of Fig. 7. Besides, we also show the trends of corresponding
metrics in the bottom right. With CMMD, our service can point

customers to the real root cause in one step. It was also confirmed
by the data owners that the drop was caused by a conversion issue
from one of the Search channels.

6.2 Case 2: AIOps
AIOps (Artificial Intelligence for IT Operations) is to enhance IT
operations and guarantee the performance and reliability of services
via AI techniques. CMMD also works well to monitor the status
of services and help to restore the service performance when the
anomaly occurs. In this case, we applied CMMD into an alerting
service.Wemonitor the metric, Alert Open Rate, which is calculated
by #Opened Alerts

#Alerts . There is one dimension notification channel =
{Email, Azure DevOps, Microsoft Teams,...}.

A typical case is root cause analysis for abnormal Alert Open
Rate of AGG with a 35.7% drop (0.28→ 0.18). Other methods found
DevOps as the root cause since DevOps has the largest deviation
of Alert Open Rate. Although the change of Alert Open Rate of
Email is only a half of DevOps, CMMD identified Email as a real
abnormal channel because its deviation of #Alerts contributes over
67.2% to the anomaly compared with 2.3% in DevOps. It also has
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Figure 7: Interface of our root cause service. (x% is equal to the value of node - the expected value of node
the value of root node - the expected value of root node . Previous methods

found Brazil and Norway with their higher x%. CMMD believes US is the root cause by the absolute value of #Conversions.)

been confirmed by our customers. At that timestamp, they sent
many duplicate alerts in Email channel due to an updated version,
which leads to the drop of Alert Open Rate.

6.3 Lessons learned
Although a scenario can contain a large volume of leaf dimension
value combinations, not all the combinations have values at every
timestamp. In other words, sparsity usually exists in the real indus-
try. Therefore, it is unnecessary to monitor every leaf dimension
value combination. The best practice is to aggregate the dimensions,
monitor the aggregated metrics and analyze the root causes once
the anomaly is detected.

In general, most of the KPIs that customers care about are not
fundamental metrics, especially in the large-scale scenario. It is
more important to monitor the derived metrics since these metrics
are often related to profit or production safety. As can be seen in our
previous analysis, considering only derived metrics is not enough
for root cause analysis and the cross-metric algorithm can help find
more accurate and fine-grained root causes.

7 CONCLUSION
In this paper, we proposed CMMD for cross-metric multiple di-
mensional root causes analysis. To our best knowledge, it is the
first time to study the cross-metric problems which can accurately
explain the anomalies occurred in derived metrics and find the
root causes. Firstly, CMMD models the relationship between fun-
damental and derived metrics based on graph attention network.
Based on the well-trained GAT, we adopt the genetic algorithm and
design a novel fitness function to evaluate the probability of a set of
dimension value combinations to be the root cause. We also use the
attention mechanism in GAT for speed-up. Experiments suggest
that CMMD can obtain better performance over other methods on
average F1 scores and further explain the changes of monitored met-
rics. Through the case studies in production datasets, CMMD can
locate the root causes more accurately and meet the requirements
of industrial practice.
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A SUPPLEMENTARY MATERIALS
A.1 Pseudocode

Algorithm 1 GA-based root cause localization
Input: Candidate dimension combinations, Graph attention model

G, population size 𝑁𝑝 , iterations 𝑁 , crossover rate 𝑡𝑐 , mutation
rate 𝑡𝑓

Output: root cause set
1: Initialize a population 𝑺 with 𝑁𝑝 binary chromosomes;
2: for 𝑖 = 1 → 𝑁 do
3: for 𝑗 = 1 → 𝑁𝑝 do
4: Compute the fitness score for each 𝑠 𝑗 in 𝑺 by Eq. 6
5: end for
6: Record the optimal 𝑠∗ with the smallest fitness score;
7: Select new population 𝑺 ′ based on roulette where the proba-

bility is consistent with fitness score;
8: Cross random part of each two chromosomes in 𝑺 ′ with

probability 𝑡𝑐 ;
9: Mutate each chromosome in 𝑺 ′ with probability 𝑡𝑓 ;
10: Replace the population 𝑺 with 𝑺 ′

11: end for
12: Generate the root cause set S based on 𝑠∗

Algorithm 2 Root cause backtrack
Input: Root cause set S, number of layers 𝐿 in dimension tree T,

backtrack threshold 𝑡𝛾
Output: A succinct set of root causes S∗

1: S∗ = S
2: for 𝑙 = 𝐿 − 1 to 1 do
3: Search the parent node set 𝑃𝑆 of S∗ in layer 𝑙 of T;
4: for 𝑝 ∈ 𝑃𝑆 do
5: Search leaf nodes belonging to 𝑝 as 𝑎;
6: Search the leaf nodes belonging to 𝑝 and also in S∗ as 𝑏;
7: if Count(𝑏)

Count(𝑎) ≥ 𝑡𝛾 then
8: S∗ .𝑎𝑑𝑑 (𝑝)
9: S∗ .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑏)
10: end if
11: end for
12: if None of 𝑃𝑆 is added to S∗ then
13: Break
14: end if
15: end for
16: return S∗

A.2 Implementation details
All the experiments are implemented by Python 3.8.8 in a Laptop
with Intel(R) Core(TM) i7-8665U CPU @2.11GHz and 16G RAM.

Adtribtor. Adtributor locates the root causes by dimension. Values
in each dimension are sorted by Jansen-Shannon divergence and the
stop searching criteria within dimension values and dimensions are
both controlled by thresholds of cumulative explanatory power. The
threshold for explanatory power to stop searching in a dimension

Table 5: Hyper-parameters in CMMD

Component Hyper-parameter Value

Number of epochs 1000
Embedding dimension 8

GAT Number of attention heads 8
Learning rate 5e-4
Optimizer Adam

Early stop patience 50

Cross rate 𝑡𝑐 0.5
GA Mutation rate 𝑡𝑓 0.1

𝛽 in Eq. 6 1.0

Others Backtrack threshold 𝑡𝛾 0.6
Filtering threshold 𝑡𝛿 Searched from 0.1, 0.2

is specified as𝑇𝐸𝐸𝑃 = 0.3 and threshold for cumulative explanatory
power of dimension values is specified as 𝑇𝐸𝑃 = 0.8.

HotSpot. HotSpot proposes the potential score to evaluate the
dimension value combination and is used to sort the candidate di-
mension value combinations. In HotSpot, Monte Carlo Tree search
is utilized to locate the root causes in an efficient way. Refer to the
settings in [14], the maximum iteration𝑀 and stop condition 𝑃𝑇

which control the potential score of dimension value combina-
tions are specified as𝑀 = 25 and 𝑃𝑇 = 0.99.

Squeeze. Squeeze analyzes the root cause in two procedures. Firstly,
deviations between real and expected values ofmetrics in dimension
value combinations are filtered and clustered into several clusters.
The threshold in Squeeze to filter abnormal dimension values is
automatically determined by knee-point method and the bins in
clustering is set as 30. In the search process, 𝜃 = 0.9 is set to control
generalized potential score of candidate dimension values in
the top-bottom strategy. Finally, the constant 𝐶 for succinctness is
calculated based on the original paper.

AutoRoot. AutoRoot also adopts two procedures similar to Squeeze.
Differently, kernel density estimation is used in clustering to deter-
mine the number of clusters based on the distribution of deviations
of dimension values. The bandwith = 0.2 is set in the kernel func-
tion to estimate the distribution. Secondly, 𝜃 = 0.9 is set as the
threshold of new potential score.

CMMD. The proposed CMMD mainly consists of two modules,
i.e., relationship modeling and root cause localization. The hyper-
parameters used in these two modules are summarized in Table 5.
During GAT training stage, the batch size is equal to the number
of non-leaf nodes in the dimension tree. In root cause localization,
the number of population 𝑁𝑝 and the number of iteration 𝑁 are
depended on the size of data. 𝑁𝑝 can be set from 10 to 50 and 𝑁 can
be set from 5 to 10 in the experiments. The length of chromosomes
in GA is equal to the number of dimension value combinations after
filtering. 𝑡𝛿 determines the abnormal degree of nodes in candidate
set and we search 𝑡𝛿 from 0.1,0.2 for different datasets in this work.
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Figure 8: Performance over different 𝛽

A.3 Details in evaluation
In the experiments, evaluation metrics are calculated between the
ground truth and the output of these methods. In the three types
of datasets, the ground truth of D2 is provided in [8]. In other two
datasets, we assume that we know the calculation and aggregation
function. Thus, the ground truth is a set of dimension value com-
binations that has the highest recovery ratio based on the known
calculation and aggregation function. In detail, we firstly replace
the real values with expected values of fundamental metrics in the
candidate set of dimension value combinations and then calculate
the recovery values of the monitored metric by aggregation func-
tion. Further, the recovery ratio with and without replacement is
also calculated. If the recovery value is closer to the expected value,
the recovery ratio is higher which means that these dimension
value combinations can explain the anomaly in the monitored met-
ric better. Given the fact that every dimension value combination
can contribute to the abnormal monitored metric more or less, we
choose the dimension value combination(s) whose cumulative re-
covery ratio exceeds a certain threshold (80% in this paper) as the
ground truth.

A.4 Synthetic datasets
The synthetic datasets D3 in the experiment are generated in the
following steps:

(1) Determine the number of dimensions and values in each
dimension to form the dimension tree T

(2) Determine the metric relationship as follows. InD3, we have
two fundamental metrics 𝑏 and 𝑐 , and two derived metrics
𝑎 = 𝑔(𝑐) and 𝑑 = 𝑓 (𝑎, 𝑏).

(3) Generate the data of 𝑏 and 𝑐 in each dimension value combi-
nation. Here we firstly use the uniform distribution to gen-
erate the value of 𝑏 and 𝑐 at specific timestamps. Then we
randomly choose an operator from 𝑔 =

{
𝑐, sin(𝑐), 𝑒𝑐 , 𝑐2,

√
𝑐
}

to transform 𝑐 into 𝑎. Finally, we set function 𝑓 as five derived
functions: 1) 𝑎

𝑏
, 2) 𝑎 × 𝑏, 3) log𝑎

log𝑏 , 4) 𝑎 × 𝑒𝑏 and 5) log(𝑎+1)
log(𝑏+1) .

(4) Aggregate the fundamental metrics in the dimension tree T
and then calculate the corresponding derived metrics.

(5) Inject the anomalies randomly in the fundamental metrics
of selected dimension value combinations and then calculate
the abnormal metrics of corresponding dimension values.

(6) Calculate the expected values of each metric by the auto
regressive models and detect the anomalies by the 3𝜎 princi-
pal.

A.5 Parameter configuration
The parameter configurations are important for the existing root
cause analysis approaches as well as the proposed CMMD. Here
we consider the important trade-off parameter 𝛽 in Eq. 6 for suc-
cinctness of root causes. To conduct experiments under different
values of 𝛽 , we select subdatasets B0,B1,B2 in [8]. The results under
different parameter values are shown in Fig. 8. In general, with
the increase of 𝛽 , the strategy focuses more and more on the suc-
cinctness rather than the scores of root causes which will lead to
the degradation of performance. Specifically, Precision and Recall
show the opposite trend and we can find a better F1 score when
𝛽 ∈ [0.1, 1.0] and CMMD is somehow robust to this hyperparameter.
Therefore it is not difficult to configure this parameter in practical.
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