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ABSTRACT

Graph neural networks (GNNs) have achieved great success in
many graph-based applications. However, the enormous size and
high sparsity level of graphs hinder their applications under in-
dustrial scenarios. Although some scalable GNNs are proposed for
large-scale graphs, they adopt a fixed K-hop neighborhood for each
node, thus facing the over-smoothing issue when adopting large
propagation depths for nodes within sparse regions. To tackle the
above issue, we propose a new GNN architecture — Graph Attention
Multi-Layer Perceptron (GAMLP), which can capture the under-
lying correlations between different scales of graph knowledge.
We have deployed GAMLP in Tencent with the Angel platform !,
and we further evaluate GAMLP on both real-world datasets and
large-scale industrial datasets. Extensive experiments on these 14
graph datasets demonstrate that GAMLP achieves state-of-the-art
performance while enjoying high scalability and efficiency. Specif-
ically, it outperforms GAT by 1.3% regarding predictive accuracy
on our large-scale Tencent Video dataset while achieving up to
50X training speedup. Besides, it ranks top-1 on both the leader-
boards of the largest homogeneous and heterogeneous graph (i.e.,
ogbn-papers100M and ogbn-mag) of Open Graph Benchmark 2.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have been widely used in many
tasks, including node classification, link prediction, and recommen-
dation [5, 14, 20, 40, 41]. Many industrial graphs are sparse, thus
requiring GNNss to leverage long-range dependencies to enhance
the node embeddings from distant neighbors. Through stacking
K layers, GNNs can learn node representations by utilizing infor-
mation from K-hop neighborhoods [21]. The node set composed
of the nodes within the K-hop neighborhood of a specific node is
called this node’s Receptive Field (RF). However, as RF grows expo-
nentially with the number of GNN layers, the rapidly expanding
RF incurs high computation and memory costs in a single machine.
Besides, even in the distributed environment, GNNs still have to
pull features from a massive number of neighbors to compute the
embedding of each node, leading to high communication cost [44].
Due to the high computation and communication cost, most GNNs
are hard to scale to large-scale industrial graphs.

A commonly used method to tackle the scalability issue (i.e.,
the recursive neighborhood expansion) in GNNs is sampling, and
the sampling strategies have been widely researched [1, 8] and
applied in many industrial GNN systems [44, 46]. However, the
sampling-based methods are imperfect because they still face high
communication costs, and the sampling quality highly influences
the model performance. As a result, many recent advancements
towards scalable GNNs are based on model simplification [32, 42,
43], orthogonal to the sampling-based methods.

For example, Simplified GCN (SGC) [32] decouples the feature
propagation and transformation operation, and the former one is
executed during pre-processing. Unlike the sampling-based meth-
ods, which execute feature propagation during each training epoch,
this time-consuming process in SGC is only executed once, and only
the nodes of the training set are involved in the training process.
Therefore, SGC is computation and memory-efficient in a single
machine and scalable in distributed settings. Despite the high ef-
ficiency and scalability, SGC only preserves a fixed RF for all the
nodes by assigning them the same feature propagation depth. This
fixed propagation mechanism in SGC disables its ability to exploit
knowledge within neighborhoods of different sizes.

Lines of simplified GNNs are proposed to tackle the fixed RF issue
in SGC. SIGN [7] concatenates all the propagated features without
information loss, while SGC [45] averages all these propagated
features to generate the combined feature. Although multi-scale
knowledge is considered, the importance and correlations between
different scales are ignored in these methods. To fill this gap, GBP [3]
adopts a heuristic constant decay factor for the weighted average
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Figure 1: (Left) Test accuracy of SGC on 20 randomly sampled nodes of Citeseer. The X-axis is the node id, and Y-axis is the
propagation steps. The color from white to blue represents the ratio of being predicted correctly in 50 different runs. (Right)
The node in the dense region has a larger RF within two iterations of propagation.

for propagated features at different propagation steps. Motivated
by Personalized PageRank, the features with a larger propagation
step has a higher risk of over-smoothing [18, 34], and they will
contribute less to the combination in GBP.

Unfortunately, the coarse-grained, layer-wise combination pre-
vents these methods from unleashing their full potential. As shown
in Fig. 1(a), different nodes require different propagation steps to
achieve optimal predictive accuracy. Besides, assigning the same
weight distribution to propagated features along with propagation
depth to all the nodes may be unsuitable due to the inconsistent
RF expansion speed shown in Fig. 1(b). However, nodes in most
existing GNNs are restricted to a fixed-hop neighborhood and in-
sensitive to the actual demands of different nodes.

Motivated by the above observations, we propose to explicitly
learn the importance and correlation of multi-scale knowledge in a
node-adaptive manner. To this end, we develop a new architecture
- Graph Attention Multi-Layer Perceptron (GAMLP) - that could
automatically exploit the knowledge over different neighborhoods
at the granularity of nodes. GAMLP achieves this by introducing
two novel attention mechanisms: Recursive attention and Jumping
Knowledge (JK) attention. These two attention mechanisms can
capture the complex correlations between propagated information
at different propagation depths in a node-adaptive manner. Conse-
quently, GAMLP has the same benefits as the existing simplified and
scalable GNN models while providing much better performance
derived from its ability to utilize a node-adaptive RF. Moreover,
the proposed attention mechanisms can be applied to both node
features and labels over neighborhoods with different sizes. By com-
bining these two categories of information, GAMLP could achieve
the best of both worlds in terms of accuracy.

Our contributions are as follows: (1) New perspective. We pro-
pose GAMLP, a scalable, efficient, and deep graph model. To the
best of our knowledge, GAMLP is the first to explore both node-
adaptive feature and label propagation schemes in scalable GNNs.
(2) Real world deployment and applications. We deploy GAMLP in
a distributed training manner in Tencent, and it has been widely
used to support many applications in the real-world production
environment. (3) State-of-the-art performance. Experimental results

demonstrate that GAMLP achieves state-of-the-art performance
on 14 graph datasets while maintaining high scalability and effi-
ciency. For example, GAMLP outperforms GAT by 1.3% regard-
ing predictive accuracy on our large-scale Tencent Video dataset
while achieving up to 50X training speedup. Besides, it outperforms
the competitive baseline GraphSAINT [39] in terms of accuracy
by a margin of 0.42%, 3.02% and 0.44% on PPI, Flickr, and Reddit

datasets under the inductive setting. Under the transductive set-
ting in large OGB datasets, the accuracy of GAMLP exceeds the
second-best method by 1.03%, 1.32% 1.61% on the ogbn-products,
ogbn-papers100M, and ogbn-mag datasets, respectively.

2 PRELIMINARIES

2.1 Problem Formulation

We consider an undirected graph G = (V,E) with |V| = n nodes,
|E| = m edges, and c different node classes. We denote by A the ad-
jacency matrix of G, weighted or not. Each node has a feature vector
of size f, stacked up in an nX f matrix X. D = diag (d1,da, - - - ,dn) €
R™ denotes the degree matrix of A, where dj = ¥, cy Ajj is
the degree of node v;. Suppose V] is the labeled set, and our goal
is to predict the labels for nodes in the unlabeled set V;, with the
supervision of V}.

2.2 Scalable GNNs

Sampling. As a node-wise sampling method, GraphSAGE [8] ran-
domly samples a fixed-size set of neighbors for computation in each
mini-batch. VR-GCN [2] analyzes the variance reduction, and it
reduces the size of samples with additional memory cost. For the
layer-wise sampling, Fast-GCN [1] samples a fixed number of nodes
at each layer, and ASGCN [12] proposes the adaptive layer-wise
sampling with better variance control. In the graph level, Cluster-
GCN [4] firstly clusters the nodes and then samples the nodes in
the clusters, and GraphSAINT [39] directly samples a subgraph for
mini-batch training. Recently, sampling has already been widely
used in many GNNs and GNN systems [6, 44, 46].

Graph-wise Propagation. Recent studies have observed that non-
linear feature transformation contributes little to the performance
of the GNNs as compared to feature propagation. Thus, a new di-
rection for scalable GNN is based on the simplified GCN (SGC) [32],
which successively removes nonlinearities and collapsing weight
matrices between consecutive layers. SGC reduces GNNs into a
linear model operating on K-layers propagated features:

XK = AKX () Y= softmax(@)X(K)), (1)

where X(© = X, X(K) js the K-layers propagated feature, A =
D"~1AD™",and A = A+l is the adjacency matrix A with self loops
added. D is the corresponding degree matrix of A. By setting r = 0.5,
land0,A represents the symmetric normalization adjacency matrix
D-1/2AD™1/2 [16], the transition probability matrix AD! [39], or
the reverse transition probability matrix D™1A [34], respectively.
As the propagated features XX) can be precomputed, SGC is easy



to scale to large graphs. However, graph-wise propagation restricts
the same propagation steps and a fixed RF for each node. Therefore,
some nodes’ features may be over-smoothed or under-smoothed
due to the inconsistent RF expansion speed, leading to non-optimal
performance.

Layer-wise Propagation. Following SGC, some recent methods
adopt layer-wise propagation to combine the features with dif-
ferent propagation layers. SIGN [7] proposes to concatenate the
propagated features at different propagation depth after simple
linear transformation: [X(O)WO,X(l)Wl, o XEOW . S2GC [45]
proposes the simple spectral graph convolution to average the

K .
propagated features in different iterations as X(K) = 3 Alx(0),
1=0
In addition, GBP [3] further improves the combination process by

weighted averaging as XK) = g wjAIX(9) with the layer weight
=0

wp = p(1 - ﬁ)l . We also use a linear model for higher training scala-

bility similar to these works. The difference lies in that we consider

the propagation process from a node-wise perspective, and each

node in GAMLP has a personalized combination of different steps

of the propagated features.

2.3 Label Utilization in GNNs.

Labels of training nodes are conventionally only used as super-
vision signals in loss functions in most graph learning methods.
However, there also exist some graph learning methods that directly
exploit the labels of training nodes. Among them, the label propaga-
tion algorithm [47] is the most well-known one. It simply regards
the partially observed label matrix Y € RVXC as input features
for nodes in the graph and propagates the input features through
the graph structure, where C is the number of candidate classes.
UniMP [25] proposes to map the partially observed label matrix Y
to the dimension of the node feature matrix X and add these two
matrices together as the new input feature. To fight against the
label leakage problem, UniMP further randomly masks the training
nodes during every training epoch.

Instead of using the hard training labels, Correct & Smooth [11]
first trains a simple model (e.g., MLP) and gets the predicted soft
labels for unlabeled nodes. Then, it propagates the learning errors
on the labeled nodes to connected nodes and smooths the out-
put in a Personalized PageRank manner like APPNP [16]. Besides,
SLE [27] decouples the label utilization procedure in UniMP, and ex-
ecutes the propagation in advance. Unlike UniMP, “label reuse” [31]
concatenates the partially observed label matrix Y with the node
feature matrix X to form the new input matrix. Concretely, it fills
the missing elements in the partially observed label matrix Y with
the soft label predicted by the model, and this newly generated Y’
is again concatenated with X and then fed into the model.

3 GRAPH ATTENTION MULTI-LAYER
PERCEPTRON

3.1 Architecture Overview

As shown in Fig. 2, GAMLP decomposes the end-to-end GNN train-
ing into three parts: feature and label propagation, feature and label

combination with RF attention, and the MLP training. As the fea-
ture and label propagation is pre-processed only once, and MLP
training is efficient and salable, we can easily scale GAMLP to large
graphs. Besides, with the RF attention, each node in GAMLP can
adaptively get the suitable combination weights for propagated
features and labels under different receptive fields, thus boosting
model performance.

3.2 Node-wise Feature and Label Propagation

Node-wise Feature Propagation. We separate the essential op-
eration of GNNs — feature propagation by removing the neural
network O and nonlinear activation § for feature transformation.
Specifically, we construct a parameter-free K-step feature propaga-
tion as:

XHF) — AXKD vi=1,.. K, ®)
where X(¥) contains the features of a fixed RF: the node itself and
its k-hop neighborhoods.

After K-step feature propagation shown in E.q. 2, we correspond-
ingly get a list of propagated features under different propagation
steps: [X(O), xW x®& X(K>]. For a node-wise propagation, we
propose to average these propagated features in a weighted manner:

K
Hy = » Wi x5, ®)
k=0
where Wy = Diag(n) € R™" is the diagonal matrix derived from
vector 7, and n; € R" is a vector derived from vector i [i] =
wi(k),1 < i < n, and w; (k) measures the importance of the k-step
propagated feature for node v;.

Node-wise Label Propagation. We use a scalable and node-
adaptive way to take advantage of the node labels of the training

set. Concretely, the label embedding matrix Y € R"*¢ (Y(©)y is
propagated with the normalized adjacency matrix A:

YO — AYUD vi=1,... L (@)

After L-step label propagation, we get a list of propagated labels
under different propagation steps: [Y(O), Y(l), Y(Z), Y(L)]. Gen-
erally, the propagated label Y is closer to the original label matrix
Y(© with a smaller propagation step [, and thus face a higher risk
of data leakage problem if it is directly used as the model input.
We propose the last residual connection to adaptively smooth the
different steps of propagated labels.

Definition 3.1 (Last Residual Connection). Given the propaga-
tion step [, and a list of propagated labels: [Y(O), YO y@  y@ ],
we smooth each label Y(!) with the smoothed label Y(1):

T (1- 0{1)Y(l) + alY(L), I=1,..., L, (5)

where a; = cos (;[—]f) controls the proportion of Y in the I-step
propagated label.

Similar to the node-wise feature propagation strategy introduced
in Sec. 3.2, we propose to average these propagated labels in a
weighted manner as follow:

L
Hy = ) W, ¥ ()
1=0
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Figure 2: Overview of the proposed GAMLP, including (1) feature and label propagation, (2) combine the propagated features
and labels with RF attention, and (3) MLP training. Note that both the feature and label propagation can be pre-processed.

3.3 Node-adaptive Attention Mechanisms

To satisfy different RF requirements for each node, we introduce
two RF attention mechanisms to get w; (k). Note that these attention
mechanisms can be used in both the feature and label propagation,
and we introduce them from a feature perspective here. To apply
them for node-wise label propagation, we only need to replace the
feature X; in Eq. 7 and Eq. 8 with the label Y;.

Definition 3.2 (Recursive Attention). At each propagation step
I, suppose s € R? is a learnable parameter vector, we recursively
measure the feature information gain compared with the previous
combined feature as:

-1 -1
XD =X 0 ) wiRX(®, i) = eSS MO, )
k=0 Jj=0

where || means concatenation, and w; () = 5()251) -s). As )25171) €
R? combines the graph information under different propagation
steps, large proportion of the information in )Ail(l) may have already
existed in 25;10 wi(k)ng), leading to small information gain. A
larger w;(l) indicates the feature XEI) is more important to the

current state of node v; since combining Sil?’) will introduce higher
information gain.

Jumping Knowledge Network (JK-Net) [34] adopts layer aggre-
gation to combine the node embeddings of different GCN layers,
and thus it can leverage the propagated nodes’ information with
different RF. Motivated by JK-Net, we propose to guide the feature
combination process with the model prediction trained on all the
propagated features. Concretely, GAMLP with JK attention includes
two branches: the concatenated JK branch and the attention-based
combination branch.

Definition 3.3 (JK Attention). Given the MLP prediction of the
JK branch as E; = MLP(X') || X || .. | X%)) € REXS, the

combination weight is defined as:
K
X =X B, W) =8X" ), wil) =MDy M (s)
k=0

The JK branch aims to create a multi-scale feature representa-
tion for each node, which helps the attention mechanism learn the
weight w; (k). The learned weights are then fed into the attention-
based combination branch to generate each node’s refined atten-
tion feature representation. As the training process continues, the
attention-based combination branch will gradually emphasize those
neighborhood regions that are more helpful to the target nodes. The

JK attention can model a broader neighborhood while enhancing
correlations, bringing a better feature representation for each node.

3.4 Model Training

Both the combined feature Hx and label Hy are transformed with
MLP, and then be added to get the final output embedding:

H = MLP(Hyx) + SMLP (Hy), 9)

where f is a hyper-parameter that measures the importance of the
combined label. For example, some graphs have good features but
low-quality labels (e.g., label noise or low label rate), and we should
decrease f3 so that more attention is paid to the graph features.

We adopt the Cross-Entropy (CE) measurement between the
predicted softmax outputs and the one-hot ground-truth label dis-
tributions as the objective function:

Leg =- Z ZYU log (softmax (H);;), (10)
i€V j

where Y; is the one-hot label indicator vector.

3.5 Properties of GAMLP

High Efficiency and Scalability. Compared with the previous
GNNs (e.g., GCN and GraphSAGE), our proposed GAMLP only
need to do the feature and label propagation only once. Suppose
P and Q are the number of layers in MLP trained with feature
and labels, and k is the sampled nodes, the time complexity of
GAMLP is O(Pnf?+Qnc?), which is smaller than the complexity of
GraphSAGE (i.e., O (kK nf?)). Besides, it also costs less memory than
the sampling-based GNNs, and thus can scale to a larger graph in a
single machine. Notably, like other simplified GNNs (i.e., SGC and
SIGN), GAMLP can pre-compute the propagated features and labels
only once. It does not need to pull the intermediate representation
of other nodes during the MLP training. Therefore, it can also be
well adapted to the distributed environment.

Deep propagation. With our recursive and JK attention, GAMLP
can support large propagation depths without the over-smoothing
issue since each node can get the node personalized combination
weights for different propagated features and labels according to
its demand. Such characteristic is essential for sparse graph, i.e.,
sparse labels, edges, and features. For example, a graph with a low
label rate or edge rate can increase the propagation depth to spread
the label supervision over the entire graph. Each node can utilize
the high-order graph structure information with deep propagation
and boost the node classification performance. Further details are
in Appendix B.1.



Table 1: Algorithm analysis for existing scalable GNNs. n, m, ¢, and f are the number of nodes, edges, classes, and feature
dimensions, respectively. b is the batch size, and k refers to the number of sampled nodes. K and L corresponds to the number
of times we aggregate features and labels, respectively. Besides, P and Q are the number of layers in MLP classifiers trained

with features and labels, respectively.

Type ‘ Method ‘ Pre-processing ‘ Training ‘ Memory ‘
GraphSAGE O(KKnf?) O(bKKf + Kf?)
Sampling FastGCN - O(kKnf?) O(bkKf + Kf?)
Cluster-GCN O(m) O(Pmf + Pnf?) O(bKf +Kf?)
Graph-wise propagation SGC O(Kmf) O(nf?) O(bf + f?)
SIGN O(Kmf) O(Pnf?) O(bLf + Pf?)
Layer-wise propagation S2GC O(Kmf) O(nf?) O(bf + f?)
GBP O(Knf + KY™IE") O(Pnf?) O(bf +Pf?)
Node-wise propagation GAMLP O(Kmf + Lmc) O(Pnf?+0Qnc?) | O(bf + Pf2 +Qc?)

3.6 Complexity Analysis

Table 1 provides a detailed asymptotic complexity comparison be-
tween GAMLP and representative scalable GNN methods. Dur-
ing preprocessing, the time cost of clustering in Cluster-GCN is
O(m) and the time complexity of most linear models is O(Kmf).
Besides, GAMLP has an extra time cost O(Lmc) for the propa-
gation of training labels. GBP takes advantage of Monte-Carlo
method and conducts this process approximately with a bound of

O(Knf+K —'nzlgn) where ¢ is a error threshold. Compared with
sampling-based GNNs, graph/layer/node-wise-propagation-based
models usually have smaller training and inference time complexity.
Memory complexity is a crucial factor in large-scale graph learning
as it fundamentally determines whether it is possible to adopt the
method. Compared with SIGN, both GBP and GAMLP do not need
to store smoothed features at different propagation steps, and the
memory complexity can be reduced from O(bLf) to O(bf).

4 EXPERIMENTS

In this section, we verify the effectiveness of GAMLP on 14 real-
world graph datasets under (1) both the transductive and inductive
settings; and (2) both the homogeneous and heterogeneous graphs.
We aim to answer the following five questions. Q1: Can GAMLP
outperform the state-of-the-art GNN methods regarding predictive
accuracy on real-world datasets? Q2: If GAMLP is effective, where
does the performance gain of GAMLP come from? Q3: How does
GAMLP perform when applied to highly sparse graphs (i.e., given
few edges and low label rate)? Q4: Can GAMLP adapt to and per-
form well on heterogeneous graphs? More experimental results can
be found in Appendix B.

4.1 Experimental Setup

Datasets. We evaluate the performance of GAMLP under both
transductive and inductive settings. For transductive settings, we
conduct experiments on 11 transductive datasets: three citation net-
work datasets (Cora, Citeseer, PubMed) [23], two user-item datasets
(Amazon Computer, Amazon Photo), two co-author datasets (Coau-
thor CS, Coauthor Physics) [24], and three OGB datasets (ogbn-
products, ogbn-papers100M, ogbn-mag) [9], and one Tencent Video

Table 2: Transductive performance on citation networks.

Methods ‘ Cora Citeseer PubMed
GCN 81.8+£0.5 70.8+0.5 79.3+£0.7
GAT 83.0+£0.7 72.5+0.7 79.0+£0.3

JK-Net 81.8+0.5 70.7+0.7 78.8+0.7

ResGCN 82.2+0.6 70.8+0.7 78.3+0.6

APPNP 83.3+£0.5 71.8+0.5 80.1+£0.2

AP-GCN 83.4+0.3 71.3+0.5 79.7£0.3
SGC 81.0+£0.2 71.3+0.5 78.9+£0.5
SIGN 82.1+0.3 72.4+0.8 79.5+£0.5
S:GC 82.7£0.3 73.0+0.2 79.9+£0.3
GBP 83.9+0.7 72.9+0.5 80.6+£0.4

GAMLP(JK) | 84.3+0.8 74.6+0.4 80.7+0.4
GAMLP(R) 83.9+0.6 73.9+0.6 80.8+0.5

graph. For inductive settings, we perform the comparison exper-
iments on 3 widely used inductive datasets: PPI, Flickr, and Red-
dit [39]. The ogbn-mag dataset is also used to test the ability of
GAMLP in a heterogeneous graph. The statistics about these 14
datasets are summarized in Table 11 of Appendix C.1.

Baselines. Under the transductive setting, we compare GAMLP
with the following representative baseline methods: GCN [15],
GAT [29], JK-Net [34], ResGCN [17], APPNP [16], AP-GCN [26],
UniMP [25], SGC [32], SIGN [7], S?GC [45], and GBP [3]. For the
comparison in the OGB datasets, we choose the top-performing
methods from the OGB leaderboard along with their accuracy re-
sults. Under the inductive setting, we choose following represen-
tative methods: SGC [32], GraphSAGE [8], Cluster-GCN [4], and
GraphSAINT [39]. Besides, for heterogeneous graph, we choose
eight baseline methods from the OGB ogbn-mag leaderboard: R-

GCN [22], SIGN [7], HGT [10], R-GSN [33], HGConv [36], R-HGNN [37],

and NARS [35].

In addition, two variants of GAMLP are tested in the evalua-
tion: GAMLP(JK) and GAMLP(R). “JK” and “R” stand for adopting
“JK attention” and “Recursive attention” for the node-adaptive at-
tention mechanism, respectively. The detailed hyperparameters
and experimental environment can be found in Appendix C.2 and
Appendix C.1, respectively.



Table 3: Transductive performance on the co-authorship
and co-purchase graphs.

Methods Amazon Amazon Coauthor Coauthor
Computer  Photo (& Physics

GCN 82.4+0.4 91.240.6 90.7+0.2 92.7+1.1
GAT 80.1+0.6 90.8+1.0 87.4+0.2 90.2+1.4
JK-Net 82.0+0.6 91.9+0.7 89.5+0.6 92.5+0.4
ResGCN 81.1+0.7 91.3+0.9 87.9+0.6 92.2+1.5
APPNP 81.7+0.3 91.4+0.3 92.1+0.4 92.8+0.9
AP-GCN 83.7+0.6 92.1+0.3 91.6+0.7 93.1+£0.9
SGC 82.2+0.9 91.6+0.7 90.3+0.5 91.7+1.1
SIGN 83.1+0.8 91.7+0.7 91.9+0.3 92.8+0.8
S2GC 83.1+£0.7 91.6+0.6 91.6+0.6 93.1+£0.8
GBP 83.5+£0.8 92.1+£0.8 92.3+0.4 93.3+£0.7
GAMLP(JK) | 84.5+0.7 92.8+0.7 92.6+£0.5  93.6+1.0
GAMLP(R) 84.2+0.5 92.6+0.8 92.8+0.7 93.2+1.0

Table 4: Performance comparison on ogbn-products.

Methods ‘ Val Accuracy Test Accuracy
GCN 92.00+0.03 75.64+0.21
SGC 92.13+0.02 75.87+0.14

GraphSAGE 92.24+0.07 78.50+0.14
GraphSAINT 92.52+0.13 80.27+0.26
GBP 92.82+0.10 80.48+0.05
SIGN 92.99+0.04 80.52+0.16
DeeperGCN 92.38+0.09 80.98+0.20
UniMP 93.08+0.17 82.56+0.31
SAGN 93.09+0.04 81.20%0.07
SAGN+0-SLE 93.27+0.04 83.29+0.18
GAMLP(JK) 93.19+0.03 83.54+0.25
GAMLP(R) 93.11£0.05 83.59+0.09

Table 5: Performance comparison on ogbn-papers100M.

Methods ‘ Val Accuracy Test Accuracy
SGC 66.48+0.20 63.29+0.19
SIGN 69.32+0.06 65.68+0.06

SIGN-XL 69.84+0.06 66.06+0.19

SAGN 70.34+0.99 66.75+0.84
SAGN+0-SLE 71.06+0.08 67.55+0.15
GAMLP(JK) 71.92+0.04 68.07+0.10
GAMLP(R) 71.21+0.03 67.46+0.02

4.2 End-to-end Comparison

Transductive Performance. To answer Q1, we report the trans-
ductive performance of GAMLP in Tables 2, 3 4, and 5. We observe
that both variants of GAMLP outperform all the baseline meth-
ods on almost all the datasets. For example, on the small Citeseer
dataset, GAMLP(JK) outperforms the state-of-the-art method S?GC
by a large margin of 1.6%; on the medium-sized Amazon Computers,
the predictive accuracy of GAMLP (JK) exceeds the one of the state-
of-the-art method GBP by 1.0%; on the two large OGB datasets,
GAMLP takes the lead by 1.03% and 1.32% on ogbn-products and
ogbn-papers100M, respectively. Furthermore, the experimental re-
sults illustrate that the contest between the two variants of GAMLP

Table 6: Performance comparison on three inductive
datasets.

Methods PPI Flickr Reddit
SGC 65.7+0.01 50.2+0.12 94.9+0.00
GraphSAGE 61.2+0.05 50.1+0.13 95.4+0.01
Cluster-GCN 99.2+0.04 48.1+0.05 95.7+0.00
GraphSAINT 99.4+0.03 51.1+0.10 96.6+0.01
GAMLP(JK) | 99.82+0.01 54.12+0.01 97.04+0.01

GAMLP(R) | 99.66+0.01  53.12+0.00  96.62+0.01

is not a one-horse race. Thus, these two different attention mecha-
nisms have their irreplaceable sense in some ways.

Inductive Performance. The experiment results in Table 6 show
that GAMLP consistently outperforms all the baseline methods un-
der the inductive setting. The leading gap of GAMLP(JK) over SOTA
inductive method — GraphSAINT is more than 3.0% on the widely-
used dataset — Filckr. The impressive performance of GAMLP under
the inductive setting illustrates that GAMLP is powerful in predict-
ing the properties of unseen nodes.

4.3 Ablation Study

To answer Q2, we focus on two modules in GAMLP: (1) label uti-
lization; (2) attention mechanism in the node-wise propagation.
For the second one, we evaluate the effects of different choices for
reference vectors in the JK attention.

Label Utilization. In this part, we evaluate whether adding the
last residual connection and making use of training labels help
or not. The predictive accuracy of GAMLP(R) is evaluated on the
ogbn-products dataset along with its three variants: “-no_label”,
“-plain_label”, and “-uniform”, which stands for not using labels,
removing last residual connections, and replacing last residual con-
nections with uniform distributions, respectively. The experimental
results in Table 7 show that utilizing labels brings significant per-
formance gain to GAMLP: from 81.43% to 83.59%. The performance
drop from removing the last residual connections (“-plain_label” in
Table 7) is significant since directly adopting the raw training labels
leads to the overfitting issue. The fact that “-uniform” performs
worse than “-no_label” illustrates that intuitively fusing the original
label distribution with the uniform distribution would harm the
predictive accuracy. It further demonstrates the effectiveness of our
proposed last residual connections.

Reference Vector in Attention Mechanism. In this part, we
study the role of the reference vector (set originally as the con-
catenated features from different propagation steps) in our pro-
posed JK attention. We evaluate the three variants of GAMLP(JK): “-
origin_feature”, “normal_noise”, and “-no_reference”, which changes
the reference vector to the original node feature, noise from the
normal distribution, and nothing, respectively. The predictive accu-
racy of each variant on the PubMed dataset is reported in Table 8.
The experimental results show that our original choice of the ref-
erence vector is the best among itself and its three variants. The
superiority of the concatenated features from different propagation
steps comes from the fact that it allows the model to capture the



Table 7: Ablation study on label utilization.

Methods ‘ Val Accuracy Test Accuracy

GAMLP(R) 93.11+0.05 83.59+0.05
-no_label 92.29+0.06 81.43+0.18
—plainflabel 92.53+0.21 81.12+0.45
-uniform 92.72+0.15 81.28+0.93

Table 8: Ablation study on reference vector.

Methods ‘ Val Accuracy Test Accuracy
GAMLP(JK) 82.5+0.5 80.7+0.4
-origin_feature 82.2+0.4 80.5+0.4
-normal_noise 81.8+0.4 79.8+0.5
-no_reference 81.5+0.5 79.9+0.3

Table 9: Test accuracy on ogbn-mag dataset.

Methods ‘ Validation Accuracy Test Accuracy
R-GCN 40.84+0.41 39.77+0.46
SIGN 40.68+0.10 40.46+0.12
HGT 49.84+0.47 49.27+0.61
R-GSN 51.82+0.41 50.32+0.37
HGConv 53.00+0.18 50.45+0.17
R-HGNN 53.61+0.22 52.04+0.26
NARS 53.72+0.09 52.40+0.16
NARS-GAMLP 55.52+0.08 54.01+0.21

interactions between the propagated features over the receptive
fields with different sizes.

4.4 Performance on Sparse Graphs

To answer Q3, we conduct experiments to evaluate the predictive
accuracy of GAMLP when faced with edge and label sparsity prob-
lems, where the number of edges and training labels are highly
scarce. We randomly remove a fixed percentage of edges from the
original graph to simulate the edge sparsity problem. The removed
edges are precisely the same for all the compared methods. Besides,
we enumerate the number of training nodes per class from 1 to 20
to evaluate the performance of GAMLP given different levels of
label sparsity. The experimental results in Fig. 3 show that GAMLP
outperforms all the baselines in most cases when faced with dif-
ferent levels of edge and label sparsity. This experiment further
demonstrates the effectiveness of our proposed node-wise propaga-
tion scheme. The node-wise propagation enables GAMLP to better
capture long-range dependencies, which is crucial when applying
GNN methods to highly sparse graphs.

4.5 Performance on Heterogeneous Graphs

Heterogeneous graphs are widely used in many real-world applica-
tions. Thus, we measure the performance of GAMLP in heteroge-
neous graphs and answer Q4. Note that the ogbn-mag dataset only
contains node features for “paper” nodes, and we here adopt the
ComplEx algorithm [28] to generate features for other nodes.

Adapting GAMLP to Heterogeneous Graphs. We follow the
design of NARS [35] to adapt GAMLP to heterogeneous graphs.
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025 050 0.75 1.00 10 20

Percent of Remaining Edges Training Nodes per Class

(a) Edge Sparsity (b) Label Sparsity
Figure 3: Test accuracy on PubMed dataset under different
levels of label and edge sparsity.

First, we sample subgraphs from the original heterogeneous graphs
according to the different edge type combinations and regard the
sampled subgraph as a homogeneous graph. Then, the propagated
features of different steps are generated on each subgraph. The
propagated features and labels of the same propagation step across
different subgraphs are aggregated using 1-d convolution. After
that, aggregated features and labels of different steps are fed into
our GAMLP to get the final results. This variant of our GAMLP is
called NARS-GAMLP, and we adopt the “JK attention” here.
Experimental Results. We report the validation and test accuracy
of our proposed NARS-GAMLP on the ogbn-mag dataset in Table 9.
It can be seen from the results that NARS-GAMLP achieves state-of-
the-art performance on the heterogeneous graph dataset ogbn-mag.
Specifically, it outperforms the strongest single model baseline
NARS by a large margin of 1.61% regarding test accuracy.

5 DEPLOYMENT IN TENCENT

We now introduce the implementation and deployment of GAMLP
in Tencent — the largest social media conglomerate in China.

5.1 GAMLP Training Framework

Unlike most GNNs that entangle the propagation and transforma-
tion in the training process, the training of GAMLP is separated into
two stages: the graph feature pre-processing and the distributed
model training. First, we pre-compute the propagated features and
labels with different propagation steps, and then we train the model
parameters with the parameter server. Note that both these two
stages are implemented in a distributed fashion, and the implemen-
tation details of GAMLP can be found in Fig. 4.

Graph feature pre-processing. For the first pre-processing stage,
we store the neighbor table, the propagated node features, and
labels in a distributed manner. We recursively calculate the propa-
gated features X = (X© x™ X&) and the propagated labels
Y = (YO, Y YD) for better efficiency. Specifically, to cal-
culate the i-th step feature and label for each node v in a batch,
we firstly pull the corresponding (i — 1)-th step feature and label
information of its neighbors and then push the propagated feature
back to the distributed storage for the calculation of (i + 1)-th step.
The computation of feature and label propagation in each batch is
implemented by the Spark executors [38] in parallel with matrix
multiplication. Since we compute the propagated features and labels
in parallel, the graph feature pre-processing in the implementation



Table 10: Efficiency and accuracy comparison on the Tencent video classification.

‘ SGC $?GC GBP SIGN GAMLP(R) GAMLP (JK) GCN APPNP AP-GCN JK-Net ResGCN GAT
Training Time 1.0 1.2 1.3 3.2 6.1 7.4 33.1 77.8 112.3 112.8 132.3 372.4
Test Accuracy | 45.2+0.3 46.6+0.6 46.9+0.7 46.3+0.5 47.8+0.4 48.1+0.6 459404 46.7£0.6 46.9+0.7 47.2+0.3 45.8+0.5 46.8+£0.7
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Figure 4: An overview of GAMLP deployed in Tencent.

of GAMLP could scale to large graphs and significantly improve
the training efficiency in real-world applications.

Distributed training. We implement GAMLP by Angel [13] for
the second stage and optimize the parameters with distributed SGD.
Specifically, the Spark executors frequently pull the model weights
W (including both the attention matrix for weighted average and
the parameters of the MLP model), the propagated features X and
labels Y from the parameter server. Unlike existing GNN systems
(e.g., DistDGL [44] and FlexGraph [30]) that need to sample and
pull the neighborhood features in each training epoch, the neighbor
table is not used in the training process of GAMLP, and we treat
each node as independent and identically distributed. Therefore,
the communication cost of training GAMLP can be significantly
reduced. Since each spark executor can independently fetches the
most up-to-date model weights W and update them in a distributed
manner, GAMLP can easily scale to large graphs.

Workflow. The workflow of GAMLP can be summarized as the
following steps: 1) The users write the PyTorch scripts and get the
PyTorch model. 2) The Spark executor read the PyTorch model and
datasets, and pre-computes the propagated features and labels in
a distributed manner. 3) The Spark driver pushes the initialized
PyTorch model to the parameter server (PS). 4) At each training
epoch, every executor samples a batch of nodes and pulls the corre-
sponding model weights, the propagated features, and labels from
PS. Then, it updates the model weights with the backpropagation,
and pushes the gradients back to PS. Note that we embed PyTorch
inside Spark, and we transfer data between JVM runtime and C++
runtime using JNI (Java Native Interface). With our implementa-
tion, the users can simply write the python scripts in PyTorch while
benefiting from Spark’s distributed data processing.

5.2 Results in WeSee Video Classification

GAMLP has provided service to many applications in Tencent, such
as WeSee 3 short-video classification and WeChat payment predic-
tion. Here we show the effectiveness and efficiency of GAMLP on
the short-video classification for the WeSee, a TikTok-like short-
video service of Tencent. This task aims to classify short videos
into pre-defined 253 classes related to different modalities (such as
emotions, theme, place, et al.), which is an important prerequisite
for video content understanding and recommendation in WeSee.
Graph construction. We collect 1,000,000 short-videos from the
Wesee APP with 57,022 of them manually labeled and then gen-
erate a bipartite user-video graph. The edge between each node
pair represents that the user has watched (clicked) the short video.
Besides, we select 5,000 nodes as the train set, 30,000 nodes as the
test set, and an additional validation set of 10,000 labeled nodes for
hyper-parameter tuning.

Classification results. Table 10 illustrates the relative training
time of each compared method along with its predictive accuracy.
The training time of SGC is set to 1.0 as reference. We observe that
(1) The graph/layer-wise propagation-based methods (e.g., SGC
and SIGN) have a significant advantage over many widely used
GNN:ss (e.g., GCN and GAT) regarding training efficiency. (2) The
two variants of GAMLP achieve the highest predictive accuracy
while the training time is acceptable compared to more demanding
methods like JK-Net and AP-GCN. The “cold” short videos are less
popular, and the corresponding nodes lie in a sparse region of the
graph. Thus they need more propagation steps to enhance their
node embedding with their distant neighbors. However, simply
adopting a large propagation depth will make the propagated node
embedding for some “hot” short videos watched by most users
indistinguishable. In such cases, the node-wise feature and label
propagation of GAMLP are essential to preserving the personalized
information of short videos.

3https://weishi.qq.com/
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6 CONCLUSION

We present Graph Attention Multilayer Perceptron (GAMLP), a
scalable, efficient, and deep graph model based on receptive field
attention. GAMLP introduces two new attention mechanisms: re-
cursive attention and JK attention, enabling learning the represen-
tations over RF with different sizes in a node-adaptive manner. We
have deployed GAMLP in Tencent, and it has served many real-
world applications. Extensive experiments on 14 graph datasets
verified the high predictive performance of GAMLP. Specifically,
in the large-scale short-video dataset from the WeSee APP, the
proposed GAMLP exceeded the compared baselines by a large mar-
gin in test accuracy while achieving comparable training time with
SGC. GAMLP moves forward the performance boundary of scalable
GNNeg, especially on large-scale and sparse industrial graphs.
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Figure 5: The architecture of GAMLP with JK Attention.

A MORE DETAILS ABOUT GAMLP
A.1 An example of JK attention

Fig. 5 provides a more zoomed-in look of JK attention, one of the
two node-adaptive attention mechanisms we proposed. The propa-
gated features are concatenated and then fed into an MLP to map
the concatenated feature to the hidden dimension of the model. The
mapped feature is then set as the reference vector of the following
attention mechanism. A linear layer is adopted to calculate the
combination weight for propagated features at different propaga-
tion steps. The propagated features are then multiplied with the
corresponding combination weight, and the summed results are
fed into another MLP to generate final predictions.

A.2 Comparison between the label usage in
UniMP and GAMLP

(1) The label usage in UniMP is coupled with the training process,
making it hard to scale to large graphs. While GAMLP decouples
the label usage from the training process, the label propagation
process can be executed as preprocessing.

(2) The label propagation steps in UniMP are restricted to the same
number of model layers. Moreover, UniMP will encounter the ef-
ficiency and scalability issues even on relatively small graphs if
the number of model layers becomes large. In contrast, the label
propagation steps in GAMLP can be quite large since the label
propagation is performed as preprocessing.

(3) Both propose approaches to fight against the label leakage issue.
However, the random masking in UniMP has to be executed in each
training epoch, while the last residual connection (composed of
simple matrix addition) in GAMLP needs only to be executed once
during preprocessing. Thus, UniMP consumes more resources than
GAMLP to fight the label leakage issue.

B ADDITIONAL EXPERIMENTS
B.1 Deep propagation is possible

Equipped with the learnable node-wise propagation scheme, our
GAMLP can still maintain high predictive accuracy even when
the propagation depth is over 50. Here, we evaluate the predictive
accuracy of our proposed GAMLP(JK) at propagation depth 10,
30, 50, 80, 100 on the PubMed dataset. The performance of JK-Net
and SGC are also reported as baselines. The experimental results in
Fig. 6 show that even at propagation depth equals 100, the predictive
accuracy of our GAMLP(JK) still exceeds 80.0%, higher than the
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Figure 6: Test accuracy with different propagation depth.
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Figure 7: The average attention weights of propagated fea-
tures of different steps on 60 randomly selected nodes from
ogbn-products.

predictive accuracy of most baselines in Table 2. At the same time,
the predictive accuracy of SGC and JK-Net both drops rapidly when
propagation depth increases from 10 to 100.

B.2 Interpretability of the attention
mechanism

GAMLP can adaptively and effectively combine multi-scale propa-
gated features for each node. To demonstrate this, Fig. 7 shows the
average attention weights of propagated features of GAMLP(JK)
according to the number of steps and degrees of input nodes, where
the maximum step is 6. In this experiment, we randomly select 20
nodes for each degree range (1-4, 5-8, 9-12) and plot the relative
weight based on the maximum value. We get two observations
from the heat map: 1) The 1-step and 2-step propagated features
are always of great importance, which shows that GAMLP captures
the local information as those widely 2-layer methods do; 2) The
weights of propagated features with larger steps drop faster as the
degree grows, indicating that our attention mechanism could pre-
vent high-degree nodes from including excessive irrelevant nodes,
leading to over-smoothing. From the two observations, we conclude
that GAMLP can identify the different RF demands of nodes and
explicitly weight each propagated feature.

B.3 Choices for ¢; in Last Residual Connection

Our first choice for the @; in the last residual connection module
isa = LT_I However, we find that GAMLP still encounters the
over-fitting issue on some datasets. Thus, we instead choose o; =
cos(g—Ll) to give more penalties to labels at large propagation steps.
We provide the performance comparison on the ogbn-products



Table 11: Overview of the 14 Datasets

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test  Task type Description
Cora 2,708 1,433 5,429 7 140/500/1000 Transductive citation network
Citeseer 3,327 3,703 4,732 6 120/500/1000 Transductive citation network
Pubmed 19,717 500 44,338 3 60/500/1000 Transductive citation network
Amazon Computer 13,381 767 245,778 10 200/300/12881  Transductive co-purchase graph
Amazon Photo 7,487 745 119,043 8 160/240/7,087 Transductive co-purchase graph
Coauthor CS 18,333 6,805 81,894 15 300/450/17,583 Transductive co-authorship graph
Coauthor Physics 34,493 8,415 247,962 5 100/150/34,243  Transductive co-authorship graph
ogbn-products 2,449,029 100 61,859,140 47 196k/49k/2204k  Transductive co-purchase graph
ogbn-papers100M 111,059,956 128 1,615,685,872 172 1207k/125k/214k  Transductive citation network
ogbn-mag 1,939,743 128 21,111,007 349 626k/66k/37k Transductive citation network
Tencent Video 1,000,000 64 1,434,382 253 5k/10k/30k Transductive user-video graph
PPI 56,944 50 818,716 121 45k / 6k / 6k Inductive ~ protein interactions network
Flickr 89,250 500 899,756 7 44k/22k/22k Inductive image network
Reddit 232,965 602 11,606,919 41 155k/23k/54k Inductive social network

Table 12: Ablation study of choices for ¢; on ogbn-products.

Choices ‘ Test Accuracy
Fixed weight 82.56+0.43
Linear-decreasing weight 82.72+0.93
Cosine function 83.59+0.05

dataset in Table 12. Three weighting schemes for the last residual
connection module are tested: "Cosine function" stands for ¢; =
cos(;r—lf), the one in GAMLP; "Linear-decreasing weight" stands
for oy = LT_I; and "Fixed weight" stands for @ = 0.7. Table 12

shows that the weighting scheme GAMLP adopts, o; = cos(;r—i),
outperforms the other two options.

B.4 Efficiency Comparison on ogbn-products

We compare the efficiency of GAMLP with sampling-based Graph-
SAINT and Cluster-GCN, graph-wise-propagation-based SGC, and
layer-wise-propagation-based SIGN on the ogbn-products dataset.
The results in Table 13 illustrates that (1) sampling-based methods
(e.g., GraphSAINT) consume much more time than graph/layer-
wise-propagation based methods (e.g., SGC, SIGN) due to the high
computation cost introduced by the sampling process; (2) the two
variants of GAMLP achieve the best predictive accuracy while re-
quiring comparable training time with SGC.

C DETAILED EXPERIMENT SETUP

C.1 Experiment Environment

We provide detailed information about the datasets we adopted
during the experiment in Table 11. To alleviate the influence of
randomness, we repeat each method ten times and report the mean
performance and the standard deviations. For the largest ogbn-
papers100M dataset, we run each method five times instead. The
experiments are conducted on a machine with Intel(R) Xeon(R)
Platinum 8255C CPU@2.50GHz, and a single Tesla V100 GPU with
32GB GPU memory. The operating system of the machine is Ubuntu
16.04. As for software versions, we use Python 3.6, Pytorch 1.7.1, and

Table 13: Efficiency comparison on the ogbn-products
dataset

Methods ‘ SGC SIGN GAMLP(JK) GAMLP(R) GraphSAINT Cluster-GCN
Training time | 1.0 4.0 8.0 9.3 364 503
Test accuracy | 75.87 80.52 83.54 83.59 79.08 78.97

Table 14: Detailed hyperparameter setting on OGB datasets.

attention | hidden | num layer

Datasets type size in JK num layer activation
ogbn-products Recursive 512 / 4 leaky relu, a=0.2
ogbn-papers100M JK 1280 4 6 sigmoid
ogbn-mag JK 512 3 4 leaky relu, a=0.2

Table 15: Detailed hyperparameter setting on OGB datasets.

hops for | input | attention
Datasets hops l:bel droll:ou t | dropout dropout
ogbn-products 5 10 0.2 0.5 0.5
ogbn-papers100M 12 10 0 0.5 0.5
ogbn-mag 5 3 0.1 0 0.5

CUDA 10.1. The hyper-parameters in each baseline are set according
to the original paper if available. Please refer to Appendix C.2 for
the detailed hyperparameter settings for our GAMLP. Besides, the
source code of the PyTorch implementation of GAMLP can be found
in Github (https://github.com/PKU-DAIR/GAMLP).

C.2 Detailed Hyperparameters

We provide the detailed hyperparameter setting on GAMLP in
Table 14, 15 and ?? to help reproduce the results. The hyperparame-
ters are tuned with the toolkit OpenBox [19] or follow the settings
in their original paper. To reproduce the experimental results of
GAMLP, just follow the same hyperparameter setting yet only run
the python codes.


https://github.com/PKU-DAIR/GAMLP
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