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ABSTRACT

The transition from conventional mobility to electromobility largely

depends on charging infrastructure availability and optimal place-

ment. This paper examines the optimal placement of charging sta-

tions in urban areas. We maximise the charging infrastructure

supply over the area and minimise waiting, travel, and charging

times while setting budget constraints. Moreover, we include the

possibility of charging vehicles at home to obtain a more refined

estimation of the actual charging demand throughout the urban

area. We formulate the Placement of Charging Stations problem

as a non-linear integer optimisation problem that seeks the op-

timal positions for charging stations and the optimal number of

charging piles of different charging types. We design a novel Deep

Reinforcement Learning approach to solve the charging station

placement problem (PCRL). Extensive experiments on real-world

datasets show how the PCRL reduces the waiting and travel time

while increasing the benefit of the charging plan compared to five

baselines. Compared to the existing infrastructure, we can reduce

the waiting time by up to 97% and increase the benefit up to 497%.

CCS CONCEPTS

• Computing methodologies → Reinforcement learning; •

Mathematics of computing → Combinatorial optimization.

KEYWORDS

Electromobility; Reinforcement Learning; Location selection

1 INTRODUCTION

Electromobility has developed as indispensable transportationmeans

for modern transportation systems. To reduce greenhouse gas emis-

sions and to counteract the climate crisis, many governments pro-

vide incentives to stimulate broader electromobility adoption [22].

The provision of accessible charging infrastructure is the critical

requirement to reduce range anxiety (i.e. the driver’s concerns that
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a vehicle energy storage is insufficient to reach the trip destina-

tion) and enable the widespread adoption of electric vehicles [10].

Whereas the number of charging stations (CS) has grown recently,

the currently available number of CS is insufficient to satisfy future

charging needs. However, there is a lack of methods to automati-

cally determine appropriate new CS locations.

The problem of optimally placing CS within a road network,

i.e., determining the required capacity and position, is particularly

challenging due to the following factors: First, numerous factors

influence the optimal placement, including road network topology,

existing charging infrastructure, traffic patterns, and charging du-

ration. Second, the charging demand typically covers the whole

road network such that regional optimisation methods, considering

only isolated junctions or parking lots, fail to determine a suitable

placement. Existing approaches for CS placement rely on simple

greedy algorithms that fail to address the complex spatio-temporal

interdependencies resulting from the road network topology and

the charging demand [14]. Consequently, they tend to cluster the

CS, leading to high travel times and ultimately failing to address

real-world needs for electric vehicle drivers.

In this paper, we address the problem of CS placement by intro-

ducing a novel formulation of the CS placement problem. Our utility

model considers the basic supply with charging infrastructure and

the driver’s discomfort. We explicitly consider the possibility of

home-charging electric vehicles [26], an essential aspect currently

neglected in the prior work. The home-charging eases the problem

of an insufficient public charging infrastructure [25] as electric

vehicles are likely often charged in residential areas.

Moreover, we present a novel formulation of the placement of

charging stations task as a reinforcement learning problem (PCRL)

based on a deep Q network algorithm. We evaluate the PCRL on

four real-world datasets and demonstrate that our proposed method

systematically determines effective CS placement. The evaluation

against the existing CS placement models shows that our model

creates a superior charging infrastructure regarding the general

supply as well as waiting and travel times. Furthermore, we provide

evidence that automated placement of CS is feasible and that consid-

ering home-charging facilities helps to obtain functional real-world

solutions. Finally, we discuss the prerequisites for deploying CS

allocation models regarding data needs and required interfaces.

In summary, our contributions are as follows:
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Figure 1: Overview of data sources, optimisation problem

and approach proposed in this paper.

• We propose a novel formal model for optimal charging in-

frastructure placement in a road network. Our utility model

improves over established problem formalisations by consid-

ering the home charging of electric vehicles.

• We formulate CS placement as a reinforcement learning

problem. We propose novel action and observation spaces

to determine efficient CS placements automatically.

• We conduct extensive experiments on real-world datasets,

demonstrating the performance of our approach in compari-

son against five baselines. We provide evidence indicating

the potential benefit of the deployment of automated charg-

ing station placement models.

Compared to the existing infrastructure, we can reduce the wait-

ing time by up to 97% and increase the benefit up to 497%. For

reproducibility, our code is publicly available
1
.

2 PROBLEM STATEMENT

In this section, we formally introduce the charging station place-

ment problem. First, we model a road network as a directed graph.

Definition 2.1 (Road Network). Let 𝐺 = (𝑉 , 𝐸) be a directed

weighted graph with𝑉 the set of vertices and 𝐸 the set of edges. The

vertices are the road network junctions, while the edges represent

the roads direction-wise.

Next, we introduce charging stations located within the road

network 𝐺 .

Definition 2.2 (Charging Station). A charging station 𝑠 within the

road network 𝐺 is defined as a tuple 𝑠 = (𝑣, 𝑡), where 𝑣 ∈ 𝑉 is

the location node, 𝑡 = (𝑡1, ..., 𝑡𝑚) is a vector of length𝑚 ∈ N with

𝑡𝑖 ∈ N being the number of chargers of type 𝑖 at 𝑠 . We denote the

set of all possible CS as 𝑆 .

The overall placement of CS within 𝐺 forms a charging plan.

Definition 2.3 (Charging Plan). A charging plan 𝑝 on 𝐺 is an

assignment of vertices to charging stations. Formally, we define a

charging plan 𝑝 ⊂ 𝑆 as a CS set that includes at most one CS per

vertex. We denote the set of all possible charging plans (CP) as 𝑃 .

We quantify the advantages and drawbacks of a charging plan

through a benefit and a cost function. The benefit : 𝑃 → R of a

CP 𝑝 quantifies the positive effect of 𝑝 for satisfying the charging

1
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demand. The cost : 𝑃 → R of 𝑝 quantifies the effort required to

realise 𝑝 . The score expresses the overall quality of a CP:

𝑠𝑐𝑜𝑟𝑒 (𝑝) = 𝜆 · 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑝) − (1 − 𝜆) · 𝑐𝑜𝑠𝑡 (𝑝) . (1)

Here, 𝜆 ∈ [0, 1] is a weighting parameter to trade off 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑝)
and 𝑐𝑜𝑠𝑡 (𝑝). Finally, we formulate the CS placement problem:

Definition 2.4 (Charging Station Placement Problem). Given a

road network 𝐺 , a benefit function, and a cost function, find the

optimal charging plan

𝑝∗ = argmax
𝑝∈𝑃

{𝜆 · 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑝) − (1 − 𝜆) · 𝑐𝑜𝑠𝑡 (𝑝)} (2)

that maximises the overall utility by trading off 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑝) and
𝑐𝑜𝑠𝑡 (𝑝).

3 UTILITY MODEL

This section quantifies the utility of a particular CP 𝑝 for a road

network𝐺 . To this end, we define a𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 and a 𝑐𝑜𝑠𝑡 function for 𝑝 .

In this section, we extend the current state-of-the-art formalisation

for CS placement [14].

3.1 Benefit Function

We formulate the benefit function based on the following intuition:

• CS with a higher capacity should result in a higher bene-

fit since they can provide service for a higher number of

vehicles.

• Existing nearby CS should decrease the benefit of a new CS

since existing demands are already partially satisfied.

Charging station capacity. Let 𝑠 = (𝑣, 𝑡) be a CS with𝑚 charger

types summarised by the numbers of chargers 𝑡 = (𝑡1, ..., 𝑡𝑚) ∈ N𝑚 .

Let 𝑐𝑖 denote the available charging power of the charger 𝑡𝑖 . We

define the capacity𝐶 (𝑠) of a CS 𝑠 as the sum of the charging power

provided by the individual chargers at 𝑠 with 𝐶 (𝑠) = ∑𝑚
𝑖=1 𝑡𝑖𝑐𝑖 .

Influential radius & coverage. The influential radius expresses
the distance in which the CS attracts electric vehicles. Intuitively,

a higher capacity should result in a higher influential radius. We

denote the maximal influential radius as 𝑟𝑚𝑎𝑥 . Formally, given a

CS 𝑠 with scaled down and dimensionless capacity 𝐶 (𝑠), we define
the influential radius 𝑟 (𝑠) as

𝑟 (𝑠) = 𝑟𝑚𝑎𝑥
1

1 + exp(−𝐶 (𝑠))
.

The coverage cov(𝑣) of a vertex 𝑣 is defined as the number of CS in

whose influential radius 𝑣 is: cov(𝑣) = |{𝑠 ∈ 𝑃 |𝑑 (𝑣, 𝑠) ≤ 𝑟 (𝑠)}|. Here,
𝑑 (𝑣, 𝑠) denotes the haversine distance between the CS 𝑠 and the

junction 𝑣 . Hence, the coverage of a node describes how good it is

supplied with charging stations. The coverage cov(v) is less critical
in areas where there is much opportunity for home charging, e.g.

by CS in private garages. Therefore, we establish ℎ𝑜𝑚𝑒 (𝑣) ∈ [0, 1]
as the share of detached houses among all buildings located around

𝑣 . Then, we formulate the overall benefit function of a CP 𝑝:

𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑝) = 1

|𝑉 |
∑︁
𝑣∈𝑉

©­«
𝑐𝑜𝑣 (𝑣)∑︁
𝑖=1

1

𝑖

ª®¬ (1 − 𝜔 ℎ𝑜𝑚𝑒 (𝑣)) . (3)

Here, 𝜔 is a weighting parameter. Intuitively, the benefit expresses

the supply of the road network with electric charging infrastructure.

2
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A higher coverage leads to a higher benefit. The formulation above

ensures that it is more beneficial to cover different vertices with

the CS instead of clustering all CS in a dense road network area.

3.2 Cost Function

We formulate the cost of a CP 𝑝 based on the expected required time

to charge a vehicle. To this end, we consider travel time, charging
time, and waiting time (if all chargers are occupied).

To estimate the travel time, we consider the distances between

the junctions of the road network and the respective nearest CS

and the charging demand at the individual junctions. The demand

is included since the travel time contains all travel times according

to the frequency of their occurrence. Let 𝑑𝑒𝑚(𝑣) ∈ [0, 1] denote
the charging demand of a junction, i.e., the normalised number of

vehicles that are typically parked at 𝑣 and require charging.

Since the charging demand is partly satisfied by the home charg-

ing infrastructure, we introduce a so-called weakened demand as

𝑑𝑒𝑚𝑤𝑒𝑎𝑘 (𝑣) = 𝑑𝑒𝑚(𝑣) (1 − 𝜔 ℎ𝑜𝑚𝑒 (𝑣)).

We define the indicator function 𝑖 : 𝑆 ×𝑉 ↦→ {0, 1} to be 1 for

pairs of CS 𝑠 ∈ 𝑆 and junctions 𝑣 ∈ 𝑉 if 𝑠 is the CS assigned to the

junction 𝑣 according to the CS assignment scheme in [14], and 0
otherwise. We then define the over travel time induced by a CP 𝑝

on a road network with junctions 𝑉 as:

travel(𝑝) =
∑︁
𝑣∈𝑉

∑︁
𝑠∈𝑝

𝑖 (𝑠, 𝑣)𝑑𝑖𝑠𝑡 (𝑠, 𝑣)V 𝑑𝑒𝑚𝑤𝑒𝑎𝑘 (𝑣)

where 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) is the haversine distance and V = 𝑐𝑜𝑛𝑠𝑡 . is the

average velocity in town.

Next, we model the charging time. We estimate the number of

vehicles approaching a CS 𝑠 as:

𝐷 (𝑠) =
∑︁
𝑣∈𝑉

𝑖 (𝑠, 𝑣)
𝑑𝑖𝑠𝑡 (𝑠, 𝑣)𝑑𝑒𝑚𝑤𝑒𝑎𝑘 (𝑣) .

The service rate 𝜇 (𝑠) of a station is

𝜇 (𝑠) = 𝐶 (𝑠)/𝐸.

Here 𝐸 is the energy required to charge a single-engine. We then

define the overall charging time for a CP 𝑝 as:

𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑝) =
∑︁
𝑠∈𝑝

𝐷 (𝑠)
𝜇 (𝑠) .

We model the expected waiting time𝑊 (𝑝) using the Pollaczek-
Khintchine formula [14]:

𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑝) =
∑︁
𝑠∈𝑝

𝑊 (𝑠)𝐷 (𝑠)

with

𝑊 (𝑠) = 𝜌 (𝑠)
2𝜇 (𝑠) (1 − 𝜌 (𝑠)) , for 𝜌 (𝑠) < 1, and 𝜌 (𝑠) = 𝐷 (𝑠)

𝜇 (𝑠) .

Finally, we combine travel time, charging time and waiting time

of a CP 𝑝 into a single formula

𝑐𝑜𝑠𝑡 (𝑝) = 𝛼𝑡𝑟𝑎𝑣𝑒𝑙 (𝑝) + (1 − 𝛼) (𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑝) +𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑝)),

where 𝛼 ∈ [0, 1] is a weighting parameter.

3.3 Constraints & Optimization

To facilitate the identification of practical charging plans, we extend

the problem formulation of Equation 2 by several constraints. We

formulate the constrained non-linear integer optimisation problem

to find the optimal CP 𝑝∗ in Equations 4-7 as follows:

First, we limit the financial costs of 𝑝∗ by a fixed budget 𝐵 (5)

explained in detail in the following. Next, we limit the number of

installed chargers at a single CS by the constant 𝐾 (6). Finally, we

ensure that the formulation of the waiting time is well-defined and

positive (7).

𝑝∗ = argmax
𝑝∈𝑃

{𝜆 · 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑝) − (1 − 𝜆) · 𝑐𝑜𝑠𝑡 (𝑝)} (4)

s.t.

∑︁
𝑠∈𝑝∗

fee(s) ≤ 𝐵 (5)

𝑚∑︁
𝑖=1

𝑠 .𝑡𝑖 ≤ 𝐾 ∀𝑠 ∈ 𝑝∗ (6)

𝜌 (𝑠) < 1 ∀𝑠 ∈ 𝑝 ∗ . (7)

Installation costs: We consider the financial cost of installing

new CS for our budget constraint in Equation 5. Given a CS 𝑠 , the

instalment fee denoted by fee(𝑠) is the estate cost at the node 𝑠 .𝑣
estate-cost(𝑠 .𝑣) and the number of installed chargers of type 𝑖 and

their corresponding installation costs charger-cost(𝑖).

fee(𝑠) = estate-cost(𝑠 .𝑣) +
𝑚∑︁
𝑖=1

𝑠 .𝑡𝑖 · charger-cost(𝑖) .

4 REINFORCEMENT LEARNING

This section describes the optimisation problem stated above as a

reinforcement learning (RL) problem.We provide a brief description

of our implementation.

4.1 RL Problem Formulation

We model the problem of CS placement as a single agent reinforce-
ment learning problem (PCRL). In the following, we detail the PCRL

formulation in terms of observations, actions, rewards, and episodes,

where 𝑖 ∈ N denotes the number of the episode.

Observations.An observation𝑜𝑖 ∈ 𝑃×R |𝑉 |2×R |𝑉 |×R |𝑉 |×R |𝑉 |

captures the intermediate placement of the CS and consists of

the current CP, the latitude and longitude coordinate, the result-

ing charging demand 𝑑𝑒𝑚(𝑣), the private charging infrastructure
𝑝𝑟𝑖𝑣 (𝑣) and the estate price estate-cost (𝑣) for each node 𝑣 ∈ 𝑉 .

Actions. We use a set of discrete actions, i.e., an action 𝑎𝑖 ∈
{Create by benefit,Create by demand, Increase by benefit, Increase
by demand, Relocate}. The agent chooses the action from the set

of discrete actions and can either create a new CS, increase the

number of chargers at an existing CS or relocate a charger from one

CS to another. We relocate CS instead of deleting them because it

stimulates the agent to build more stations.

For creating a new CS, we employ one of two different greedy

strategies to determine the position of the CS 𝑠 within the road

network. If the agent chooses the action Create by benefit, it will
choose the node with the lowest coverage 𝑐𝑜𝑣 (𝑣). The idea is to
increase the probability that at least one CS covers each node. When

the agent chooses Create by demand, we choose the node with the
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highest weakened demand 𝑑𝑒𝑚𝑤𝑒𝑎𝑘 (𝑣). To select the chargers at
the station, we create a lookup table before the training starts:

We calculate the capacity of each feasible charging configuration

out of the𝑚 charger types. Then, we sort the configurations and

write the cheapest charger configuration for each possible capacity

demand into the lookup table. Now, for the action, we estimate

the required capacity of the candidate station and then assign the

cheapest charger configuration to it.

Similar, for increasing the number of chargers, we employ the

same two greedy strategies as above to select a CS 𝑠 ∈ 𝑃 . At that
position, we add one charger. We can only add a charger to a station

with less than 𝐾 chargers.

For relocating chargers, we determine the CS 𝑠𝑜𝑙𝑑 achieving the

lowest benefit. Then, we relocate one of its chargers to the CS with

the highest waiting and charging time in the current CP 𝑝𝑖 . The idea

is to support stations with an unusually high waiting time. If 𝑠𝑜𝑙𝑑
is left without any chargers, we remove 𝑠𝑜𝑙𝑑 from 𝑝𝑖 . We assume

that the current supply is lower than the entire demand, such that

a relocation instead of a deletion is always desirable. Currently, we

neglect the cost of relocation of existing charging infrastructure.

Rewards.We calculate the reward based on the proposed utility

function. To this end, we compare the current CP 𝑝𝑖 with the CP

resulting from action 𝑎𝑖 using the 𝑠𝑐𝑜𝑟𝑒 (𝑝) function. The initial

score is zero if we start with an empty CP. If we extend the existing

charging infrastructure, we initiate the training with the score of

the original CP. We combine the score difference to obtain the

reward function:

𝑟 𝑖 = 𝑠𝑐𝑜𝑟𝑒 (𝑝𝑖+1) − 𝑠𝑐𝑜𝑟𝑒 (𝑝𝑖 ) .

Episodes. An episode starts with an initial CP 𝑝0 that can either

be empty or represent the existing charging infrastructure. The

episode ends if one of the following conditions holds: Budget ex-
ceeded: The current action 𝑎𝑖 requires more budget than what is left

from the starting budget 𝐵. Maximum number of chargers reached:
The current CP 𝑝𝑖 assigns𝐾 charging stations to all junctions 𝑣 ∈ 𝑉 ,
so there is no more place for any new charger. Maximum iteration
reached: The current iteration number 𝑖 reaches the maximum num-

ber of iterations 𝑖𝑚𝑎𝑥 , see Sec. 5.1.

4.2 RL Implementation

To solve the reinforcement learning problem, we apply a deep Q net-

work reinforcement learning [16]. Deep Q learning combines a con-

volutional neural network trained via stochastic gradient descent

with an experience replay mechanism to address data correlation

and non-stationary distributions. We employ the implementation

provided by the Stable Baselines3 framework [18].

5 EVALUATION SETUP

In this section, we describe the model parameter, baselines, datasets

and evaluation metrics.

5.1 Model parameter

In the utility model, we apply the following values for the parame-

ters: 𝛼 = 0.4,𝑚 = 3, 𝐾 = 8, 𝐵 = €5 Mio., 𝐸 = 85kWh, 𝑟𝑚𝑎𝑥 = 1km,

𝑤=0.1. We set 𝜆 = 0.5 to prioritise the cost function and the benefit

function equally. The charging power 𝑐1, 𝑐2, 𝑐3 for the three charger

types is 7 kW, 22 kW, 50kW. The respective estate-cost is €300, €750,
€28000. We base our prices on the usual manufacturer prices.

When implementing the PCRL as deep Q learning model, we

set policy = MlpPolicy, batch-size = 128, buffer-size = 10000 and

learning-rate = 0.001. Moreover, we set 𝑖𝑚𝑎𝑥 =
#𝑛𝑜𝑑𝑒𝑠

2 depending

on the underlying road network.We train for up to 200,000 episodes.

To ensure the reproducibility of our results, we set a random seed.

5.2 Baselines

To evaluate our solution to the problem formulated in Eq. 4 we

compare it to several naïve and state-of-the-art baselines.

Existing Charging. We examine the status quo of charging in-

frastructure, i.e., the public CS already existing in the road network.

Comparing our approach to this baseline provides an intuition

about the added value of the CP computed by our approach.

Bounding&Optimising. This baseline is the Bounding & Opti-
mising Based Greedy proposed in [14]. We choose a new CS position

by comparing the potential benefit of all potential positions. An

unbounded knapsack algorithm delivers an initial charger configu-

ration. We add more chargers to the CS according to the constraints.

Then, we include the new CS in the CP.

Bounding&Optimising +. We implement a Bounding & Opti-
mising Based Greedy Plus baseline as an improved version of the

Bounding & Optimising Based Greedy algorithm, making sure that

the resulting CP is a feasible solution to the PCS. We replace the

unbounded knapsack algorithm with the same algorithm as in the

PCRL action space to get an initial charging configuration.

BestBenefit. This greedy baseline implements a heuristic that

always chooses the junction with the highest possible 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 as

the CS. We use the same initial charging configuration as in the

Bounding&Optimising +.

Highest Demand. Similar to BestBenefit, this baseline places

the next CS at the junctions with the highest demand.

Charger-based Greedy. Du et al. [8] proposed the Fast Charger-
based greedy algorithm. This baseline uses its own utility model that

considers points of interest, the local charging demand and other

information defined in detail in [8]. In each iteration, the baseline

places new CS or increases the capacity of existing CS greedily. In

particular, Charger-based Greedy always chooses the action

that increases its utility score the most.

5.3 Datasets

Road Networks. We evaluate our approach on four equally sized

road networks from the two German cities, Hannover and Dresden,

named Hannover I, Hannover II, Dresden I, and Dresden II. We

choose the datasets to vary in charging demand, estate price and

density of detached houses. The road networks are depicted in

Figure 2a and 2b. Tabular 1 provides selected dataset statistics.

Hannover I consists of the three districts Mitte, Vahrenfeld-List

and Bothfeld-Vahrenheide. For Hannover II, we use the districts

Linden-Limmer, Ricklingen andAhlem-Badenstedt-Davenstedt.Dres-
den I consists of the districts Weixdorf, Klotzsche, Pieschen and

Neustadt. Dresden II is composed of Altstadt, Prohlis and Blasewitz.

Charging Demand. To compute the charging demand, we use a

proprietary traffic dataset of Hannover and Dresden from 15 Aug

2019 to 01 Dec 2019. We divide the datasets into 32 x 32 grid cells
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(a) Road networks Hannover I and II. (b) Road networks Dresden I and II.

Figure 2: Road networks in Hannover and Dresden datasets.

Table 1: Statistics of the datasets.

Hannover I Hannover II Dresden I Dresden II

# nodes 1947 1707 1919 1897

# exist. CS 55 50 29 27

# of edges 4766 4121 4849 4572

𝑛𝑜𝑑𝑒𝑑𝑒𝑔𝑟𝑒𝑒 2.85 2.68 2.85 2.83

and count the number of trips ending in individual grid cells for the

period. We expect that a high number of trips ending in a cell, i.e.,

a high number of parked vehicles, corresponds to a high demand.

Our approach can easily be reproduced with other traffic datasets.

Charging infrastructure. We receive the locations of the charging

stations already built in Hannover from the Open Charge Map

portal [1]. This portal provides information about CS containing

location and the total number of ports available with the port type.

Since it is impossible to get information on the exact number

of private home garages, we use the density of detached houses to

estimate the impact of private charging infrastructure. We extract

from OpenStreetMap [2] how much of the city area is used as

residential land. From the data of the city municipality, we receive

the share of detached houses among all buildings for each district,

respectively. Hence, we can attribute a value between 0 and 1 to each

road network node. This value indicates the density of potential

home charging infrastructure around this node.

Estate price. We extract the estate price data from the city mu-

nicipality’s rent index 2021. Thus, we can attribute each district’s

estate price per square meter.

5.4 Evaluation Metrics

To understand the goodness of the charging plan, we propose the

following quality indicators:

Score (𝑠𝑐𝑜𝑟𝑒). The overall score of the CP according to the utility

model as defined by Eq. 1. The score quantifies the overall perfor-

mance of the respective model (higher is better).

Benefit (𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ). The benefit of the CP, i.e., the score without the

cost function, as defined by the utility model in Eq. 3. The benefit

quantifies the potential usefulness of the respective model (higher

is better).

Waiting Time (𝑤𝑎𝑖𝑡). The sum of the waiting times occurring at

all CS in the road network (lower is better).

Travel Time (𝑡𝑟𝑎𝑣𝑒𝑙). The sum of travelling times within the road

network (lower is better).

Charging Time (𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔). The sum of charging times within the

road network (lower is better).

Maximum Travel Time (𝑡𝑟𝑎𝑣𝑒𝑙𝑚𝑎𝑥 ). The maximum time it takes

to travel to reach a CS from any junction in the road network any

CS (lower is better).

Maximum Waiting Time (𝑤𝑎𝑖𝑡𝑚𝑎𝑥 ). The maximum time spent

waiting at any CS in the road network (lower is better).

To enable the comparison to the existing real-world charging

infrastructure, we report the benefit, waiting time, and charging

time relative to the performance of the Existing Charging. We

consider the performance of Existing Charging as 100% and

provide the performance of all other models as percentages relative

to it. We report the maximum travel time and the maximumwaiting

as absolute numbers to provide intuitive measurements.

6 EVALUATION

The evaluation aims to assess the performance of our developed

PCRL approach on real-world datasets.

First, we analyse the deployment of new charging stations in

a real-world scenario in Section 6.1. To this end, we consider the

currently existing charging stations as an initial charging plan and

incrementally add new charging stations. In the second experiment,

we investigate the principal model behaviour when the model is

not restricted to improving the existing charging infrastructure in

Section 6.2. Finally, we discuss the prerequisites and opportunities

for the deployment of our approach in Section 6.3.

6.1 Improving Real-World Charging

Infrastructure

In this experiment, we extend the existing real-world charging

infrastructure by adding CS to the road network according to our

PCRL approach.We compare our approach to all baselines described

in Section 5.2. All considered models exhaust the available budget.

We evaluate all models according to the metrics in Section 5.4.

Table 2 presents the results for the datasets Hannover I and

Hannover II, while Table 3 gives the results for Dresden I and

Dresden II. For Hannover I, we depict the resulting CP in Figure 3.
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Table 2: Results on theHannover datasets. Evaluationmetrics where higher values are better aremarkedwith ↑. Metrics where

lower values are better are labelled with ↓. Best scores are marked bold. “-” indicates that no valid solution was found.

Algorithm Score ↑ Cost ↓
𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 𝑤𝑎𝑖𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑟𝑎𝑣𝑒𝑙𝑚𝑎𝑥 [min] 𝑤𝑎𝑖𝑡𝑚𝑎𝑥 [min]

Hannover I

Existing Charging 100% 100% 100% 100% 100% 7.27 32.38

Bounding&Optimising - - - - - - -

Bounding&Optimising + 284% 171% 47% 91% 85% 7.27 22.46

BestBenefit 268% 164% 49% 92% 87% 7.27 22.46

Highest Demand 233% 143% 39% 81% 80% 7.27 21.83

Charger-based Greedy 17% 136% 80% 98% 123% 7.27 22.46

PCRL 376% 202% 18% 57% 80% 5.93 8.11

Hannover II

Existing Charging 100% 100% 100% 100% 100% 15.94 13.96

Bounding&Optimising - - - - - - -

Bounding&Optimising + 353% 204% 61% 87% 78% 15.94 13.96

BestBenefit 329% 195% 63% 86% 88% 15.94 13.96

Highest Demand 262% 155% 36% 70% 82% 15.62 7.42

Charger-based Greedy 145% 121% 100% 100% 101% 15.94 13.96

PCRL 428% 222% 10% 46% 69% 15.63 1.37

Table 3: Results on the Dresden datasets. Evaluation metrics where higher values are better are marked with ↑. Metrics where

lower values are better are labelled with ↓. Best scores are marked bold. “-” indicates that no valid solution was found.

Algorithm Score ↑ Cost ↓
𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 𝑤𝑎𝑖𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑟𝑎𝑣𝑒𝑙𝑚𝑎𝑥 [min] 𝑤𝑎𝑖𝑡𝑚𝑎𝑥 [min]

Dresden I

Existing Charging 100% 100% 100% 100% 100% 27.30 42.52

Bounding&Optimising - - - - - - -

Bounding&Optimising + 917% 454% 16% 55% 78% 22.17 14.13

BestBenefit 849% 426% 17% 54% 94% 22.17 14.62

Highest Demand 741% 371% 9% 44% 89% 23.44 8.43

Charger-based Greedy 276% 185% 85% 81% 141% 22.75 34.0

PCRL 1016% 497% 6% 26% 92% 21.40 0.83

Dresden II

Existing Charging 100% 100% 100% 100% 100% 7.75 42.29

Bounding&Optimising - - - - - - -

Bounding&Optimising + 572% 296% 25% 79% 66% 7.75 24.41

BestBenefit 542% 283% 25% 80% 71% 7.75 24.41

Highest Demand 420% 221% 15% 72% 62% 6.06 15.35

Charger-based Greedy 226% 158% 92% 96% 109% 7.75 42.29

PCRL 914% 442% 3% 28% 56% 3.51 0.35

Our proposed PCRL model achieves the best results for all met-

rics on almost every dataset. In particular, PCRL achieves the best

overall 𝑠𝑐𝑜𝑟𝑒 on every dataset.

The remaining metrics indicate the individual aspects contribut-

ing to the 𝑠𝑐𝑜𝑟𝑒 . The 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 quantifies the positive impact of the

charging plan on the road network. PCRL achieves the highest

benefit on all datasets and therefore addresses the charging needs

best. Furthermore, PCRL outperforms the baselines regarding the

travel time 𝑡𝑟𝑎𝑣𝑒𝑙 in all datasets. Intuitively, a high benefit, i.e., a

good supply with charging infrastructure, leads to lower travelling

times for electric vehicle owners. Moreover, PCRL’s waiting time

𝑤𝑎𝑖𝑡 , as well as the maximal waiting time 𝑤𝑎𝑖𝑡𝑚𝑎𝑥 , are the low-

est for every dataset. In Dresden II (Table 3), we can decrease the

waiting time by 97% indicating the high potential benefit of the

effective distribution of CS over the road network. Considering the

charging time, PCLR achieves the best performance on Hannover I,

Hannover II, and Dresden II and the second-best performance on

Dresden I. We observe that the Highest Demand baseline mainly

uses the expensive charger types, resulting in the lowest charg-

ing time on Dresden I. However, this strategy fails to address the

charging demand of the entire road network resulting in the low

overall 𝑠𝑐𝑜𝑟𝑒 of 741% on Dresden I. In contrast, our PCRL approach

achieves a 𝑠𝑐𝑜𝑟𝑒 of 1016% while losing only three percentage points

charging time compared to Highest Demand.

Comparing the performance across datasets, we observe that the

𝑠𝑐𝑜𝑟𝑒s of the Dresden datasets are higher than for the Hannover

datasets. Furthermore, we notice that the charging demand most

strongly influences the density of the deployed stations. We observe

a more even distribution of Dresden’s charging demand and estate

price, allowing for better optimisation of charging and travel times,

ultimately resulting in better plans.

Considering the baselines, we observe that the Bounding&Op-

timising algorithm does not find a valid solution to the optimisation

problem. Therefore, the Bounding&Optimising is not applicable in
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real-world scenarios considered in this paper. Our improved version

of the baseline, Bounding&Optimising +, achieves the best score

among the baselines but does not outperform our PCRL approach.

Figure 3 provides a visualisation of the charging plans computed by

each model for the Hannover I dataset. Each red circle represents a

charging station; a higher radius indicates a higher capacity. The

baselines having the strategy to choose the CS with the potential

highest benefit cluster the CS in the areas with the highest road

junction density, as observed in Figure 3b and 3c. While these

baselines choose positions with many neighbouring junctions, our

PCRL approach ensures that each node in the network is provided

with a nearby CS. Hence, the PCRL does not cluster the CS but

distributes them over the road network (Figure 3f). The more even

distribution of charging stations is also reflected by the low waiting

times achieved by PCLR. Ultimately, the more balanced distribution

of charging stations prevents the concentration of electric vehicles

at a few overcrowded stations.

Figures 3d and 3e visualise the CS of the greedy baselines High-

est Demand and Charger-based Greedy that place the CS in

locations with the highest demand or the potential benefit. These

baselines spend much budget on a few locations with the highest de-

mand but neglect wide parts of the road network, resulting in poor

benefit and travel time. In contrast, the PCRL illustrated in Figure

3f generates smaller clusters distributed all over the road network.

These CS with cheaper chargers satisfy the demand. We observe a

higher increase in benefit by placingmany smaller charging stations

than placing only one charging station with high capacity.

In summary, we observe that our PCRLmodel generates charging

plans that ensure a broad supply with charging infrastructure while

reducing the drivers’ discomfort, e.g., long travel or waiting times.

Furthermore, the baselines fail to address the real-world needs, as

they cluster CS or concentrate the capacity at a few locations only.

6.2 Non-incremental Placement

This experiment computes the charging plan from scratch without

considering the existing charging infrastructure. Table 4 shows

the mean of the results for the four datasets. Similar to the first

experiment, the PCRL approach achieves the overall best score. We

observe that all models besides Charger-based Greedy achieve

a higher score than the Existing Charging indicating that au-

tomated approaches can substantially improve the currently used

strategies for planning charging infrastructure. The Bounding&Op-

timising+ baseline achieves the lowest charging time and waiting

time. However, this baseline primarily places expensive charger

types on only a few charging stations. It neglects comprehensive

parts of the road network, resulting in an even higher travel time

than the Existing Charging. The sparsity of charging stations ren-

ders this baseline unpractical for real-world scenarios. In contrast,

our Bounding&Optimising + approach maintains competitive

charging and travel times while achieving the best travel time.

Comparing the non-incremental placement experiment with the

experiment initiated with the real-world charging infrastructure,

we observe an improvement of the mean score across all datasets

from 683% in the first experiment to 710% in the second experiment.

The improvement indicates that PCLR can also improve the current

charging infrastructure’s positioning.

6.3 Deployment of the PCRL

In this section, we discuss the prerequisites for the deployment of

the PCRL. The required datasets, see Section 5.3, comprise road net-

work data and data regarding the existing charging infrastructure.

These datasets are typically publicly accessible and easy to process.

Moreover, the PCLR requires data on the local estate prices and the

density of detached houses often provided by city municipalities.

This data is typically available to authorities planning traffic infras-

tructure. Quantifying the electric vehicle charging demand is most

challenging. However, a wide range of datasets such as taxi trip data,

floating car data, and routing data can serve as proxy information.

In general, we assume that charging demands correlate with travel

demands. Our open-source implementation of PCLR uses openly

available libraries, i.e., Stable Baselines3 [18], OSMnx [4] and Gym

[5]. We trained our approach on a CPU with eight cores within

24 hours for the four datasets used in this paper. Our Q-learning

approach has an observation space of size |𝑉 | ×𝑚 and an action

space of size 5. Our approach is capable of building onto the exist-

ing charging infrastructure. PCLR can easily be applied in various

scenarios, e.g., extending or relocating existing infrastructure, or

planning charging infrastructure from scratch.

7 RELATEDWORK

This section discusses related work in electric vehicle charging

station placement and related optimisation algorithms.

In recent studies on the deployment of charging stations, the

focus has been on different optimisation objectives: Liu et al. [12]

adopted a bilevel optimisation model to minimise the drivers’ dis-

comfort and maximise the gathered revenue. Vazifeh et al. [21]

aimed to cover the entire demand region while minimising drivers’

travel times and the total number of charging stations by adopting a

genetic algorithm. Liu et al. [13] set up a particle-swarm intelligent

optimisation to minimise the CO_2 emissions. Mourad et al. [17]

formulated the optimisation problem, including alternative energy

sources like photovoltaic and used a solver based on the simplex

algorithm. Moreover, Sun et al. [19] aimed to promote the usage

of electric vehicles over conventional cars. Bae et al. [3] included

particular brand preferences into the optimisation. In these studies,

the authors optimised the location of the charging stations. How-

ever, the number of chargers per station remained constant, such

that their approaches do not apply to our setting.

Another type of study considered optimising of the number of

chargers per station. Du et al. [8] showed that the charger plan-

ning problem is NP-hard and proved a theoretical bound for their

approximation algorithm. Cui et al. [7] considered the number of

chargers while including more practical aspects of urban systems,

like the underlying power grid and its capacity.

Gan et al. [9] formulated a fast-charging station deployment

problem in which different charger types were included. Meng et

al. [15] optimised the position and capacity of charging stations

for electric taxis by adopting sequential construction planning.

Another approach of Choi [6] formulated a large-scale charging

station concept and optimised the charging infrastructure using a K-

mean algorithm. Although the previous studies considered an entire

charging infrastructure solution, these studies did not integrate the

existing charging stations. Zeng et al. [23], as well as Krallmann
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(a) Existing Charging (b) Bounding&Optimising +. (c) BestBenefit.

(d) Highest Demand. (e) Charger-based Greedy. (f) PCRL (ours).

Figure 3: Charging plans after applying different algorithms onHannover I. The thickness of the circle symbolises the capacity

at the charging station.

Table 4: Mean results for the non-incremental case. Evaluation metrics where higher values are better are marked with ↑.
Metrics where lower values are better are labelled with ↓. Best scores are marked bold.

Algorithm Score ↑ Cost ↓
𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 𝑤𝑎𝑖𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑟𝑎𝑣𝑒𝑙𝑚𝑎𝑥 [min] 𝑤𝑎𝑖𝑡𝑚𝑎𝑥 [min]

Existing Charging 100% 100% 100% 100% 100% 14.56 32.79

Bounding&Optimising + 458% 247% 3% 201% 30% 17.57 0.65

BestBenefit 421% 231% 8% 182% 43% 17.50 2.14

Highest Demand 322% 178% 6% 127% 46% 14.50 1.50

Charger-based Greedy 26% 66% 78% 574% 64% 26.13 21.63

PCRL 710% 350% 6% 38% 66% 11.24 0.59

et al. [11] extended the existing public infrastructure by using a

genetic algorithm. Liu et al. [14] also examined the incremental

case by using a greedy algorithm.

We adopt the algorithms proposed in [8], and [14] as baselines,

as they represent recent approaches for charging station placement

that consider road network topology as the most important aspect

for charging station placement and are capable of extending the

existing charging infrastructure. Our approach optimises both po-

sitions and the number of chargers at the charging stations and

extends the existing charging infrastructure. Furthermore, we in-

clude a novel element into the model of the charging placement

problem, neglected so far to the best of our knowledge: The possi-

bility of home charging electric vehicles that eases the problem of

insufficient public charging infrastructure in urban areas [25].
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As the problem of charging station placement is NP-hard, ap-

proximation algorithms are adopted. Authors of previous studies

employed different greedy algorithms [8], [14], [19], genetic algo-

rithms [23], [21], and Bayesian Optimisation [3] that either tend to

cluster the nodes or neglect the cost-effectiveness. We can avoid

this by combining different greedy strategies to a more refined

policy by adopting reinforcement learning. Reinforcement learning

has evolved as an essential method to solve sequential decision

problems in a dynamic environment, and was recently adopted for

recommending publicly accessible charging stations [24], [20]. In

reinforcement learning, the agent seeks the best policy to solve a

specific problem in the environment. The agent improves its strat-

egy by getting rewards and punishments for the actions. We adopt

a deep Q network (DQN) reinforcement learning [16] to make an

agent learn an optimal strategy of finding the position of the charg-

ing station and their optimal charger type configuration. To the

best of our knowledge, our approach is the first attempt to adopt

reinforcement learning for the optimal CS placement.

8 CONCLUSION

In this paper, we investigated the problem of automatically deter-

mining the positions of electric vehicle charging stations in road

networks. To this end, we provide a novel formulation of the charg-

ing station placement problem that considers critical real-world

requirements for determining efficient charging station positions,

such as the possibility of charging electric vehicles at home. Further-

more, we provide a novel reinforcement learning formulation of

the charging station placement problem. We conduct experiments

on real-world road networks and determine possible extensions of

the existing charging infrastructure. Our proposed approach, PCRL,

achieves a benefit of up to 497% compared to the existing charging

infrastructure. Moreover, we can reduce the maximum travel time

to reach a charging station from approx. 8 minutes to 4 minutes.

The deployment of our approach requires typically openly avail-

able datasets such as road network data, charging station locations

and census data. It also requires trip or routing data to estimate

the charging demand. Our findings provide evidence for the high

potential use of our approach in deployed real-world scenarios. In

future work, we plan to evaluate our charging plans with respect to

the underlying power grid which is currently not included in our

model. Moreover, we would like to further refine our reinforcement

learning model, e.g., by including deletions of charging stations

into the action space or considering delayed rewards.
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