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ABSTRACT
Embedding based retrieval (EBR) is a fundamental building block
in many web applications. However, EBR in sponsored search is
distinguished from other generic scenarios and technically chal-
lenging due to the need of serving multiple retrieval purposes:
firstly, it has to retrieve high-relevance ads, which may exactly
serve user’s search intent; secondly, it needs to retrieve high-CTR
ads so as to maximize the overall user clicks. In this paper, we
present a novel representation learning framework Uni-Retriever
developed for Bing Search, which unifies two different training
modes knowledge distillation and contrastive learning to real-
ize both required objectives. On one hand, the capability of making
high-relevance retrieval is established by distilling knowledge from
the “relevance teacher model”. On the other hand, the capability of
making high-CTR retrieval is optimized by learning to discriminate
user’s clicked ads from the entire corpus. The two training modes
are jointly performed as a multi-objective learning process, such
that the ads of high relevance and CTR can be favored by the gen-
erated embeddings. Besides the learning strategy, we also elaborate
our solution for EBR serving pipeline built upon the substantially
optimized DiskANN, where massive-scale EBR can be performed
with competitive time and memory efficiency, and accomplished
in high-quality. We make comprehensive offline and online exper-
iments to evaluate the proposed techniques, whose findings may
provide useful insights for the future development of EBR systems.
Uni-Retriever has been mainstreamed as the major retrieval path
in Bing’s production thanks to the notable improvements on the
representation and EBR serving quality.
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1 INTRODUCTION
Embedding based retrieval (EBR) is highly emphasized in recent
years [15, 19, 20, 24, 38]. In EBR system, queries and answers are
represented as latent vectors. The semantic relationship between
query and answer is reflected by their embedding similarity; as such,
the desirable answers to a query can be efficiently retrieved on top
of approximate nearest neighbour search (ANN) [18]. The EBR
system is typically learned via contrastive learning [19, 38]: given
the labeled data, the representation model is learned to discriminate
the ground-truth answers to each query from the entire ads corpus.
Thanks to the recent progress of deep neural networks, especially
the pretrained language models [5], the accuracy of EBR has been
substantially improved, making it a critical recall path in today’s
web applications, such as online advertising, search engines, and
recommender systems.

1.1 EBR in Sponsored Search
Sponsored Search is the major source of income for search engines
and online shopping platforms. Given a query from user, the system
is expected to retrieve the ads which are not only closely related to
user’s search intent, but also associated with high CTR in order to
maximize the revenue of platform. As a result, EBR in sponsored
search is distinguished from EBR in other generic applications,
e.g., web search and question answering, due to the need of satis-
fying multiple retrieval purposes. In this place, a toy example is
introduced for better illustration of the above scenario.

Example 1.1. Suppose the following query is specified by the user:
“Secondhand Chevy” (shown as Figure 1). Meanwhile, three different
ads are presented for sponsored search. Ad-1. “Used Chevrolet for
sale in Los Angeles”. Although the first ad is highly relevant with
user’s query, it suffers from low CTR probably due to the missing of
merchant name. Ad-2 “Used SUV & Pickup for Sale | CarMax”. The
second ad is associated with high CTR given its popularity to general
crowd; however, it is weakly related with the user’s specified query.
Ad-3. “Quality Used Chevrolet for Sale | CarMax”. The third ad is
of both high relevance to the user’s query and high CTR thanks to
the fascinating quality of the provided service. Therefore, only Ad-3
will be retrieved for the query given that both high-relevance and
high-CTR conditions are satisfied by it.

The training of the embeddingmodel for sponsored search is non-
trivial. Particularly, the typical training algorithms, which mainly
rely on contrastive learning, call for a huge collection of queries
paired with ground-truth answers. However, such a requirement
will be impractical in sponsored search considering that it is al-
most infeasible to manually label the “high-relevance & high-CTR

ar
X

iv
:2

20
2.

06
21

2v
1 

 [
cs

.I
R

] 
 1

3 
Fe

b 
20

22

https://doi.org/10.1145/
https://doi.org/10.1145/


Conference’17, July 2017, Washington, DC, USA Zhang and Liu, et al.

Query. Secondhand Chevy 

Ads Corpus

Ad-1. Used Chevrolet for Sale in Los Angeles 

Ad-2. Used SUV & Pickup for Sale - CarMax

Ad-3. Quality Used Chevrolet for Sale | CarMax

CTR REL

0.53 0.75

0.80 0.21

0.81 0.79

Figure 1:Working Example. Ad-3, which is of both highCTR
and high relevance with the user’s specified query, is ex-
pected to be retrieved from ads corpus for sponsored search.

ads” for a great deal of queries. As a result, most of the previous
works tackle this problem with ad-hoc solutions, e.g., the detection
of bad cases in [6]. In this work, we develop our unified repre-
sentation learning framework in Bing Sponsored Search, called
Uni-Retriever (the Unified Embedding Based Retriever). The pro-
posed framework jointly leverages two different training modes:
knowledge distillation and contrastive learning, such that the desired
embedding model can be effectively trained based on user’s click
data (which is abundant) and a pretrained relevance teacher model
capable of predicting the semantic closeness.

• Knowledge Distillation from Relevance Teacher. An off-
the-shelf teacher model is leveraged for the prediction of the se-
mantic closeness between the query and ad. Although many public
sentence representation models, like SBERT [31] and DSSM [20]
may play such a role, we pretrain our in-house relevance teacher
model for more precise prediction using a moderate amount of man-
ually labeled query-ad relevance data. While training Uni-Retriever,
the teacher’s relevance predictions are required to be preserved by
the generated embeddings, i.e., a pair of semantic-close query and
ad are expected to result in a large embedding similarity.

•Contrastive LearningwithEnhancedNegative Sampling.
Uni-Retriever is learned to retrieve high-CTR ads through con-
trastive learning. Particularly, it extracts a massive scale of users’
queries and ads clicks from the production log, and learns to dis-
criminate the ground-truth to each query (i.e., the clicked ad) from
the entire ads corpus. Recent studies indicate that the quality of
contrastive learning is largely affected by both scale and hardness
of the negative samples [28, 30]. In Uni-Retriever, we leverage the
following two techniques for the enhancement of negative sam-
pling: 1) the Cross-Device negative Sampling (CDS), which sig-
nificantly augments the scale of negative samples by sharing the
cross-device encoding results with gradient compensation; 2) the
Relevance-filtered ANN negative Sampling (RAS), which increases
the hardness of negative samples by selecting those low-relevance
ads from the neighbourhood of query embedding.

The knowledge distillation and the contrastive learning are lin-
early combined as a multi-objective learning process, where the
generated embeddings are learned to favor both high-relevance ads
and user’s clicked ads. By doing so, both required conditions in
sponsored search can be satisfied by the resulted embedding model.

1.2 Serving EBR At Scale
Aside from the learning of embedding model, another technical
challenge, which is more generic in real-world applications, is how

to serve the EBR system at scale. Particularly, it is extremely chal-
lenging to work with billion-scale embeddings on the computation
platforms, meanwhile supporting realtime and high-quality ANN
search towards these embeddings. The EBR system is required to
trade-off of three factors: 1) time consumption, 2) memory usage,
and 3) recall rate. The existing approaches intensively exploits two
streams of techniques: 1) the proximity-graph based algorithms,
e.g., HNSW, NSG [7, 29], and the vector-quantization based algo-
rithms, e.g., IVFADC, IVFOADC+G+P [1, 17]. The former one is
favorable to time efficiency and recall rate, but is likely to result in
high memory usage; in contrast, the latter one is memory efficient,
but can be relatively limited in time efficiency and recall rate. In
this paper, we showcase our scalable and high-quality EBR serving
pipeline built upon the substantially enhanced DiskANN [33].

• DiskANN. We take advantage of DiskANN for its competitive
time and memory efficiency. It compresses the ads embeddings via
product quantization and leverages Vanama graph (a close variant
of NSG) for the quick routing to the approximate nearest neigh-
bours. The storage of the index follows a hierarchical architecture:
the tier-1 storage is on RAM, which merely keeps the compressed
embeddings; the tier-2 storage is on SSD, which maintains the
posting lists recording the dense embeddings and graph connec-
tions. The ANN process is divided accordingly: with coarse-grained
candidates searched based on the compressed embeddings, and
fine-grained result post-verified by the full-precision embeddings.

• Optimization. The direct usage of DiskANN, though scalable,
are prone to severe loss of retrieval quality because of 1) the lossy
compression of PQ and 2) the inferior post-verification effect from
the original dense embeddings. To mitigate these problems, the
following optimization treatments are performed w.r.t. the adopted
ANN index. Firstly, the quantization module is jointly learned with
the embedding model in order to maximize the retrieval perfor-
mance resulted from the compressed embeddings. Thanks to the
adjusted objective and the end-to-end optimization, the first-stage
retrieval quality (i.e., the coarse-grained candidates) can be signifi-
cantly improved compared with the conventional ad-hoc compres-
sion methods, like PQ [16] and OPQ [9]. Secondly, the original
dense embeddings are further adapted w.r.t. the re-ranking scores
for the coarse-grained candidates, such that the top-ranked ads can
be better discriminated from the first-stage retrieval result.

The proposed techniques have been integrated as Uni-Retriever
step-by-step and mainstreamed into Bing’s production for the past
period. In this paper, comprehensive offline experiments and online
A/B tests are provided for the analysis of the proposed techniques.
To the best of our knowledge, this is the first work which elaborates
the practice of the latest representation learning algorithms in
sponsored search, together with the systematic study of how to best
leverage the ANN index for massive-scalable EBR. Corresponding
technical discussions and experimental studies may provide useful
insight for both researchers and practitioners in the community.
Finally, contributions of this paper are summarized as follows.

• We introduce our unified representation learning framework:
Uni-Retriever, developed for Bing sponsored search. The pro-
posed framework integrates knowledge distillation and con-
trastive learning, which enables high-relevance and high-
CTR ads to be retrieved for user’s query.
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• We elaborate our EBR serving pipeline, which inherits the
high scalability from DiskANN, and substantially improves
the retrieval quality based on the optimization processing.

• We perform comprehensive offline and online experiments
for the analysis of Uni-Retriever, whose results verify the
effectiveness of our proposed techniques.

2 UNI-RETRIEVER
Uni-Retriever is developed to select ads (𝐴𝑞 ) from the entire corpus
(𝐴) for user’s input query (𝑞), which are not only semantically close
to the query but also likely to be clicked by the user. The above
objective is formulated by the following equation:

max.
∑︁
𝐴𝑞

CTR(𝑞,𝐴𝑞) : 𝑠 .𝑡 . REL(𝑞, 𝑎) ≥ 𝜀, ∀𝑎 ∈ 𝐴𝑞, (1)

where 𝜀 is the threshold of relevance score. For the ease of opti-
mization, we make the following relaxation to the above objective:

max.
∑︁
𝐴𝑞

CTR(𝑞,𝐴𝑞) + 𝜆 ∗ REL(𝑞, 𝑎), (2)

where 𝜆 is the positive value trading off the importance between
CTR and relevance. In Uni-Retriever, 𝐴𝑞 is retrieved based on MIPS
(Maximum Inner Product Search). That’s to say, the group of ads
with the top-𝐾 embedding similarities to the query (measured by
inner product) are expected to be the optimal solution of Eq. 2. Such
an embedding model is learned by our compound representation
learning strategy (shown as Figure 2), which unifies knowledge
distillation and contrastive learning.

2.1 Knowledge Distillation
Firstly, we expect high-relevance ads to be favored by the learned
embeddings. To this end, we propose to learn query and ad embed-
ding by distilling knowledge from the relevance teacher model.

• Relevance Teacher Model. The relevance teacher model is
a BERT based binary classification model (denoted as BERT𝑇𝑐ℎ),
which predicts whether the given query and ad are semantically
close (e.g., label “0”/“1” indicate the ad to be non-relevant or rel-
evant with the input query). Unlike the embedding model which
adopts the bi-encoder architecture, the relevance teacher model
follows the cross-encoder, which is more expressive and capable of
making more precise classification. Without loss of generality, the
computation of relevance score is given as:

Rel𝑞,𝑎 = 𝜎
(
𝑊𝑇 BERT𝑇𝑐ℎ ( [CLS, 𝑄𝑢𝑒𝑟𝑦, SEP, 𝐴𝑑])

)
, (3)

where [CLS, 𝑄𝑢𝑒𝑟𝑦, SEP, 𝐴𝑑] means the concatenation of query and
ad, with CLS and SEP token padded; we take the final layer’s hidden
state corresponding to CLS as the output of BERT;𝑊 (∈ R𝑑×1) is the
linear projection which reduces the output vector to a real value;
and 𝜎 (·) is the sigmoid activation. The relevance teacher model is
pretrained based on manually labeled data from human experts.

•Knowledge Distillation. Based on the well-trained relevance
teacher model, Uni-Retriever can be learned by knowledge distilla-
tion [14] (in this place, the same backbone model is shared by the
query encoder and ad encoder, denoted as BERT𝑈𝑛𝑖 ). Particularly,
the relevance teacher model is used to generate the relevance score
Rel𝑞,𝑎 for the input query 𝑞 and ad 𝑎. Then, BERT𝑈𝑛𝑖 is learned to

imitate the teacher’s prediction with the inner product of the query
and ad embedding, where the following loss is minimized:

min.
∑︁
𝑞

∑︁
𝑎



Rel𝑞,𝑎 − ⟨BERT𝑈𝑛𝑖 (𝑞), BERT𝑈𝑛𝑖 (𝑎)⟩


. (4)

In this place, ⟨·⟩ indicates the inner product operator. With the
optimization of the above problem, the high-relevance ads to the
query can be favored by high inner products, therefore enabling
them to be retrieved via MIPS.

2.2 Constrastive Learning
We expect the high-CTR ads to be promoted by the learned embed-
dings as well. To this end, the contrastive learning is performed,
where the embedding model is learned to discriminate the ground-
truth (i.e., the clicked ad) for each query from the rest of the ads
within the corpus. In this place, the following InfoNCE loss is for-
mulated as our learning objective:

max.
∑︁
𝑞

exp(⟨BERT𝑈𝑛𝑖 (𝑞), BERT𝑈𝑛𝑖 (𝑎+𝑞 )⟩)∑
𝑎−∈𝑁𝑞

exp(⟨BERT𝑈𝑛𝑖 (𝑞), BERT𝑈𝑛𝑖 (𝑎−)⟩)
, (5)

where 𝑎+𝑞 denotes the ground-truth, and 𝑁𝑞 are the negative sam-
ples to the query. The contrastive learning’s performance is highly
affected by two factors: 1) the scale of negative samples [4, 13], and
2) the hardness of the negative samples [27, 38]. In our project, the
following strategies are adopted for the enhancement of scale and
hardness of the negative samples.

2.2.1 Cross-device Negative Sampling. The in-batch negative sam-
pling is a widely used strategy which introduces a large number
of negative samples in a cost-free manner. Particularly, one query
𝑞 will use the ground-truth ads of other queries within the same
mini-batch 𝐵𝑞 as its negative samples: 𝑁𝑞 = {𝑎+

𝑞′≠𝑞}𝐵𝑞
; as a result,

each query may get as many as |𝐵𝑞 | − 1 negative samples. The
cross-device negative sampling is a further augmentation of the
conventional in-batch negative sampling [30, 36] when the model
is trained on multiple distributed GPU devices (where the entire
collection of mini-batches is denoted 𝐵 = {𝐵1, ..., 𝐵𝑁 }): the ground-
truth ads from other queries, not only within the same device (𝐵𝑞 )
but also from the whole devices (𝐵), will be used as the negative sam-
ples of query 𝑞; in other words, 𝑁𝑞 = {𝑎+

𝑞′≠𝑞}𝐵 . Such an operation
will enlarge the negative sample size by 𝑁 -fold without introducing
additional computation cost (e.g., 8× larger than in-batch negative
sampling when 8 GPUs are used for distributed training).

It should be noted that the naive cross-batch negative sampling
is problematic and will result in limited performance [36]; this
is because the embeddings from other devices are detached from
the computation graph, thus non-differentiable. In this place, we
leverage the following gradient compensation operation, with
which all cross-device embeddings are make “virtually differen-
tiable” so that the model to be correctly optimized (shown as Figure
3). Firstly, the entire encoding output, i.e., queries embeddings
({BERT𝑈𝑛𝑖 (𝑞)}𝐵 ) and ads embeddings ({BERT𝑈𝑛𝑖 (𝑎)}𝐵 ), will be
broadcasted over all the devices (𝐵). Secondly, for each of the devices
𝐵𝑖 , the InfoNCE loss is computed for all the queries (i.e., not only
the queries encoded on 𝐵𝑖 , but also those broadcasted queries from
other devices), with all ads embeddings (both locally encoded and
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Relevance
Teacher

query ad

relevance score

Query 
Encoder

Ad 
Encoder

query ad

query embed ad embed

×

similarity

click labels

(3) Knowledge Distillation (4) Contrastive Learning

candidate adsquery

(1)

(2)

Figure 2: Overview of Uni-Retriever. (1) The query and ad are encoded as latent embeddings, whose similarity is computed
via inner-product; (2) the semantic closeness (i.e., relevance score) between the query and ad is computed by the relevance
teacher model; (3) the knowledge distillation is performed to minimize the difference between the query-ad similarity and
the relevance score; (4) the contrastive learning is performed to discriminate the clicked ad.

globally broadcasted) taken as the negative samples. Finally, the In-
foNCE losses are back propagated from all the devices and reduced
for the update of the model. It is straightforward that the above
processing is equivalent By doing so, the partial gradients from
the rest of the GPUs will compensate for the non-differentiable ads
embeddings on one GPU. Therefore, the InfoNCE losses generated
on different devices will correctly update the model parameters
where the related queries and ads embeddings are encoded.

2.2.2 Relevance Filtered Hard Negatives. . In addition to the cross-
device negative samples, hard negatives are also introduced for each
query. Compared with other heuristically acquired hard negatives,
theANNbased hard negatives are proved to bemuchmore useful
in contrastive learning [10, 30, 37]. Particularly, for each query𝑞, the
ads within 𝑞’s neighbourhood are sampled as the hard negatives,
𝑎 : BERT𝑈𝑛𝑖 (𝑎) ∈ ANN(BERT𝑈𝑛𝑖 (𝑞)). The conventional ANN
hard negatives are randomly sampled from the 𝑞’s neighbourhood.
In our scenario, we expect high-relevance ads to be promoted;
therefore, we propose to filter the sampling by relevance score:
the neighbouring ads (e.g., the Top-200 nearest neighbours) are
firstly ranked by their relevance scores; then, the top ranked ads
(e.g., Top-1∼K) are removed; finally, the sampling is performed
within the remaining ads (e.g., Top-(K+1)∼200). With this operation,
we may select those hard yet low-relevance ads as our negatives,
which contributes to the representation quality. We empirically find
that sampling no more than 4 ANN hard negatives from the filtered
neighbours will be sufficient for the best recall performance; further
increasing of the ANN hard negatives leads to extra training cost

but shows no more improvement. The hard negatives of one query
will also be shared with other queries, which may further augment
the scale of negative samples.

2.3 Disentangle and Multi-objective Learning
The embeddings are disentangled w.r.t. the relevance and CTR
objective for better empirical performances. Particularly, instead
of directly using the output of BERT𝑢𝑛𝑖 , different pooling heads
are used for the two objectives. While optimizing the relevance
objective in knowledge distillation, the output embedding becomes
𝑊relBERT𝑢𝑛𝑖 (·); and for the CTR objective in contrastive learning,
the output embedding is𝑊ctrBERT𝑢𝑛𝑖 (·). (Note that the encoding
backbone BERT𝑢𝑛𝑖 remain shared for the two objectives.)

Uni-Retriever is jointly trained with knowledge distillation and
contrastive learning. Given a mini-batch of triplets: {query: 𝑞, posi-
tive ad: 𝑎+𝑞 , hard-negative ad: 𝑎−𝑞 } (the algorithm remains the same
when working with more than one hard negatives), Uni-Retriever
will represent them as their CTR and relevance embeddings, respec-
tively; and compute their inner-product similarities for CTR and
relevance. Then, the relevance teacher model will be used to predict
the relevance scores between the input queries and ads, based on
which the knowledge distillation loss can be computed. Note that
the relevance teacher model is an cross-encoder, whose encoding
cost will be formidable when all input ads need to processed. There-
fore, the knowledge distillation will only be performed w.r.t. the
clicked ads for the sake of high cost-efficiency. Meanwhile, the con-
trastive loss will also be computed, where 𝑁𝑞 will be composed of
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𝒒 𝒂ା 𝒂ି
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𝒒 𝒂ା 𝒂ି

𝒂ା 𝒂ି

… ……

𝒒…  …

Broadcast the encoding result on each GPU to All

GPU-1 GPU-N

𝒒 𝒂ା 𝒂ି

𝒂ା 𝒂ି

… ……

𝒒

…

… ……

𝒒 𝒂ା 𝒂ି

𝒂ା 𝒂ି𝒒

𝒒 𝒂ା 𝒂ି

𝒂ା 𝒂ି

… ……

𝒒

…

… ……

𝒒 𝒂ା 𝒂ି

𝒂ା 𝒂ି𝒒

…  …

× (𝑵 − 𝟏)

× 𝟏

Back-propagate KD & CL loss Back-propagate KD & CL loss 

GPU-1 GPU-N

Update BERT୙୬୧ based on the back-propagated gradients

Figure 3: Cross-device negative sampling with gradient
compensation. (Blue/Green/Red: query embedding/ground-
truth embedding/hard-negative embedding. Solid rectan-
gles: locally encoded embeddings, which are differentiable;
shadowed rectangles: the broadcasted embeddings from
other GPUs, which are non-differentiable).

the hard-negative of 𝑞 and the cross-device negatives. Both losses
will be added up and back-propagated to update the shared en-
coding backbone BERT𝑈𝑛𝑖 and the individual pooling heads:𝑊rel,
𝑊ctr. Both pooling heads are 𝑑 ×𝑑 ; and the two output embeddings
𝑊relBERT𝑢𝑛𝑖 (·) and𝑊ctrBERT𝑢𝑛𝑖 (·) will be normalized and added
up as a single vector for EBR.

3 EBR SERVING PIPELINE
In Bing Sponsored Search, Uni-Retriever needs to serve billion-scale
of ads from different advertisers. Conventional solutions, such as
HNSW, NSG, IVFPQ, will be limited by either the huge memory
cost or severe loss of retrieval quality. To confront this challenge,
we leverage DiskANN [33] as our ANN index, where the proximity
graph and product quantization are combined for competitive time
and memory efficiency. We further introduce a couple of optimiza-
tion processing w.r.t. the index: MoPQ [36] and Re-ranking oriented
adaptation, which substantially improve the retrieval quality for
the first-stage retrieval and post-verification.

3.1 DiskANN
The ads embeddings are organized by Vamana graph [33], a close
variant of NSG [7] with parameterized RNG condition for better
connectivity of the graph nodes. Based on such a component, the

Quantized Embedding (bin)

…

Quantized Embedding (bin)

Quantized Embedding (bin)

Quantized Embedding (bin)

RAM

Dense Embedding (float) NID (int) NID (int)…

Dense Embedding (float) NID (int) NID (int)…

Dense Embedding (float) NID (int) NID (int)…

Dense Embedding (float) NID (int) NID (int)…

… ……

SSD

Figure 4: Illustration of the two-tier storage. The light-
weight PQ compressed embeddings are stored in RAM. The
full-precision dense embeddings and the graph connections
(NID: Neighbour’s ID) are stored in SSD. The compressed em-
beddings are used for in-memory routing; once a node is vis-
ited, the dense embeddings and neighbour IDswill be loaded
to RAM for post-verification and the next-round routing.

input query can be routed to its nearest ads with high time efficiency.
Given that the ads embeddings and their graph connections are
too large to fit into memory, the following hierarchical storage
architecture is adopted.

• Tier-One Storage. The tier-one storage is hosted in RAM.
To accommodate the entire corpus, the ads embeddings are com-
pressed based on product quantization (more effective solution to
be discussed in the next part). The PQ compressed embeddings
can be one or two magnitudes lighter than the original dense em-
beddings; therefore, billion-scale of ads can be hosted in the main
memory with tens of GB RAM usage.

• Tier-Two Storage. The tier-two storage is hosted in SSD for
the posting lists, where each entry keeps the following three in-
formation: the ID of each ad (int32/64), the full-precision dense
embedding of each ad (d-dim float32 vector), and the list of IDs for
the neighbouring ads on Vamana graph (int32/64).

• Two-steps ANN Search. The ANN search is performed with
two consecutive steps: coarse-grained search, and fine-grained post-
verification. For coarse-grained search, the input query is routed on
Vamana graph to get its approximate nearest neighbours. Starting
from the entry point, it continues to explore the close yet unvisited
neighbours, and add the nearest candidates to a fix-sized priority
queue. The exploration on graph is guided by the distance computed
with the compressed embeddings. Once an graph node is visited,
its neighbours’ IDs will be loaded to RAM for future exploration.
The full-precision dense embeddings of the visited nodes will also
be loaded into RAM. The post-verification is performed once the
exploration finishes, where candidates within the priority queue
will be refined based on their dense embeddings (already loaded in
RAM during the exploration, thus avoiding extra I/O operations).
The Top-K nearest ads will be returned as the final result.

3.2 Optimization Processing
The conventional DiskANN-based EBR goes through the Tri-stage
workflow shown as Figure 5 (A). Firstly, the query searches for
its coarse-grained candidate ads based on the Vamana graph and
the compressed ads embeddings generated by ad-hoc compression
methods, e.g., PQ or OPQ. Secondly, the coarse-grained candidates
are post verified by the full-precision ads embeddings loaded from
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Figure 5: Comparison between (A) the conventional tri-stage EBRand (B) the optimized bi-stage EBR. The re-ranking operation
is omitted in (B) as it is virtually moved ahead to the post-verification step thanks to the re-rank oriented adaptation.

SSD to RAM. Finally, the fine-grained candidates are further re-
ranked in order to generate the final retrieval output. Notice that
the re-ranking function1 is introduced for the optimal business
outcome, which combines three factors: CTR and Relevance (Rel)
for the query and ad, and Bidding price of the ad (Bid):

Rank𝑞,𝑎 = Ψ(CTR𝑞,𝑎, Rel𝑞,𝑎, Bid𝑎). (6)

In our system, we optimize the conventional tri-stage workflow
with the following adaptations: 1) leveraging the Matching ori-
ented Product Quantization (MoPQ) for high-quality first-stage
retrieval, and 2) the re-ranking oriented adaptation of the dense
embeddings for more effective post verification.

3.2.1 MoPQ. The typical quantization methods used by ANN in-
dex, e.g., PQ [16, 17, 33], OPQ [9], ScaNN [11], are learned to mini-
mize the reconstruction loss between the original dense embeddings
and the PQ compressed embeddings. However, the reduction of
reconstruction loss does not necessarily lead to the improvement
of retrieval performance (as proved by [36]), which will severely
limit the retrieval quality under large compression ratios. Our sys-
tem leverages MoPQ [36], the state-of-the-art product quantization
where the compressed embeddings are learned to optimize the
retrieval performance: for each ad embedding 𝑎, the compressed
embedding 𝑎 is generated based on codebooks C (𝑀 × 𝑃 ):

𝑎 = concat( [𝑐1, ..., 𝑐𝑀 ]) : 𝑐𝑖 = argmin𝑗=1...𝑃 (∥𝑎𝑖 −𝐶
𝑗
𝑖
∥), (7)

where 𝑎𝑖 is the 𝑖-th segment of 𝑎. The straight through estimator
is used for the codeword selection, which maintains the compu-
tation differentiable. The compressed ads embeddings are learned
together with the original dense embeddings, following the same
objectives as Eq. 4 and 5. Thanks to the adjusted objective and the
collaboration between the embedding model and codebooks, the
first-stage retrieval performance can be substantially enhanced by
the compressed embeddings.

1The concrete formula of Ψ is kept confidential due to business concern.

3.2.2 Re-ranking oriented posting list. The original dense embed-
dings are learned to retrieve high-relevance and high-CTR ads from
the entire corpus. Therefore, they are inferior for the ranking pur-
pose considering that 1) the re-ranking function is different from
the retrieval objective, 2) the re-ranking emphasizes the local dis-
crimination of the candidates from the first-stage retrieval, rather
than the global discrimination of the ads within the entire corpus.
To mitigate the problem, we further adapt Uni-Retriever for bet-
ter post-verification by distilling knowledge from the re-ranking
function, where the following loss is minimized:

min.
∑︁
𝑞

∑︁
𝐴̂𝑞



Rank𝑞,𝑎 − ⟨BERT𝑟𝑎𝑛𝑘 (𝑞), BERT𝑟𝑎𝑛𝑘 (𝑎)⟩


. (8)

In this place, BERT𝑟𝑎𝑛𝑘 is the BERTmodel adapted from the original
BERT𝑢𝑛𝑖 ,𝐴𝑞 are the sampled ads from the first stage retrieval result,
Rank𝑞,𝑎 is the ranking score predicted in Eq. 6.

3.2.3 Optimized bi-stage retrieval. With the above optimized pro-
cessing, EBR is simplified into the bi-stage workflow shown as
Figure 5 (B). There are two notable changes compared with the
conventional tri-stage workflow. Firstly, the ads embeddings are
compressed by MoPQ for the enhancement of the first-stage re-
trieval. Secondly, the dense embeddings in posting lists are adapted
to the re-ranking function; therefore, the re-ranking operation is
omitted as it is virtually moved ahead to the post-verification step.

4 EXPERIMENTAL STUDIES
The offline experiments and online A/B tests are performed to clar-
ify the following problems: 1) the effectiveness of the proposed
representation learning framework, 2) the effectiveness of the pro-
posed EBR serving pipeline, 3) the impact to online production.

4.1 Experiment Settings
4.1.1 Data preparations and Training details. A large-scale dataset
is curated from Bing’s production for offline experiments. There are
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Click Relevance

Method Hit@10 Hit@100 Hit@200 Rel@10 Rel@100 Rel@200

Baseline 0.2079 0.4092 0.5810 0.7260 0.6971 0.6675
+ Multi-obj 0.2347 0.4188 0.5841 0.7958 0.7481 0.7348
+ Disentangle 0.2441 0.5122 0.5944 0.7998 0.7553 0.7340
+ In-batch 0.2773 0.5263 0.6004 0.7753 0.7191 0.6999
+ Cross-device 0.2887 0.5358 0.6080 0.7833 0.7248 0.7050
+ ANN negative 0.3151 0.5750 0.6455 0.8344 0.7757 0.7527
+ Score filter 0.3156 0.5755 0.6464 0.8406 0.7827 0.7596
+ Rank filter 0.3286 0.5896 0.6574 0.8372 0.7755 0.7509

Table 1: Evaluation of the retrieval quality: the proposed techniques in Uni-Retriever are added step-by-step. The integration
of all techniques: “+ Score filter” and “+ Rank filter” (with the utilization of disentangled embeddings, cross-devices negative
sampling, and ANN negatives filtered by relevance-score / relevance ranking-order) achieve the best overall performance.

a total of 1.5 billion query-ad pairs from real-world users, where 5.7
million of them are held out for testing. Besides, 20 million ads are
included by the ANN index for EBR evaluation. Our text encoder
follows BERT base architecture [5]; the output embedding’s dimen-
sion is linearly projected to 64 from 768. We leverage WordPiece
as our tokenizer [34], which is trained based on the in-house ads
corpus for better empirical performances [39]. There are a total
of 50, 777 vocabularies for the well-trained tokenizer. The models
are implemented with python 3.6 and pytorch 1.7.0, and trained
on machines with 4* NVIDIA-V100-32G GPUs and 2* AMD EPYC
7V12 64-Core CPUs.

4.1.2 Evaluation metrics. The following two metrics are utilized
to evaluate retrieval quality: 1) Recall of click (Hit@K): which
measures whether the clicked ad can be included by the Top-K
retrieval result. 2) Relevance degree (Rel@K): which measures
the average relevance score for the Top-K retrieval result. Note that
the relevance is predicted by the high-precision relevance teacher,
whose accuracy is comparable to human annotator. One more met-
ric is added to evaluate the retrieval quality after re-ranking: 3) Re-
ranking performance (NDCG, MRR), which measures the post
re-ranking quality for the retrieval result w.r.t. the ground-truth
ads selected by the re-ranking function from the entire corpus.

4.1.3 Method to compare. The proposed techniques are added to
the Baseline one-by-one for the analysis of their individual impact.
• Baseline, which is the most basic approach purely based on
contrastive learning (i.e., without knowledge distillation from
the relevance teacher model). Besides, each query is sampled
with 10 random negatives from the ads corpus.

• + Multi-obj, which improves the “Baseline” by adding the
knowledge distillation task.

• + Disentangle, which improves “+ Multi-obj” by having the
embeddings disentangled w.r.t. different objectives in the train-
ing stage, and added up as one vector for EBR serving.

• + In-batch, which improves “+ Disentangle” by replacing the
random negative samples with the in-batch negative samples.

• + Cross-device, which switches the in-batch negative samples
to cross-device negative samples for the above method.

• + ANN negative, which further improves “+ Cross-device” by
adding one more hard negative sample for each query from
ANN (randomly selected from the Top-200 ANN result).

• + Score filter, which improves “+ ANN negative” by using hard
yet low-relevance negative samples. Particularly, the ads with
relevance scores (normalized within 0 and 1) below threshold
(set as 0.5 by experiment) are filtered from the Top-200 ANN
result for negative sampling.

• + Rank filter, which also uses hard yet low-relevance negative
samples. Different from “+ Score filter”, the Top-200 ANN result
is ranked by the relevance teacher in the first place; then, the
lower half (101∼200) is used for negative sampling.

4.2 Experiment Analysis
4.2.1 Analysis of retrieval quality. The experiment result is shown
as Table 1, where the cumulative impact from our propose tech-
niques are analyzed. The Baseline is based on the simplest con-
trastive learning method, which leads to the lowest performance.
By adding our proposed techniques step-by-step, the overall per-
formances can be gradually improved. Finally, the integration of
all proposed techniques, i.e., “+ Score filter” and “+ Rank filter”,
which jointly leverage “the combination of knowledge distillation and
contrastive learning”, “cross-device negative sampling”, and “ANN
hard negatives filtered by relevance score / relevance ranking-order”,
achieve the most competitive performances. More detailed findings
towards each of the techniques are analyzed as follows.

Firstly, with the combination of knowledge distillation (optimiz-
ing the relevance) and contrastive learning (optimizing CTR), both
metrics: Click and Relevance, can be substantially improved by “+
Multi-obj” compared with the Baseline. This finding indicates 1)
the proposed multi-objective learning framework is effective, 2)
the optimization of relevance and CTR objectives are not contra-
dicted, which can be mutually reinforced to a large extent. Besides,
by generating disentangled embeddings (+ Disentangled) for the
two objectives, the representation quality can be further improved
against our basic multi-objective learning method.

Secondly, by using in-batch negatives (+ In-batch), the click
metrics (Hit@K) can be significantly improved over the previous
methods, which rely on 10 randomly sampled negatives. And with
cross-device negative sampling (+ Cross-device), the click metrics
can be further improved. Such observations verify that the increased
scale of negative samples is beneficial to the representation quality.
Note that the relevance metrics are not improved, probably because
both methods are simply applied to the contrastive learning.
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Method NDCG MRR

Base 0.8568 0.4140
Base + Re-rank 0.9033 0.4202
Adapt to Re-rank 0.9096 0.4309

Table 2: Impact of re-rank oriented adaptation to the post
re-rank retrieval quality.

Method Recall@100 Recall@500 Recall@1000

PQ 0.3167 0.5058 0.6000
OPQ 0.3320 0.5172 0.6140
ScaNN 0.4288 0.6396 0.7218
MoPQ 0.5004 0.6963 0.7659

Table 3: First-stage retrieval result (coarse-grained result be-
fore post-verification) from different compressionmethods.

Thirdly, the overall performances can be continually improved
by introducing the ANN hard negatives (+ ANN negative). Different
from the “+ In-batch” and “+ Cross-device” which augment the scale
of negative samples, it is quite interesting that both click and rele-
vance metrics may benefit from the ANN hard negatives. Moreover,
additional improvements can be achieved with “+ Score filter” and
“+ Rank filter”, as the high-relevance ads can be effectively excluded
from being selected as negative samples.

4.2.2 Impact from Re-rank oriented Adaptation. The impact from
the re-rank oriented adaptation is shown in Table 2. “Base” stands
for the conventional post-verification method, where the original
dense embeddings are utilized; “Base + Re-rank” indicates that the
post-verification result is further re-ranked; “Adapt to Re-rank” is
our method, where the post-verification is made based on dense
embeddings adapted to the re-ranking function. It can be observed
that “Adapt to Re-rank” notably outperforms “Base”. Such a find-
ing is expected, considering that with adaptation to the re-ranking
function, the candidate ads with high re-ranking scores can be fur-
ther promoted by the dense embeddings during post-verification.
Besides, it is interesting that “Adapt to Re-rank” also outperforms
“Base + Re-rank”. This is because a great deal of high-quality can-
didates are left out due to the conventional post-verification. By
comparison, “Adapt to Re-rank” is directly applied to the coarse-
grained search result; in other words, the re-ranking is virtually
moved ahead to process a much larger group of candidates. Thus,
it may better preserve the ads with high re-ranking scores and
benefit the online performance. Note that “Adapt to Re-rank” also
contributes to the efficiency, as the time cost can be saved from the
conventional re-ranking step.

4.2.3 Impact from MoPQ. The comparison between MoPQ and
other commonly used PQ compression methods: PQ (the default
option in DiskANN), OPQ, and ScaNN, is shown as Table 3. The
size of codebooks is 64 bit (8 codebooks in total, each one has 256
codewords). We may observe that MoPQ outperforms the baselines
with notable advantages, verifying that the first-stage retrieval
quality can be substantially improved from it.

4.2.4 Online A/B Test. The online A/B tests about Uni-Retriever
are reported in Table 4. Since our techniques are progressively
developed, there are three versions shipped to Bing’s production

Shipped Version RPM Growth P-Value

V1 (Multi-Objective) +3.27% 1.82𝑒−2

V2 (Negative Sampling) +3.06% 1.57𝑒−2

V3 (Optimized DiskANN) +1.63% 2.06𝑒−2

Table 4: Online A/B Tests for Uni-Retriever (V1-V3).

step-by-step. Particularly, the V1 version is highlighted for being
“Multi-Objective”: the contrastive learning is combined with knowl-
edge distillation to optimize both CTR and relevance; meanwhile,
the embeddings are disentangled for both objectives. This version
achieves +3.27% RPM growth in A/B test, with a P-Value of 1.82𝑒−2
(P-Value below 5𝑒 − 2 is considered as significant in the production).
The V2 version improves the negative sampling strategy on top
of the V1 version (with cross-device negative sampling, and ANN
hard negatives filtered by relevance). Such an improvement gives
rise to +3.06% RPM growth (with V1 version already mainstreamed
in production). Finally, with the EBR serving pipeline improved by
the optimized DiskANN, the V3 version further leads to another
+1.63% RPM gain after the mainstream of the previous two versions.

5 RELATEDWORK
EBR has been widely applied to many applications, e.g., web search
[23, 32], question answering [19, 30], online advertising [21, 26], and
recommender systems [15, 35]. Generic EBR systems are designed
for homogeneous objectives; e.g., the items users’ may click in
recommender systems, or the web-pages containing ground-truth
answers in web search. However, EBR in sponsored search is more
complicated due to the need of serving multiple retrieval purposes.
For one thing, the retrieved ads have to be semantically close to
user’s specified query. For another thing, the retrieved ads are
expected to be clicked by the user with high probabilities. Such
a problem was recognized by prior works [6, 22, 26]. However,
the learning of a unified model for the retrieval of ads with both
high-CTR and high relevance still lacks of systematic studies.

A typical EBR system consists of two fundamental components:
the representation model and the ANN index. In Recent years, the
pretrained language models (PLMs) [5] are widely adopted as the
backbone of representation models [19, 27, 31]; besides, people
also propose to learn specific PLMs for EBR purpose [2, 8, 25].
In addition to the backbone model, the training algorithm is an-
other critical factor. Most of the representation model is trained
via contrastive learning [12], whose performance is affected by the
negative sampling strategy. On one hand, it is found that the repre-
sentation quality can be improved by using an increased amount of
negative samples [4, 13, 30]. As a result, different methods are used
to improve the scale of negative samples in a cost-efficient way,
e.g., in-batch negative sampling [4, 19], and momentum encoder
[13]. On the other hand, the representation quality may also benefit
from hard negatives. It’s found that the negative samples selected
by lexical similarity [19, 27] are helpful; later on, people observed
additional gains by using negatives from ANN [10, 37].

The ANN index is another building block of EBR in addition to
the representation model, with which the Top-𝑁 answers can be
efficiently retrieved from the entire corpus [7, 9, 17, 29]. However,
the existing methods are limited by either time cost, memory us-
age, or retrieval quality when applied to massive-scale EBR. The
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latest studies, e.g., DiskANN [33], SPANN [3], propose to jointly
leverage embedding compression and graph-based index for time
and memory scalable ANN. Knowing that Bing needs to work
with a billion-scale ads corpus, we leverage DiskANN for its high
scalability, and we move beyond by substantially optimizing the
compressed embeddings and posting lists for better retrieval quality.

6 CONCLUSION
In this paper, we introduce our representation learning frame-
work, Uni-Retriever, developed for Bing Sponsored Search. In Uni-
Retriever, the knowledge distillation and contrastive learning are
collaborated for the retrieval of ads with both high relevance and
high CTR. We elaborate our optimization strategies designed for
Uni-Retriever, including the cross-device negative sampling, rele-
vance filtered ANN hard negatives, and disentangled representation
learning. We also present our practice on massive-scale EBR serv-
ing, which further contributes to the retrieval performance on top
of the substantially optimized DiskANN. Finally, we perform exten-
sive offline experiments and online A/B tests, whose results verify
the effectiveness of the proposed techniques.
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