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ABSTRACT
Learning fair representation is crucial for achieving fairness or

debiasing sensitive information. Most existing works rely on ad-

versarial representation learning to inject some invariance into

representation. However, adversarial learning methods are known

to suffer from relatively unstable training, and this might harm the

balance between fairness and predictiveness of representation. We

propose a new approach, learning FAir Representation via distri-
butional CONtrastive Variational AutoEncoder (FarconVAE), which
induces the latent space to be disentangled into sensitive and non-

sensitive parts. We first construct the pair of observations with

different sensitive attributes but with the same labels. Then, Farcon-

VAE enforces each non-sensitive latent to be closer, while sensitive

latents to be far from each other and also far from the non-sensitive

latent by contrasting their distributions. We provide a new type

of contrastive loss motivated by Gaussian and Student-t kernels

for distributional contrastive learning with theoretical analysis.

Besides, we adopt a new swap-reconstruction loss to boost the dis-

entanglement further. FarconVAE shows superior performance on

fairness, pretrained model debiasing, and domain generalization

tasks from various modalities, including tabular, image, and text.

CCS CONCEPTS
• Computing methodologies → Neural networks; Learning
latent representations; • Social and professional topics →
User characteristics.
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1 INTRODUCTION
Machine learning algorithms show the great success on many tasks,

and they have been widely adopted in real-world applications. Most

works of machine learning utilize a simple predictor at the test time,

and the extracted features of a given dataset greatly influence the

model prediction. So, the success of machine learning algorithms

largely depends on the data representation that the model learned

[4]. However, the input features of a given dataset might contain

noise and unnecessary information for the given task, and learning

a representation that covers the important characteristics of the

given dataset while invariant to unwanted information is crucial.

Neural networks are known to have an advantage in representa-

tion learning. The learned representation from the neural net rep-

resents the characteristics of data with fewer dimensional vectors.

Neural network based methods show a significant performance

improvement on many domains including image [15], text [18],

and tabular [39]. However, recent studies raise that the traditional

neural networks have difficulty in achieving fairness and domain

generalization [2, 32]. Neural networks provide a rich represen-

tation, but the representation also absorbs the sensitive (private)

information or spurious correlation of a given dataset. Due to this

unwanted information in learned representations, the model can

induce unfair results in decision making system or fail to provide

the correct predictions in the distribution shift scenario.
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There are many directions to remove the sensitive information

and spurious correlation in the model. One of them, adversarial

representation learning (ARL) methods [30, 38] set two goals, (i)

maximally retain salient information about a given target attribute,

and (ii) minimize the information leakage about a given sensitive at-

tribute. While these methods have shown compelling results when

optimized successfully, their convergence instability hinders achiev-

ing the above goals and limits the wide use of ARL methods practi-

cally. Another promising direction is a disentangled representation

learning [8, 32] that separates the non-sensitive representation and

sensitive representation. Their empirical success proves the effec-

tiveness of disentanglement-based approaches to fair expression

learning. However, most of the existing methods for disentangling

[8, 20] also rely on the adversarial learning technique to approxi-

mate Total Correlation [36] using the density ratio trick.

The other direction is to learn the invariant representation of a

given dataset. Invariant representation denotes the shared impor-

tant features invariant across domains or environments. Recently,

Arovsky et al. [2] proposed Invariant Risk Minimization (IRM) that

encourages invariant representation learning with bi-level opti-

mization. The representation trained with IRM may have shared

important features, but there is no guarantee that the representation

does not hold any sensitive information. Besides, Group-DRO [31]

is known to be effective for learning robust representation, but it is

also not guaranteed about the existence of sensitive information.

Although invariant learning methods [2, 7, 31] show meaningful

performance improvements on domain generalization tasks, we

observe that the representation learned from IRM and Group-DRO

still has a spurious correlation or sensitive information largely that

poses a potential risk in real-world applications.

In this paper, we propose FarconVAE (FAir Representation via

distributional CONtrastive Variational AutoEncoder), a new disen-

tangling approach with contrastive learning instead of adversarial

learning. First, we construct a pair of two instances with differ-

ent sensitive information and the same non-sensitive information.

Then, FarconVAE 1) minimizes the distance between non-sensitive

representations, 2) maximizes the dissimilarity between sensitive

representations, and 3) maximizes the dissimilarity between sen-

sitive and non-sensitive representations of each paired instance

with our distributional contrastive loss. Finally, in the latent space

divided into sensitive and non-sensitive representation, FarconVAE

makes a fair prediction by using only non-sensitive representation.

Besides, we adopt a new feature swap based objective for Far-

conVAE, swap-recon, to improve the disentanglement. Swap-recon

replaces the non-sensitive representation of a given data instance

with that of another paired data instance while leaving the sensi-

tive representation untouched. By reconstructing from both the

swapped latent and the original latent to the same original data

instance, swap-recon further boosts the disentanglement. In Ap-

pendix C, we empirically validate that swap-recon improves the

representation disentanglement quality.

To the best of our knowledge, this is the first study to improve

both fairness and out-of-distribution generalization performance.

FarconVAE provides a fair representation that only includes non-

sensitive core information by disentangling the sensitive informa-

tion. Besides, it also removes the spurious correlation in represen-

tation learned from IRM and Group-DRO, while maintaining the

model accuracy.

Our contributions in this work are three-fold:

• We propose a novel framework FarconVAE that learns dis-

entangled invariant representation with contrastive loss to

achieve algorithmic fairness and domain generalization.

• We provide a new distributional contrastive loss for disentan-

glement motivated by the Gaussian and Student-t kernels.

• The proposed method is theoretically analyzed and empiri-

cally demonstrated on a broad range of data types (tabular,

image, and text) and tasks, including fairness and domain

generalization.

2 RELATEDWORKS
2.1 Domain Generalization
The primary objective of domain generalization is to show stable

predictive performance even though the test distributions are differ-

ent from the train distribution [13]. Traditional machine learning

algorithm fails domain generalization, and there have been many

research works to handle the distribution shift in diverse ways,

including Bayesian neural net [27], data augmentation [40], robust

optimization [23, 31], and invariant learning [2, 7].

Recently, Group-Distributionally Robust Optimization (Group-

DRO) [31] and Invariant Risk Minmimzation (IRM) [2] have been

considered promising ways for domain generalization. Group-DRO

optimizes the models to focus on the worst-case group with strong

regularization, and IRM encourages the model to focus on the

shared essential features across the group. However, there is no

theoretical guarantee that the Group-DRO and IRM alleviate the

spurious correlation or sensitive information removal. Recent works

point out that the performance improvements of Group-DRO and

IRM are limited on a shifted test distribution [13].

2.2 Learning Fair Representation
Fair representation learning aims to learn a representation that can

be used for making accurate predictions without bias from sensitive

information.We can divide the various fairness works depending on

whether adversarial learning is used, and we introduce the related

works for fair representation learning in this subsection.

2.2.1 Fair Representation with Adversarial Learning. Generative
adversarial learning (GAN) [11] shows a significant improvement

in density estimation, and it has been widely utilized in many tasks.

For fair representation learning, density estimation of a given in-

stance without sensitive information is necessary. Therefore, there

have been many research works that adopt adversarial learning for

fair representation [28, 30, 38, 42]. Controllable Invariance (CI) [38]

adopts adversarial min-max game to filter out detrimental features

such as sensitive information. CI introduces three types of network;

encoder, discriminator, predictor, and adversarial minimax game

between encoder and discriminator encourages the representation

is invariant to sensitive information. Maximum Entropy Adver-

sarial Representation Learning (MaxEnt-ARL) [30] is another kind
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of adversarial method, and MaxEnt-ARL utilizes a non-zero-sum

game adversarial formulation by adopting different objectives for

generator and discriminator to overcome the sub-optimal problems.

The order approach is Flexibly Fair Variational AutoEncoder (FF-

VAE) [8] based on disentangled representation learning. FFVAE

learns the separated latent space for sensitive and non-sensitive

information. Although the algorithm does not contain an explicit

adversary, it also relies on adversarial learning to approximate the

Total Correlation (TC) [36] penalty used for disentanglement.

However, adversarial learning is known to have convergence

instability problems, and it might hinder learning the robust rep-

resentation. We empirically observe that the previous adversarial

learning-based fair algorithm has difficulty separating the sensi-

tive information. To solve the problems, we propose a contrastive

learning-based disentangled representation learning method, Far-

conVAE, instead of adversarial learning.

2.2.2 Fair Representation without Adversarial Learning. Recently,
there have been other fair representation learning research works

without adversarial learning [6, 26, 32, 41]. Zemel et al. [41] propose

fair clustering methods with probabilistic mapping, and Variational

Fair AutoEncoder (VFAE) [26] adopts Maximum Mean Discrepancy

(MMD) measure [12] to penalize the posterior. Besides, Fair Filter

(FairFil) [6] removes the sensitive information that is inherent in

the sentence embedding from a pretrained language model. To

learn debiased embeddings, FairFil utilizes contrastive learning and

mutual information estimator.

Orthogonal Disentangled Fair Representations (ODFR) [32] is a

non-adversarial disentangle-based methods, and it introduces or-

thogonal priors to enforce an orthogonality constraint between sen-

sitive and non-sensitive representation.𝑞𝜙𝑠 (𝑧𝑠 |𝑥) and𝑞𝜙𝑥 (𝑧𝑥 |𝑥) de-
note the posteriors of sensitive and non-sensitive representation pa-

rameterized by 𝜙𝑠 and 𝜙𝑥 respectively, and 𝑝 (𝑧𝑥 ) and 𝑝 (𝑧𝑠 ) denote
the priors, where 𝑝 (𝑧𝑥 ) = N([1, 0]𝑇 , I) and 𝑝 (𝑧𝑠 ) = N([0, 1]𝑇 , I).

𝐿𝑂𝐷 = KL((𝑞𝜙𝑥 (𝑧𝑥 |𝑥) | |𝑝 (𝑧𝑥 )) +KL((𝑞𝜙𝑠 (𝑧𝑠 |𝑥) | |𝑝 (𝑧𝑠 )) (1)

However, minimizing 𝐿𝑂𝐷 in Eq. 1 does not guarantee a robust

fair representation. It is known that the vanilla KL-divergence be-

tween posterior and fixed prior might cause the posterior collapse,

and the representation might not contain meaningful information

of given data [14]. As a result, ODFR adopts additional auxiliary

components such as entropy loss. Besides, there are diverse ways

to set orthogonal priors, and the performance of ODFR may largely

depend on the choice of prior.

FarconVAE has a relationship with FairFil and ODFR, but there

are three major differences. First, FarconVAE measures the diver-

gence between two posteriors for disentanglement instead of the

fixed prior in ODFR. Thus, FarconVAE is relatively free from poste-

rior collapse problems and prior choice. Second, we adopt a new

distributional contrastive loss motivated by Gaussian and Student-t

kernel. It makes FarconVAE get highly disentangled fair represen-

tation without the need for auxiliary components such as discrim-

inators and entropy loss. Third, in contrast to ODFR and FairFil,

which have shown effectiveness in limited data types for only fair

prediction tasks, our FarconVAE has validated on both fairness and

domain generalization tasks across three representative data types.

(a) Recognition model (b) Generative model

(c) FarconVAE in Neural Networks (NN) view

Figure 1: Graphical notations of FarconVAE (a), (b), and neu-
ral network view (c). The dashed line denotes the recogni-
tionmodels, neural networkwith parameter𝜙 , and the solid
line represents the generative models, neural network with
parameter 𝜃 . Also, the gray color denotes the observed vari-
ables, while the white color denotes the latent variables.

2.3 Contrastive Learning
Recently, Contrastive learning has emerged as a new promising

paradigm for self-supervised representation learning, showing pow-

erful performance in a broad domain such as Vision [5], NLP [9],

and Graph [24]. InfoNCE [34] is a widely used loss function for

contrastive learning that effectively formulates the instance dis-

crimination task. InfoNCE loss encourages the similarity between

positive pairs and the dissimilarity between negative pairs. Repre-

sentation space learned by contrastive learning has performed well

in various downstream tasks such as classification, clustering, or

semantic similarity evaluation. However, there is limited work [37]

that handled the disentanglement with contrastive learning. This

paper provides a new distributional contrastive learning method to

obtain disentangled invariant representation and apply it to fairness

and domain generalization tasks.

3 METHODOLOGY
In this section, we firstly introduce the basic notation and prob-

lem formulation in Section 3.1. In Sections 3.2, 3.3, we describe

FarconVAE in detail, and cover the kernel motivated distributional

contrastive loss that induces stable disentanglement, respectively.

In Section 3.4, we provide a description for swap-recon, a new fea-

ture swap based regularization. Finally, we theoretically analyze

our two specified contrastive losses in Section 3.5.

3.1 Problem Definition
Let 𝑥 be an observed input feature, 𝑠 be its sensitive attribute, and 𝑦

be a target label. As described in [2, 32], the sensitive attribute 𝑠 is

highly correlated with feature 𝑥 and spuriously correlated with la-

bel 𝑦 on many real-world datasets, even if it is essentially irrelevant.
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In this situation, We want to build a fair ML algorithm. Mathe-

matically, fairness can be defined as 𝑝𝜃 (𝑦 |𝑥) = 𝑝𝜃 (𝑦 |𝑥, 𝑠) [32]. The
Fairness definition shows that the model output needs to be inde-

pendent of the sensitive attribute. As a result, a fair representation

debiased w.r.t sensitive information is necessary to achieve fairness.

Furthermore, performance degradation for target label prediction

should be minimized. However, the existing methods for building

fair algorithms have difficulty in learning robust representation

satisfying both predictiveness and fairness, as stated in Section 2.

In this work, we propose FarconVAE, which aims to learn a func-

tion that maps each data (𝑥, 𝑠,𝑦) to disentangled representation

𝑧𝑠 and 𝑧𝑥 on the two separated latent spacesZ𝑠 ,Z𝑥 that involve

different semantic meanings. Specifically, Z𝑠 is a latent space to
absorb and isolate the whole sensitive information from observa-

tion, and Z𝑥 maximally preserves only non-sensitive information

to predict the target accurately. In other words, 𝑧𝑥 is a fair repre-

sentation used for target prediction that has high predictiveness

without relying on sensitive information.

3.2 FarconVAE Structure
Figure 1 represents the FarconVAE in terms of graphical model and

neural net view. FarconVAE assumes that there are three observable

variables, input feature 𝑥 , sensitive attribute 𝑠 , and target label 𝑦.

FarconVAE has one encoder 𝑝𝝓 (·) that splits into two heads for

encoding 𝑧𝑥 and 𝑧𝑠 , and two decoders: 𝑝𝜃𝑦 (·) for decoding 𝑦 and

𝑝𝜽\𝜃𝑦 (·) that splits into two heads for decoding 𝑥 and 𝑠 . The goal of

FarconVAE is to capture two disentangled latent 𝑧𝑠 and 𝑧𝑥 , where

𝑧𝑠 and 𝑧𝑥 denote the sensitive and non-sensitive representation,

respectively. With these two latent variables, The log marginal

likelihood of the 𝑥, 𝑠 and 𝑦 with model parameters 𝜽 is as follows:

log 𝑝𝜽 (𝑥, 𝑠,𝑦) = log

∫ ∫
𝑝𝜽 (𝑥, 𝑠,𝑦, 𝑧𝑥 , 𝑧𝑠 )𝑑𝑧𝑥𝑑𝑧𝑠 (2)

3.2.1 Model Inference. Direct optimization of marginal likelihood,

Eq. 2, is intractable, so we utilize the variational inference [17] to

approximate the marginal likelihood. We introduce the variational

distribution 𝑞, and we adopt encoder 𝑞𝝓 and decoder 𝑝𝜽 as neu-

ral networks parameterized by 𝝓 = {𝜙𝑏𝑜𝑑𝑦, 𝜙ℎ𝑒𝑎𝑑𝑥 , 𝜙ℎ𝑒𝑎𝑑𝑠 } and

𝜽 = {𝜃𝑏𝑜𝑑𝑦, 𝜃ℎ𝑒𝑎𝑑𝑥 , 𝜃ℎ𝑒𝑎𝑑𝑠 , 𝜃𝑦}, respectively. In the following all

sections, wewill notate {𝜙𝑏𝑜𝑑𝑦∪𝜙ℎ𝑒𝑎𝑑𝑥 } as𝜙𝑥 and {𝜙𝑏𝑜𝑑𝑦∪𝜙ℎ𝑒𝑎𝑑𝑠 }
as 𝜙𝑠 , {𝜃𝑏𝑜𝑑𝑦 ∪ 𝜃ℎ𝑒𝑎𝑑𝑥 } as 𝜃𝑥 , and {𝜃𝑏𝑜𝑑𝑦 ∪ 𝜃ℎ𝑒𝑎𝑑𝑠 } as 𝜃𝑠 .

For the disentanglement between 𝑧𝑥 and 𝑧𝑠 , the conditional

independence between 𝑧𝑥 and 𝑧𝑠 given 𝑥, 𝑠,𝑦 is necessary. Under the

conditional independence assumption, we construct the variational

objective [17, 22], called evidence lower bound (ELBO), as follows:

log 𝑝𝜽 (𝑥, 𝑠,𝑦)
≥ E𝑞𝝓 [log 𝑝𝜃𝑥 (𝑥 |𝑧𝑥 , 𝑧𝑠 ) + log 𝑝𝜃𝑠 (𝑠 |𝑧𝑥 , 𝑧𝑠 ) + log 𝑝𝜃𝑦 (𝑦 |𝑧𝑥 )]
−KL(𝑞𝜙𝑥 (𝑧𝑥 |𝑥, 𝑠,𝑦) | |𝑝 (𝑧𝑥 )) −KL(𝑞𝜙𝑠 (𝑧𝑠 |𝑥, 𝑠,𝑦) | |𝑝 (𝑧𝑠 )) (3)

= L𝐸𝐿𝐵𝑂 (𝝓, 𝜽 ;𝑥, 𝑠,𝑦) (4)

L𝐸𝐿𝐵𝑂 in Eq. 4 consists of three components. First, the KL di-

vergence in Eq. 3 can be interpreted as a regularization term to

prevent the variational posteriors 𝑞𝜙𝑥 (𝑧𝑥 |𝑥, 𝑠,𝑦) and 𝑞𝜙𝑠 (𝑧𝑠 |𝑥, 𝑠,𝑦)
moving too far from their priors. Second, reconstruction terms,

𝑝𝜃𝑥 (𝑥 |𝑧𝑥 , 𝑧𝑠 ) and 𝑝𝜃𝑠 (𝑠 |𝑧𝑥 , 𝑧𝑠 ) encourage the latent representation

𝑧𝑥 and 𝑧𝑠 to preserve the salient information of 𝑥 and 𝑠 . Third, pre-

diction term 𝑝𝜃𝑦 (𝑦 |𝑧𝑥 ) gives an ability to model to predict the target

value, and it injects task-specific information to representation 𝑧𝑥 .

By maximizing the ELBO in Eq. 4, we can infer the parameters

of distribution over the joint latent variables 𝑧𝑠 and 𝑧𝑥 that depend

on 𝑥, 𝑠 , and 𝑦. These two latent representations include the salient

information of the given dataset. Different with 𝑧𝑠 , 𝑧𝑥 has capability

to predict 𝑦, and its difference contributes to disentanglement be-

tween 𝑧𝑠 and 𝑧𝑥 . However, FarconVAE can be improved in twoways.

First, L𝐸𝐿𝐵𝑂 just assumes the conditional independence between

𝑧𝑥 and 𝑧𝑠 given 𝑥, 𝑠,𝑦. Second, 𝑧𝑥 still has sensitive information if

the 𝑦 is spuriously correlated with 𝑠 . Therefore, we provide a new

contrastive loss with FarconVAE and introduce it in Section 3.3.

3.2.2 Model in Detail. In this subsection, we provide the distribu-

tional assumption in FarconVAE. For the prior 𝑝 (𝑧𝑠 ) and 𝑝 (𝑧𝑥 ), we
adopt standard Gaussian N(𝑧𝑠 ; 0, I) and N(𝑧𝑥 ; 0, I), respectively.

For encoder, we formulate the variational posterior distribution

𝑞𝝓 (·|·) as Gaussian distribution with diagonal covariance structure,

parameterized by neural network. In the remaining sections, we

will omit the parameter of posterior and refer to it as 𝑞(·|·). In the

formulas below, 𝑧 · can be 𝑧𝑥 or 𝑧𝑠 .

log𝑞𝜙· (𝑧 · |𝑥, 𝑠,𝑦) = logN(𝑧 ·; 𝜇𝑧· , 𝜎2𝑧· I)

For decoder, we adopt Gaussian distribution for continuous vari-

ables and Bernoulli distribution for discrete variables. Like above,

the parameters of the distribution are parameterized by 𝜽 .

𝑝𝜃𝑥 (𝑥 |𝑧𝑥 , 𝑧𝑠 ) = N(𝑥 ; 𝜇𝑥 , 𝜎2𝑥 I) or 𝑝𝜃𝑥 (𝑥 |𝑧𝑥 , 𝑧𝑠 ) = Ber(𝑥 ; 𝜇𝑥 )
𝑝𝜃𝑠 (𝑠 |𝑧𝑥 , 𝑧𝑠 ) = N(𝑠; 𝜇𝑠 , 𝜎2𝑠 I) or 𝑝𝜃𝑠 (𝑠 |𝑧𝑥 , 𝑧𝑠 ) = Ber(𝑠; 𝜇𝑠 )

𝑝𝜃𝑦 (𝑦 |𝑧𝑥 ) = N(𝑦; 𝜇𝑦, 𝜎2𝑦I) or 𝑝𝜃𝑦 (𝑦 |𝑧𝑥 ) = Ber(𝑦; 𝜇𝑦)

To reconstruct feature 𝑥 and sensitive attribute 𝑠 , FarconVAE uses

both 𝑧𝑥 and 𝑧𝑠 , while for predicting target label 𝑦 it utilizes 𝑧𝑥 only.

3.3 Contrastive Learning for Disentanglement
For given 𝑥, 𝑠,𝑦, we can estimate the counterfactual that has the

same label 𝑦, but different sensitive attribute 𝑠 and its correspond-

ing 𝑥 (similar to 𝑥 ). Counterfactual estimation can be replacing the

given sensitive 𝑠 , as opposite 𝑠 ′ [21], or finding the similar instance

that has different sensitive attribute [33]. Given original data in-

stance and its counterfactual, we train the model with a pair of

them with L𝐸𝐿𝐵𝑂 in Eq. 4. Besides, we introduce the contrastive

loss to ensure the disentanglement between 𝑧𝑥 and 𝑧𝑠 . For the latent

representation of given dataset and its counterfactual, 𝑧𝑥 , 𝑧𝑠 , 𝑧𝑥 , 𝑧𝑠 ,

the similarity between 𝑧𝑥 an 𝑧𝑥 , the difference between 𝑧𝑠 and 𝑧𝑠 ,

and the difference between 𝑧𝑥 (or 𝑧𝑥 ) and 𝑧𝑠 (or 𝑧𝑠 ) are required.

In this perspective, we regard (𝑧𝑥 , 𝑧𝑥 ) as a positive pair and

(𝑧𝑠 , 𝑧𝑠 ), (𝑧𝑥 , 𝑧𝑠 ), (𝑧𝑥 , 𝑧𝑠 ) as negative pairs by analogy with problem

setting in contrastive learning literature. To encourage the similarity

between positive representation pair and the difference between

negative representation pair, we minimize the divergence between
posterior (𝑞(𝑧𝑥 |·), 𝑞(𝑧𝑥 |·)) and minimize the similarity between

posterior (𝑞(𝑧𝑠 |·), 𝑞(𝑧𝑠 |·)), (𝑞(𝑧𝑥 |·), 𝑞(𝑧𝑠 |·)), and (𝑞(𝑧𝑥 |·), 𝑞(𝑧𝑠 |·))
simultaneously using Distributional Contrastive loss:
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Figure 2: Overall framework. Green and Red colors denote the sensitive information, while white denotes non-sensitive resid-
ual information. When the original data (𝑥, 𝑠,𝑦) is given, we find or generate the data (𝑥, 𝑠,𝑦) that has a different sensitive
attribute while having the same target label for constructing pair. After that, we extract latent representation 𝑧𝑥 , 𝑧𝑠 , 𝑧𝑥 , 𝑧𝑠 . For
given representations, we enforce 1) similarity between 𝑧𝑥 and 𝑧𝑥 , 2) dissimilarity between 𝑧𝑠 and 𝑧𝑠 3) dissimilarity between
𝑧𝑥 (or 𝑧𝑥 ) and 𝑧𝑠 (or 𝑧𝑠 ) using distribution contastive loss for disentangling. Moreover, we adopt swap-recon (SR) that further
enhances the disentanglement by performing consistent reconstruction with both swapped and original latent. As a result,
FarconVAE provides the disentangled fair representation 𝑧𝑥 . In training, we put 𝑦 as input to FarconVAE for better predictive-
ness, but it requires the true label in test time. We solve this by using the best classifier that predicts 𝑦 from 𝑥 . See Appendix
B for details.

L𝐷𝐶 = D𝑧 (𝑞(𝑧𝑥 |·), 𝑞(𝑧𝑥 |·)) +
∑︁

𝑛𝑒𝑔∈NPP
k(D𝑧 (𝑛𝑒𝑔))

(5)

where D𝑧 is an arbitrary divergence between two distributions,

𝑘 (·) is any positive definite kernel function (e.g. Gaussian RBF),

and NPP = {(𝑞(𝑧𝑠 |·), 𝑞(𝑧𝑠 |·)), (𝑞(𝑧𝑥 |·), 𝑞(𝑧𝑠 |·)), (𝑞(𝑧𝑥 |·), 𝑞(𝑧𝑠 |·))}
is a set of negative posterior pairs. Thus, D𝑧 (𝑛𝑒𝑔) denotes a diver-
gence between two negatively paired distributions. For convenience

in implementation, we choose D𝑧 as the averaged KL divergence

that simply averages two possible KL divergences between probabil-

ity distributions, i.e., K̄L(𝑝0, 𝑝1) = (𝐾𝐿 (𝑝0 | |𝑝1)+𝐾𝐿 (𝑝1 | |𝑝0))
2 . Note

that, the divergence is both the statistical distance and the gener-

alized squared distance between two distributions. Consequently,

after being passed through the kernel function k(·), the distance
between two distributions is converted into the similarity between

two distributions.

By adopting Gaussian or Student-t kernel for kernel function

k(·), we specify our two Distributional Contrastive losses as below:

L𝐷𝐶−𝑡 = K̄L(𝑞(𝑧𝑥 |·) | |𝑞(𝑧𝑥 |·)) +
∑︁

𝑛𝑒𝑔∈NPP
(1 + K̄L(𝑛𝑒𝑔))−1 (6)

L𝐷𝐶−𝐺 = K̄L(𝑞(𝑧𝑥 |·) | |𝑞(𝑧𝑥 |·)) +
∑︁

𝑛𝑒𝑔∈NPP
exp(−K̄L(𝑛𝑒𝑔)) (7)

In Section 3.5, we present a theoretical analysis for these losses.

3.4 Swap-Reconstruction
Besides distributional contrasting, we perform the swap-reconstruction

task (referred to swap-recon) that improves disentanglement further.

After passing the encoder, the observation pair {(𝑥, 𝑠,𝑦), (𝑥, 𝑠,𝑦)} is
encoded as {(𝑧𝑥 , 𝑧𝑠 ), (𝑧𝑥 , 𝑧𝑠 )}. As mentioned above subsection, we

hope that only 𝑧𝑠 and 𝑧𝑠 contain sensitive information and 𝑧𝑥 and

𝑧𝑥 have non-sensitive residual information. For taking a step closer

to this goal, we swap the non-sensitive representations 𝑧𝑥 and 𝑧𝑥
each other and form new concatenated latent vector pairs (𝑧𝑥 , 𝑧𝑠 )
and (𝑧𝑥 , 𝑧𝑠 ). To reconstruct the original observation (𝑥, 𝑠,𝑦) and
(𝑥, 𝑠,𝑦) from the swapped latent (𝑧𝑥 , 𝑧𝑠 ) and (𝑧𝑥 , 𝑧𝑠 ), FarconVAE is

incentivized to encode only non-sensitive information in 𝑧𝑥 and 𝑧𝑥 .

In the early training stage, the swap-recon generates diverse combi-

nations of non-sensitive and sensitive information, and we observe

that it improves not only disentanglement, but also generalization

performance. The loss term is defined as:

L𝑆𝑅 =
1

2
((log 𝑝𝜃𝑥 (𝑥 |𝑧𝑥 , 𝑧𝑠 ) + log 𝑝𝜃𝑠 (𝑠 |𝑧𝑥 , 𝑧𝑠 ))

+ (log 𝑝𝜃𝑥 (𝑥 |𝑧𝑥 , 𝑧𝑠 ) + log 𝑝𝜃𝑠 (𝑠 |𝑧𝑥 , 𝑧𝑠 ))) (8)

There were similar methods to our swap-recon, and they showed

promising results in disentangling [29] or debiasing [19]. However,

this is the first study that proposes swap-recon under the contrastive

learning framework. We utilize L𝑆𝑅 , swap-recon loss, with our

main distributional contrastive loss L𝐷𝐶 .
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3.4.1 Overall Objective. FarconVAE is a general framework for

disentangled fair representation learning. To encourage disentan-

glement, we use a distributional contrastive loss and swap-recon

loss as shown in Figure 2. The overall objective becomes as follows:

L𝐹𝑎𝑟𝑐𝑜𝑛 (𝝓, 𝜽 ;𝑥, 𝑥, 𝑠, 𝑠, 𝑦)

=
1

2
(L𝐸𝐿𝐵𝑂 (𝝓, 𝜽 ;𝑥, 𝑠,𝑦) + L𝐸𝐿𝐵𝑂 (𝝓, 𝜽 ;𝑥, 𝑠,𝑦))

+ 𝛼L𝐷𝐶 (𝝓;𝑥, 𝑥, 𝑠, 𝑠,𝑦) + 𝛾L𝑆𝑅 (𝝓, 𝜽\𝜃𝑦 ;𝑥, 𝑥, 𝑠, 𝑠,𝑦)
where 𝛼 and 𝛾 are hyperparameters to weigh the distributional

contrastive loss and the swap-recon loss, respectively. L𝐸𝐿𝐵𝑂 term

is optimized over the given original data instance (𝑥, 𝑠,𝑦), and its

counterfactual instance (𝑥, 𝑠,𝑦) individually. On the other hand,

L𝐷𝐶 and L𝑆𝑅 terms are optimized over both original and counter-

factual instances simultaneously. We demonstrate the effectiveness

of proposed loss terms L𝐷𝐶 and L𝑆𝑅 in Appendix C.

(a) Mean difference (b) Variance difference

Figure 3: Comparison among similarities. In (a), we set the
same variance and vary the means. In (b), we set the same
mean and vary the variances.

3.5 Theoretical Analysis
This subsection presents the theoretical analysis of our distribu-

tional contrastive loss. The naive way to achieve contrastive dis-

entangling is to use a simple reciprocal of divergence as a 𝑘 (·) in
Eq. 5. However, setting 𝑘 (·) as a simple reciprocal might cause a

numeric instability, as shown in Figure 3. To mitigate the numeri-

cal instability and to encourage disentanglement, we provide new

kernel motivated contrastive learning. We formulate Gaussian Ker-

nel motivated similarity 𝑒𝑥𝑝 (−𝐷𝑖𝑣 (𝑃 | |𝑄)) and Student-t motivated

similarity (1 + 𝐷𝑖𝑣 (𝑃 | |𝑄))−1 for distribution 𝑃 and 𝑄 as shown in

Eq. 7 and Eq. 6. If the variance of 𝑃 and𝑄 are the same, the Student-t

kernel based loss returns a greater loss than the Gaussian kernel

based loss, when the disentanglement is not enough, as shown in

Figure 3 and Proposition 1. Therefore, Student-t kernel contrastive

loss may enforce more rigorous disentanglement. In the following

propositions, 𝐷𝑖𝑣 denotes the KL divergence.

Proposition 1. Assume that univariate random variables 𝑧1 and
𝑧2 follow Gaussian distribution N(𝜇1, 𝜎2), and N(𝜇2, 𝜎2), respec-
tively. Then (1+𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))−1 ≥ exp(−𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))).

We can derive similar results when the mean of 𝑃 and 𝑄 are the

same, as shown in Proposition 2. These rigorous disentanglement

properties of Student-t based methods are effective in the general

case, but they may overfit when the amount of data is restricted.

Besides, this phenomenon can also occur when we handle noisy

datasets. A noisy dataset, which contains corrupted labels as well

as some outliers, might have a relatively large variance [1]. Proposi-

tion 2 ii) denotes that the Student-𝑡 based methods enforce rigorous

disentangling even though the variance of𝑄 is large enough. There-

fore, this strict enforcement of disentanglement can also lead to

overfitting in a noisy dataset, too. We provide an empirical valida-

tion on noisy settings in Section 4.1.

Proposition 2. Assume that univariate random variables 𝑧1 and
𝑧2 follow Gaussian distribution N(𝜇1, 𝜎21 ), and N(𝜇2, 𝜎22 ), respec-
tively. Then, i) the global minimum of (1 + 𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))−1 −
exp(−𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) is zero if 𝜇1 = 𝜇2, and ii) lim𝜎2→∞ (1 +
𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))−1 − exp(−𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) > 0.

4 EXPERIMENTS
To validate FarconVAE, we define three research questions in terms

of disentangled fairness, debiasing pretrained large-scale models,

and domain generalization. We answer each question in Sections

4.1, 4.2, and 4.3, respectively
1
. See Appendix A for detail setup.

RQ1) Disentangled Fairness: Do latent representations 𝑧𝑥 contain

non-sensitive important information only, excluding sensitive in-

formation, while maintaining the predictive performance?

RQ2) Pretrained Models Debiasing: Can FarconVAE be utilized for

debiasing a pretrained large-scale model such as BERT?

RQ3) Domain Generalization: Does FarconVAE alleviate the spuri-

ous correlation as well as unfairness?

4.1 Fair Classification
Table 1 denotes the performance on Adult, German, and Extended

YaleB [10] datasets. Adult and German are tabular datasets [3], and

their targets are binary about income and credit risk, respectively.

Gender is a sensitive attribute for both datasets. The YaleB dataset

is a visual dataset, and the target task is to classify the facial identity

as irrelevant to the light condition that is regarded as a sensitive

attribute. FarconVAE-G and FarconVAE-t denote the FarconVAE

with Gaussian and Student-t kernel contrastive loss. We report the

mean and standard deviation of 10 runs. To measure 𝑠 accuracy,

we first train the FarconVAE and encode the entire dataset, and

then train a linear classifier for 𝑠 on it. The representation that has

similar 𝑠 accuracy with Random-Guess can be interpreted as fair.

In terms of 𝑦 and 𝑠 accuracy, our FarconVAEs significantly im-

prove the performance over baselines. They show the highest 𝑦

accuracy while 𝑠 accuracy is the closest with the Random-Guessing.

It denotes that 𝑧𝑥 extracted by our model contains the non-sensitive

core information while removing the sensitive information. Note

that FarconVAE-t has poor performance on 𝑠 accuracy in German

dataset, which is relatively small. Thus, the Student-t kernel based

contrastive learning may overfit, while its Gaussian kernel based

counterpart still works well. Besides, we visualize the learned rep-

resentation of FarconVAE and ODFR. Figure 4 denotes that 𝑧𝑥 of

FarconVAE has important information to classify the target label 𝑦,

while successfully removing the sensitive information about 𝑠 .

1
We release the code at: https://github.com/changdaeoh/FarconVAE

https://github.com/changdaeoh/FarconVAE
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Table 1: Fair classification results on the Adult, German, and YaleB datasets. Random-Guess denotes the 𝑦 and 𝑠 accuracy
when we predict the class randomly. Therefore, the 𝑠 accuracy of Random-Guess is the barometer to determine whether the
representation has sensitive information or not. ∗ denotes the reported performance in the supplementary material of [32].

Adult German YaleB

Model 𝑦 accuracy 𝑠 accuracy 𝑦 accuracy 𝑠 accuracy 𝑦 accuracy 𝑠 accuracy

Random-Guess 50.00 50.00 50.00 50.00 2.63 20.00

LFR* 82.30 67.00 72.30 80.50 - -

VAE* 81.90 66.00 72.50 79.50 - -

VFAE* 81.30 67.00 72.70 79.70 85.00 57.00

CI 84.49±0.15 68.62±7.19 80.05±0.16 51.70±18.16 89.79±0.33 8.67±1.83
MaxEnt-ARL 84.52±0.06 67.90±0.94 78.75±0.35 49.25±8.82 89.95±0.30 8.67±1.83
ODFR 84.43±0.11 68.93±0.15 78.05±1.34 53.60±12.86 85.09±0.86 14.84±17.91
FarconVAE-t 84.67±0.02 67.38±0.00 83.35±0.75 54.24±18.31 90.96±0.18 20.01±8.30
FarconVAE-G 84.67±0.01 67.36±0.04 83.20±0.35 49.80±13.38 90.99±0.04 18.07±13.27

(a) 𝑧𝑥 in ODFR (color: 𝑦) (b) 𝑧𝑥 in ODFR (color: 𝑠)

(c) 𝑧𝑥 in FarconVAE (color: 𝑦) (d) 𝑧𝑥 in FarconVAE (color: 𝑠)

Figure 4: t-SNE visualization of representation learned from
ODFR and FarconVAE on YaleB. From (a) and (c), the repre-
sentation of FarconVAE is more distinctive for label 𝑦. (b)
and (d) show similar patterns, but the representation of Far-
conVAE shows less distinctive with respect to sensitive in-
formation 𝑠, and it denotes the fair representation.

To validate the robustness of our model, we perform the evalua-

tion on noisy data settings.We construct a training set by corrupting

the original sensitive attribute 𝑠 with another one proportional to

rate 𝜖 . Figure 5 represents the performance according to the noise

rate 𝜖 . FarconVAE-t and FarconVAE-G maintain their performance

even though the 𝜖 increases, while other models show performance

German YaleB

Figure 5: Performance change over noise rate 𝜖. Match-
ing with Random Guess (MRG) evaluates the similarity
between Random-Guess performance and model perfor-
mance on 𝑠 accuracy, i.e., 100% − |𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝑎𝑛𝑑𝑜𝑚−𝐺𝑢𝑒𝑠𝑠 −
𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑀𝑜𝑑𝑒𝑙 |. FarconVAE, especially FarconVAE-G shows
a stable performance even though the noise rate 𝜖 is large.

degradation. When we compare FarconVAE-t and FarconVAE-G,

FarconVAE-G shows better performance than FarconVAE-t. It cor-

responds with our theoretical analysis, as shown in Section 3.5.

4.2 Debiased Sentence Representation
We evaluate our model on a text dataset as well as a tabular and

image dataset. It is known that the traditional word embedding or

pretrained language model such as BERT [18] has a harmful bias.

We validate whether our model, FarconVAE can debias the sentence
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Table 2: Debiasing performance on BERT. We use Student-t kernel for FarconVAE. ∗ denotes the reported performance in [6].

Pretrained BERT BERT post SST-2

Origin* Sent-D* FairF
−

FairF FarconVAE Origin* Sent-D* FairF
−

FairF FarconVAE

Names, Career/Family 0.477 0.096 0.067 0.114 0.003 0.036 0.109 0.142 0.042 0.101

Terms, Career/Family 0.108 0.437 0.052 0.051 0.052 0.010 0.057 0.136 0.089 0.097

Terms, Math/Arts 0.253 0.194 0.154 0.097 0.047 0.219 0.221 0.423 0.729 0.034
Names, Math/Arts 0.254 0.194 0.015 0.084 0.056 1.153 0.755 0.769 0.735 0.323
Terms, Science/Arts 0.399 0.075 0.227 0.045 0.179 0.103 0.081 0.118 0.217 0.016
Names, Science/Arts 0.636 0.540 0.424 0.518 0.005 0.222 0.047 0.172 0.077 0.045
Avg. Abs. Effect Size 0.354 0.256 0.154 0.151 0.057 0.291 0.212 0.293 0.163 0.103
Classification Acc. - - - - - 92.7 89.1 87.557 87.193 85.468

representation, pretrained from BERT or not. Following the same

experiment and evaluation settingwith [6], when the input sentence

contains a sensitive word, we replace it with the word with the

opposite semantic meaning from the pre-defined sensitive word

dictionary to construct a contrastive pair. We use the absolute SEAT

effect size [25] as a measure of bias. Table 2 denotes the results for

our model and baseline models including original BERT, Sent-D

[25], and FairFil [6]. Like FairFil, our FarconVAE acts like a small

filter that takes the BERT’s sentence representation as input and

outputs the debiased representation. When we adopt FarconVAE

on BERT, the degree of bias reduces from 0.354 to 0.057. Another

column, "BERT post SST-2", denotes the fine-tuning performance

with debiased representation. FarconVAE makes relatively poor

classification, but it alleviates the bias largely from 0.291 to 0.103.

The results show that FarconVAE can better remove bias in a large-

scale language model than existing methods.

4.3 Domain Generalization
Domain Generalization requires the invariant representations [2]

or robust representation [31], and it is commonly known that IRM

and Group-DRO improve the domain generalization by alleviat-

ing the spurious correlation. However, there is no guarantee that

the representations learned by IRM and Group-DRO are free from

spurious correlation. We observe that the IRM and Group-DRO

improve the predictiveness of representation for 𝑦 over Empirical

Risk Minimization (ERM), but the representations from IRM and

Group-DRO still have sensitive information largely. Table 3 denotes

the performance of 𝑦 accuracy and 𝑠 accuracy on cMNIST [2] and

Waterbirds
2
[35] those are intentionally constructed to have a spu-

rious correlation between 𝑦 and 𝑠 . On Waterbirds, we additionally

report the worst y acc. which measures the worst accuracy among

four groups distinguished by the (𝑠,𝑦) combinations. We applied

FarconVAE on top of the feature extractor trained with IRM (for

cMNIST) or Group-DRO (for Waterbirds) method. Our method suc-

cessfully disentangles and removes 𝑠 information from the learned

representation by IRM or Group-DRO, so the FarconVAE is free

from spurious correlation and significantly improves the𝑦 accuracy.

Figure 6 denotes the visualization of learned embedding from

ERM, IRM, and FarconVAE on cMNIST. As shown in the first column

2
For a consistent evaluation, we report average accuracy for 𝑦 and 𝑠 . It is different

from the weighted average accuracy (for y) reported in [31] for Waterbirds dataset.

Table 3: Domain generalization performance on cMNIST
and Waterbirds. Mean and standard deviation of five runs.

cMNIST Waterbirds

Model 𝑦 acc. 𝑠 acc. 𝑦 acc. worst 𝑦 acc. 𝑠 acc.

ERM 16.91±0.57 97.65±0.21 78.47±0.57 31.87±1.20 86.07±0.69
IRM 66.27±1.42 100.00±0.00 - - -

gDRO - - 90.21±0.57 85.98±1.16 86.60±0.91
Ours 70.43±0.61 35.10±3.35 95.03±0.99 91.71±1.48 51.71±0.38

𝑠 𝑦 Predicted 𝑦

ERM

IRM

Ours

Figure 6: t-SNE visualization for representation of the penul-
timate layer from ERM, IRM, and FarconVAE. As shown in
the first column, the representations by ERM and IRM have
sensitive information, while that from FarconVAE has sig-
nificantly less sensitive information. Because the represen-
tation from ERM and IRM has spurious correlation, they
have difficulty in predicting 𝑦 in test time when the correla-
tion is reversed, while FarconVAE shows stable prediction.



Learning Fair Representation via Distributional Contrastive Disentanglement KDD ’22, August 14–18, 2022, Washington, DC, USA.

of Figure 6, the learned representation from ERM and IRM are

easily divided by sensitive attribute 𝑠 . However, the representation

learned from FarconVAE is not easily divided by sensitive attributes.

From the second and third columns, we can check that FarconVAE

predicts 𝑦 well, while ERM and IRM predict opposite 𝑦 entirely

or partially, respectively. To the best of our knowledge, this is the

first work that provides general disentangling methods that can be

utilized in both domain generalization and fairness tasks.

5 CONCLUSION
Algorithmic fairness demands fair representation learning that cap-

tures the non-sensitive core information. Domain generalization

tasks also have difficulty removing spurious features for domain-

invariant learning. This paper proposes FarconVAE, a new contrast-

based disentangling approach that removes sensitive information

or spurious correlation from representation while maintaining non-

sensitive core information. We provide a kernel motivated distribu-

tional contrastive loss that stably induces disentangled invariant

representation and a swap-recon loss that enforces swap-consistent

reconstruction for further enhancing disentanglement.

FarconVAE improves the out-of-distribution generalization as

well as the fairness. Besides, we observe that the representation

learned by IRM or Group-DRO still has a strong spurious correla-

tion between the targets and sensitive attributes, and FarconVAE

mitigates this correlation significantly. We provide extensive empir-

ical results about fairness, pretrained model debiasing, and domain

generalization on tabular, image, and text datasets. Moreover, we

derive a theoretical result for our new contrastive loss.
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A EXPERIMENTAL SETUP
A.1 Fair Classification
For fair classification, we consider three benchmark datasets pre-

viously used in [32]. The Adult dataset contains 45,222 instances,

each with 14 attributes. The target 𝑦 is a binary label of annual

income more or less than $50,000 and gender is sensitive attribute

𝑠 . The German dataset has 1,000 instances, each with 20 attributes,

and the target task is to classify bank account holders with good

or bad credit risk. The sensitive attribute is gender again. Both of

these are tabular datasets obtained from the UCI ML-repository [3].

The Extended YaleB [10] is a visual dataset that contains the face

images of 38 people under five different light conditions. The target

task is to identify one of the 38 people for a given data instance,

while the light condition is the sensitive attribute here.

A.2 Pretrained Model Debiasing
For the pretrained model debiasing task, we validate our method on

BERT [18]. Specifically, we attach the FarconVAE-t on top of BERT’s

layers, takes [CLS] token embedding for each sentence as model

input 𝑥 and the sensitive words are regarded as 𝑠 . Following the

setup [6], we use the same corpora consisting of 183,060 sentences

for training, and the sensitive attribute is mainly gender-related

words.

A.3 Domain Generalization
For domain generalization task, we experimented with two image

datasets cMNIST [2] and Waterbirds [31]. The cMNIST is a syn-

thetic dataset for binary classification, which intentionally makes

correlation between labels (digit) and sensitive attributes (color)

of the train set. A model is evaluated with the test set, which has

the opposite correlation to the train set. The Waterbirds dataset is

constructed by combining bird photographs from the CUB dataset

[35] with backgrounds from the Places dataset [43]. The target

label is the bird’s breed (waterbird or landbird), and the sensitive

attribute is the background (water or land). Like cMNIST, there is a

spurious correlation between 𝑦 and 𝑠 in the train dataset.

B IMPLEMENTATION DETAILS
B.1 Conditional Information at Test Time
We put 𝑦 as FarconVAE input to increase the predictiveness of

the representation. But unlike the training phase, we generally do

not have access to true labels in the testing phase. So we train

a separate classifier predicting 𝑦 from 𝑥 in advance or together

with FarconVAE’s training phase. It is also possible to use a well-

fitted pretrained model on the given dataset. After we build the

best classifier that maps 𝑥 to 𝑦, we use the predicted label 𝑦 by

the classifier for each test set instance as the input of FarconVAE.

For Adult, German, Extended YaleB, and CMNIST, this classifier

is a simple multi-layer perceptron (MLP). For Waterbirds dataset,

the classifier is ResNet-50 [15]. For debiasing task on BERT, when

FarconVAE is trained on the unannotated corpus (results of the left

side in Table 2), the target label does not exist. In this case, we input

the constant 𝑦 = 0.5 to FarconVAE. When FarconVAE is finetuned

with BERT on the labeled corpus (results of the right side in Table

2), we also input the constant 𝑦 = 0.5 for consistent training.

https://arxiv.org/abs/1807.03748
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B.2 Model Configuration
In this subsection, we introduce the setting of model architecture,

hyperparameters, and other experimental options. To learn more

informative representation, we use ELBO of 𝛽-VAE formulation

[16], which can control the intensity of KLD regularization instead

of the basic ELBO in Section 3.2. So, our ELBO has a parameter 𝛽 .

𝐿𝐸𝐿𝐵𝑂 (𝝓, 𝜽 ) = 𝐿𝑟𝑒𝑐 (𝝓, 𝜽\𝜃𝑦) + 𝐿𝑝𝑟𝑒𝑑 (𝝓, 𝜃𝑦) − 𝛽𝐿𝐾𝐿𝐷 (𝝓)

In the sections below, 𝛼 , 𝛽 , 𝛾 , 𝐿𝑅, and𝑊𝐷 denote the weight of loss

terms 𝐿𝐷𝐶 , 𝐿𝐾𝐿𝐷 , 𝐿𝑆𝑅 , learning rate, and weight decay hyperpa-

rameter, respectively. See Github
3
for details not listed here.

B.2.1 Fair Classification. OnAdult and German datasets, we follow

the setup in [30, 32] for all possible configurations. So, the encoder

𝑞𝝓 and decoder 𝑝𝜽\𝜃𝑦 are both one hidden layer with 64 hidden

units and the decoder 𝑝𝜃𝑦 (refered as target predictor in [30, 32]) is

linear logistic regression. The latent dimension of 𝑧𝑥 are 15 in Adult

and 5 in German. For Extended YaleB dataset, we use one linear

layer as encoder, decoder 𝑝𝜽\𝜃𝑦 and decoder 𝑝𝜃𝑦 each contain 100

hidden units. The latent dimension is also 100.

B.2.2 Pretrained Model Debiasing. We use one linear layer for all

components of FarconVAE with 128 hidden units and 128 latent

dim. For doing contrastive learning on unlabeled corpus, we flip the

sensitive words of a given sentence to follow [6]. If a sentence does

not contain any sensitive words, a constant tensor of 0.5 which

has the same shape as the embedding was inputted to FarconVAE

and 𝐿𝐷𝐶 and 𝐿𝑆𝑅 are not used. In the fine-tuning stage, most of

the sentences do not have sensitive words, so we use the mean

embedding of pre-defined sensitive words list as FarconVAE input.

We use (𝛼 , 𝛽 , 𝛾 , 𝐿𝑅,𝑊𝐷) = (1.0, 0.2, 1.0, 5e-4, 1e-4) for FarconVAE

contrastive-training, and (𝛼 , 𝛽 , 𝛾 , 𝐿𝑅𝐵𝐸𝑅𝑇 , 𝐿𝑅𝐹𝑎𝑟𝑐𝑜𝑛 ,𝑊𝐷) = (1.0,

0.2, 0.0, 2e-5, 1e-4, 1e-2) for entire fine-tuning.

B.2.3 Domain Generalization. Like above, we attach the FarconVAE-
t on top of IRM or Group-DRO feature extractors (fixed) and use the

representation from them as FarconVAE’s input feature. Again, we

use one linear layer for all components of the FarconVAE latent dim

set to 100 with 75 and 100 hidden units for cMNIST and Waterbirds,

respectively. For cMNIST, we use (𝛼 , 𝛽 , 𝛾 , 𝐿𝑅,𝑊𝐷) = (1.0, 0.2, 0.0,

1e-3, 1e-4). For Waterbirds, we use (𝛼 , 𝛽 , 𝛾 , 𝐿𝑅,𝑊𝐷) = (0.5, 0.2, 0.5,

7e-4, 1e-4) and we anneal 𝛽 from zero to 0.2 during the first 10%

epochs.

C ABLATION STUDY
In this section, we provide the ablation study for our proposed

methods. Figure 7 indicates that our proposed algorithm, Farcon-

VAE with distributional contrastive loss is effective in disentangling

the latent representation space, and as a result, it induces a fair

representation. Moreover, the disentanglement is further enhanced

when swap-recon (L𝑆𝑅 ) is added. MRG in the right panel of Figure

7 denotes similarity between the s accuracy of model and that of

random guessing, same with Figure 5.

3
https://github.com/changdaeoh/FarconVAE

(a) Ablation study for 𝑦 accuracy (b) Ablation study for MRG

Figure 7: Ablation study for L𝐷𝐶 and L𝑆𝑅 .

D DERIVATION OF ELBO
We assume that the 𝑧𝑥 and 𝑧𝑠 are conditionally independent given

𝑥, 𝑠,𝑦4, i.e., 𝑞𝝓 (𝑧𝑥 , 𝑧𝑠 |𝑥, 𝑠,𝑦) = 𝑞𝜙𝑧𝑥 (𝑧𝑥 |𝑥, 𝑠,𝑦)𝑞𝜙𝑧𝑠 (𝑧𝑠 |𝑥, 𝑠,𝑦). Then,
the evidence lower bound of the log marginal likelihood is:

log 𝑝𝜽 (𝑥, 𝑠,𝑦)

= log

∫
𝑞𝝓 (𝑧𝑥 , 𝑧𝑠 |𝑥, 𝑠,𝑦)
𝑞𝝓 (𝑧𝑥 , 𝑧𝑠 |𝑥, 𝑠,𝑦)

𝑝𝜽 (𝑥, 𝑠,𝑦 |𝑧𝑥 , 𝑧𝑠 )𝑝 (𝑧𝑥 , 𝑧𝑠 )𝑑𝑧𝑠𝑑𝑧𝑥

≥
∫

𝑞𝝓 (𝑧𝑥 , 𝑧𝑠 |𝑥, 𝑠,𝑦) log
𝑝𝜽 (𝑥, 𝑠,𝑦 |𝑧𝑥 , 𝑧𝑠 )𝑝 (𝑧𝑥 , 𝑧𝑠 )

𝑞𝝓 (𝑧𝑥 , 𝑧𝑠 |𝑥, 𝑠,𝑦)
𝑑𝑧𝑠𝑑𝑧𝑥

= E𝑞𝝓 [log 𝑝𝜃𝑥 (𝑥 |𝑧𝑥 , 𝑧𝑠 ) + log 𝑝𝜃𝑠 (𝑠 |𝑧𝑥 , 𝑧𝑠 ) + log 𝑝𝜃𝑦 (𝑦 |𝑧𝑥 )]
−KL(𝑞𝜙𝑥 (𝑧𝑥 |𝑥, 𝑠,𝑦) | |𝑝 (𝑧𝑥 )) −KL(𝑞𝜙𝑠 (𝑧𝑠 |𝑥, 𝑠,𝑦) | |𝑝 (𝑧𝑠 ))
= L𝐸𝐿𝐵𝑂 (𝝓, 𝜽 ;𝑥, 𝑠,𝑦)

E PROOF
Proof for Proposition 1. For simplicity, we denote 𝑡 as a 𝜇1 − 𝜇2.

The KL divergence between two Gaussian distributions, N(𝜇1, 𝜎2)
and N(𝜇2, 𝜎2) are 𝑡2

2𝜎2 .

Then, (1 + 𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) − exp(𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) = 𝑡2

2𝜎2 −
exp ( 𝑡2

2𝜎2 ) + 1.

When 𝜇1 = 𝜇2, 1 + 𝑡2

2𝜎2 − exp ( 𝑡2
2𝜎2 ) = 0,

and
𝜕 (1+𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))−exp(𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))

𝜕𝑡 =
𝑡−𝑡 exp(𝑥2/(2𝜎2))

𝜎2 <0.

Therefore, (1 +𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))−1 ≥ exp(−𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))),
and the equality holds when 𝑡 = 0, i.e., 𝜇1 = 𝜇2.

Proof for Proposition 2. For simplicity, we denote 𝑡 as a
𝜎2
𝜎1

.

i) The KL divergence between two Gaussian distributions,N(𝜇, 𝜎21 )
and N(𝜇, 𝜎22 ) are log(𝑡) +

1
2𝑡2

− 0.5.
Then, 𝑓 (𝑡) = (1 +𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) − exp(𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) =
0.5 + 1

2𝑡2
− exp(−0.5 + 1

2𝑡2
)𝑡 + log(𝑡).

𝑓 (𝑡) is differentiable for all 𝑡 > 0, and the only critical point of

𝜕𝑓 (𝑡 )
𝜕𝑡 = 0 is at 𝑡 = 1. The domain of 𝑓 ′(𝑡) is 𝑡 ∈ 𝑅 : 𝑡 > 0, and

𝑓 (𝑡) is −∞ when 𝑡 = 0+ and ∞. Therefore, the global minimum of

(1 + 𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))−1 − exp(−𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) is zero
ii) lim𝜎2→∞ (1+𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))−exp(𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) < 0.
Therefore, (1+𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2)))−1−exp(−𝐷𝑖𝑣 (𝑝 (𝑧1) | |𝑝 (𝑧2))) >
0 for sufficiently large 𝜎2.

4
To satisfy the assumption, we adopt contrastive loss as shown in Sec. 3 of main paper

https://github.com/changdaeoh/FarconVAE
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