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Abstract

Graph representations of a target domain often project it to
a set of entities (nodes) and their relations (edges). However,
such projections often miss important and rich information.
For example, in graph representations used in missing value
imputation, items — represented as nodes — may contain
rich textual information. However, when processing graphs
with graph neural networks (GNN), such information is ei-
ther ignored or summarized into a single vector representa-
tion used to initialize the GNN. Towards addressing this, we
present CORGI, a GNN that considers the rich data within
nodes in the context of their neighbors. This is achieved by
endowing CORGI’s message passing with a personalized at-
tention mechanism over the content of each node. This way,
CORGI assigns user-item-specific attention scores with re-
spect to the words that appear in an item’s content. We evalu-
ate CORGI on two edge-value prediction tasks and show that
CORGI is better at making edge-value predictions over exist-
ing methods, especially on sparse regions of the graph.

Introduction
Graph neural networks (GNN) have enjoyed great suc-
cess in deep learning. GNNs allow us to model complex
graph-structured data. However, the construction of the in-
put graphs is often a lossy projection of the data of the mod-
eled domain. For example, a graph representation of a book
recommendation problem may represent books and users
as nodes with valued edges as recommendations. However,
each book node contains rich semi-structured content, such
as text structured into sections, tables, etc., which can be
used to improve the performance of recommendations.

A common approach to incorporate node content in
GNNs is to “summarize” it into a single vector represen-
tation (embedding) and use the vector as an initial node
embedding. This often includes computing a single vector
representation from a whole sentence or document using an
encoder model, such as a bag-of-words model or a trans-
former. However, such representations are suboptimal, given
the relatively small size of these vectors compared to the
original content. This is widely accepted in natural language
processing (NLP), and instead of representing inputs as a
single vector/embedding, the full input is used. For exam-
ple, encoder-decoder models employ some form of attention
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mechanism over the whole input given the model context
instead of representing it as a single vector. For example, in
NLP text summarization (You et al. 2019), a decoder attends
to the encoded representations of all the words in the input
text.

In the same fashion, we need a better way for a GNN to
capture the content within nodes of a graph. Towards this
goal, we present CORGI (Content-Rich Graph neural net-
work with attention), a message-passing GNN (Gilmer et al.
2017) that incorporates an attention mechanism over the rich
node content during each message passing step. This allows
CORGI to effectively learn both about the structure of the
graph and the content within each node.

One interesting application of CORGI is edge-value im-
putation, e.g., missing value imputation with GNNs in col-
laborative filtering (You et al. 2020) (Fig. 1-left). For ex-
ample, in a dataset of student-question answers, each ques-
tion is associated with a rich textual description. In such set-
tings, graph-based representations capture the rich interac-
tions among students and questions (user responses) but ig-
nore important content within items (textual descriptions of
questions; text in Fig. 1). CORGI combines both sources of
information through a personalized attention-based message
passing method that computes user-item (student-question)
pair-specific representations of the item’s content. Addition-
ally, CORGI achieves better performance compared to base-
lines, particularly in sparse regions of the user-item graph,
such as rarely answered questions.

Contributions In summary, our contributions are
• CORGI: a message-passing GNN that incorporates an
attention mechanism over node content during messages
computation. • A specialization of CORGI for the user-item
recommendation. • An extensive evaluation over two real-
world datasets showing that CORGI improves user-response
prediction performance over existing methods, especially
for items with few user ratings or in sparse graphs, where
content plays a critical role.

CORGI Architecture
In this section, we first describe CORGI’s problem setting
and its implementation. We then focus on the recommender
systems use-case with textual content in item nodes. Finally,
we discuss CORGI’s computational complexity and how to
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Figure 1: Left: In an educational setting, students (users) and questions (items) form a bipartite graph. Predicting student
responses can be posed as missing edge value imputation. Edge values are known for some user-item pairs but not for all.
Right: The edge representation computation in CORGI’s lth message-passing layer. Item nodes are associated with content
(e.g., a question node vm contains text). The node content is encoded by a model F (e.g., a transformer), obtaining a set of
content vectors Zm = {zk}n(m)

1 . During message passing, CORGI computes the representation of an edge (e.g., eu1m) using
the last layer’s node embedding of a user (student) node (e.g., h(l)

u1 ) and an attention mechanism over Zm. Thus, message
passing takes into consideration the full content within the item (question) nodes in a personalized user-dependent way.

Algorithm 1: CORGI message-passing computation
1 for l ∈ {1, . . . , L} do
2 for i ∈ V do
3 m

(l)
ij ← Compute messages from Eq. 1 ;

4 h
(l)
i ← Update node states with Eq. 2 ;

5 for vj ∈ N (i) do
6 c

(l)
ik ← Compute CA scores from Eq. 6 or
Eq. 7 ;

7 α
(l)
ik ← Compute content attention
probability from Eq. 5 ;

8 e
(l)′
ij ← Update content-independent edge
embedding with Eq. 3 ;

9 e
(l)
ij,CA ← Update content-attention edge
embedding with Eq. 4 or use cache;

10 e
(l)
ij ← e

(l)′
ij + e

(l)
ij,CA

Output: Node embeddings hv ,∀v ∈ V

reduce it. The appendix summarizes our notation.

Problem setting Consider a graph G = (V, E). Each node
v ∈ V is associated with node features h

(0)
v and each edge

with the features e(0)ij ,∀(i, j) ∈ E . If a node or edge is not re-
lated with any features, a constant value may be assigned. A
subset of nodes VC ⊂ V is associated with a set of n(i) con-
tent vector representations Zi = {z(i)1 , . . . , z

(i)
n(i)},∀vi ∈

VC , and z
(i)
k ∈ RD . Notice that n(i), the number of con-

tent vectors of each node vi, may differ. Zi may be given or
computed with a node content encoder (e.g., a transformer).

CORGI The goal is to learn representations over the
nodes while considering both the graph structure and the
set of content vectors within each node (Fig. 1). CORGI
follows the message-passing GNN paradigm (Gilmer et al.
2017) and is closely related to GRAPE (You et al. 2020). In

contrast to existing models, CORGI uses the content vector
representations associated with each node during message-
passing with personalized attention. Specifically, CORGI
computes messages by learning to focus on potentially dif-
ferent parts of the content in the context of the neighboring
nodes using an attention mechanism (Fig. 1). Alg. 1 presents
a high-level overview of CORGI, discussed next.

CORGI’s architecture assumes L message passing layers.
Following You et al. (2020), at each layer l, CORGI com-
putes a message m(l)

ij from node vj to vi using the previous-

level node embedding h
(l−1)
i and edge embedding e

(l−1)
ij as

m
(l)
ij = σ

(
P(l) ·

[
h
(l−1)
j , e

(l−1)
ij

])
, (1)

where σ is a non-linearity, [·] is vector concatentation, and
P(l) is a trainable weight. We set h(0)

i and e
(0)
ij to the input

node features and input edge attributes (if any), and h(l) ∈
RC (l,h)

, e(l) ∈ RC (l,e)

. Messages are aggregated from all
neighborsN (i) of vi and node embedding are computed as

h
(l)
i = σ

(
Q(l) ·

[
h(l−1)
i , AGG(l)

(
m

(l)
ij | ∀j ∈ N (i)

)])
,

(2)
where AGG(l) is a permutation-invariant aggregation func-
tion, and Q(l) is a learnable parameter.

We are interested in incorporating information from the
content of each node vj ∈ VC . To achieve this, we use an at-
tention mechanism within the GNN’s message-passing. This
allows a message between a vi and vj to focus on a specific
part of the content. Such an ability can be helpful in many
scenarios. For example, in an educational recommender sys-
tem, the attended (textual) content of a question is an essen-
tial factor in predicting the student’s ability to answer it cor-
rectly given, e.g., a diagnostic question (Wang et al. 2020).
Intuitively, a student — given her skills — will focus on dif-
ferent aspects of a question when answering it.

CORGI’s attention mechanism aims to emulate this. To
model this, we combine any edge features e

(0)
ij with a

content-attention vector e(l)ij,CA computed from an attention



mechanism over the content Zvj . We consider two options
for this: (a) element-wise addition e

(l)
ij = e

(l)′
ij + e

(l)
ij,CA, and

(b) concatenation e
(l)
ij =

[
e
(l)′
ij , e

(l)
ij,CA

]
, where

e
(l)′
ij = σ

(
W(l) ·

[
h(l)
j , e

(0)
ij

])
, (3)

with a trainable weight W(l), and e
(l)
ij,CA is computed by the

attention mechanism, discussed next. Note that for element-
wise addition e

(l)′
ij must have the same cardinality as e(l)ij,CA.

Finally, we describe the attention mechanism comput-
ing e

(l)
ij,CA. For an edge between vi and vj at lth layer, the

content-attention (CA) is computed using the set of content
vector representations of vj , Zj , and the previous-level node
embedding h

(l−1)
i , i.e.,

e
(l)
ij,CA = ATTENTION

(
KEYS = Zj , QUERY = h(l−1)

i

)
=
∑
k

αikW
(l)
M z

(vj)
k

(4)

where W
(l)
M is a trainable weight, and αik is computed as

α
(l)
ik = SOFTMAXk

(
c
(l)
ik | ∀k ∈ {1, . . . , n(i)}

)
. (5)

We test two common mechanisms for computing c
(l)
ik : con-

catenation (CO) and dot-product (DP), computed as

c
(l)
ik,CO = σ

(
p(l)>

[
W

(l)
U h

(l−1)
i ,W

(l)
M zk

] )
(6)

c
(l)
ik,DP = σ

( [
W

(l)
U ,h

(l−1)
i

]>
W

(l)
M zk

)
, (7)

where W
(l)
U , and p(l) are learnable weights. Note that the

attention is over the node content and should not be confused
with the attention used in GATs (Veličković et al. 2018). We
provide a detailed explanation in the related work section.

Content representations So far, we assumed that the con-
tent representation vectors z

(vi)
j ∈ RD are given. In prac-

tice, these representations can be computed from some deep
learning component F. CORGI does not impose a structure
on F. For example if the node content is images, then CNN-
based architectures for F would be reasonable. Similarly, if
the content is text, i.e., a sequence of words (or any other
sequence), then any NLP model can be used. This includes
text representation models (Bojanowski et al. 2017; Mikolov
et al. 2013; Pennington, Socher, and Manning 2014) and
sequence encoders (Cho et al. 2014; Peters et al. 2018;
Sutskever, Vinyals, and Le 2014), including transformers
(Devlin et al. 2019; Vaswani et al. 2017). Such models “con-
textualize” each individual word in the sequence and convert
it to a set of vector representations.

CORGI for user-response prediction
User response prediction can be formulated as an edge-value
prediction (Berg, Kipf, and Welling 2017; Wang et al. 2019;

You et al. 2020; Zhang and Chen 2020). We operationalize
CORGI for recommender systems by considering a bipartite
graph G = (V, E) with two disjoint node sets V = VU ∪
VM of users and items. Each item vm ∈ VM contains text
Dm =

[
w

(m)
1 , · · · , w(m)

n(m)

]
, i.e., a sequence of words. The

sequence is converted to a set of content vectors Zm using
a sequence encoder and is input to CORGI. An edge value
prediction, i.e., a recommendation r(vm, vu) for a user vu
about an item vm is made with a read-out layer, defined as

r(vm, vu) = σ
(
wT

out

[
h(L)
u ,h(L)

m

]
+ b
)
, (8)

where wout and b are learnable weights.

Complexity analysis
CORGI’s computational and memory complexity is simi-
lar to most message-passing GNNs, with the additional cost
of the attention mechanism. Compared to the node-to-node
attention of GATs, CORGI’s attention mechanism involves
maximum of T = maxv∈VM (|Zv|), the maximum content
size with respect to v ∈ VC , for each content node. For the
lth message-passing CORGI layer the computational com-
plexity for computing the content attention is expressed as:

O
(
|VU | · C (l−1,h) · C (l,e) + |VM | · T ·D · C (l,e)

+ |E| · T · C (l,e)
)
,

(9)

The first and the second terms arise from the multiplication
between the trainable weights and the node embeddings or
content vector representations, in Eq. 6 or 7. The last term
is due to the pairwise linear operation in the attention coef-
ficient calculation between the queries and keyes, in Eq. 4.

We can drastically reduce the complexity by using the
neighbor sampling method proposed by Hamilton, Ying, and
Leskovec (2017) and caching all e(l)ij,CA. For network sam-
pling, we sample a subset of nodes V ′ =

{
V ′U ∪V ′M

}
for the

neighbor sampling and only update eij,CA whose target node
vj is in V ′M and source node vi is in N (V ′M ). The sampled
subgraph is G′ =

{
V ′′, E ′

}
, with V ′′ =

{
V ′M ∪ N (V ′M )

}
.

This way, the computational cost is reduced.
Computing the attention for each layer is costly both in

terms of memory and computation. To drastically reduce the
memory and compute requirements, we use a caching trick
for all e(l)ij,CA. Since these representations can be thought as
edge features, we want to compute them infrequently and
re-use them. To do this, we create a cache for all e(l)ij,CA and
initialize them with zeros. Then, at the final layerL, we com-
pute e(L)

ij,CA using Eq. 4 and update the cache for all e(l)ij,CA to

the computed e
(L)
ij,CA. The newly cached values will be used

in subsequent message-passing iterations. In this way, we
avoid L− 1 computations of Eq. 4.

Related work
CORGI is at the intersection of GNNs and machine learning
models for missing value imputation. Related work that is
used as baselines in the evaluation is emphasized.



Missing value imputation is the task of filling in previ-
ously unknown entries with predicted values. For two het-
erogeneous groups, namely, users and items, the task is
commonly reduced to matrix completion (Bennett, Lanning
et al. 2007) with numerous collaborative filtering and ma-
trix factorization approaches (Billsus, Pazzani et al. 1998;
Koren, Bell, and Volinsky 2009; Linden, Smith, and York
2003; McAuley and Leskovec 2013; Mnih and Salakhut-
dinov 2007; Sarwar et al. 2001) and deep learning-based
approaches (Spinelli, Scardapane, and Uncini 2020; Vin-
cent et al. 2008; Yoon, Jordon, and Schaar 2018). Deep
matrix factorization (DMF) (Xue et al. 2017) directly uses
the input matrix by feeding this information through mul-
tilayer perceptrons (MLPs). An extension to variational au-
toencoders (VAE) (Kingma and Welling 2014), the partial-
VAE model (PVAE) (Ma et al. 2019) is an encoder-decoder-
based approach for imputing missing values. In contrast,
CORGI leverages additional content information in a user-
item-specific manner through attention in message-passing.

Over the past years, there have been attempts to model
graphs (Grover and Leskovec 2016; Perozzi, Al-Rfou, and
Skiena 2014; Tang et al. 2015). Kipf and Welling (2017)
proposed graph convolutional networks (GCNs), a neural
network that learns latent representations of nodes, amongst
other deep neural network-based approaches (Bruna et al.
2013; Defferrard, Bresson, and Vandergheynst 2016; Du-
venaud et al. 2015; Li et al. 2016; Niepert, Ahmed, and
Kutzkov 2016; Scarselli et al. 2008). GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017) extends GCNs allowing the
model to be trained on some part of the graph, enabling
inductive learning settings. Jumping knowledge (JK) net-
work (Xu et al. 2018) and Graph Isomorphism Network
(GIN) (Xu et al. 2019) are proposed to improve the rep-
resentation power of GNNs by adopting new aggregation
schemes with respect to the representations of different lay-
ers and their previous representations. A GNN model that
is designed for recommender systems, graph convolutional
matrix completion (GC-MC) (Berg, Kipf, and Welling 2017)
is a variant of GCNs that explicitly uses edge labels as inputs
to model messages. Compared to other approaches, GC-MC
employs a single-layer message-passing scheme, and each
label is endowed with a separate message passing chan-
nel. GRAPE (You et al. 2020) employs edge embeddings
on GCNs and adopts edge dropout applied throughout all
message-passing layers. LightGCN (He et al. 2020) designs
a GCN framework that simplifies or omits constructions
that are not beneficial for recommendations, such as feature
transformation and nonlinear activation, and puts more em-
phasis on neighborhood aggregation. Compared to the pre-
viously proposed GNN models in recommender systems,
CORGI leverages the rich content information of nodes to
model a target domain projected to graphs. Compared to ex-
isting GNN models that exploit the content information of
nodes, CORGI employs an attention mechanism over node
content within the GNN’s message-passing and computes
user-item-specific attention which is used to update edge
embeddings. Wu et al. (2020) surveys the recent literature
on GNNs for recommender systems.

In natural language processing, the (self-)attention is used

to relate word or word tokens of a given sequence (Lin et al.
2017; Parikh et al. 2016; Paulus, Xiong, and Socher 2018;
Vaswani et al. 2017). Many GNN models (Gao and Ji 2019;
Hou et al. 2020; Kim and Oh 2021; Zhang et al. 2018), with
graph attention networks (GATs) (Veličković et al. 2018) be-
ing a popular example, use an attention mechanism to al-
low the target nodes to distinguish the weights of multiple
messages from the source nodes for aggregation. We note
that CORGI is orthogonal to the GAT-like models; although
CORGI uses attention, it is over the content within each
node instead of the neighbors of each node (as in GATs).
In future work CORGI-like mechanisms can be embedded
to GAT-like GNNs.

Evaluation
Model configuration We employ the L = 3 CORGI with
node embedding and edge embedding cardinalities C (l,h)

and C (l,e),∀l ∈ {1, . . . , L} set to 64, and size of the predic-
tion read-out layer in Eq. 8 is set to 256. We initialize node
embeddings to random values, and assign the train label val-
ues to initialize the edge embeddings. We use mean pool-
ing for aggregation. For the non-linear activation, we use
LeakyReLU for attention coefficient computation (Eq. 6, 7)
with negative slope set to 0.2, as suggested by Veličković
et al. (2018) and ReLU (Nair and Hinton 2010) for the rest.

Training configuration For all experiments, we train
CORGI with Adam (Kingma and Ba 2014) and a learn-
ing rate of 0.001. We employ early stopping on validation
loss, with train, test, and validation sets split in 8:1:1 ratio.
We use binary cross entropy loss (BCE) for binary values
and mean squared error (MSE) for ordinal values. We ap-
ply dropout (Srivastava et al. 2014) on the message passing
layers, the prediction MLPs, as well as on edges, with rates
chosen from {0.1, 0.3, 0.5, 0.7} with respect to the valida-
tion set performance. For the baselines, the parameter set-
tings are done in the following manner: 1) When the settings
of the comparison models overlap with CORGI’s, e.g., the
number of message passing layers or the learning rate, we
used the same configurations as CORGI. 2) For the param-
eter settings that are unique to the comparison model, we
followed the setting that is disclosed in the original paper. 3)
When the setting disclosed in the original paper is not ap-
plicable to the datasets used or our training environment, we
select those that yield the best validation performance.

Synthetic experiments
First, we create a synthetic dataset to validate our model
design. We create a random bipartite graph with item and
user nodes. Each item-node is associated with a number of
“words” as its content. We use a “vocabulary” of 5 words
and each item node contain each of the 5 words with 50%
probability. Each user-node is assigned a single focus word
that indicates the word the user “likes”. Finally, the value
of an edge between a user and an item is deterministically
set to 1 if the item contains the user’s “focus word”, and
0 otherwise. Throughout experiments, the word-content of
items is provided as an input to CORGI, but the user focus
word is latent. We are interested in understanding if CORGI
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Figure 2: Synthetic experiment results. (a): Test accuracies when using item content information for node initialization (N.I.),
for computing content attentions (W.A.), and when the the edge labels are given (L∗). (b), (c): t-SNE plots of learned item
and user node embeddings using CORGI. Each dot represents a single node and is colored by its word distribution (item) and
word-attentiveness (user). (d), (e): Computed word-attention scores of a user with correct and incorrect answers.

can predict the correct edge labels between users and items,
which can easily be achieved using content. Furthermore,
by inspecting attention scores, we analyze CORGI’s ability
to learn to focus on the user’s focus word within each item
node, if it is present.

Fig. 2a shows the test accuracy of GCN with item node
initialization using word vectors (left, blue bar), CORGI
(middle, red bar), and GCN with edge embeddings initial-
ized with edge labels (right, yellow bar). Unlike the last
model, the first two models do not use the ground truth edge
labels during training. CORGI is the only one that achieves
near perfect test accuracy.

Fig. 2b and Fig. 2c illustrate the t-SNE (Van der Maaten
and Hinton 2008) visualization of computed user-node and
item-node embeddings for CORGI. Item and user nodes
are colored by their associated content-word distributions
and word-attentiveness, showing that the node embeddings
can discriminate nodes by their attributes. Fig. 2d and
Fig. 2e display the computed attention scores between user-
item pairs for two sample pairs. When the word that the
user “likes” is included in the item’s associated words,
CORGI correctly targets that word by assigning high atten-
tion score (Fig. 2d). When word that user “likes” is absent,
the attention distribution over the content-words of an item-
node becomes much more uniform.

Evaluation on real-world data
Datasets We evaluate CORGI on two real-world datasets
that record different user-item interactions (Tbl. 1). The
Goodreads dataset (Jannesar and Ghaderi 2020) from the
Goodreads website contains users and books. The content
of each book-node is its natural language description. The
dataset includes a 1 to 5 integer rating between some books
and users. The Eedi dataset (Wang et al. 2020) contains
anonymized student and question identities with the student
responses to some questions. The content of each question-
node is the text of the question. Edge labels are binary: one
and zero for correct and incorrect answers.

For both datasets, to encode the content within nodes
in CORGI, we use a pre-trained transformer encoder
model (Devlin et al. 2019) as F. We use a truncation thresh-
old T so that we ignore words that appear after T for any

Dm with n(m) > T . In our experiments, the parameters of
the GNN of CORGI and the prediction multi-layer percep-
tron (MLP) (Eq. 8) are learned jointly during training but
we do not fine-tune the parameters of F. We set T = 64
for both Goodreads and Eedi. The appendix compares test
performance with respect to varying T for Goodreads and
Eedi and additional information about the dataset and the
pre-processing steps.

Baselines We compare CORGI with 9 widely used miss-
ing value imputation models, discussed in related work.
Deep Matrix Factorization (DMF) and Partial Variational
Autoencoder (PVAE) are non-GNN matrix completion mod-
els. Graph Convolutional Network (GCN), GraphSAGE,
Graph Attention Network, Jumping knowledge network,
Graph isomorphism network are GNN-based models not
specifically designed for recommender systems. We com-
pare CORGI with these baselines by using a read-out MLP
that accepts the concatenation of user and item node embed-
dings and makes a prediction for the pair, as done in Eq. 8.
We also compare to graph convolutional matrix completion
(GC-MC) and GRAPE (You et al. 2020) that are GNN-based
models for matrix completion.

None of the previous models consider content. Thus, we
consider 6 GNN node embedding initialization configura-
tions that use content information:
GNNs with WordNodes. We create special “word nodes”

for every word and connect them to a node vm ∈ VM
if the word is contained in the item’s content. This
baseline allows message passing word-specific informa-
tion but word ordering within item content is ignored.
We retrieve words by stemming (Porter 1980), filtering
non-alphanumeric words, and removing words with fre-
quency of less than 2.

GNN Node Init: BoW is a standard GCN with the node
embeddings initialized to a multi-hot bag-of-words of the
content. Words are tokenized and stemmed as above.

GNN Node Init: NeuralBoW uses a pre-trained word2vec
model (Mikolov et al. 2013), implemented in Gen-
sim (Řehůřek and Sojka 2010). Words are encoded in
fixed 300-dimensional vector representations and aver-
age pooling is used for node initialization.



Table 1: Dataset statistics: |D|: Vocabulary size, |D|: avg num of words per item, Density: graph density, #L: num of labels.

Nodes Edges Contents Density # L
# Users #Items # Edges / user / item |D| |D|

Synthetic 1,000 1,000 100,000 100 100 5 2.50 0.100 2
Eedi 35,073 22,931 991,740 28 43 21,072 20.02 0.001 2
Goodreads 2,243 2,452 114,839 51 47 35,111 132.32 0.021 5

Table 2: Average test RMSE (Goodreads, lower is better) and test accuracy, AUROC, AUPR (Eedi, higher is better) results
over 5 independent runs followed by one standard error. Best results are highlighted in bold, and the second-best results are
underlined. ∗ and ∗∗ signify p-values less than 0.05 and 0.001 respectively from independent t-tests with the second-best results.

Model Content Goodreads Eedi

RMSE (↓) Accuracy (↑) AUROC (↑) AUPR (↑)
DMF (Xue et al. 2017) 7 0.921±0.001 0.738±0.002 0.653±0.003 0.828±0.002

PVAE (Ma et al. 2019) 7 0.894±0.001 0.746±0.001 0.682±0.000 0.834±0.000

GC-MC (Berg, Kipf, and Welling 2017) 7 0.916±0.002 0.735±0.001 0.672±0.002 0.819±0.001

GCN (Kipf and Welling 2017) 7 0.893±0.001 0.746±0.002 0.680±0.001 0.830±0.001

GraphSAGE (Hamilton, Ying, and Leskovec 2017) 7 0.898±0.003 0.742±0.003 0.665±0.002 0.838±0.003

GRAPE (You et al. 2020) 7 0.894±0.001 0.746±0.001 0.672±0.001 0.824±0.001

GAT (Veličković et al. 2018) 7 0.893±0.002 0.745±0.000 0.684±0.001 0.832±0.001

GIN-ε (Xu et al. 2019) 7 0.892±0.000 0.747±0.001 0.689±0.002 0.838±0.001

JK-LSTM (Xu et al. 2018) 7 0.895±0.000 0.746±0.001 0.685±0.002 0.840±0.002

GCN with WordNodes 3 0.886±0.002 0.751±0.002 0.710±0.002 0.839±0.003

GCN Init: BoW 3 0.891±0.001 0.748±0.001 0.710±0.001 0.836±0.000

GCN Init: NeuralBoW 3 0.886±0.001 0.751±0.000 0.706±0.001 0.848±0.001

GCN Init: BERT CLS 3 0.889±0.001 0.748±0.001 0.706±0.001 0.841±0.001

GCN Init: BERT Avg. 3 0.887±0.001 0.750±0.001 0.708±0.001 0.848±0.001

GCN Init: SBERT 3 0.890±0.000 0.752±0.002 0.708±0.002 0.848±0.001

GAT Init: NeuralBoW 3 0.888±0.001 0.747±0.001 0.707±0.002 0.841±0.001

GAT Init: BERT Avg. 3 0.887±0.001 0.749±0.001 0.709±0.001 0.844±0.002

GAT Init: SBERT 3 0.884±0.000 0.752±0.001 0.710±0.001 0.849±0.001

GRAPE Init: NeuralBoW 3 0.890±0.001 0.748±0.001 0.704±0.001 0.842±0.001

GRAPE Init: BERT Avg. 3 0.889±0.001 0.749±0.000 0.704±0.001 0.838±0.001

GRAPE Init: SBERT 3 0.892±0.001 0.750±0.002 0.711±0.002 0.846±0.003

GIN Init: NeuralBoW 3 0.890±0.001 0.748±0.002 0.710±0.001 0.843±0.002

GIN Init: BERT Avg. 3 0.888±0.001 0.752±0.001 0.711±0.001 0.836±0.002

GIN Init: SBERT 3 0.885±0.000 0.752±0.001 0.711±0.000 0.845±0.001

JK Init: NeuralBoW 3 0.889±0.001 0.747±0.002 0.709±0.001 0.842±0.000

JK Init: BERT Avg. 3 0.889±0.001 0.749±0.002 0.708±0.001 0.838±0.001

JK Init: SBERT 3 0.886±0.000 0.751±0.001 0.710±0.001 0.839±0.002

CORGI: Concat 3 0.873∗∗
±0.000 0.761∗∗

±0.001 0.720∗∗
±0.001 0.891∗∗

±0.000

CORGI: Dot-product 3 0.872∗∗
±0.000 0.760∗∗

±0.001 0.721∗∗
±0.001 0.888∗∗

±0.001

GNN Node Init: BERT CLS uses pre-trained, cased BERT-
base (Devlin et al. 2019), impemented in Hugging-
Face (Wolf et al. 2019). Words are encoded in 768-
dimensional vector representations. and the representa-
tion of [CLS] is used to initalize node embeddings.

GNN Node Init: BERT Avg uses identical settings as above,
but instead of the [CLS] token, we use average pooling
over all the output vector representations.

GNN Node Init: SBERT uses the 768-dimensional vector
representations encoding of the whole document with the
SBERT model of Reimers et al. (2019).

In all cases, the content vector is mapped to the initial node

embeddings using a learned linear layer.

Missing value imputation Tbl. 2 compares the missing
value imputation performance on the Goodreads and Eedi
datasets over 5 runs. We report root mean square error
(RMSE) for Goodreads and accuracy, area under the re-
ceiver operating characteristic (AUROC), and area under the
precision-recall curve (AUPR) for Eedi. Overall, we observe
improved performance when node content is used. Com-
pared to the baseline models with content, both CORGI con-
structions (concatenation and dot-product) outperform base-
lines on both datasets with statistical significance.

Fig. 3 shows the content attention distributions of user



Table 3: Mean ± one standard error of rating prediction over 5 runs (Goodreads, test RMSE) and response prediction (Eedi,
test accuracy) results of all users (All), users with node degree greater than 10 (D > 10), and users with degrees less than or
equal to 10 (D ≤ 10). ∗ and ∗∗ signify p-values less than 0.05 and 0.001 respectively from paired t-tests.

Goodreads - RMSE (↓) Eedi - Accuracy (↑)
All D > 10 D ≤ 10 All D > 10 D ≤ 10

GCN 0.792±0.007 0.796±0.008 0.752±0.03 0.746±0.002 0.751±0.002 0.720±0.008

GCN N.I.: SBERT 0.786±0.006 0.789±0.007 0.728±0.03 0.753±0.003 0.757±0.002 0.727±0.008

CORGI (DP) 0.781∗
±0.006 0.786±0.007 0.685∗∗

±0.03 0.758∗
±0.002 0.760∗

±0.003 0.750∗∗
±0.010
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Figure 3: Example content attention distributions of students
with correct and incorrect answers.
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Figure 4: Test accuracy vs. user node degree for Eedi.

(student) - item (question) pairs in Eedi dataset for a particu-
lar question. The blue circle line shows the average attention
scores of students who got the question right, and the orange
cross line shows that of students with incorrect answers. We
observe user-item-specific attention scores assigned; the stu-
dent with right answer has high attention scores for tokens
interior, regular, and exterior, while the student
with wrong answer attends more to tokens angle, angle,
and [CLS]. This is in contrast to baselines that exploit the
content information of items in a way that does not explicitly
distinguish users during the message passing.

Sparsity analysis Finally, we test the hypothesis that con-
tent is particularly useful in sparse — less connected — re-
gions of the recommendation. Tbl. 3 shows rating and re-

Table 4: Win rates (column vs. row) in inductive setting for
two held-out rates (0.5 and 0.99).

GRAPE Init: SBERT

Init: SBERT 0.514 / 0.610 -
CORGI 0.532 / 0.837 0.526 / 0.695

sponse prediction performance on Goodreads and Eedi vs.
the user node degree (D), , i.e., the number of questions an-
swered or books rated. CORGI outperforms the baselines
with p < 0.05 from paired t-tests with respect to GCN Node
Init: SBERT. On both datasets, the predictive performance
between CORGI and the comparison models is relatively
comparable for users that have interacted with more items
(D > 10), although CORGI still outperforms them. On
the contrary, the difference in performance between CORGI
and the comparison models becomes more significant for
users connected with D ≤ 10, showing the effectiveness
of CORGI. Fig. 4 shows test accuracy on Eedi with vary-
ing degrees, showing an increasing gap between CORGI and
baselines with smaller Ds.

Tbl. 4 show the relative predictive performance of CORGI
over the comparison models in inductive settings, i.e., pre-
diction on users that were not seen during training but newly
introduced during inference, in the Eedi dataset. We evaluate
win-rate, the rate at which a model’s prediction is correct and
the other model’s prediction is wrong. We find that when the
train graph becomes sparse with larger number of unseen
nodes during training, CORGI’s relative predictive perfor-
mance compared to the baseline models improves compared
to the dense setting.

Conclusion
We presented CORGI, a message-passing GNN that tightly
integrates node content using attention. Using node content
— such as text — allows us to capture rich information
within the modeled domain while exploiting the structured
form of the data. This is particularly evident in sparse re-
gions of graphs. Future work may further investigate how
non-text modalities can be captured in content-rich graphs
across a range of applications beyond edge value prediction.
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Řehůřek, R.; and Sojka, P. 2010. Software Framework for
Topic Modelling with Large Corpora. In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frame-
works. http://is.muni.cz/publication/884893/en.
Reimers, N.; Gurevych, I.; Reimers, N.; Gurevych, I.;
Thakur, N.; Reimers, N.; Daxenberger, J.; and Gurevych,
I. 2019. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In EMNLP.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In WWW.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1): 61–80.

https://github.com/BahramJannesar/GoodreadsBookDataset
https://github.com/BahramJannesar/GoodreadsBookDataset
http://is.muni.cz/publication/884893/en


Spinelli, I.; Scardapane, S.; and Uncini, A. 2020. Missing
data imputation with adversarially-trained graph convolu-
tional networks. Neural Networks, 129: 249–260.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. JMLR, 15(1): 1929–1958.
Sutskever, I.; Vinyals, O.; and Le, Q. 2014. Sequence to
sequence learning with neural networks. In NeurIPS.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
WWW.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. JMLR, 9(11).
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A.; Kaiser, L.; and Polosukhin, I. 2017. Atten-
tion is All you Need. In NeurIPS.
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Summary of key notations used in the paper
We summarize the key notations used throughout the paper.
We group notations in three groups: (a) notations on graph
sets and the corresponding elements. (b) variables and pa-
rameters used to describe the forward pass of CORGI. (c)
notations used to describe the content information associ-
ated to content or item nodes.

In addition to this, we have the trainable weights ex-
plained during the message passing of CORGI: P(l) and
Q(l) for updating node embeddings, W(l)

U , W(l)
M , and p(l)

for computing attention coefficients, and wout and b for the
prediction MLP.



Table 5: Key notations used in the paper.

Symbols Description

Graph sets

& elements

V The set of all nodes in the graph

VC ,VM ,VU ⊂ V The sets of content, item, and user nodes

E The set of all edges in the graph

N (i) Neighborhood function for node vi

CORGI

variables

h
(0)
i Input feature of node vi of size C(l,h)

e
(0)
ij Input feature of edge eij of size C(l,e)

h
(l)
i Node embedding of vi at lth layer

e
(l)
ij Edge embedding between vi and vj at lth layer

e
(l)′
ij Edge embedding before content update

e
(l)
ij,CA Edge embedding from content-attention

c
(l)
ik Attention coefficient between vi and content k

α
(l)
ik Attention probability from c

(l)
ik after SOFTMAX

Content-related

notations

n(i) The number of content vectors associated to vi
Zi = {z(i)k }

n(i)
1 ⊂ RD A set of content vectors associated to vi

Di = [w
(i)
1 , · · · , w(i)

n(i)] A sequence of words associated to vi

F A sequence encoder that projects Di to Zi



Additional experiments
Truncation threshold and test performance
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Figure 5: Truncation size and test accuracy for the
Goodreads dataset. Note semi-log-x and starting point for
y-axis.
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Figure 6: Truncation size and RMSE for the Eedi dataset.
Note semi-log-x and starting point for y-axis.

We test the affect of the truncation threshold T on the
test performance. In sequential content encoders F such as
the transformer encodes Dm, i.e., the contents of an item
node vm of size n(m) into a set of content vector repre-
sentations Zm. During encoding, if n(m) is greater than the
truncation threshold T , we only the first T words only, i.e.,
|Zm| = min(n(m), T ). Setting T to a high value enables
CORGI to fully exploit the content information, at a trade-
off that makes the models slow to train with larger memory
requirement.

Fig. 5 and 6 show the test performance with respect to
varying values of T on the Goodreads and Eedi datasets.
For both datasets, increasing T results in higher test perfor-
mance (T greater than 64 results in the memory error on our
computing infrastructure). The average number of words on
Eedi questions 20.02 (Tbl. 1), and the test performance con-
verges at T = 32. On the other hand, the average number
of words on Goodreads book descriptions is 132.32, and we
observe that the test performance does not fully converge at
T = 64.

Table 6: Performance comparison with and without the
caching trick on Goodreads dataset.

RMSE
Training time

/ iteration (sec.)

With caching 0.879±0.000 10.41

Without caching 0.879±0.000 41.86

Performance comparison on caching trick
In Sec. 10, we introduce a caching trick that allows the re-
duction in training time and memory requirement. Specif-
ically, the caching trick is realized by creating a cache for
e
(l)
ij,CA with zero initializations. We then update at the final

layer L only, by computing e
(L)
ij,CA using Eq. 4 and updat-

ing the cache for all e(l)ij,CA to the computed e
(L)
ij,CA. Using

the caching trick along with the neighbor sampling (Hamil-
ton, Ying, and Leskovec 2017), the time complexity reduces
from

O
(
|VU | · C (l−1,h) · C (l,e) + |VM | · T ·D · C (l,e)

+ |E| · T · C (l,e)
)

to

O
(
|N (V ′M )| · C (l−1,h) · C (l,e) + |V ′M | · T ·D · C (l,e)

+ |E ′| · T · C (l,e)
)
,

where we sample a subset of nodes V ′ =
{
V ′U ∪V ′M

}
for

the neighbor sampling and only update eij,CA whose target
node vj is in V ′M and source node vi is in N (V ′M ).

Tbl. 6 compares the predictive performance of CORGI
with and without the caching trick on Goodreads dataset in
terms of RMSE and wall-clock training time. The predictive
performance comparison on Eedi dataset was not feasible
due to excessive memory requirement in the absence of the
caching trick. In the absence of the caching trick, the predic-
tive performance remains the same, but the training time is
increased more than 4 times per iteration.



Table 7: Comparison of different combination methods for
updating the edge embedding e

(l)
ij on the Goodreads dataset.

We report RMSE (lower the better).

Combination method
CORGI

:Concat

CORGI

:Dot-product

e
(l)′
ij + e

(l)
ij,CA 0.879±0.000 0.879±0.000

CONCAT(e
(0)
ij , e

(l)
ij,CA) 0.886±0.000 0.884±0.001

Table 8: Comparison of different combination methods for
updating the edge embedding e

(l)
ij on the Eedi dataset. We

report test accuracy (higher the better).

Combination method
CORGI

:Concat

CORGI

:Dot-product

e
(l)′
ij + e

(l)
ij,CA 0.756±0.001 0.757±0.001

CONCAT(e
(0)
ij , e

(l)
ij,CA) 0.752±0.001 0.752±0.001

Comparison on different combination methods

In Sec. we introduce two ways to augment the computed
content-attention (CA) edge embeddings e(l)ij,CA to edge em-

beddings e(l)ij between nodes vi and vj at lth layer. The first
method is to first update the edge embeddings without the
content attention (e(l)′ij ) and use the element-wise addition.
The second method is to concatenate with the input edge fea-
ture e

(0)
ij . We compare the predictive performances of these

methods for the Goodreads and Eedi datasets. In Tables 7
and 8, element-wise addition yields better predictive perfor-
mance than concatenation for on both datasets with varying
methods of attention computation: concat and dot-product.

Bi-directional setting for CORGI

In the formulation introduced in Eq. 4, the computation of
the content attention vector is skipped when the target node
is an item and the source node is a user. In fact, CORGI
works in more general settings than the recommendation
system, where every node can potentially be associated with
contents. However, in a recommendation system with bipar-
tite graphs, it is common that only item nodes are associ-
ated with such content information. We have made a change
in this formulation so that the update of the content atten-
tion (CA) vector is now bi-directional, e.g., whenever gets
updated, update in the same fashion instead of skipping. In
Tables 9 and 10, we report results when the update of CA
edge representation is bi-directional by simultaneously up-
dating both from i to j and j to i edges. The results show the
significant improvement in the predictive performance.

Additional details on model training
Datasets
Here, we provide additional information about the two
real-world datasets used in our experiment. We chose the
Goodreads and Eedi datasets because they contains text in-
formation in sentences associated with each item.

We use Goodreads dataset from Jannesar and Ghaderi
(2020). We filtered out books whose descriptions are writ-
ten in non-English languages, and removed duplicate books
based on their titles. Originally, the ratings were text-based.
We converted the ratings as follows: ”Did not like it” to rat-
ing 1, ”It was okay” to rating 2, ”Liked it” to rating 3, ”Re-
ally liked it” to rating 4, and ”It was amazing” to rating 5.

We used Eedi dataset from Wang et al. (2020). The con-
tent of the text information is extracted using optical charac-
ter recognition (OCR) from the raw question images, as no
question text is available.

In order to train CORGI and comparison models on a sin-
gle GPU within our computation infrastructure, we took a
subset of the Eedi dataset, taking student responses from be-
tween March 4th and March 27th.

Configurations for the baseline methods
We detail the configurations used specific to each baseline
for recording the test performance. For GC-MC, we assign
the separate message passing channels and their correspond-
ing parameters for modeling different discrete edge labels.
The number of layer is set to 1, and We do not use the
weight sharing method. For the accumulation method, we
use concatenation. For GraphSAGE, we use the neighbor
sampling size of 32 throughout all message passing layers.
For GRAPE, we do not use the one-hot node initializations
for both Eedi and Goodreads, because of the large number of
item nodes leading to GPU memory errors. Instead, we use
random initialization just like all GNN model configurations
in our experiment. For GAT, we use a single self-attention
head. Alternatively, we also tested using multi-head atten-
tion with 4 heads with smaller C(l,h) = 16, but the predic-
tive performance did not increase. We could not test multi-
head attention with C(l,h) = 64 due to the GPU memory
limits. For GIN, we make the epsilon parameter trainable
(Noted as GIN-ε in the original GIN paper). For JK, we
choose LSTM during aggregation (Noted as JK-LSTM in
the original JK paper). Both settings have shown to perform
best amongst all configurations in the respective papers.

Computing infrastructure
Each experiment was run on a single GPU, which was either
an NVIDIA Tesla K80 or an NVIDIA Tesla V100. All ex-
periments were scheduled and performed in Azure Machine
Learning.



Table 9: Predictive performance of CORGI for bidirectional setting when concatenation is used for attention computation.

Concat Goodreads EEDI

RMSE (↓) Accuracy (↑) AUROC (↑) AUPR (↑)
User-only 0.879 ± 0.000 0.756 ± 0.002 0.715 ± 0.002 0.874 ± 0.002

Bidirectional 0.873±0.001 0.761±0.001 0.720±0.002 0.891±0.001

Table 10: Predictive performance of CORGI for bidirectional setting when dot-product is used for attention computation.

Dot-product Goodreads EEDI

RMSE (↓) Accuracy (↑) AUROC (↑) AUPR (↑)
User-only 0.879 ± 0.001 0.757 ± 0.001 0.717 ± 0.001 0.874 ± 0.001

Bidirectional 0.872±0.001 0.760±0.002 0.721±0.002 0.888±0.001
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