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ABSTRACT
Given a graph with partial observations of node features, how can

we estimate the missing features accurately? Feature estimation is

a crucial problem for analyzing real-world graphs whose features

are commonly missing during the data collection process. Accurate

estimation not only provides diverse information of nodes but also

supports the inference of graph neural networks that require the

full observation of node features. However, designing an effective

approach for estimating high-dimensional features is challenging,

since it requires an estimator to have large representation power,

increasing the risk of overfitting. In this work, we propose SVGA

(Structured Variational Graph Autoencoder), an accurate method

for feature estimation. SVGA applies strong regularization to the

distribution of latent variables by structured variational inference,

which models the prior of variables as Gaussian Markov random

field based on the graph structure. As a result, SVGA combines the

advantages of probabilistic inference and graph neural networks,

achieving state-of-the-art performance in real datasets.
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• Information systems→ Social networks; •Computingmethod-
ologies→ Learning in probabilistic graphical models.
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1 INTRODUCTION
Given a graph with partial observations of node features, how can we
estimate the missing features accurately? Many real-world data are

represented as graphs to model the relationships between entities.
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Figure 1: An illustration of the feature estimation problem.
The generated features not only provide direct information
of node properties but also help other graph-related tasks.

Social networks, seller-item graphs in electronic commerce, and

user-movie graphs in a streaming service are all examples of graph

data that have been studied widely in literature [12, 18, 23, 26, 33].

Such graphs become more powerful when combined with feature

vectors that describe the diverse properties of nodes [6, 29].

However, node features are commonly missing in a real-world

graph. Users in an online social network set their profiles private,

and sellers in electronic commerce often register items without an

informative description. In such cases, even the observed features

cannot be used properly due to the missing ones, since many graph

algorithms assume the full observation of node features. Figure 1

illustrates the feature estimation problem in an example graph. An

accurate estimation of missing features not only provides diverse

information of node properties but also improves the performance

of essential tasks such as node classification or link prediction by

providing important evidence for training a classifier.

However, accurate estimation of missing features is challenging

due to the following reasons. First, target nodes have no specific

information that describes their properties. The main evidence for

estimation is the graph structure, which gives only partial infor-

mation of nodes based on the relationships with the other nodes.

Second, the target variables are high-dimensional vectors contain-

ing up to thousands of elements. This requires large representation

power for accurate estimation, involving a high risk of overfitting

as a consequence. Existing approaches [2, 3, 13] failed to address

such challenges effectively, resulting in limited performance.

We propose SVGA (Structured Variational Graph Autoencoder),

an accurate method for missing feature estimation. The main idea

for addressing the challenges is to run structured variational infer-

ence to effectively regularize the distribution of latent variables by

modeling their correlations from the structure of a graph. We first

propose stochastic inference, which models the prior of latent vari-

ables as Gaussian Markov random field (GMRF). Then, we improve

the stability of inference with our proposed deterministic modeling,

which results in a new graph-based regularizer. These allow us to
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avoid the overfitting without degrading the representation power,

achieving state-of-the-art performance in real-world datasets.

Our contributions are summarized as follows:

• Method.We propose SVGA, an accurate method for missing

feature estimation. SVGA introduces a new way to run vari-

ational inference on graph-structured data with modeling

the correlations between target variables as GMRF.

• Theory.We analyze the theoretical properties of structured

variational inference with the stochastic and deterministic

modeling. We also analyze the time and space complexities

of our SVGA, which are both linear with the number of nodes

and edges of a given graph, showing its scalability.

• Experiments. Extensive experiments on eight real-world

datasets show that SVGA provides state-of-the-art perfor-

mance with up to 16.3% higher recall and 14.0% higher nDCG

scores in feature estimation, and up to 14.2% higher accuracy

in node classification compared to the best competitors.

The rest of this paper is organized as follows. In Section 2, we

introduce the problem definition and preliminaries of SVGA. In

Section 3, we propose SVGA and discuss its theoretical properties.

We present experimental results in Section 4 and describe related

works in Section 5. We conclude in Section 6. The code and datasets

are available at https://github.com/snudatalab/SVGA.

2 PRELIMINARIES
We introduce the problem definition and preliminaries, including

Gaussian Markov random field and variational inference.

2.1 Missing Feature Estimation
The feature estimation problem is defined as follows. We have an

undirected graph𝐺 = (V, E), whereV and E represent the sets of

nodes and edges, respectively. A feature vector x𝑖 exists for every
node 𝑖 , but is observable only for a subsetV𝑥 ⊂ V of nodes. Our

goal is to predict the missing features of test nodesV \V𝑥 using

the structure of𝐺 and the observations forV𝑥 . The problem differs

from generative learning [16] in that there exist correct answers;

generative learning is typically an unsupervised problem.

We also assume that the label 𝑦𝑖 of each node 𝑖 can be given as

an additional input for a setV𝑦 of nodes such thatV𝑦 ⊆ V . Such

labels improve the accuracy of feature estimation, especially when

they provide information for the test nodes:V𝑦 ∩ (V \ V𝑥 ) ≠ ∅.
This is based on the idea that categorical labels are often easier to

acquire than high-dimensional features, and knowing the labels of

target nodes gives a meaningful advantage for estimation. Thus, we

design our framework to be able to work withV𝑦 ≠ ∅, although we

considerV𝑦 = ∅ as a base setup of experiments for the consistency

with previous approaches that take only the observed features.

2.2 Gaussian Markov Random Field
Gaussian Markov random field (GMRF) [19] is a graphical model

that represents a multivariate Gaussian distribution. Given a graph

𝐺 = (V, E) whose nodes have continuous signals that are corre-
lated by the graph structure, GMRF represents the distribution of

signals with two kinds of potential functions𝜓𝑖 and𝜓𝑖 𝑗 for every

node 𝑖 and edge (𝑖, 𝑗), respectively. We assume the signal of each

node 𝑖 as a random variable 𝑍𝑖 with a possible value 𝑧𝑖 .

0 0

0
0

0
0

Figure 2: Gaussian Markov random field (GMRF) describing
a Gaussian distribution N(𝜇, Σ) by parameters h and K. The
nonzero entries in K correspond to the edges in 𝐺 .

Specifically, the node potential𝜓𝑖 for each node 𝑖 and the edge

potential𝜓𝑖 𝑗 for each edge (𝑖, 𝑗) are defined as follows:

𝜓𝑖 (𝑧𝑖 ) = exp(−0.5𝐾𝑖𝑖𝑧
2

𝑖 + ℎ𝑖𝑧𝑖 ) (1)

𝜓𝑖 𝑗 (𝑧𝑖 , 𝑧 𝑗 ) = exp(−𝐾𝑖 𝑗𝑧𝑖𝑧 𝑗 ), (2)

where h ∈ R𝑛 and K ∈ R𝑛×𝑛 are the parameters of the GMRF, and

𝑛 is the number of nodes. The nonzero elements of K correspond

to the edges of the graph as depicted in Figure 2.

Then, the joint probability 𝑝 (z) is given as the multiplication of

all potential functions:

𝑝 (z) = 1

𝐶

∏
𝑖∈V

𝜓𝑖 (𝑧𝑖 )
∏
(𝑖, 𝑗) ∈E

𝜓𝑖 𝑗 (𝑧𝑖 , 𝑧 𝑗 ), (3)

where 𝐶 is a normalization constant. Each potential measures how

likely 𝑧𝑖 or (𝑧𝑖 , 𝑧 𝑗 ) appears with the current probabilistic assump-

tion with the parameters h and K, and the joint probability is com-

puted by multiplying the potentials for all nodes and edges.

The roles of parameters K and h can be understood with respect

to the distribution that GMRF represents. Lemma 2.1 shows that

GMRF is equivalent to a multivariate Gaussian distribution whose

mean and covariance are determined by K and h. K is the inverse

of the covariance Σ, and a pair of signals 𝑧𝑖 and 𝑧 𝑗 is more likely to

be observed if 𝐾𝑖 𝑗 is small. h determines the mean of the signals if

K is fixed, and is typically set to zero as we assume no initial bias

of signals for the simplicity of computation.

Lemma 2.1. The joint probability of Equation (3) is the same as the
probability density function of a multivariate Gaussian distribution
N(𝜇, Σ), where 𝜇 = K−1h and Σ = K−1.

Proof. See Appendix A.1. □

We utilize GMRF to incorporate a real-world graph in a proba-

bilistic framework. Specifically, we generate a multivariate Gauss-

ian distribution that models the probabilistic relationships between

nodes by designing K and h from the adjacency matrix A of the

given graph. GMRF plays a crucial role in our proposed approach,

which aims to run variational inference in graph-structured data

without ignoring the correlations between target variables.

2.3 Variational Inference for Joint Learning
Variational inference [16, 17, 25] is a technique for approximating

intractable posterior distributions, which has been used widely for

generative learning. Given the adjacency matrix A of a graph, our

goal is to find optimal parameters Θ that maximize the likelihood

𝑝Θ (X, y | A) of observed features X and labels y. We introduce a

https://github.com/snudatalab/SVGA
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Figure 3: The structure of our SVGA, which consists of an encoder network 𝑓 and two decoder networks 𝑔𝑥 and 𝑔𝑦 for features
and labels, respectively.Wemodel the distribution of latent variables with GMRF, exploiting the graph structure for modeling
the correlations between target variables. The label decoder 𝑔𝑦 works as an auxiliary module that helps 𝑔𝑥 .

latent variable z𝑖 ∈ R𝑑 for each node 𝑖 and denote the realization

of all latent variables by Z ∈ R𝑛×𝑑 , where 𝑛 is the number of nodes

and 𝑑 is the size of variables. The latent variable z𝑖 represents the
characteristic of each node 𝑖 for estimating its feature x𝑖 .

With variational inference, we change the problem into maxi-

mizing the evidence lower bound (ELBO):

log𝑝Θ (X, y | A) ≥ L(Θ)
= EZ∼𝑞𝜙 (Z |X,y,A) [log 𝑝𝜃,𝜌 (X, y | Z,A)]

− 𝐷KL (𝑞𝜙 (Z | X, y,A) | | 𝑝 (Z | A)),
(4)

where L(Θ) is the ELBO, 𝑞𝜙 is a parameterized distribution of Z,
and 𝑝𝜃,𝜌 is a parameterized distribution of X and y. The first term
of L(Θ) is the likelihood of observed variables given Z, while the
second term measures the difference between 𝑞𝜙 (Z | X, y,A) and
the prior distribution 𝑝 (Z | A) by the KL divergence.

We assume the conditional independence between X, y, and A
given Z, expecting that each variable z𝑖 has sufficient information

of node 𝑖 to generate its feature x𝑖 and label 𝑦𝑖 . Then, the first term

of L(Θ) in Equation (4) is rewritten as follows:

EZ∼𝑞𝜙 (Z |X,y,A) [log𝑝𝜃,𝜌 (X, y | Z,A)]

= EZ∼𝑞𝜙 (Z | ·)
[ ∑︁
𝑖∈V𝑥

log𝑝𝜃 (x𝑖 | z𝑖 ) +
∑︁
𝑖∈V𝑦

log𝑝𝜌 (𝑦𝑖 | z𝑖 )
]
, (5)

whereV𝑥 andV𝑦 are the sets of nodes whose features and labels

are observed, respectively, and 𝑞𝜙 (Z | ·) denotes 𝑞𝜙 (Z | X, y,A).
Equation (5) represents the conditional likelihood of observed

features and labels given Z. Thus, maximizing Equation (5) is the

same as minimizing the reconstruction error of observed variables

in typical autoencoders. On the other hand, the KL divergence term

in Equation (4) works as a regularizer that forces the distribution

𝑞𝜙 (Z | X, y,A) of latent variables to be close to the prior 𝑝 (Z | A).
The characteristic of regularization depends on how we model the

prior 𝑝 (Z | A), which plays an essential role in our framework.

Note that the objective function of Equation (4) works whether

the observed labels y are given or not, due to our assumption on

the conditional independence between X and y. Only the first term

of Equation (5) is used if there are no observed labels.

3 PROPOSED METHOD
We propose SVGA (Structured Variational Graph Autoencoder), an

accurate method for missing feature estimation. The main ideas of

SVGA are summarized as follows:

• GNN with identity node features (Sec. 3.1).We address

the deficiency of input features by utilizing a graph neural

network (GNN) with identity node features as an encoder

function, which allows us to learn an independent embed-

ding vector for each node during the training.

• Structured variational inference (Sec. 3.2). We propose

a new way to run variational inference on graph-structured

data without ignoring the correlations between target exam-

ples. This is done by modeling the prior distribution of latent

variables with Gaussian Markov random field (GMRF).

• Unified deterministic modeling (Sec. 3.3). We improve

the stability of inference by changing the stochastic sampling

of latent variables into a deterministic process. This makes

the KL divergence term of ELBO as a general regularizer that

controls the space of node representations.

In Section 3.1, we introduce the overall structure of SVGA and

the objective function for its training. Then in Sections 3.2 and 3.3,

we induce our graph-based regularizer from structured variational

inference. Specifically, we propose the basic parameterization of

structured inference in Section 3.2 and improve its stability with

the deterministic modeling of latent variables in Section 3.3.

3.1 Overall Structure of SVGA
Figure 3 shows the overall structure of SVGA, which consists of an

encoder 𝑓 and two decoder networks 𝑔𝑥 and 𝑔𝑦 . The networks 𝑓 ,

𝑔𝑥 and 𝑔𝑦 are designed to estimate the target distributions of the

ELBO of Equation (4): 𝑞𝜙 (Z | X, y,A), 𝑝𝜃 (x𝑖 | z𝑖 ) and 𝑝𝜌 (𝑦𝑖 | z𝑖 ),
respectively, where 𝜙 , 𝜃 , and 𝜌 are their parameters. The encoder 𝑓

generates latent representations of nodes, and the decoders 𝑔𝑥 and

𝑔𝑦 use the generated representations to estimate the features and

labels of nodes. The feature decoder 𝑔𝑥 makes the final estimation

of missing features, while the label decoder 𝑔𝑦 helps the training

of 𝑔𝑥 and is not used if no labels are observed.

3.1.1 Encoder Network. The encoder network 𝑓 aims to model the

latent distribution 𝑞𝜙 (Z | X, y,A) with parameters 𝜙 . We propose

to use a graph neural network (GNN) as 𝑓 , because the main func-

tionality required for 𝑓 is to generate an embedding vector for each

node following the graphical structure. In experiments, we adopt a

simple graph convolutional network (GCN) [18] as 𝑓 , which works

well even when the amount of training data is insufficient.

Still, it is required that every node contains a feature vector to

run the GNN encoder on the given graph. Only a few nodes have
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Algorithm 1 Training of SVGA with deterministic inference.

Input: Adjacency matrix A, diagonal adjacency D, feature X, (op-
tional) one-hot label Y, hyperparameters 𝛼 , 𝛽 and 𝜆, networks

𝑓 , 𝑔𝑥 , and 𝑔𝑦 , and their parameters 𝜙 , 𝜃 , and 𝜌 , respectively

Output: Updated parameters 𝜙 ′, 𝜃 ′, and 𝜌 ′

1: Z← E← 𝑓 (A;𝜙) ⊲ Run the unified encoder

2: X̂, Ŷ← 𝑔𝑥 (Z,A;𝜃 ), 𝑔𝑦 (Z,A; 𝜌) ⊲ Make predictions

3: 𝑙𝑥𝑦 ←
∑
𝑖 𝑙𝑥 (x̂𝑖 , x𝑖 ) +

∑
𝑗 𝑙𝑦 (ŷ𝑗 , y𝑗 ) ⊲ Equation (7) to (10)

4: K← I − D−1/2AD−1/2 ⊲ Equation (11)

5: 𝑙GMRF ← tr(E⊤KE) − 𝛼 log |I + 𝛽−1E⊤E| ⊲ Equation (15)

6: 𝜙 ′, 𝜃 ′, 𝜌 ′ ← Update 𝜙, 𝜃, 𝜌 to minimize 𝑙𝑥𝑦 + 𝜆𝑙GMRF

observed features in our case, and it makes an imbalance between

nodes with and without observed features. Thus, we use the identity

matrix I ∈ R𝑛×𝑛 as the input of 𝑓 , using the observed features only

as the answer for the training of SVGA. This allows 𝑓 to learn an

independent embedding for each node at its first layer and to have

sufficient capacity to generate diverse node representations.

If we use a GCN with two layers as in previous work [18], the

encoder function 𝑓 is defined as 𝑓 (A;𝜙) = Â(𝜎 (ÂIW1))W2, where

Â = D̃−1/2ÃD̃−1/2
is the normalized adjacency matrix, Ã = A+I is the

adjacency matrix with self-loops, D̃ is the degree matrix such that

𝐷̃𝑖𝑖 =
∑

𝑗 𝐴̃𝑖 𝑗 , and 𝜎 is the ReLU function. W1 ∈ R𝑛×𝑑 and W2 ∈ R𝑑×𝑑
are the weight matrices of layers 1 and 2, respectively, where 𝑛 is

the number of nodes, and 𝑑 is the size of latent variables. We do

not represent the bias terms for brevity. Note that the node feature

matrix of the original formulation of GCN [18] is replaced with the

identity matrix I based on our idea of identity node features.

Unit normalization. A possible limitation of introducing the

identity feature matrix is the large size of W1, which can make the

training process unstable. Thus, we project the latent representa-

tions Z generated from the encoder 𝑓 into a unit hypersphere by

normalizing each vector of node 𝑖 as z𝑖/∥z𝑖 ∥2. This does not alter
the main functionality of making diverse representations of nodes

for making high-dimensional features, but improves the stability

of training by restricting the output space [31].

3.1.2 Decoder Networks. Wepropose two decoder networks𝑔𝑥 and

𝑔𝑦 to model 𝑝𝜃 (x𝑖 | z𝑖 ) and 𝑝𝜌 (𝑦𝑖 | z𝑖 ), respectively. We assume

that latent variables Z have sufficient information to construct the

observed features and labels. Thus, we minimize the complexity of

decoder networks by adopting the simplest linear transformation

as 𝑔𝑥 (z𝑖 ) = W𝑥 z𝑖 + b𝑥 and 𝑔𝑦 (z𝑖 ) = W𝑦z𝑖 + b𝑦 , whereW𝑥 ∈ R𝑚×𝑑 ,
W𝑦 ∈ R𝑐×𝑑 , b𝑥 ∈ R𝑚 and b𝑦 ∈ R𝑐 are learnable weights and biases,
𝑚 is the number of features, and 𝑐 is the number of classes.

3.1.3 Optimization. We update the parameters of all the networks

𝑓 , 𝑔𝑥 , and 𝑔𝑦 in an end-to-end way. We rewrite the ELBO of Equa-

tion (4) as the following objective function to be minimized:

𝑙 (Θ) =
∑︁
𝑖∈V𝑥

𝑙𝑥 (x̂𝑖 , x𝑖 ) +
∑︁
𝑖∈V𝑦

𝑙𝑦 (ŷ𝑖 , y𝑖 ) + 𝜆𝑙GMRF (Z,A), (6)

where 𝑙𝑥 and 𝑙𝑦 are loss terms for features and labels, respectively.

𝑙GMRF is our proposed regularizer, whose details are described in

Sections 3.2 and 3.3 through the process of structured inference.

We use a hyperparameter 𝜆 for the amount of regularization.

The loss terms 𝑙𝑥 and 𝑙𝑦 are determined by how we model the

distributions 𝑝𝜃 (x𝑖 | z𝑖 ) and 𝑝𝜌 (𝑦𝑖 | z𝑖 ) following the distribution
of true data. Common distributions for features include Gaussian,

Bernoulli, and categorical (or one-hot) distributions:

𝑙𝑥 (x̂𝑖 , x𝑖 ) =


𝑙gau (x̂𝑖 , x𝑖 ) if x𝑖 is continuous
𝑙
ber
(x̂𝑖 , x𝑖 ) if x𝑖 is binary

𝑙cat (x̂𝑖 , x𝑖 ) if x𝑖 is categorical,
(7)

where the specific loss terms are defined as follows:

𝑙gau (x̂𝑖 , x𝑖 ) = −
∑
𝑘 (𝑥𝑖𝑘 − 𝑥𝑖𝑘 )2 (8)

𝑙
ber
(x̂𝑖 , x𝑖 ) = −

∑
𝑘 (𝛼𝑥𝑖𝑘 log𝜎 (𝑥𝑖𝑘 )
+ (1 − 𝛼) (1 − 𝑥𝑖𝑘 ) log(1 − 𝜎 (𝑥𝑖𝑘 ))) (9)

𝑙cat (x̂𝑖 , x𝑖 ) = −
∑
𝑘𝑥𝑖𝑘 log softmax(𝑥𝑖𝑘 ) . (10)

x̂𝑖 = 𝑔𝑥 (z𝑖 ) is the output of the feature decoder, and 𝜎 is the logistic

sigmoid function. We introduce 𝛼 in Equation (9) to balance the

effects of zero and nonzero entries of true features based on their

occurrences [3]; 𝛼 is the ratio of zero entries in the observed feature

matrix. For the output y𝑖 = 𝑔𝑦 (z𝑖 ) of the label decoder, we use the
categorical loss, i.e., 𝑙𝑦 = 𝑙cat, due to the property of labels.

Algorithm 1 summarizes the training process of SVGA. It makes

latent variables and predictions in lines 1 and 2, respectively, and

computes the error between predictions and observations in line 3.

Then, it computes our regularizer function in lines 4 and 5, whose

information is described in the following subsections, to update the

parameters of all three networks in an end-to-end way.

3.2 Structured Variational Inference
Previous works utilizing variational inference [16, 17] assume the

prior of latent variables as a multivariate Gaussian distribution with

identity covariance matrices, and run inference independently for

each variable. This assumption is inappropriate in our case, since

the correlations between variables, represented as a graph, are the

main evidence in our graph-based learning.

We thus model the prior distribution 𝑝 (Z | A) of Equation (4) as

Gaussian Markov random field (GMRF) to incorporate the graph

structure in the probabilistic modeling of variables. Specifically, we

model 𝑝 (Z | A) as GMRF N(0,K−1) with parameters h = 0 and K.
We make the information matrix K from A as a graph Laplacian

matrix with symmetric normalization [38]:

K = I − D−1/2AD−1/2, (11)

where I is the identity matrix, and D is the degree matrix such that

𝐷𝑖𝑖 =
∑

𝑗 𝐴𝑖 𝑗 . The resulting K preserves the structural information

of the graph𝐺 as a positive-semidefinite matrix that satisfies the

constraint of GMRF; the nonzero entries of K except the diagonal

ones correspond to those of A. Note that K is a constant, since it

represents the fixed prior distribution of variables.

We also model our target distribution 𝑞𝜙 (Z | X, y,A) as a multi-

variate Gaussian distributionN(U, Σ), where U and Σ are the mean

and covariance matrices of size 𝑛 × 𝑑 and 𝑛 × 𝑛, respectively. We

assume that all 𝑑 elements at each node share the same covariance

matrix. U and Σ are generated from encoder functions 𝑓𝜇 and 𝑓𝜎 ,

respectively, which contain the set 𝜙 of learnable parameters.
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Given the Gaussian modelings of 𝑞𝜙 (Z | X, y,A) and 𝑝 (Z | A),
the KL divergence is formulated as follows:

𝐷KL (𝑞𝜙 (Z | X, y,A) | | 𝑝 (Z | A))
= 0.5(tr(U⊤KU) + 𝑑 (tr(KΣ) − log |Σ|)) +𝐶, (12)

where𝐶 is a constant related to K and |V|. The goal of minimizing

the KL divergence is to update 𝜙 of encoder functions to make 𝑞𝜙
similar to 𝑝 (Z | A) as a regularizer of latent variables.

The computational bottleneck of Equation (12) is log |Σ|, whose
computation is 𝑂 (𝑛3) [10]. Thus, we decompose the covariance as

Σ = 𝛽I + VV⊤ with a rectangular matrix V ∈ R𝑛×𝑟 , where 𝛽 and

𝑟 are hyperparameters such that 𝑟 ≪ 𝑛 [25]. As a result, log |Σ| is
computed efficiently by the matrix determinant lemma [11]:

log |Σ| = log |I𝑟 + 𝛽−1V⊤V| + log |𝛽I𝑛 |, (13)

where I𝑟 and I𝑛 are the identity matrices of sizes 𝑟 × 𝑟 and 𝑛 × 𝑛,
respectively. The computation of Equation (13) is𝑂 (𝑟2𝑛+𝑟3), which
is tractable even in graphs with a large number of nodes.

For each inference, we sample Z randomly from 𝑞𝜙 based on U
and V generated from 𝑓𝜇 and 𝑓𝜎 , respectively. Since the gradient-

based update is not possible with the direct sampling of Z, we use
the reparametrization trick of variational autoencoders [16, 25]:

Z = U +
√︁
𝛽M1 + VM2, (14)

where M1 ∈ R𝑛×𝑑 and M2 ∈ R𝑟×𝑑 are matrices of standard normal

variables, which are sampled randomly at each time to simulate the

sampling of Z while supporting the backpropagation. The detailed

process of inference is described in Appendix B.

We verify that the variables Z sampled from Equation (14) follow

the target distribution N(U, Σ) by Lemmas 3.1 and 3.2.

Lemma 3.1. Let z𝑖 be a latent variable sampled from Equation (14)
for node 𝑖 , and u𝑖 be the 𝑖-th row of U. Then, E[z𝑖 ] = u𝑖 .

Proof. See Appendix A.2. □

Lemma 3.2. Assume that the size 𝑑 of latent variables is one. Let
𝑧𝑖 and 𝑧 𝑗 be latent variables sampled from Equation (14) for nodes 𝑖
and 𝑗 , respectively. Then, E[(𝑧𝑖 − E[𝑧𝑖 ]) (𝑧 𝑗 − E[𝑧 𝑗 ])] = Σ𝑖 𝑗 .

Proof. See Appendix A.3. □

3.3 Unified Deterministic Modeling
The reparametrization trick of variational inference requires us to

sample different Z at each inference to approximate the expectation

term in Equation (5). However, this sampling process makes the

training unstable, considering the characteristics of our feature

estimation problem where 1) the inference is done for all nodes at

once, not for each node independently, and 2) only a part of target

variables have meaningful observations. Even a small perturbation

for each node can result in a catastrophic change of the prediction,

since we consider the correlations between nodes in N(U, Σ).
We propose two ideas for improving the basic parameterization.

First, we unify the parameter matrices U and V as a single matrix

E, and generate it from an encoder function 𝑓 . This is based on the

observation that U and V have similar roles of representing target

nodes as low-dimensional vectors based on the graphical structure.

Second, we change the stochastic sampling of Z from N(E, Σ) into
a deterministic process that returns E at every inference, which has

(a)

(b)

Unified encoder

Dual encoders Stochastic sampling

Deterministic generation

Figure 4: Comparison between the encoder structures of the
(a) basic parameterization and (b) unified modeling. We use
a single encoder 𝑓 to deterministically generate Z while uti-
lizing the strong regularization of the KL divergence.

the largest probability in the distribution of Z. This improves the

stability of inference, while still allowing us to regularize the distri-

bution of Z with the KL divergence. Figure 4 depicts the difference

between the basic parameterization and the unified modeling.

This unified modeling makes the KL divergence of Equation (12)

into a general regularizer function that works with deterministic

inference of node representations. First, we show in Lemma 3.3 that

the first two terms of the right hand side of Equation (12) become

equivalent as we assume E = U = V by the unified modeling.

Lemma 3.3. Let K ∈ R𝑛×𝑛 , E ∈ R𝑛×𝑑 , and Σ = 𝛽I + EE⊤. Then,
tr(KΣ) = tr(E⊤KE) +𝐶 , where 𝐶 is a constant unrelated to 𝐸.

Proof. See Appendix A.4. □

Then, we propose our regularizer function used in Algorithm 1

by rewriting the KL divergence of Equation (12) as follows:

𝑙GMRF (E,A) = tr(E⊤KE) − 𝛼 log |I + 𝛽−1E⊤E|, (15)

where 𝛼 > 0 is a hyperparameter that controls the effect of the log

determinant term. We set 𝛼 = 1/2 is all of our experiments.

The first term of 𝑙GMRF is called the graph Laplacian regularizer

and has been widely used in graph learning [1, 21]. Its minimization

makes adjacent nodes have similar representations in E, and the

symmetric normalization of K alleviates the effect of node degrees

in the regularization. The second term of 𝑙GMRF can be considered

as measuring the amount of space occupied by E. In other words,

its maximization makes e1, · · · , e𝑛 distributed sparsely, alleviating

the effect of tr(E⊤KE) that squeezes the embeddings into a small

space. The hyperparameter 𝛽 controls the balance between the two

terms having opposite goals; the second term is ignored if 𝛽 = ∞,
which means that the target nodes have no correlations.

3.4 Complexity Analysis
We analyze the time and space complexities of SVGA, assuming

a graph convolutional network having two layers as the encoder

function 𝑓 . We define a space complexity as the amount of space
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Table 1: Evaluation of SVGA and baseline approaches for missing feature estimation with respect to (top) recall and (bottom)
nDCG. The best is in bold, and the second best is underlined. Our SVGA outperforms all baselines in most cases.

Metric Model Cora Citeseer Computers Photo Steam
@10 @20 @50 @10 @20 @50 @10 @20 @50 @10 @20 @50 @3 @5 @10

Recall

NeighAgg .0906 .1413 .1961 .0511 .0908 .1501 .0321 .0593 .1306 .0329 .0616 .1361 .0603 .0881 .1446

VAE .0887 .1228 .2116 .0382 .0668 .1296 .0255 .0502 .1196 .0276 .0538 .1279 .0564 .0820 .1251

GNN* .1350 .1812 .2972 .0620 .1097 .2058 .0273 .0533 .1278 .0295 .0573 .1324 .2395 .3431 .4575

GraphRNA .1395 .2043 .3142 .0777 .1272 .2271 .0386 .0690 .1465 .0390 .0703 .1508 .2490 .3208 .4372

ARWMF .1291 .1813 .2960 .0552 .1015 .1952 .0280 .0544 .1289 .0294 .0568 .1327 .2104 .3201 .4512

SAT .1653 .2345 .3612 .0811 .1349 .2431 .0421 .0746 .1577 .0427 .0765 .1635 .2536 .3620 .4965

SVGA .1718 .2486 .3814 .0943 .1539 .2782 .0437 .0769 .1602 .0446 .0798 .1670 .2565 .3620 .4996

nDCG

NeighAgg .1217 .1548 .1850 .0823 .1155 .1560 .0788 .1156 .1923 .0813 .1196 .1998 .0955 .1204 .1620

VAE .1224 .1452 .1924 .0601 .0839 .1251 .0632 .0970 .1721 .0675 .1031 .1830 .0902 .1133 .1437

GNN* .1791 .2099 .2711 .1026 .1423 .2049 .0673 .1028 .1830 .0712 .1083 .1896 .3366 .4138 .4912

GraphRNA .1934 .2362 .2938 .1291 .1703 .2358 .0931 .1333 .2155 .0959 .1377 .2232 .3437 .4023 .4755

ARWMF .1824 .2182 .2776 .0859 .1245 .1858 .0694 .1053 .1851 .0727 .1098 .1915 .3066 .3877 .4704

SAT .2250 .2723 .3394 .1385 .1834 .2545 .1030 .1463 .2346 .1047 .1498 .2421 .3585 .4400 .5272

SVGA .2381 .2894 .3601 .1579 .2076 .2892 .1068 .1509 .2397 .1084 .1549 .2472 .3567 .4391 .5299

Table 2: Summary of datasets.

Dataset Type Nodes Edges Feat. Classes

Cora
1

Binary 2,708 5,429 1,433 7

Citeseer
1

Binary 3,327 4,732 3,703 6

Photo
2

Binary 7,650 119,081 745 8

Computers
2

Binary 13,752 245,861 767 10

Steam
3

Binary 9,944 266,981 352 1

Pubmed
1

Continuous 19,717 44,324 500 3

Coauthor
2

Continuous 18,333 81,894 6,805 15

Arxiv
4

Continuous 169,343 1,157,799 128 40

1
https://github.com/kimiyoung/planetoid

2
https://github.com/shchur/gnn-benchmark

3
https://github.com/xuChenSJTU/SAT-master-online

4
https://ogb.stanford.edu/docs/nodeprop/

required to store intermediate data during each inference. Let 𝑑 ,𝑚,

and 𝑐 be the size of latent variables, the number of node features,

and the number of labels, respectively.

Lemma 3.4. Given a graph 𝐺 = (V, E), the time complexity of
SVGA is 𝑂 ((𝑑2 +𝑚𝑑 + 𝑐𝑑) |V| + 𝑑 |E |) for each inference.

Proof. See Appendix A.5. □

Lemma 3.5. Given a graph 𝐺 = (V, E), the space complexity of
SVGA is 𝑂 ((𝑑 +𝑚 + 𝑐) |V| + |E| + 𝑑2 +𝑚𝑑 + 𝑐𝑑) for each inference.

Proof. See Appendix A.6. □

Lemmas 3.4 and 3.5 show that SVGA is an efficient methodwhose

complexity is linear with both the numbers of nodes and edges of

the graph. The GMRF regularizer does not affect the inference of

SVGA, because it is used only at the training time. Still, the time

and space complexities of the GMRF loss 𝑙GMRF of Equation (15) are

𝑂 (𝑑2 |V| + 𝑑 |E | + 𝑑3) and 𝑂 (𝑑 |V| + |E| + 𝑑2), respectively, which
are linear with both the numbers of nodes and edges.

4 EXPERIMENTS
We perform experiments to answer the following questions:

Table 3: Evaluation for missing feature estimation on con-
tinuous features. The best is in bold, and the second best is
underlined. RMSE is lower the better, while CORR is higher
the better. “o.o.m.” refers to an out-of-memory error.

Model Pubmed Coauthor Arxiv
RMSE CORR RMSE CORR RMSE CORR

NeighAgg 0.0186 -0.2133 0.0952 -0.2279 0.1291 -0.4943

VAE 0.0170 -0.0236 0.0863 -0.0237 0.1091 -0.4773

GNN* 0.0168 -0.0010 0.0850 0.0179 0.1091 0.0283

GraphRNA 0.0172 -0.0352 0.0897 -0.1052 0.1131 -0.0419

ARWMF 0.0165 0.0434 0.0827 0.0710 o.o.m. o.o.m.

SAT 0.0165 0.0378 0.0820 0.0958 0.1055 0.0868

SVGA 0.0158 0.1169 0.0798 0.1488 0.1005 0.1666

Q1. Feature estimation (Section 4.2).Does SVGA showhigher

accuracy in feature estimation than those of baselines?

Q2. Node classification (Section 4.3). Are the features gener-
ated by SVGA meaningful for node classification?

Q3. Effect of observed labels (Section 4.4). Does the observa-
tion of labels help generating more accurate features?

Q4. Scalability (Section 4.5).How does the computational time

of SVGA increase with the number of edges?

Q5. Ablation study (Section 4.6). How does the performance

of SVGA for feature estimation change by the GMRF regu-

larizer and the deterministic modeling of inference?

4.1 Experimental Setup
We introduce our experimental setup including datasets, baseline

methods, evaluation metrics, and training processes.

Datasets. We use graph datasets summarized in Table 2, which

were used in previous works [3, 20, 23, 30]. Node features in Cora,

Citeseer, Photo, Computers, and Steam are zero-one binary vectors,

while those in Pubmed, Coauthor, and ArXiv are continuous. Each

node has a single discrete label. All nodes in Steam have the same

class, and thus the dataset is not used for node classification.

https://github.com/kimiyoung/planetoid
https://github.com/shchur/gnn-benchmark
https://github.com/xuChenSJTU/SAT-master-online
https://ogb.stanford.edu/docs/nodeprop/
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Table 4: Comparison between SVGA and baselines by node classification accuracy, where each classifier is trained with the
generated features. SVGA outperforms all baseline methods in most cases. “o.o.m.” refers to an out-of-memory error.

Model Cora Citeseer Computers Photo Pubmed Coauthor Arxiv
MLP GCN MLP GCN MLP GCN MLP GCN MLP GCN MLP GCN MLP GCN

NeighAgg .6248 .6494 .5539 .5413 .8365 .8715 .8846 .9010 .5150 .6564 .7562 .8031 .3979 .6493

VAE .2826 .3011 .2551 .2663 .3747 .4023 .2598 .3781 .4008 .4007 .2317 .2335 .1633 .1965

GNN* .4852 .5779 .3933 .4278 .3747 .4034 .2683 .3789 .4013 .4203 .2317 .2335 .2607 .4721

GraphRNA .7581 .8198 .6320 .6394 .6968 .8650 .8407 .9207 .6035 .8172 .7710 .8851 .1609 .1859

ARWMF .7769 .8205 .2267 .2764 .5608 .7400 .4675 .6146 .6180 .8089 .2320 .8347 o.o.m. o.o.m.

SAT .7937 .8579 .6475 .6767 .8201 .8766 .8976 .9260 .4618 .7439 .7672 .8402 .3144 .5677

SVGA (proposed) .8431 .8490 .6774 .6844 .8450 .8889 .9021 .9253 .6178 .8315 .8805 .9023 .4394 .6644

SVGA (proposed) SAT (baseline)
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Figure 5: The accuracy of SVGA for feature estimation with
additional observations of labels. We show the average and
standard deviation of ten runs. SVGA effectively utilizes the
given labels, making more accurate predictions.

Baselines. We compare SVGA with existing models for feature

estimation. NeighAgg [24] is a simple approach that aggregates the

features of neighboring nodes through mean pooling. VAE [16] is

a generative model that learns latent representations of examples.

GCN [18], GraphSAGE [9], and GAT [26] are popular graph neural

networks that have been used in various domains. We report the

best performance among the three models as GNN* for brevity.

GraphRNA [13] and ARWMF [2] are recent methods for repre-

sentation learning, which can be applied for generating features.

SAT [3] is the state-of-the-art model for missing feature estimation,

which trains separate autoencoders with a shared latent space for

the features and graphical structure, respectively. We use GAT and

GCN as the backbone network of SAT in datasets with discrete and

continuous features, respectively, which are the settings that show

the best performance in the original paper [3].

Evaluation metrics. We evaluate the performance of feature

estimation with four evaluation metrics. For binary features, we

treat each nonzero entry as a target item, considering the task as a

ranking problem to find all nonzero entries. Recall at 𝑘 measures

the ratio of true entries contained in the top 𝑘 predictions for each

node, while nDCG at 𝑘 measures the overall quality of predicted

scores in terms of information retrieval. We vary 𝑘 over {3, 5, 10}
in the Steam dataset and {10, 20, 50} in the other datasets, because

Steam has fewer features and thus a prediction is generally easier.

For continuous features, we compare the predictions and the true

features in an elementwise way with the root mean squared error

(RMSE) and the square of the correlation coefficient (CORR). The

definitions of evaluation metrics are in Appendix C.

Experimental process.We take different processes of experi-

ments for feature estimation and node classification. For feature

estimation, we split all nodes at each dataset into the training, vali-

dation, and test sets by the 4:1:5 ratio as in previous work [3]. We

train each model based on the observed features of training nodes

and find the parameters that maximize the validation performance.

We run each experiment ten times and report the average.

For node classification, we take only the test nodes of feature

estimation, whose features are generated by our SVGA or baseline

models. Then, we perform the 5-fold cross-validation in the target

nodes, evaluating the quality of generated features with respect to

the accuracy of node classification. We use a multilayer perceptron

(MLP) and GCN as classifiers. For the training and evaluation of

GCN, we use the induced subgraph of target nodes.

Even though our SVGA can utilize observed labels as additional

evidence, we do not assume the observation of labels unless other-

wise noted. This is to make a fair comparison between SVGA and

baseline models that assume only the observation of features. We

perform experiments in Section 4.4 with observed labels.

Hyperparameters. The hyperparameter setting of our SVGA is

described in Appendix D. For baselines, we take the experimental re-

sults from a previous work [3] that optimized the hyperparameters

for the feature estimation problem on our datasets.

4.2 Performance on Feature Estimation (Q1)
Table 1 compares SVGA and baseline models for feature estimation.

SVGA outperforms all baselines with a significant margin in most

cases; SVGA shows up to 16.3% and 14.0% higher recall and nDCG,

respectively, compared with the best competitors. The amount of

improvement over baselines is the largest in Cora and Citeseer,

which are similar citation graphs, and the smallest in Steam. This

is because the citation graphs have high-dimensional features with

sparse graph structures, increasing the difficulty of estimation for

the baseline methods. On the other hand, Steam has the smallest

number of features, while having the densest structure.

Table 3 presents the result of feature estimation for continuous

features. SVGA still outperforms all baselines, and the amount of

improvement is similar in all three datasets. The combination of

Tables 1 and 3 shows that SVGA works well with various types of

node features, providing stable performance. ARWMF causes an

out-of-memory error in 256GB memory, due to the computation of

A𝑛
of the adjacency matrix A with large 𝑛 ≥ 5.
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Arxiv
Coauthor
Computers
Steam
Photo

Figure 6: The inference time of SVGA in graphs of different
sizes. We randomly sample nine subgraphs for each dataset.
SVGA shows the linear scalability in all datasets.

4.3 Performance on Node Classification (Q2)
Table 4 shows the accuracy of node classification with two types

of classifiers: MLP and GCN. MLP relies on the generated features

for prediction, while GCN utilizes also the graph structure. SVGA

outperforms all baselines in most cases, making a consistency with

the results of feature estimation in Tables 1 and 3; SVGA achieves

up to 14.2% and 1.9% higher accuracy in MLP and GCN, respectively,

compared to the best competitors. The Steam dataset is excluded

from Table 4, since it has the same label for all nodes.

4.4 Effect of Observed Labels (Q3)
Figure 5 shows the performance of SVGA for feature estimation

with different ratios of observed labels. For instance, if the ratio

is 0.5, half of all nodes have observed labels: |V𝑦 | = 0.5|V|. Note
that the experiments for Tables 1, 3, and 4 are done with no labels

for a fair comparison with the baseline models; the results of these

experiments correspond to the leftmost points in Figure 5. We also

report the performance of SAT for comparison.

SVGA shows higher accuracy with more observations of labels

in both datasets, demonstrating its ability to use labels to improve

the performance of feature estimation. Since the parameters need

to be optimized to predict both features and labels accurately, the

observed labels work as an additional regularizer that guides the

training of latent variables to avoid the overfitting.

4.5 Scalability (Q4)
Figure 6 shows the scalability of SVGA with respect to the number

of edges on the five largest datasets in Table 2. For each dataset,

we sample nine random subgraphs of different sizes from 0.1|E | to
0.9|E |, where |E | denotes the number of original edges. Wemeasure

the inference time of SVGA in each graph ten times and report the

average. The figure shows the linear scalability of SVGA with the

number of edges in all datasets, supporting Lemma 3.4. Arxiv and

Coauthor take the longest inference times, as Arxiv and Coauthor

have the largest numbers of edges and features, respectively.

4.6 Ablation Study (Q5)
Figure 7 shows an ablation study that compares SVGA with its

variants SVGA-U and SVGA-R. SVGA-U runs stochastic inference

described in Section 3.2, without our idea of unified deterministic

modeling. The detailed process of stochastic inference is described
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0 200 400 600 800
Training epoch

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 n
DC

G 
at

 1
0

(a) Training

0 200 400 600 800
Training epoch

0.18

0.20

0.22

0.24

Te
st

 n
DC

G 
at

 1
0

(b) Test

Figure 7: An ablation study of SVGA on Cora compared with
its variants SVGA-R and SVGA-U (details in Section 4.6). We
show the average and standard deviation of ten runs. SVGA
makes the best test accuracy based on our proposed ideas.

also in Algorithm 2 of Appendix B. SVGA-R runs the deterministic

inference but removes the regularizer term 𝑙GMRF of Equation (15);

it follows Algorithm 1 as in SVGA except for lines 4 and 5.

SVGA shows the best test accuracy during the training with a

stable curve. The training accuracy is the best with SVGA-R, since

it overfits to training nodes without the regularizer term. On the

other hand, the training accuracy of SVGA-U is the lowest among

the three methods, while its test accuracy becomes similar to that

of SVGA-R at the later epochs. This is because SVGA-U fails even

at maximizing the training accuracy due to the unstable training.

The standard deviation of training accuracy is very small with all

three methods, despite their different modelings.

5 RELATEDWORKS
Graph neural networks. Graph neural networks (GNN) refer to

deep neural networks designed for graph-structured data [9, 18,

26, 27, 36, 37]. Since GNNs require the features of all nodes, one

needs to generate artificial features to apply a GNN to a graph with

missing features. Derr et al. [5] and Cui et al. [4] generate features

from the graph structure. Kipf and Welling [18] model the missing

features as one-hot vectors, while Zhao and Akoglu [39] leave them

as zero vectors and propose a new regularizer function.

Our SVGA enables a GNN to be applied to graphs with partial

observations by estimating missing features. The main advantage

of feature estimation is that the modification of a GNN classifier

is not required, regardless of the number of observations given in

the original graph. Previous works that directly deal with partially

observed graphs require finding new hyperparameters [39] or even

making a new weight matrix [18] when the number of observations

changes, making it difficult to reuse a trained model.

Missing feature estimation. There are recent works that can
be used directly for our feature estimation problem [2, 3, 13]. Such

methods are adopted as the main competitors in our experiments.

The main advantage of SVGA over the previous approaches is the

strong regularizer that allows us to effectively propagate the partial

observations to the entire graph, avoiding the overfitting problem

even with large representation power for feature estimation.

GRAPE [37] estimates missing features in tabular data by learn-

ing a graph between examples and features. The main difference
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from our work is that GRAPE assumes partial observations of fea-

ture elements, not feature vectors. In other words, GRAPE cannot

be used to estimate the features of nodes that have no partial ob-

servations, which is the scenario assumed in our experiments.

Node representation learning. Unsupervised node represen-

tation learning [8] is to represent each node as a low-dimensional

vector that summarizes its properties embedded in the structure

and node features [7, 8, 22, 27, 28]. Such methods make embeddings

in a latent space, while we aim to learn the representations of nodes

in a high-dimensional feature space; the node features generated

from our SVGA are interpretable in the feature domain.

Probabilisticmodeling of graphs. Previous works model real-

world graphs as pairwise Markov random fields with discrete vari-

ables and run graphical inference for node classification [14, 32–35].

Our work can be considered as a generalization of such works into

the challenging task of missing feature estimation, which requires

us to estimate high-dimensional continuous variables.

6 CONCLUSION
We propose SVGA (Structured Variational Graph Autoencoder), an

accurate method for missing feature estimation. SVGA estimates

high-dimensional features of nodes from a graph with partial ob-

servations, and its framework is carefully designed to model the

target distributions of structured variational inference. The main

idea of SVGA is the structural regularizer that assumes the prior of

latent variables as Gaussian Markov random field, which considers

the graph structure as the main evidence for modeling the correla-

tions between nodes in variational inference. SVGA outperforms

previous methods for feature estimation and node classification,

achieving the state-of-the-art accuracy in benchmark datasets. Fu-

ture works include extending the domain of SVGA into directed or

heterogeneous graphs that are common in real-world datasets.
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A PROOFS OF LEMMAS
A.1 Proof of Lemma 2.1

Proof. The probability density function of N(𝜇, Σ) is

𝑓 (z) = 𝐶 ′ exp(−(z − 𝜇)⊤Σ−1 (z − 𝜇)),

where 𝐶 ′ = (2𝜋)−𝑑/2 |Σ|−1/2
is a constant.

We rewrite 𝑓 as follows with K = Σ−1
and h = K𝜇:

𝑓 (z) = 𝐶 ′ exp(−z⊤Kz + 2𝜇⊤Kz − 𝜇⊤K𝜇)
= 𝐶 ′′ exp(−z⊤Kz + 2𝜇⊤Kz)

= 𝐶 ′′ exp

(
−

∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝐾𝑖 𝑗𝑧 𝑗 + 2

∑︁
𝑖

ℎ𝑖𝑧𝑖

)
.

where 𝐶 ′′ = exp(𝜇⊤K𝜇) ·𝐶 ′ is also a constant.

By the definition of GMRF, 𝐾𝑖 𝑗 ≠ 0 only if edge (𝑖, 𝑗) exists in
the given graph 𝐺 = (V, E). Then, we rewrite 𝑓 (z) as

𝑓 (z) = 𝐶 exp

( ∑︁
(𝑖, 𝑗) ∈E

(−𝑧𝑖𝐾𝑖 𝑗𝑧 𝑗 ) +
∑︁
𝑖∈V
(−0.5𝐾𝑖𝑖𝑧

2

𝑖 + ℎ𝑖𝑧𝑖 )
)
,

where𝐶 = exp(2) ·𝐶 ′′. We prove the lemma by substituting𝜓𝑖 𝑗 (𝑧𝑖 𝑗 )
and𝜓𝑖 (𝑧𝑖 ) for the first and second terms, respectively. □

A.2 Proof of Lemma 3.1
Proof. The random variables included in Equation (14) areM1

andM2. SinceM1 andM2 are filled with standard normal values, it

is satisfied that E[
√︁
𝛽M1] = 0 and E[VM2] = 0, regardless of the

actual values of 𝛽 and V. Thus, E(Z) = E(U) = U. □

A.3 Proof of Lemma 3.2
Proof. The following is satisfied for both 𝑘 = 𝑖 and 𝑘 = 𝑗 based

on Lemma 3.1:

𝑧𝑘 − E[𝑧𝑘 ] =
√︁
𝛽𝑚

1𝑘 + v⊤𝑘 m2,

where v𝑘 and m2 are 𝑟 -dimensional vectors.

Then, the covariance between 𝑧𝑖 and 𝑧 𝑗 is given as

E[(𝑧𝑖 − E[𝑧𝑖 ]) (𝑧 𝑗 − E[𝑧 𝑗 ])] = 𝛽E[𝑚1𝑖𝑚1𝑗 ]

+
√︁
𝛽v⊤𝑗 E[𝑚1𝑖m2] +

√︁
𝛽v⊤𝑖 E[𝑚1𝑗m2] + E[v⊤𝑖 m2v⊤𝑗 m2] .

Since every element of M1 andM2 follows the standard normal

distribution, the following are satisfied. First, E[𝑚1𝑖𝑚𝑖 𝑗 ] = 1 if 𝑖 = 𝑗

and zero otherwise. Second, the second and third elements of the

right hand side are zero. Third, E[v⊤
𝑖
m2v⊤𝑗 m2] = v⊤

𝑖
v𝑗 . As a result,

we have the following equality:

E[(𝑧𝑖 − E[𝑧𝑖 ]) (𝑧 𝑗 − E[𝑧 𝑗 ])] = 𝛽I[𝑖 = 𝑗] + v⊤𝑖 v𝑗 ,

where I is an indicator function that returns one if the condition

holds, and zero otherwise. This equation is the same as the definition

of Σ = 𝛽I + VV⊤ in the matrix form. □

A.4 Proof of Lemma 3.3
Proof. tr(KΣ) = 𝛽tr(K) + tr(KEE⊤) due to the definition of Σ.

The cyclic property of a trace makes tr(KEE⊤) = tr(E⊤KE). Thus,
tr(KΣ) = 𝛽tr(K) + tr(E⊤KE), and tr(K) is a constant. □

Algorithm 2 Basic version of structured variational inference.

Input: Adjacency matrix A, diagonal adjacency D, feature X, (op-
tional) one-hot label Y, hyperparameter 𝛽 , networks 𝑓𝜇 , 𝑓𝜎 , 𝑔𝑥 ,

and 𝑔𝑦 , and their parameters 𝜙𝜇 , 𝜙𝜎 , 𝜃 , and 𝜌 , resp.

Output: Updated parameters 𝜙 ′𝜇 , 𝜙
′
𝜎 , 𝜃
′
, and 𝜌 ′

1: U,V← 𝑓𝜇 (A;𝜙𝜇 ), 𝑓𝜎 (A;𝜙𝜎 ) ⊲ Run encoder functions

2: Σ← 𝛽I + VV⊤ ⊲ Make the covariance matrix

3: M1,M2 ← StandardNormal() ⊲ Sample random matrices

4: Z← U +
√︁
𝛽M1 + VM2 ⊲ Make latent variables

5: X̂, Ŷ← 𝑔𝑥 (Z,A;𝜃 ), 𝑔𝑦 (Z,A; 𝜌) ⊲ Make predictions

6: 𝑙𝑥𝑦 ←
∑
𝑖 𝑙𝑥 (x̂𝑖 , x𝑖 ) +

∑
𝑗 𝑙𝑦 (ŷ𝑗 , y𝑗 ) ⊲ Equation (7) to (10)

7: K← I − D−1/2AD−1/2 ⊲ Equation (11)

8: 𝑙KLD ← 0.5(tr(U⊤KU) + 𝑑 (tr(KΣ) − log |Σ|)) ⊲ Equation (12)

9: 𝜙 ′𝜇 , 𝜙
′
𝜎 , 𝜃
′, 𝜌 ′ ← Update 𝜙𝜇 , 𝜙𝜎 , 𝜃, 𝜌 to minimize 𝑙𝑥𝑦 + 𝑙KLD

A.5 Proof of Lemma 3.4
Proof. SVGA consists of an encoder 𝑓 and two decoders 𝑔𝑥 and

𝑔𝑦 . The complexity of 𝑓 is 𝑂 (𝑑2 |V| + 𝑑 |E |) assuming the identity

feature matrix. The complexities of 𝑔𝑥 and 𝑔𝑦 are 𝑂 (𝑚𝑑 |V|) and
𝑂 (𝑐𝑑 |V|), respectively. □

A.6 Proof of Lemma 3.5
Proof. SVGA consists of an encoder 𝑓 and two decoders 𝑔𝑥 and

𝑔𝑦 . The complexity of 𝑓 is𝑂 (𝑑 |V| + |E| +𝑑2) assuming the identity

feature matrix. The complexities of 𝑔𝑥 and 𝑔𝑦 are𝑂 (𝑚 |V| +𝑑 |V| +
𝑚𝑑) and 𝑂 (𝑐 |V| + 𝑑 |V| + 𝑐𝑑), respectively. □

B DETAILS OF STOCHASTIC INFERENCE
We present a detailed algorithm of structured variational inference

in Algorithm 2, which performs stochastic sampling described in

Section 3.2. It uses two encoder functions for generating embedding

matrices U and V, respectively, in line 1. Then, it samples Z from

the Gaussian distribution with the reparametrization trick in lines

2 to 4. The prediction is done as in the deterministic inference, but

the regularizer term works differently in line 8, taking U and Σ as

its inputs. The parameters of all four networks are updated.

C EVALUATION METRICS
We use four metrics for the evaluation of estimated features: recall

at 𝑘 and nDCG at 𝑘 for binary features, and RMSE and CORR for

continuous features. Categorical features are not included in our

datasets in Table 2, but we can use classification accuracy as done

for evaluating labels. The symbols used in this section are defined

as follows: 𝑛 is the number of nodes, 𝑑 is the number of features, x𝑖
is the true feature vector of node 𝑖 , x̂𝑖 is the prediction for x𝑖 , 𝑥𝑖 𝑗
is the 𝑗-th element of x𝑖 , and I(·) is a binary function that returns

one if the condition holds and zero otherwise.

Evaluation of binary features. We consider the feature esti-

mation for binary features as a ranking problem, which is to find

the nonzero elements at each feature vector x𝑖 of node 𝑖 . Let 𝑟𝑖 𝑗 be
the index having the 𝑗-th largest score in x̂𝑖 . Then, we use the top
𝑘 predictions with the largest scores, i.e., {𝑥𝑖𝑙 | 𝑙 = 𝑟𝑖1, · · · , 𝑟𝑖𝑘 }, at
each node 𝑖 , where 𝑘 is chosen in {3, 5, 10, 20, 50}. This is done also
in previous work for binary feature estimation [3] to focus more

on the predictive performance of the top predictions.
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Recall at 𝑘 measures the ratio of true entries contained in the

top 𝑘 predictions for each node:

REC𝑘 (X̂,X) =
1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

I[𝑥𝑖,𝑟𝑖 𝑗 = 1]
∥x𝑖 ∥0

, (16)

where ∥x𝑖 ∥0 is the number of nonzero entries in x𝑖 . For instance,
recall @ 3 is computed as 2/3 in the following example:

x𝑖 = (0, 0, 1, 1, 1)
x̂𝑖 = (0.1, 0.7, 0.2, 0.8, 0.9),

since 𝑟𝑖1 = 5, 𝑟𝑖2 = 4, and 𝑟𝑖3 = 2, and two of the nonzero entries of

x𝑖 are included in the top 3 predictions with the largest scores.

nDCG at 𝑘 measures also the quality of order in the top 𝑘 pre-

dictions with respect to information retrieval. nDCG is computed

by normalizing DCG at 𝑘 , which is defined as

DCG𝑘 (X̂,X) =
1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

I(𝑥𝑖,𝑟𝑖 𝑗 = 1)
log

2
( 𝑗 + 1) . (17)

Evaluation of continuous features.We evaluate predictions

for continuous features with simple metrics of RMSE and CORR.

RMSE measures an error between predictions and true features:

RMSE(X̂,X) = 1

𝑛

𝑛∑︁
𝑖=1

√√√√
1

𝑑

𝑑∑︁
𝑗=1

(𝑥𝑖 𝑗 − 𝑥𝑖 𝑗 )2 . (18)

CORR measures how much predictions and true features are

correlated, and is defined as follows:

CORR(X̂,X) = 1

𝑑

𝑑∑︁
𝑗=1

(
1 −

∑𝑛
𝑖=1
(𝑥𝑖 𝑗 − 𝑥𝑖 𝑗 )2∑𝑛

𝑖=1
(𝑥𝑖 𝑗 − 𝑥 𝑗 )2

)
, (19)

where 𝑥 𝑗 =
∑𝑛
𝑖=1

𝑥𝑖 𝑗/𝑛 is the mean of the 𝑗-th feature of all nodes.

CORR is higher the better, while RMSE is lower the better.

D HYPERPARAMETER SETTINGS
We search the hyperparameters of our SVGA as follows: the size 𝑑

of latent variables in {256, 512}, the dropout probability in {0.0, 0.5},
the regularization parameters 𝜆 and 𝛽 in {0.01, 0.1, 1.0}, and the

unit normalization of latent variables in {true, false}. We also use

the Adam [15] optimizer with the learning rate 𝑟 = 0.005 in Steam

and 𝑟 = 0.001 in all other datasets. The early stopping is used with

the validation performance, and all of our experiments were done

at a workstation with RTX 2080 based on PyTorch. More detailed

information can be found in our official implementation.
1

1
https://github.com/snudatalab/SVGA

https://github.com/snudatalab/SVGA

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Missing Feature Estimation
	2.2 Gaussian Markov Random Field
	2.3 Variational Inference for Joint Learning

	3 Proposed Method
	3.1 Overall Structure of SVGA
	3.2 Structured Variational Inference
	3.3 Unified Deterministic Modeling
	3.4 Complexity Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance on Feature Estimation (Q1)
	4.3 Performance on Node Classification (Q2)
	4.4 Effect of Observed Labels (Q3)
	4.5 Scalability (Q4)
	4.6 Ablation Study (Q5)

	5 Related Works
	6 Conclusion
	Acknowledgments
	References
	A Proofs of Lemmas
	A.1 Proof of Lemma 2.1
	A.2 Proof of Lemma 3.1
	A.3 Proof of Lemma 3.2
	A.4 Proof of Lemma 3.3
	A.5 Proof of Lemma 3.4
	A.6 Proof of Lemma 3.5

	B Details of Stochastic Inference
	C Evaluation Metrics
	D Hyperparameter Settings

