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ABSTRACT
Online anomaly detection from a data stream is critical for the

safety and security of many applications but is facing severe chal-

lenges due to complex and evolving data streams from IoT devices

and cloud-based infrastructures. Unfortunately, existing approaches

fall too short for these challenges; online anomaly detection meth-

ods bear the burden of handling the complexity while offline deep

anomaly detection methods suffer from the evolving data distri-

bution. This paper presents a framework for online deep anomaly

detection, ARCUS, which can be instantiated with any autoencoder-

based deep anomaly detection methods. It handles the complex and

evolving data streams using an adaptive model pooling approach

with two novel techniques—concept-driven inference and drift-aware
model pool update; the former detects anomalies with a combina-

tion of models most appropriate for the complexity, and the latter

adapts the model pool dynamically to fit the evolving data streams.

In comprehensive experiments with ten data sets which are both

high-dimensional and concept-drifted, ARCUS improved the anom-

aly detection accuracy of the streaming variants of state-of-the-art

autoencoder-based methods and that of the state-of-the-art stream-

ing anomaly detection methods by up to 22% and 37%, respectively.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; • Infor-
mation systems→ Data stream mining.
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1 INTRODUCTION
1.1 Background and Motivation
An anomaly can be identified as a data point that has different

characteristics from a majority of other data points, and means

a novel observation, a certain failure, unexpected noise, etc. in a

system of interest. Anomaly detection has numerous real-world

applications such as fraud detection in financial institutions and

abnormality detection in healthcare devices [24]

Today, a complex data stream is common from IoT devices and

cloud-based infrastructures, where data items with hundreds of

features of often unknown correlations and heterogeneous data

types are continuously arriving. This complexity brings about an

insurmountable challenge to anomaly detection, thereby necessitat-

ing significant preprocessing or heavy model training to cope with

the complexity. The challenge is aggravated when the data stream

is evolving, thereby making the preprocessing or the trained models

outdated quickly. This phenomenon is often referred to as a concept
drift [19], where properties of a target domain (i.e., concept) change

arbitrarily. Such complex and evolving data streams are observed

in various real-world situations [18, 29, 30]; e.g., gas sensor value

streams to monitor gas leaks with varying gas concentrations.

This paper concerns the computational method to deal with

complex evolving data streams. Deep anomaly detection [24] based
on a deep neural network has proven to handle the complexity

effectively, better than classical methods (e.g., 𝑘 nearest neigh-

bors [12]) [23, 25]. In particular, an autoencoder (AE) has beenwidely

used, as it is appropriate for an unsupervised setting that is natural

for anomaly detection with rare labels. Existing state-of-the-art

AE-based methods [11, 14, 38], however, are designed for an of-

fline setting and, thus, cannot effectively cope with evolving data

streams. There are a few recurrent neural network (RNN)-based

methods proposed for time series anomaly detection [9, 20, 28, 36].

However, they focus on learning temporal relationships inside local

sequences and incrementally updating a single model, which are

not suitable to handle arbitrarily evolving data streams.

The goal of this paper, thus, is to provide a novel framework

for online deep anomaly detection that adopts the existing deep

anomaly detection methods adaptively in an online setting, thereby

effectively dealing with the complexity and evolution challenges of

a data stream.

1.2 Main Idea
Undoubtedly, using a pre-trained fixed model or creating a new

model repeatedly would not work at all to handle a complex evolv-

ing data stream; they are either too ineffective or too inefficient.

A common approach of the existing streaming anomaly detection

methods is to build an initial model and incrementally update the
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(a) Processing flow of online deep anomaly detection. Themarks on
the timeline represent the concepts of data points.

(b) Detection accuracy in AUC (using an AE-based model for an
MNIST data set simulatedwith abrupt and recurrent concept drifts).

Figure 1: Comparison of incremental and adaptive approaches.

model over a data stream [1, 8, 34, 35] which can be easily applica-

ble to deep anomaly detection methods. However, this incremental
approach adapts a model to only the latest data points, regardless

of how data streams evolve. With arbitrary concept drifts in data

streams, the incremental approach could be ineffective as it needs

some time to perfectly adapt to new concepts and inefficient as it

quickly forgets the previous concept that may reoccur in the future.

The main idea in this paper is to use adaptive model pooling,
which manages multiple assorted models in both inference over and

adaptation to a complex evolving data stream. Faced with concept

drifts involving the indeterminate number of multiple patterns, a

fixed model or models cannot handle all of them. A model pool-

ing approach thus allows multiple models to work together adap-

tively to handle multiple and time-varying concept drifts, thereby

achieving versatile anomaly detection performance for a varying

number of unexpected concept drifts. Unlike the existing ensemble

approaches [4, 8, 17] where the set of models is fixed in advance,

the model pool membership is dynamically managed over time.

As illustrated in Figure 1a, the incremental approach (top) up-

dates a fixed model or models without regard to concept drifts,

whereas the adaptive approach (bottom) uses a model pool and ad-

justs it in response to concept drifts—by using the best combination

of existing models or creating a new model. As shown in Figure 1b,

this adaptive model pooling brings a clear advantage in anomaly

detection accuracy when arbitrary concept drifts occur.

This paper realizes the adaptive model pooling with autoencoder-
based deep anomaly detection models, which have shown state-of-

the-art performances in unsupervised anomaly detection. Specifi-

cally, we propose a novel frameworkARCUS (Adaptive framework

foR online deep anomaly deteCtion Under a complex evolving data

Stream), which employs two key techniques:

• Concept-driven inference: ARCUS calculates the anomaly scores

of incoming data points using the best combination of models in

the model pool. While optimizing individual models for different

sets of data points, ARCUS estimates the reliability of each model

against the given data points and decides how much each model

contributes to the final anomaly score, to maximize the usability

of the model pool in varying concepts.

• Concept drift-aware update: ARCUS continuously monitors the

reliability of the model pool for the incoming data points. When

the model pool is assessed inadequate for the latest data points,

presumably due to a concept drift, ARCUS updates the model

pool to incorporate a new model optimized for the new concept

of data points while keeping the model pool as compact as pos-

sible. This update enables ARCUS to efficiently keep the best

performance regardless of the patterns of concept drifts.

1.3 Highlights
• To the best of our knowledge, this is the first work that proposes

an adaptivemodel poolingmechanism of deep anomaly detection

models which addresses both the complexity and concept drift

challenges of a data stream.

• With the model pooling in place, this paper proposes a novel

framework ARCUS equipped with concept-driven inference

and concept drift-aware update. ARCUS can be implemented

with any existing AE-based anomaly detection model. For repro-

ducibility, the source code of ARCUS is publicly available
1
.

• Comprehensive experiments are conducted using ten data sets

which are both high-dimensional and concept-drifted. ARCUS,

when implemented using three state-of-the-art AE-based models,

achieved up to 22% higher anomaly detection accuracy than their

streaming variants and surpassed the best accuracy results of

the existing online anomaly detection algorithms by up to 37%.

2 RELATEDWORK
2.1 Deep Anomaly Detection
The recent rapid advancement of a deep neural network has led

to many deep anomaly detection methods with various types of

approaches (e.g., AE, RNN, or generative adversarial networks

(GAN)) [24]. Among them, the autoencoder has been widely studied

and achieved the state-of-the-art performances [11, 14, 38], thanks

to its unsupervised but effective capability to remove noisy or

anomalous information in the input. DAGMM[38] combines an

AE with the Gaussian mixture model to detect anomalies by pre-

dicting the Gaussian mixture membership of a data instance in a

low-dimensional representation obtained from an AE. RSRAE [14]

added a linear transformation layer after a latent space of an AE

to learn the hidden linear structure of the non-linearly embedded

data points by an encoder. RAPP [11] investigates hidden activation

values of layers in an AE in the same way as calculating recon-

struction errors to verify the information loss during encoding

and decoding processes. Although these methods have shown high

anomaly detection accuracy for static data sets, none of them is

geared for data streams. Besides, it is worth mentioning that the

AE-based ensemble method [4] was proposed to use multiple AE

models differentiated by random edge sampling and trained with

adaptive data sampling for anomaly detection. In addition to that it

is still designed for an offline setting, our AE-based adaptive model

pooling is fundamentally different from the AE-based ensemble

in that we manage the dynamically changing number of models

which are selectively adapted to evolving data distributions.

1
https://github.com/kaist-dmlab/ARCUS
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2.2 Streaming Anomaly Detection
Popular anomaly detection methods based on different approaches,

such as 𝑘 nearest neighbors (kNN), kernel density estimation (KDE),

isolation forest (IF) [17], and locality sensitive hashing (LSH), have

been actively extended to work online on a data stream. The kNN-

based streaming methods detect outliers based on queries (e.g.,

NETS [33] with set-based update and MDUAL [35] with data-query

duality) or local outlier factor (e.g., MiLOF [27] with summarization

andDILOF [22] with sampling). The KDE-basedmethod STARE [34]

employs stationary region skipping for updating densities and

anomaly scores. The LSH-based method MStream [1] uses two

hashing-based features accompanied with dimensionality reduc-

tion techniques including the AE. The IF-based method RRCF [8]

manages an ensemble of decision trees with a sketching technique.

While they are effective in handling evolving data streams to some

extent by adopting window-based processing, their focus is on re-

ducing the computational overhead of incremental updates of a

model or a pre-fixed ensemble of models for the changing data dis-

tributions. Further, they fundamentally rely on manual feature en-

gineering such as dimensionality reduction, random sub-sampling,

and linear feature transformation to deal with complex data, which

often leads to sub-optimal results and limited scalability [23, 25].

In this work, ARCUS proactively adapts to evolving data streams

with a dynamic model pool while being free of ad-hoc feature

engineering thanks to an AE-based deep anomaly detection model.

2.3 Online Deep Learning
Online deep learning from a data stream is to manage a deep neu-

ral network-based model over a data stream for continuous infer-

ence and update. Model adaptation [26, 32] and incremental up-

date [9, 28] are approaches popularly used in existing studies. In

the model adaptation approach, the hedge backpropagation is used

to determine the weight of each hidden layer when combining the

outputs from all layers [26], and an attention model and a Fisher

matrix are employed to adjust layer weights and exploit the pre-

viously trained weights [32]. In the incremental update approach,

adaptive gradient learning adjusts the weights of gradients in re-

sponse to data distribution changes [9], and local normalization

handles statistical shifts in model outputs [28]. While these studies

pioneered online deep learning, they focus on adapting a single
model to a data stream. Moreover, they are designed for supervised

classification [26, 32] and prediction-based time series anomaly

detection [9, 28], which are outside the scope of this work.

3 PRELIMINARIES
3.1 Problem Setting
Given an unbounded sequence of data points ⟨. . ., 𝑥𝑡−1, 𝑥𝑡 , 𝑥𝑡+1, . . .⟩
arriving in a data stream, an anomaly detection model𝑀 with pa-

rameters 𝜃𝑀 calculates anomaly scores of the individual data points,

⟨. . .,𝑀 (𝑥𝑡−1;𝜃𝑀 ), 𝑀 (𝑥𝑡 ;𝜃𝑀 ), 𝑀 (𝑥𝑡+1;𝜃𝑀 ), . . .⟩, continuously while

updating the parameters 𝜃𝑀 unsupervised and reports the data

points whose scores exceed a threshold as anomalies. Figure 2

illustrates this anomaly detection performed in streaming batch

processing. A batch 𝐵 of data points newly coming from a data

stream is used by 𝑀 for inference first and then used to update

Data stream 𝑥𝑡+1 𝑥𝑡+𝑁 𝑥𝑡+𝑁+1 𝑥𝑡+2𝑁⋯ ⋯ ⋯

𝐵𝑖 𝐵𝑖+1

𝑀:𝜃𝑀
𝑖 𝑀:𝜃𝑀

𝑖+1Update

Inference

Anomalies {𝑥𝑡|𝑀 𝑥𝑡; 𝜃𝑀
𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}

Inference

Model: parameters

Inference/update batch

Figure 2: Batch-based continuous anomaly detection.

the parameters 𝜃𝑀 afterward, following the prequential evaluation
scheme [6] designed to evaluate an online stream learning algo-

rithm by interleaving training and testing within the same batch.

The inference returns a set of anomaly scores of the data points in

the batch 𝐵, i.e., {𝑀 (𝑥𝑖 ;𝜃𝑀 ) | 𝑥𝑖 ∈ 𝐵}, abbreviated as𝑀 (𝐵;𝜃𝑀 ).

3.2 Autoencoder-based Anomaly Detection
An autoencoder (AE) is a feed-forward neural network with a en-
coder 𝐸 and a decoder 𝐷 , aiming at reconstructing an input as exactly

as possible, i.e., min𝐸,𝐷 ∥𝑋 − 𝐷 (𝑍 )∥2 where 𝑍 = 𝐸 (𝑋 ) is the latent
representation of an input 𝑋 . Typically, the reconstruction error

for a given input 𝑋 is used as the anomaly score of 𝑋 . Motivated

by the latest AE-based anomaly detection models [11, 14, 37, 38],

which have shown the state-of-the-art performances, we use an AE

and its variants as a base anomaly detection model𝑀 in this work.

3.3 Concept Drift
As a concept refers to a certain distributional or statistical prop-

erty of data in a domain, a concept drift refers to an extrinsic phe-

nomenon of the concept changing arbitrarily over time [19]. For-

mally, a concept drift occurs at time 𝑡 if the joint probability of

input data points 𝑋 and their label 𝑦 changes at time 𝑡 , that is,

𝑃𝑡 (𝑋,𝑦) ≠ 𝑃𝑡+1 (𝑋,𝑦). Since 𝑃𝑡 (𝑋,𝑦) = 𝑃𝑡 (𝑋 )𝑃𝑡 (𝑦 |𝑋 ), the source
of such a concept drift can be identified as one of the following

three: (i) 𝑃𝑡 (𝑋 ) ≠ 𝑃𝑡+1 (𝑋 ), i.e., change in the data distribution; (ii)

𝑃𝑡 (𝑦 |𝑋 ) ≠ 𝑃𝑡+1 (𝑦 |𝑋 ), i.e., change in the anomaly decision bound-

ary; and (iii) both (i) and (ii). Once a concept drift occurs, the cur-

rent anomaly detection model becomes obsolete and should be

updated to learn the new concept. Since the drift can occur in

various forms, such as “sudden,” “gradual,” “incremental,” and “re-

occurring” [19, 29], it is important to have a versatile mechanism

to handle all these forms equally well.

4 THE ARCUS FRAMEWORK
4.1 Overview
ARCUS is an online anomaly detection framework designed for any

AE-based deep anomaly detection model. ARCUS manages a pool

of models to perform inference over a batch of data stream, and

then updates the model pool to adapt to new concepts detected in

the batch. The overall procedure of ARCUS is illustrated in Figure

3 and outlined in Algorithm 1. Once a model pool is initialized

with a model created for the first batch, ARCUS repeats, for every

batch, anomaly detection using concept-driven inference and model

pool adaptation using concept drift-aware update. The anomaly

detection step calculates the anomaly scores of the data points in
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Figure 3: Overview of the procedure of ARCUS.
Algorithm 1 Overall Procedure of ARCUS
Input: a data stream 𝐷𝑆 , an AE-based model𝑀 , a reliability threshold 𝛼 ,

a similarity threshold 𝛾

Output: anomaly scores 𝑆 of data points for each batch

1: Initialize a model pool 𝑃 with a model built from the first batch of 𝐷𝑆 ;

2: for each batch 𝐵 of data points from 𝐷𝑆 do
3: /* 1. Anomaly Detection */

4: Calculate the anomaly scores 𝑆 of data points in 𝐵 by 𝑃 ;

5: /* 2. Model Pool Adaptation */

6: Estimate the reliability 𝑅𝑃 of the model pool 𝑃 ;

7: if 𝑅𝑃 ≥ 𝛼 then
8: // Model update (i.e., minor update)

9: Select the most reliable model𝑀∗
in the model pool 𝑃 ;

10: Perform incremental update on𝑀∗
with 𝐵;

11: else
12: // Pool update (i.e., major update)

13: Initialize a new model𝑀𝑛𝑒𝑤 with 𝐵;

14: Compact 𝑃 to 𝑃∗ by recursively merging 𝑀𝑛𝑒𝑤 with 𝑀 ∈ 𝑃

whose similarity to𝑀𝑛𝑒𝑤 exceeds 𝛾 ;

15: end if
16: return anomaly scores 𝑆 ;

17: end for

the current batch based on the reliability of individual models in

the pool against the batch (Line 4 and Figures 3a and 3c). The model

pool adaptation step evaluates the overall reliability of the model

pool against the current batch (Line 6) and updates the model pool

as needed (Lines 7−15). Specifically, if the model pool fits well,

ARCUS keeps the current model pool and updates only the model

contributing most to the pool’s reliability (Lines 7−10 and Figure

3b); otherwise, ARCUS creates a new model and then merges it

with similar existing models (to keep the model pool as compact

as possible) (Lines 11−15 and Figure 3d). ARCUS then returns the

anomaly scores of the current batch (Line 16). These two steps are

discussed in detail in the following sections.

4.2 Model Pooling
A model and a model pool used in ARCUS are formalized as follows.

Definition 1. (Model) Amodel𝑀 is represented by an AE with an

encoder 𝐸𝑀 , a decoder 𝐷𝑀 , and any additional components needed

by the specific AE. □

Definition 2. (Model Pool) A model pool 𝑃 is a set of models

{𝑀1, 𝑀2, . . . , 𝑀𝑘 } that share the same architecture but have differ-

ent parameters 𝜃𝑀𝑖
learned from different input batches. □

The membership of a model pool needs to find a balance between

the efficacy and efficiency of anomaly detection. In one extreme, the

pool may contain one dedicated model for every observed concept

to achieve the highest accuracywhile incurring significant overhead

to keep all models. In the other extreme, the pool may contain only

one model to minimize the update cost while sacrificing accuracy.

ARCUS finds the necessary balance as adapting to data streams so

that the accuracy considering all models in the pool is maximized

while keeping the pool as compact as possible.

4.3 Anomaly Detection
4.3.1 Model Reliability. The concept reflected in a given model

may be different from the concept of the current batch, especially

when a concept drift has occurred. ARCUS estimates the reliability
of a model by comparing the concept learned by the model with

that of the current batch and uses it to calculate the concept-driven

anomaly score. A straightforward way to estimate the model relia-

bility is to directly investigate a sequence of error rates reported by

the model, as adopted in the existing studies [2, 5]. However, they

deal with a supervised setting where the error rate of a model is

reported immediately and, thus, become impractical when the true

labels of anomalies are not available in this unsupervised online

anomaly detection. Thus, we exploit a set 𝑀 (𝐵;𝜃𝑀 ) of anomaly

scores returned by a model𝑀 on a batch 𝐵, which can be obtained

immediately during inference without additional work while re-

flecting the normal characteristics of the data points in the batch.

Let𝑀 (𝐵𝐶𝑢𝑟𝑟 ;𝜃𝑀 ) be the sets of anomaly scores on the current

batch and𝑀 (𝐵𝐿𝑎𝑠𝑡 ;𝜃𝑀 ) be those on the last batch used to update

the model. Then, given the model𝑀 , the statistical significance of

the difference between𝑀 (𝐵𝐶𝑢𝑟𝑟 ;𝜃𝑀 ) and𝑀 (𝐵𝐿𝑎𝑠𝑡 ;𝜃𝑀 ) indicates
how reliable the model could be to the current batch. To quantify

such significance, we adopt the Hoeffding’s Inequality [10]-based

mean difference bound (see Theorem 1), which has been widely

used for detecting statistical changes in streaming values [2, 5, 19].

Theorem 1. (Hoeffding’s Ineqality-based Mean Difference

Bound) [5] Given independent random variables 𝑋 and 𝑌 bounded

by [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥 ], the probability of the sample mean difference

between 𝑋 = 1

𝑛

∑︁𝑛
𝑖=1 𝑋𝑖 and 𝑌 = 1

𝑚

∑︁𝑚
𝑗=1 𝑌𝑗 is bounded by

𝑃𝑟 { |𝑋 −𝑌 | ≥ 𝜖 } ≤ 𝑒
−2𝜖2

(𝑛−1+𝑚−1 ) (𝑎𝑚𝑎𝑥 −𝑎𝑚𝑖𝑛 )2 . □ (1)

Applying Theorem 1 to𝑀 (𝐵𝐶𝑢𝑟𝑟 ;𝜃𝑀 ) and𝑀 (𝐵𝐿𝑎𝑠𝑡 ;𝜃𝑀 ) gives
the statistical significance of their difference in Corollary 1.

Corollary 1. (Concept Difference Bound) Let𝑋 and𝑌 be the in-

dependent anomaly scores returned by amodel𝑀 , and let𝑀 (𝐵𝐶𝑢𝑟𝑟 ;𝜃𝑀 )
and 𝑀 (𝐵𝐿𝑎𝑠𝑡 ;𝜃𝑀 ) be the sets of anomaly scores sampled from 𝑋

and 𝑌 , respectively. Then,

𝑃𝑟 { |𝑋 −𝑌 | ≥ 𝜖 } ≤ 𝑒
−2𝜖2

(𝑏−1+𝑏−1 ) (𝑠𝑚𝑎𝑥 −𝑠𝑚𝑖𝑛 )2 = 𝑒
−𝑏𝜖2

(𝑠𝑚𝑎𝑥 −𝑠𝑚𝑖𝑛 )2 , (2)

where 𝑏 is the batch size (i.e., 𝑏 = |𝐵𝐶𝑢𝑟𝑟 | = |𝐵𝐿𝑎𝑠𝑡 |),
𝜖 = |𝑎𝑣𝑔 (𝑀 (𝐵𝐶𝑢𝑟𝑟 ;𝜃𝑀 )) − 𝑎𝑣𝑔 (𝑀 (𝐵𝐿𝑎𝑠𝑡 ;𝜃𝑀 )) |

𝑠𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝑀 (𝐵𝐶𝑢𝑟𝑟 ;𝜃𝑀 )),𝑚𝑎𝑥 (𝑀 (𝐵𝐿𝑎𝑠𝑡 ;𝜃𝑀 ))), and
𝑠𝑚𝑖𝑛 =𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑀 (𝐵𝐶𝑢𝑟𝑟 ;𝜃𝑀 )),𝑚𝑖𝑛 (𝑀 (𝐵𝐿𝑎𝑠𝑡 ;𝜃𝑀 ))) .

(3)

Proof. Straightforward from Theorem 1 [5]. □
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By using the probability bound (Eq. (2)) in Corollary 1, the re-
liability of a single model is derived as in Definition 3. Thus, the

probability that the sample mean difference of the anomaly scores

by𝑀 is higher than or equal to 𝜖 is at most 𝑟𝑀 .

Definition 3. (Model Reliability) The model reliability 𝑟𝑀 of𝑀

for the current batch 𝐵𝐶𝑢𝑟𝑟 is defined as

𝑟𝑀 = 𝑒
−𝑏𝜖2

(𝑠𝑚𝑎𝑥 −𝑠𝑚𝑖𝑛 )2 , (4)

where 𝜖 , 𝑠𝑚𝑎𝑥 , and 𝑠𝑚𝑖𝑛 are the same as those in Eq. (3). □

Note that deriving the model reliability is efficient as it requires

only the lightweight anomaly score statistics (i.e., the triplet of

⟨𝑚𝑖𝑛(𝑀 (𝐵;𝜃𝑀 )), 𝑚𝑎𝑥 (𝑀 (𝐵;𝜃𝑀 )), 𝑎𝑣𝑔(𝑀 (𝐵;𝜃𝑀 ))⟩).

4.3.2 Concept-Driven Inference. The final anomaly score of a

batch is determined by weighting the standardized anomaly scores

of each model with its reliability (see Definition 4), making the

contribution of each model proportional to its reliability.

Definition 4. (Concept-driven Anomaly Score) Given a set

of models {𝑀1, . . . , 𝑀𝑘 } in a model pool 𝑃 and the corresponding

reliabilities {𝑟𝑀1
, . . . , 𝑟𝑀𝑘

}, the concept-driven anomaly score 𝐶𝑃 (𝑥)
of a data point 𝑥 in the current batch 𝐵 is calculated as

𝐶𝑃 (𝑥) =
𝑘∑︂
𝑖=1

𝑟𝑀𝑖
(
𝑀𝑖 (𝑥 ;𝜃𝑀𝑖

) − 𝑎𝑣𝑔 (𝑀𝑖 (𝐵;𝜃𝑀𝑖
))

𝑠𝑡𝑑 (𝑀𝑖 (𝐵;𝜃𝑀𝑖
)) ) . □ (5)

4.4 Model Pool Adaptation
4.4.1 Reliability of Model Pool. When a batch with a new con-

cept that has never been seen arrives, none of the models in a model

pool 𝑃 would do inference on the batch correctly. Thus, ARCUS

estimates the overall reliability of a model pool to decide whether

the model pool needs to be updated.

By Definition 3, the probability that a model is not reliable for

the current batch is 1 − 𝑟𝑀 . At the same time, the models in 𝑃

are independent of one another since they have been separately

updated with non-overlapping batches. Then, the reliability of 𝑃 is

defined by 1 minus the probability that none of the models in 𝑃 are

reliable, as formulated in Definition 5.

Definition 5. (Model Pool Reliability) Given a model pool 𝑃 =

{𝑀1, . . . , 𝑀𝑘 }, the reliability 𝑅𝑃 of 𝑃 is 1 −∏︁𝑘
𝑖=1 (1 − 𝑟𝑀𝑖

). □

4.4.2 Model Merging. The latent representation 𝑍 learned by

an AE-based model is expected to contain minimal but sufficient

information of the input. If two models show similar latent rep-

resentations of the same input, they must have been updated by

the temporally separate disjoint batches of similar concepts, so

merging them helps to remove redundancy in the model pool and

also avoid overfitting. To this end, ARCUS uses the centered ker-
nel alignment (CKA) for measuring the similarity of two models

(see Definition 6), as it is known as the most appropriate similarity

index for neural network representations since it is invariant to

orthogonal transformation and isotropic scaling but not invariant

to invertible linear transformation [13].

Definition 6. (Model Similarity) Given an input 𝑋 and two

models𝑀1 and𝑀2, let 𝑍1 and 𝑍2 be the latent representations of

𝑋 by𝑀1 and𝑀2, respectively. For a kernel K , let 𝐾𝑍
𝑖 𝑗
be K(𝑧𝑖 , 𝑧 𝑗 )

for 𝑧𝑖 , 𝑧 𝑗 ∈ 𝑍 . Then, the similarity between 𝑍1 and 𝑍2, 𝑆𝑖𝑚(𝑍1, 𝑍2),
is calculated as

𝐶𝐾𝐴(𝐾𝑍1 , 𝐾𝑍2 ) = 𝐻𝑆𝐼𝐶 (𝐾𝑍1 , 𝐾𝑍2 )√︁
𝐻𝑆𝐼𝐶 (𝐾𝑍1 , 𝐾𝑍1 )𝐻𝑆𝐼𝐶 (𝐾𝑍2 , 𝐾𝑍2 )

, (6)

where 𝐻𝑆𝐼𝐶 (𝐾𝑍1 , 𝐾𝑍2 ) is Hilbert-Schmidt Independence Criterion

[7]. We used a linear kernel K , which is simple but comparable

with other kernels [13]. Then, Eq. (6) becomes equivalent to

∥𝑍1𝑇𝑍2∥2𝐹 /(∥𝑍1
𝑇𝑍1∥𝐹 ∥𝑍2𝑇𝑍2∥𝐹 ),

where ∥ · ∥𝐹 denotes the Frobenius norm. □

The merging of two models𝑀1 and𝑀2 is conducted by weighted

averaging of their parameters (see Definition 7). In federated learn-

ing, when local models with the same initialization of parameters

are optimized via stochastic gradient descent, parameter averaging

has been proven to be equivalent to gradient averaging and con-

verging to the global model [16, 21]. Thus, an AE-based anomaly

detection model merged from two models trained with two tempo-

rally separate disjoint batches of the same concept is guaranteed to

converge to a model trained with the entire data set of the concept.

Definition 7. (Model Merging) Given two models 𝑀1 and 𝑀2,

their number of batches 𝑁𝑀1
and 𝑁𝑀2

used to update the models,

and their parameters 𝜃𝑀1
and 𝜃𝑀2

, the merged model is defined to

have the parameters

𝜃𝑀𝑚𝑒𝑟𝑔𝑒𝑑
= (𝑁𝑀1

𝜃𝑀1
+ 𝑁𝑀2

𝜃𝑀2
)/(𝑁𝑀1

+ 𝑁𝑀2
) . □ (7)

4.4.3 Drift-Aware Model Pool Update. ARCUS monitors the

reliability of a model pool and triggers the update of the pool with

a significance level 1 − 𝛼 . A model pool will be kept unchanged

when it has at least a single highly reliable model (i.e., 𝑟𝑀 > 𝛼), but

it will be adjusted when the models in the pool have only neutral

reliability values (i.e., 𝑟𝑀 ≪ 𝛼). We set the default value of 𝛼 to 0.95,

which is commonly used in the statistical significance test, meaning

that only 5% of the possibility that all models are not reliable will be

allowed, and also confirmed to be valid in the sensitivity analysis

in Section 5.6.

Once the update of the model pool is triggered, ARCUS first

creates a new model with the current batch and derives a com-

pact model pool (see Definition 8) in a greedy way, by recursively

merging the new model with the most similar model exceeding a

similarity threshold 𝛾 .

Definition 8. (Compact Model Pool) Given a model pool 𝑃 , a

new model𝑀𝑛𝑒𝑤 with a current batch 𝐵, and a similarity threshold

𝛾 , a compact model pool 𝑃∗ satisfies

min

𝑃∗ |𝑃∗ |

s.t. 𝑆𝑖𝑚 (𝑍𝐵
𝑀𝑛𝑒𝑤

, 𝑍𝐵
𝑀𝑖

) < 𝛾 for every𝑀𝑖 ∈ 𝑃∗ and𝑀𝑖 ≠ 𝑀𝑛𝑒𝑤 ,

where 𝑍𝐵
𝑀𝑛𝑒𝑤

= 𝐸𝑀𝑛𝑒𝑤 (𝐵) and 𝑍𝐵
𝑀𝑖

= 𝐸𝑀𝑖
(𝐵) . □

(8)

We set the default value of 𝛾 in [0, 1] to 0.8 to allow both the

diversity (i.e., 𝛾 > 0.5) and the compactness (i.e., 𝛾 < 1) of a model

pool. We have confirmed that the similarity of models trained under

the same concept is usually higher than 0.8 (in Figure 10 inAppendix

A.2), which was also valid in the sensitivity analysis in Section 5.6.
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Table 1: High-dimensional and concept-drifting data streams used for evaluation.

Data set Description # Obj # Dim Concept drift type Anomaly target

MNIST-AbrRec Handwritten digits 20,480 784 Abrupt and recurrent Arbitrary digits

MNIST-GrdRec Handwritten digits 20,480 784 Gradual and recurrent Arbitrary digits

FMNIST-AbrRec Fashion items 20,480 784 Abrupt and recurrent Arbitrary fashion items

FMNIST-GrdRec Fashion items 20,480 784 Gradual and recurrent Arbitrary fashion items

INSECTS-Abr Optical sensor values for insects 52,848 33 Abrupt The southern house mosquito

INSECTS-Inc Optical sensor values for insects 57,018 33 Incremental The southern house mosquito

INSECTS-IncGrd Optical sensor values for insects 24,150 33 Incremental and gradual The southern house mosquito

INSECTS-IncRec Optical sensor values for insects 79,986 33 Incremental and recurrent The southern house mosquito

GAS Gas sensor values 13,910 128 Unknown Acetaldehyde

RIALTO Building images around a bridge 82,250 27 Unknown The building class 0

4.5 Complexity Analysis
Theorem 2. Given the batch size 𝑏, the number 𝑒 of epochs, the

number 𝑘 of models in a model pool, and the model parameter

size 𝑇 , the time complexity of ARCUS is 𝑂 (𝑏2 + 𝑏𝑇 ) and the space

complexity of ARCUS is 𝑂 (𝑘𝑇 ).

Proof. The time complexity for the anomaly detection step is

𝑂 (𝑘𝑏𝑇 ) and that for the concept drift adaptation step is 𝑂 (𝑒𝑏𝑇 +
𝑘𝑏2 + 𝑘𝑇 ) where is 𝑂 (𝑒𝑏𝑇 ) for updating a model, 𝑂 (𝑘𝑏2) is for cal-
culating CKA-based similarities, and 𝑂 (𝑘𝑇 ) is for merging models.

Since typically 𝑏,𝑇 ≫ 𝑒, 𝑘 , the total time complexity is 𝑂 (𝑏2 + 𝑏𝑇 ).
The space complexity for managing models is 𝑂 (𝑘𝑇 ) and that for

managing anomaly score statistics is𝑂 (𝑘), and thus the total space

complexity is 𝑂 (𝑘𝑇 ). □

5 EXPERIMENTS
We conducted thorough experiments to evaluate the performance

of ARCUS. The results are summarized as follows.

• In the ten high-dimensional and concept-drifted data sets, AR-

CUS outperforms the ten state-of-the-art streaming anomaly

detection algorithms with different approaches in terms of on-

line anomaly detection accuracy (Section 5.2) .

• ARCUS is able to detect exactly and adapt promptly to various

types of real concept drifts (Section 5.3).

• The two main techniques employed in ARCUS are both highly

effective to improve the accuracy (Section 5.4).

• ARCUS is efficient and scalable with respect to varying input

data rates and concept drift types (Section 5.5).

• ARCUS is robust to the variation of its own hyperparameter

values, and their default values are valid (Section 5.6).

5.1 Experiment Setup
5.1.1 Data Sets. Table 1 shows the summarized descriptions of

ten high-dimensional (complex) and concept-drifting (evolving) bench-
mark data sets commonly used in other relevant literature as well.

The synthetic data sets are generated from MNIST [15] and FM-

NIST [31] by simulating different concept drift types and durations,

as widely used in high-dimensional anomaly detection and data

stream classification [14, 26]. For the real data sets, the concept-drift

types and durations are known in INSECTS [29] but not in GAS [30]

and RIALTO [18]. For all data sets, the ratio of anomalies over all

data points was set to 1%. Refer to Appendix A.1 for more details.

5.1.2 Algorithms. We evaluated three instances of ARCUS im-

plemented with three state-of-the-art AE-based anomaly detection

algorithms: RAPP [11], RSRAE [14], and DAGMM[38]. Each of the

three ARCUS instances is denoted with their base models (e.g.,

ARCUS𝑅𝐴𝑃𝑃 ); the only difference among them is their constituent

AEmodel. For amore comprehensive evaluation, the streaming vari-

ants of the three AE-based algorithms and two popular RNN-based

anomaly detection algorithms (LSTM-ED [20] and REBM [36]) are

prepared and respectively denoted as sRAPP, sRSRAE, sDAGMM,

sLSTM-ED, and sREMB. At the same time, five state-of-the-art

streaming anomaly detection algorithms with different approaches

(ensemble IF-based RRCF [8], LSH-based MStream [1], KDE-based

STARE [34], and LOF-based MiLOF [27] and DILOF [22]) were also

compared. Algorithm-specific hyperparameters were either set to

the default values suggested by the authors or tuned by us to achieve

the best accuracy. Details of the compared algorithms and hyperpa-

rameter settings are given in Appendix A.2.

5.1.3 Performance Metrics. Since the exact threshold of anom-

aly scores for verifying anomalies can vary across different appli-

cations and contexts, we used the Area Under Receiver Operating

Characteristic (AUC) as the accuracy measure, which is widely used

to evaluate anomaly detection [3]. For the deep learning-based algo-

rithms, the ensemble-based RRCF, and the hashing-based MStream,

the mean and the standard error of ten repetitions, each with the

different random initialization, were measured. The wall clock time

for processing a batch of varying sizes was measured for efficiency

and scalability tests.

5.1.4 Computing Platform. All experiments were conducted

on a Linux server with Intel Core i7-6700, 16GB RAM, and 1TB

HDD. Ubuntu 16.04, Python 3.8, and TensorFlow 2.2 were installed.

NVIDIA TITAN X was used for the deep learning algorithms.

5.2 Overall Accuracy Comparison
We compared the AUC achieved by the three instances of ARCUS

(i.e., ARCUS𝑅𝐴𝑃𝑃 , ARCUS𝑅𝑆𝑅𝐴𝐸 , and ARCUS𝐷𝐴𝐺𝑀𝑀 ) with other

algorithms for all data sets. The results are shown in Table 2 (see

Appendix A.3 for the results of sRAPP, sRSRAE, and sDAGMM).

Evidently, the ARCUS instances achieved the highest accuracy in

online anomaly detection for all data sets, regardless of the concept

drift type. Specifically, the accuracy of ARCUS instances outper-

formed the best accuracy among the other algorithms by up to

36.9% (for ARCUS𝑅𝐴𝑃𝑃 in MNIST-GrdRec), and by 12.0% on aver-

age over all data sets. The ARCUS instances improved the accuracy

of the streaming variants of their base models by 10.7% for sRAPP,
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Table 2: Overall performance comparison. The highest AUC results in each data set are marked in underlined bold.

ARCUS{base model} Streaming anomaly detection algorithms

Data set RAPP RSRAE DAGMM sLSTM-ED sREBM STARE RRCF MiLOF DILOF MStream

Synthetic

MNIST-AbrRec
0.909

(±0.004)
0.831

(±0.003)
0.747

(±0.009)
0.662

(±0.006)
0.581

(±0.001)
0.574

(±0)
0.711

(±0.006)
0.460

(±0)
0.655

(±0)
0.491

(±0.002)
FMNIST-AbrRec

0.806
(±0.001)

0.743

(±0.006)
0.657

(±0.004)
0.772

(±0.004)
0.603

(±0.003)
0.576

(±0)
0.713

(±0.013)
0.434

(±0)
0.513

(±0)
0.717

(±0.002)
MNIST-GrdRec

0.904
(±0.011)

0.784

(±0.009)
0.707

(±0.002)
0.622

(±0.003)
0.502

(±0.002)
0.574

(±0)
0.660

(±0.007)
0.460

(±0)
0.649

(±0)
0.632

(±0.004)
FMNIST-GrdRec

0.783
(±0.012)

0.682

(±0.004)
0.652

(±0.004)
0.630

(±0.008)
0.485

(±0.003)
0.566

(±0)
0.730

(±0.010)
0.494

(±0)
0.510

(±0)
0.497

(±0.003)

Real

(known

drifts)

INSECTS-Abr
0.631

(±0.009)
0.814

(±0.006)
0.652

(±0.018)
0.749

(±0.008)
0.471

(±0.001)
0.555

(±0)
0.695

(±0.018)
0.393

(±0)
0.730

(±0)
0.709

(±0.015)
INSECTS-Inc

0.600

(±0.004)
0.794

(±0.001)
0.572

(±0.034)
0.696

(±0.004)
0.383

(±0.001)
0.559

(±0)
0.669

(±0.011)
0.415

(±0)
0.757

(±0)
0.593

(±0.001)
INSECTS-IncGrd

0.641

(±0.040)
0.845

(±0.002)
0.658

(±0.028)
0.795

(±0.005)
0.575

(±0.015)
0.594

(±0)
0.719

(±0.032)
0.395

(±0)
0.746

(±0)
0.628

(±0.001)
INSECTS-IncRec

0.634

(±0.012)
0.811

(±0.001)
0.667

(±0.001)
0.709

(±0.005)
0.491

(±0.006)
0.551

(±0)
0.680

(±0.003)
0.381

(±0)
0.743

(±0)
0.637

(±0.001)

Real

(unknown

drift)

GAS
0.878

(±0.008)
0.573

(±0.017)
0.545

(±0.039)
0.408

(±0.005)
0.506

(±0.002)
0.635

(±0)
0.804

(±0.010)
0.589

(±0)
0.470

(±0)
0.480

(±0.001)
RIALTO

0.784
(±0.015)

0.683

(±0.020)
0.562

(±0.020)
0.617

(±0.010)
0.492

(±0.001)
0.532

(±0)
0.731

(±0.003)
0.456

(±0)
0.742

(±0)
0.699

(±0.001)

True abrupt drift pointTemperature (concept) Reliability of a model pool Number of models (         Average)
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Figure 4: The trends of the model pool reliability estimated by ARCUS in real concept-drifted data streams.
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Figure 5: Ablation study results of inference strategies.

6.3% for sRSRAE, and 9.7% for sDAGMM when averaged over all

data sets. This result clearly demonstrates the model-agnostic be-

havior and versatility of ARCUS.

5.3 Concept Drift Adaptation
We tracked how the reliability of a model pool changes in real data

streams with known concept drifts (INSECTS) where temperature

changes refer to concept drifts. Figure 4 shows the representative

results of ARCUS𝑅𝑆𝑅𝐴𝐸 with the true trends of concepts and drift

points. The model pool kept consistently high reliability throughout

the entire data stream and the sudden drop points of the reliability

were very close to the true abrupt drift points. This consistently

high reliability was achieved using only five to eight models at

most (3.9 models on average) in the model pool. This result means

that ARCUS promptly detects and efficiently adapts to the real

concept drifts so that it can achieve the highest anomaly detection

accuracy with the minimum number of sufficient models. Interest-

ingly, an unexpected drop was observed around the timestamp 7

in INSECTS-IncGrd in Figure 4c; it may have been caused by an

additional unknown sudden drop of temperature during the incre-

mental decrease or another type of concept drift (e.g., humidity

change) that was overlooked.

5.4 Ablation Study
We conducted ablation studies on the two main techniques used

in ARCUS—the concept-driven inference and the concept drift-

aware update. We present the results of ARCUS𝑅𝐴𝑃𝑃 while the

results from the other ARCUS instances showed similar patterns.

For evaluating the efficacy of concept-driven inference, we prepared

the variant of ARCUS employing the single-model inference strategy,
which uses only the most reliable model in the anomaly detection

step. Figure 5 shows that the concept-driven inference consistently

improved the accuracy by up to 17% over the single-model inference.

This result confirms that it is worth considering various previous

and ongoing concepts for calculating anomaly scores more exactly.

For evaluating the efficacy of concept drift-aware update with

the proposed similarity-based merge strategy, we prepared the two

variants of ARCUS respectively employing always-merge strategy,
which manages a single model by always merging with a new



KDD ’22, August 14–18, 2022, Washington, DC, USA Yoon et al.

MNIST-AbrRec
FMNIST-AbrRec

MNIST-GrdRec
FMNIST-GrdRec

INSECTS-Abr
INSECTS-Incr

INSECTS-IncrGrd
INSECTS-IncrRecr

GAS
RIALTO

Similarity-based merge (proposed) Always-merge No-merge

0.5   0.6    0.7    0.8   0.9    1
AUC

0          5          10         15        20
Average (and max) # of models

Figure 6: Ablation study results of merge strategies.
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Figure 7: Scalability test results.

model, and the no-merge strategy, which keeps all models without

merging. As shown in Figure 6, the similarity-based merge achieved

higher accuracy, by up to 17% and 13% over the always-merge and

the no-merge, respectively. The similarity-based merge is more

efficient than the no-merge by managing 37.6% fewer models in

the model pool, averaged over all data sets. These results show that

keeping an adequate number of models with significantly different

properties facilitates adapting to various types of concept drifts

more accurately and efficiently.

5.5 Efficiency and Scalability
We measured the processing time of ARCUS, simulating a real en-

vironment in which 128 to 2,048 devices emitting sensor-generated

values. Figure 7 shows the representative results of ARCUS𝑅𝐴𝑃𝑃 ,

sRAPP, and RRCF (which is the ensemble-based algorithm and

showed the strongest performance among the other algorithms).

The other results are provided in Appendix A.4. Note that the re-

sults from the other ARCUS instances and data sets showed similar

patterns. Notably, ARCUS took less than a second for processing

a batch of 512 data points, which would be sufficiently fast for a

high-dimensional data stream from hundreds of devices processed

by a single commodity machine. At the same time, ARCUS was con-

sistently faster than the ensemble-based RRCF in all cases, which

shows the merits of dynamically managed model pool compared

with pre-fixed model ensembles. The increase rate of the processing

time of ARCUS was comparable to those of the baselines.

Figure 8 shows the breakdown of processing time of ARCUS𝑅𝐴𝑃𝑃

into five steps for each data set. (The results of the other ARCUS

instances were similar.) The five steps correspond to Line 4, Lines

8–9, Lines 6–7, Line 11, and Line 12 in Algorithm 1 in the paper.

When averaged over all data sets, the processing time for inference

and incremental model update was similar to that for the model
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Figure 9: Sensitivity analysis results.

pool adaptation consisting of drift detection, initial model update,

and model merge. Except for the initial model update, which can

be flexibly controlled by the user-provided number of initialization

epochs, the remaining model pool adaptation (i.e., drift detection

and model merging) took only 8.2% of the total processing time.

Interestingly, the specific proportions of each step vary across the

data sets since the behavior of ARCUS is affected by the character-

istics of the data stream. For instance, the model pool adaptation

of MNIST data sets took less than 20% of the total processing time,

while those of GAS and RIALTO took more than 50% of the total

processing time. Overall, ARCUS tended to adapt more frequently

in a data stream with unknown and implicit concept drifts (e.g.,

GAS and RIATLO) than a data stream with known and explicit

concept drifts (e.g., MNIST).

5.6 Parameter Sensitivity Analysis
We conducted sensitivity analysis on the two main parameters used

in the concept drift-aware update step: the reliability threshold

𝛼 (to trigger model pool update) and the similarity threshold 𝛾

(to merge models in a model pool). Due to space limitation, we

present the results of ARCUS𝑅𝐴𝑃𝑃 while the results from the other

ARCUS instances showed similar patterns. For 𝛼 , Figure 9a shows

that AUC peaks at or nearly converges around the default value,

0.95. An extremely high reliability threshold may help improve the

accuracy marginally, but it will damage the efficiency because of

too frequent pool updates. For 𝛾 , Figure 9b shows that AUC peaks

at or nearly converges around the default value, 0.8. As mentioned

earlier, the similarity of models trained under the same concept

was also usually higher than 0.8, which is also demonstrated in

Figure 10 in Appendix A.2). Likewise, an extremely high similarity

threshold may improve accuracy marginally, but it will incur too

many models in a model pool.
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6 CONCLUSION
This paper proposed ARCUS, a framework for online deep anom-

aly detection which can be instantiated with any AE-based deep

anomaly detection method. ARCUS is specialized to handle complex

evolving data streams by the adaptive model pooling approach with

two main techniques—concept-driven inference and concept drift-
aware update. In comprehensive experiments using ten data sets,

ARCUS outperformed state-of-the-art streaming anomaly detection

methods by up to 37% in accuracy. Much of this performance ad-

vantage is attributed to the versatile modeling power from model

pooling. Overall, we believe that our work opens a new possibility

in online anomaly detection research.

There are interesting directions ARCUS can be further developed

into. First, the deep anomaly-detection model used to instantiate

ARCUS can be extended beyond the AE. While we chose the AE

as the default model to materialize the adaptive model pooling

approach because of its structural simplicity and unsupervised

learning mechanism, other models (e.g., GAN- or RNN-based) can

be used under the same approach. The concept of model similarity,

however, should be carefully tailored to the specific model since the

latent representation similarity proposed for AE-based models may

not always be applicable. Second, a model pool can adopt other

adaptation strategies than the model initialization from scratch

or the model merging based on federated learning. For instance,

the initialization and update of a model can be facilitated by the

incorporation of shared common knowledge of models through

distillation or regularization strategies based on continual learning

or transfer learning. Third, a semi-supervised approach can help un-

derstand the dynamics of a model pool and optimize it for different

concept drifts observed in a data stream. A few human-provided la-

bels or domain knowledge of anomalies or concept drifts are useful

to derive the reliability threshold or the similarity threshold which

are the main tunable hyperparameters in ARCUS.

ACKNOWLEDGMENTS
This work was partly supported by Samsung Electronics Co., Ltd.

(IO201211-08051-01) through the Strategic Collaboration Academic

Program and Institute of Information & Communications Technol-

ogy Planning & Evaluation (IITP) grant funded by the Korea gov-

ernment (MSIT) (No. 2022-0-00157, Robust, Fair, Extensible Data-

Centric Continual Learning). The first author was also supported

by Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education

(2021R1A6A3A14043765).

REFERENCES
[1] S. Bhatia, A. Jain, P. Li, R. Kumar, and B. Hooi. Mstream: Fast anomaly detection

in multi-aspect streams. In Proc. WWW, pages 3371–3382, 2021.

[2] A. Bifet and R. Gavalda. Learning from time-changing data with adaptive win-

dowing. In Proc. SDM, pages 443–448, 2007.

[3] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková, E. Schubert,

I. Assent, and M. E. Houle. On the evaluation of unsupervised outlier detection:

Measures, datasets, and an empirical study. DMKD, 30(4):891–927, 2016.
[4] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga. Outlier detection with autoencoder

ensembles. In Proc. SDM, pages 90–98. SIAM, 2017.

[5] I. Frías-Blanco, J. del Campo-Ávila, G. Ramos-Jimenez, R. Morales-Bueno, A. Ortiz-

Díaz, and Y. Caballero-Mota. Online and non-parametric drift detection methods

based on hoeffding’s bounds. IEEE TKDE, 27(3):810–823, 2014.
[6] J. Gama, R. Sebastião, and P. P. Rodrigues. On evaluating stream learning algo-

rithms. Machine Learning, 90(3):317–346, 2013.

[7] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical

dependence with hilbert-schmidt norms. In Proc. ALT, 2005.
[8] S. Guha, N. Mishra, G. Roy, and O. Schrijvers. Robust random cut forest based

anomaly detection on streams. In Proc. ICML, pages 2712–2721, 2016.
[9] T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer, and K. Funaya. Robust online time

series prediction with recurrent neural networks. In Proc. DSAA, pages 816–825.
IEEE, 2016.

[10] W. Hoeffding. Probability inequalities for sums of bounded random variables. In

The Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.
[11] K. H. Kim, S. Shim, Y. Lim, J. Jeon, J. Choi, B. Kim, and A. S. Yoon. RaPP: Novelty

detection with reconstruction along projection pathway. In Proc. ICLR, 2020.
[12] E. M. Knox and R. T. Ng. Algorithms for mining distance-based outliers in large

datasets. In Proc. VLDB, pages 392–403, 1998.
[13] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network

representations revisited. In Proc. ICML, pages 3519–3529, 2019.
[14] C.-H. Lai, D. Zou, and G. Lerman. Robust subspace recovery layer for unsuper-

vised anomaly detection. In Proc. ICLR, 2020.
[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proc. the IEEE, 86(11):2278–2324, 1998.
[16] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg

on non-iid data. In Proc. ICLR, 2019.
[17] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In Proc. ICDM, 2008.

[18] V. Losing, B. Hammer, and H.Wersing. KNN classifier with self adjusting memory

for heterogeneous concept drift. In Proc. ICDM, pages 291–300, 2016.

[19] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under concept drift:

A review. IEEE TKDE, 31(12):2346–2363, 2018.
[20] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff.

LSTM-based encoder-decoder for multi-sensor anomaly detection. In Proc. ICML
Anomaly Detection Workshop, 2016.

[21] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.

Communication-efficient learning of deep networks from decentralized data.

In Proc. AISTATS, pages 1273–1282, 2017.
[22] G. S. Na, D. Kim, and H. Yu. DILOF: Effective and memory efficient local outlier

detection in data streams. In Proc. KDD, pages 1993–2002, 2018.
[23] G. Pang, L. Cao, L. Chen, and H. Liu. Learning representations of ultrahigh-

dimensional data for random distance-based outlier detection. In Proc. KDD,
pages 2041–2050, 2018.

[24] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel. Deep learning for anomaly

detection: A review. ACM Computing Surveys (CSUR), 54(2):1–38, 2021.
[25] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller, and

M. Kloft. Deep semi-supervised anomaly detection. In Proc. ICLR, 2020.
[26] D. Sahoo, Q. Pham, J. Lu, and S. C. H. Hoi. Online deep learning: Learning deep

neural networks on the fly. In Proc. IJCAI, pages 2660–2666, 7 2018.
[27] M. Salehi, C. Leckie, J. C. Bezdek, T. Vaithianathan, and X. Zhang. Fast memory

efficient local outlier detection in data streams. IEEE TKDE, 28(12):3246–3260,
2016.

[28] S. Saurav, P. Malhotra, V. TV, N. Gugulothu, L. Vig, P. Agarwal, and G. Shroff.

Online anomaly detection with concept drift adaptation using recurrent neural

networks. In Proc. CODS-COMAD, pages 78–87, 2018.
[29] V. Souza, D. M. d. Reis, A. G. Maletzke, and G. E. Batista. Challenges in bench-

marking stream learning algorithms with real-world data. DMKD, 34:1805–1858,
2020.

[30] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta. Chemical

gas sensor drift compensation using classifier ensembles. Sensors and Actuators
B: Chemical, 166:320–329, 2012.

[31] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for

benchmarking machine learning algorithms. arXiv:1708.07747, 2017.
[32] Y. Yang, D.-W. Zhou, D.-C. Zhan, H. Xiong, and Y. Jiang. Adaptive deep models

for incremental learning: Considering capacity scalability and sustainability. In

Proc. KDD, page 74–82, 2019.
[33] S. Yoon, J.-G. Lee, and B. S. Lee. NETS: Extremely fast outlier detection from a

data stream via set-based processing. In Proc. VLDB, pages 1303–1315, 2019.
[34] S. Yoon, J.-G. Lee, and B. S. Lee. Ultrafast local outlier detection from a data

stream with stationary region skipping. In Proc. KDD, pages 1181–1191, 2020.
[35] S. Yoon, Y. Shin, J.-G. Lee, and B. S. Lee. Multiple dynamic outlier-detection from

a data stream by exploiting duality of data and queries. In Proc. SIGMOD, pages
2063–2075, 2021.

[36] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang. Deep structured energy based models

for anomaly detection. In Proc. ICML, pages 1100–1109, 2016.
[37] C. Zhou and R. C. Paffenroth. Anomaly detection with robust deep autoencoders.

In Proc. KDD, pages 665–674, 2017.
[38] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen. Deep

autoencoding gaussian mixture model for unsupervised anomaly detection. In

Proc. ICLR, 2018.



KDD ’22, August 14–18, 2022, Washington, DC, USA Yoon et al.

A SUPPLEMENTARY MATERIAL
A.1 Data Sets
• Synthetic data sets: MNIST [15] and FMNIST [31] are handwrit-

ten digit images and fashion item images, respectively, and are

widely used to simulate anomaly detection scenarios with a high

complexity [11, 14, 37] or data streams [26, 32]. To represent a

concept, we randomly set certain digits of item classes out of

ten classes as anomaly target classes and the other ones as nor-

mal classes. The duration of each concept was varied randomly

between one to four times the batch size. Two types of concept

drifts were simulated: “abrupt and recurrent” (MNIST-AbrRec,

FMNIST-AbrRec) and “gradual and recurrent” (MNIST-GrdRec,

FMNIST-GrdRec).

• Real data sets (with known drifts): INSECTS [29] is a real concept-

drifting benchmark data set containing optical sensor values col-

lected while monitoring flying insects (e.g., mosquitos). Concepts

are controlled by changing the temperature level, which affects

the flying behaviors of insects. The southern house mosquito,

which transmits zoonotic diseases, was chosen as an anomaly

target class. We used four types of INSECTS data sets with differ-

ent concept drift types—“abrupt” (INSECTS-Abr), “incremental”

(INSECTS-Inc), “incremental and gradual” (INSECTS-IncGrd),

and “incremental and recurrent” (INSECTS-IncRec).

• Real data sets (with unknown drifts): GAS [30] is a data set gath-

ered in a gas delivery platform for 36 months and contains sensor

values from monitoring six types of pure gaseous substances. A

different gas concentration refers to a concept where the true

drift types and timings are unknown. Acetaldehyde, a toxic chem-

ical, was chosen as an anomaly target class. RIALTO [18] con-

tains normalized RGB encodings from 20 days of video record-

ings of ten buildings around the Rialto bridge in Venice. The

building class 0 was set as an anomaly target class. Weather

and lighting conditions refer to concepts as they directly affect

the video recording results, while the true types and timings of

concept drifts are unknown.

A.2 Algorithms and Hyperparameter Settings
A.2.1 ARCUS and AE-based Algorithms. We used the three

AE-based state-of-the-art anomaly detection algorithms: RAPP [11]
2
,

RSRAE [14]
3
, and DAGMM[38]

4
. They are all based on a basic AE

and its variants (e.g., variational AE or denoising AE) but use differ-

ent techniques for anomaly detection—hidden reconstruction errors

along the projection pathway of encoding and decoding layers by

RAPP, a linear transformation layer in the latent space by RSRAE,

and the Gaussian mixture model added to the AE by DAGMM. We

implemented the three algorithms based on the source code publicly

available.

Each of the three algorithms was used for (i) a straightforward

streaming variant and (ii) an AE-based model𝑀 of ARCUS. For the

first purpose, we re-trained an AE model incrementally whenever a

new batch is received. The streaming variants of them are referred

2
RAPP: https://github.com/Aiden-Jeon/RaPP

3
RSRAE: https://github.com/dmzou/RSRAE

4
DAGMM: https://github.com/tnakae/DAGMM

Figure 10: For three data streams with known concepts, we
analyzed cumulative density as a function of the latent rep-
resentation similarities between AE-based models trained
under the same concept (top) or the different concepts (bot-
tom). The similarity values between the models trained un-
der the same concepts are mostly above 0.8, while those un-
der the different concepts are at most 0.02.

to sRAPP, sRSRAE, and sDAGMM, respectively. For the second pur-

pose (i.e., to incorporate each model into ARCUS), we implemented

the interface for creating a new model, executing training epochs

with incoming batches, obtaining anomaly scores, extracting latent

representations, and merging with existing models. As mentioned

in the main paper, the reliability threshold and the similarity thresh-

old for ARCUS were fixed to 0.95 (the commonly-used statistical

significance threshold) and 0.8 (the empirically-confirmed threshold

in Figure 10), respectively.

We set the number of epochs for updating the AE-based algo-

rithms to 5 for the initial update and 1 for the incremental update.

The batch size was set to 512 (with the mini-batch size 32). The

size of a latent space in AE-based models was set to the number of

principal components, which guarantees at least 70% of the vari-

ance to be explained, following the relevant work [11]. The optimal

number of layers (i.e., the depth of the encoder / decoder) and learn-

ing rate were tuned to achieve the best result from 2 to 5 and from

0.1 to 0.0001, respectively, for each AE-based model. Unless other-

wise specified, the encoding layer sizes of the AE-based algorithms

were proportionally decreased from the input dimensionality to the

latent dimensionality given the number of layers, and the decod-

ing layer sizes were increased in the opposite way. The layer size

and learning rate determined for each data set and algorithm are

provided with the source code for reproducibility.

https://github.com/Aiden-Jeon/RaPP
https://github.com/dmzou/RSRAE
https://github.com/tnakae/DAGMM
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Figure 11: Scalability test results for all the data sets omitted in the paper.

A.2.2 RNN-based Algorithms. We prepared the streaming vari-

ants of the popular RNN-based anomaly detection algorithms LSTM-

ED [20] and REBM [36]
5
to be usable in our problem setting. LSTM-

ED is based on an encoder-decoder network with long short-term

memory, and REBM is based on a recurrent energy-based model.

For the streaming variants of the models, referred to sLSTM-ED

and sREBM, we trained the models incrementally by continuously

feeding incoming batches over data streams. Epoch number, batch

(and mini-batch) size, and latent space size were set in the same

way as applied in the AE-based algorithm. The source codes of the

two algorithms are available in the public repository.

A.2.3 Streaming Algorithms. We used the five existing state-

of-the-art streaming anomaly detection algorithms: MStream [1],

STARE [34]
6
, DILOF [22], MiLOF [27], and RRCF [8]

7
. STARE em-

ploys kernel density estimation (KDE)-based local outlier detection,

MiLOF and DILOF employ kNN for local outlier factor (LOF), RRCF

employs ensemble decision trees based on the isolation forest [17],

and MStream [1]
8
employs locality-sensitive hashing with dimen-

sionality reduction. We implemented the five algorithms based on

the source codes provided by the authors or publicly available. Sim-

ilarly to the AE- or RNN-based algorithms, incoming batches of

512 data points over data streams were fed to each algorithm for

continuous inference and update.

While most hyperparameters in these algorithms are set to the

default values suggested by the authors, sensitive hyperparameters

are tuned to achieve the best accuracy. For STARE, MiLOF, and

DILOF, the number of neighbors (for KDE-based local outlier scores

or LOF scores) was tuned between 2 and the batch size. For RRCF,

the number of trees was tuned from 2 to 16, and the size of the trees

was tuned between the batch size and ten times the batch size. For

MStream, the temporal decaying factor was tuned between 0 and 1

while using the AE-based dimensionality reduction which showed

the best results in the original paper.

A.3 Performance Comparison of the Streaming
Variants of AE-based Algorithms

Table 3 shows the AUC results of the streaming variants of AE-

based algorithms (i.e., sRAPP, sRSRAE, and sDAGMM) which are

omitted in Table 2 in the main paper. The comparison between these

5
LSTM-ED and REBM: https://github.com/KDD-OpenSource/DeepADoTS

6
STARE: https://github.com/kaist-dmlab/STARE

7
RRCF: https://github.com/kLabUM/rrcf

8
MStream: https://github.com/Stream-AD/MStream

Table 3: The AUC results of the streaming variants of AE-
based algorithms omitted in Table 2.

Data set sRAPP sRSRAE sDAGMM

Synthetic

MNIST-AbrRec
0.860

(±0.006)
0.756

(±0.006)
0.637

(±0.010)
FMNIST-AbrRec

0.697

(±0.018)
0.706

(±0.006)
0.640

(±0.012)
MNIST-GrdRec

0.813

(±0.019)
0.752

(±0.004)
0.633

(±0.017)
FMNIST-GrdRec

0.718

(±0.020)
0.665

(±0.004)
0.610

(±0.006)

Real

(known

drifts)

INSECTS-Abr
0.601

(±0.017)
0.797

(±0.002)
0.596

(±0.009)
INSECTS-Inc

0.528

(±0.026)
0.765

(±0.002)
0.545

(±0.024)
INSECTS-IncGrd

0.553

(±0.010)
0.827

(±0.001)
0.628

(±0.025)
INSECTS-IncRec

0.562

(±0.024)
0.786

(±0.001)
0.606

(±0.011)

Real

(unknown

drift)

GAS

0.813

(±0.011)
0.514

(±0.007)
0.435

(±0.031)
RIALTO

0.712

(±0.033)
0.579

(±0.006)
0.539

(±0.023)

streaming variants and their corresponding ARCUS instances—

sRAPP and ARCUS𝑅𝐴𝑃𝑃 , sRSRAE and ARCUS𝑅𝑆𝑅𝐴𝐸 , and sDAGMM

and ARCUS𝐷𝐴𝐺𝑀𝑀—directly shows the benefit of our adaptive

model pooling technique. The streaming variants showed much

lower accuracy than the corresponding ARCUS instances, because

the variants have limitations in handling diverse concept drifts.

A.4 Scalability of Compared Algorithms
Figure 11 shows the scalability evaluation results of ARCUS𝑅𝐴𝑃𝑃

for varying batch size in the seven data sets omitted in Figure 7

in the main paper. Note that both x-axis and y-axis are in a log

scale. Similarly, the time ARCUS took was less than a second for

processing hundreds of high-dimensional data points, and its rate

of increase was comparable to that of the baseline for all data

sets with different concept drifts. This result, again, demonstrates

that ARCUS is scalable with respect to varying input data rates

regardless of concept drift types.

https://github.com/KDD-OpenSource/DeepADoTS
https://github.com/kaist-dmlab/STARE
https://github.com/kLabUM/rrcf
https://github.com/Stream-AD/MStream
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