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ABSTRACT

Graph Neural Networks (GNNs) have been widely used for mod-

eling graph-structured data. With the development of numerous

GNN variants, recent years have witnessed groundbreaking results

in improving the scalability of GNNs to work on static graphs with

millions of nodes. However, how to instantly represent continuous

changes of large-scale dynamic graphs with GNNs is still an open

problem. Existing dynamic GNNs focus on modeling the periodic

evolution of graphs, often on a snapshot basis. Such methods suf-

fer from two drawbacks: first, there is a substantial delay for the

changes in the graph to be reflected in the graph representations,

resulting in losses on the model’s accuracy; second, repeatedly cal-

culating the representationmatrix on the entire graph in each snap-

shot is predominantly time-consuming and severely limits the scal-

ability. In this paper, we propose Instant Graph Neural Network

(InstantGNN), an incremental computation approach for the graph

representation matrix of dynamic graphs. Set to work with dy-

namic graphs with the edge-arrival model, ourmethod avoids time-

consuming, repetitive computations and allows instant updates on

the representation and instant predictions. Graphs with dynamic

structures and dynamic attributes are both supported. The upper

bounds of time complexity of those updates are also provided. Fur-

thermore, ourmethod provides an adaptive training strategy, which

guides the model to retrain at moments when it can make the

greatest performance gains. We conduct extensive experiments on

several real-world and synthetic datasets. Empirical results demon-

strate that our model achieves state-of-the-art accuracy while hav-

ing orders-of-magnitude higher efficiency than existing methods.

CCS CONCEPTS

• Mathematics of computing → Graph algorithms; • Infor-

mation systems→ Data mining; • Theory of computation→

Dynamic graph algorithms.
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1 INTRODUCTION

Graph Neural Networks (GNNs) are at the frontier of graph learn-

ing research. They have been widely employed in various appli-

cations, such as recommendation systems [9], molecules synthe-

sis and manipulation [39], etc. Traditional GNN algorithms, with

their un-optimized messaging techniques and storage mechanics,

struggle to handle large-scale graph data. Numerous methods [4,

7, 14, 35, 36, 40] have been proposed to improve the scalability of

GNNs and optimize the efficiency in processing large-scale graphs,

by exploiting the computational characteristics of GNNs. These al-

gorithms are designed for static graphs and use static computation

strategies. However, graphs in the real-world generally change their

graph structure and properties over time. Several dynamic Graph

Neural Networks [10, 25, 26, 43, 44] have been proposed in re-

cent years to model the temporal information from graph evolu-

tion. Nevertheless, they focus on the prediction of the properties of

nodes in the future and are limited in scalability. How to instanta-

neously compute the representation matrix on large-scale dynamic

graphs remains an open problem.

Motivation. A GNN’s working mechanism can be characterized

by two operations: propagation and prediction. The former digests

the message passing while the latter learns the weighted matrix.

After a series of GNNs [18, 33] with both operations combined

and being inseparable, SGC [36] and PPNP [19] signaled the find-

ing that desirable properties could be introduced by separating the

propagation process from the prediction process. By convention,

a well-designed message propagation mechanism can be substan-

tially beneficial to GNN models [45].

Let Z be the graph representation matrix, a generalized propa-

gation equation which has been used in SGC [36], AGP [35] and

GBP [7] can be formulated as:

http://arxiv.org/abs/2206.01379v1
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX


Z =

∞
∑

ℓ=0

U (1 − U)ℓPℓX =

∞
∑

ℓ=0

U (1 − U)ℓ
(

D−0AD−1
) ℓ

X, (1)

whereX denotes the featurematrix of the input graph,A andD rep-

resent the adjacent matrix and the degree matrix, respectively. The

propagation matrix P, defined as D−0AD−1 , can easily generalize

existing methods, where 0 and 1 are Laplacian parameters ranging

from 0 to 1. By setting 0 = 1 = 1/2, P represents the symmetric

normalization adjacency matrix used in [18, 19, 36]. Also, the tran-

sition probability matrix AD−1 [8, 40] and the reverse transition

probability matrix D−1A [37] are obtained by setting 0 = 0, 1 = 1

and 0=1,1 =0, respectively. After deriving Z, we can utilize Multi-

Layer Perceptrons (MLPs) to make the prediction with mini-batch

training. Therefore, a GNN model for the multi-class classification

task can be written as Y = B> 5 C<0G ("!% (Z)).

It is known that the calculation of Z is computationally expen-

sive. To handle dynamic graphs, static or snapshot-based GNN

models have to recompute to obtain the updated representation

matrix Z periodically, which increases computational complexity

dramatically. A natural question worth investigating is “can we

reuse results from previous computations to accelerate the calcula-

tion process for the current moment?”. This paper aims to propose

a dynamic GNN algorithm that incrementally updates the repre-

sentation matrix in Equation 1 as the graph changes over time,

with necessary updates on affected nodes only, avoiding the time-

consuming computation on the entire graph.

Contributions. In this paper, we present InstantGNN, an efficient

approximate GNN on dynamic graphs. The intuition behind our

method is to incrementally update the representation matrix based

on the generalized propagation framework. Specifically, we adopt

the computing framework of Personalized PageRank to obtain an

approximate version of the representation matrix Z, which is in-

spired by [4, 35]. When the graph changes, we adjust the represen-

tation vectors of the affected nodes locally, and the impact of the

change on remaining nodes is calculated by propagation operation

in the next step. As a result, our method provides instantaneous

updates for node representations while guaranteeing the same er-

ror as the recalculation. The basis of the update strategy is based

on the underlying mechanics of Personalized PageRank, i.e., we al-

waysmaintain that the invariant holds throughout the evolution of

dynamic graphs, as described in Lemma 1. Extensive experimental

results on real-world and synthetic datasets demonstrate the ef-

fectiveness and efficiency of InstantGNN. Especially, InstantGNN

improves the computing efficiency of large graphs with millions of

nodes by one-to-several orders of magnitude, while keeping com-

parable accuracy. Our contributions can be summarised as follows:

• We propose an Instant Graph Neural Network model for dy-

namic graphs, namely InstantGNN. Our method is able to com-

pute the node representation matrix incrementally based on the

result of previous steps, avoiding unnecessary re-computation

and with guaranteed accuracy. Instead of just the dynamic graph

structure, the method deals with dynamic node features too.

• We provide strong guarantees on the total running time of com-

puting and updating the approximate propagationmatrix on undi-

rected graphs, as shown in Theorem 3&4.

Table 1: Table of notations

Notation Description

� = (+ , �) the graph with vertex set + and edge set �

x the graph signal vector

0 , 0̂ the true and estimated propagation vectors

r the residual vector

eB the one-hot vector with eB (B) = 1

3 (B) the degree of node B

# (B) the neighbor set of node B

" the graph event set," = {�E4=C1, . . . , �E4=C: }

�8 , �8 the graph and edge set at time 8 (0 ≤ 8 ≤ :)

A8 , D8 the adjacency matrix and degree matrix of�8

• Most previouswork is exclusively evaluated on graphswith static

node labels. We construct a real-life dataset from Aminer Net-

work coauthor data, which contains both dynamic structure and

dynamic node labels.

• Our method can create an adaptive forecast for the optimal time

to retrain themodel,which is useful formaximizing performance

gains with a fixed budget for computational costs.
2 PRELIMINARIES

We consider an undirected graph� = (+ , �), where+ is the vertex

set with = = |+ | nodes, � denotes the edge set with< = |� | edges.

Detailed notations are shown in Table 1.

2.1 Dynamic Graphs

In general, dynamic graphs can be broadly classified into two cat-

egories: Continuous-Time Dynamic Graph (CTDG) and Discrete-

Time Dynamic Graph (DTDG). Given an initial graph�0, a CTDG

describes a continuous graph evolving process which can be for-

mulated as sequential events {�E4=C1, . . . , �E4=C: }, where : is the

number of graph events. Specifically, �E4=C8 = (C~?48, 48) denotes

an edge operation of C~?48 conducting on edge 48 ∈ �8 at time 8 .

The types of edge operations are restricted as InsertEdge and Dele-

teEdge. For the sake of simplicity, we assume the graph evolves

from time 8 = 0 and only one edge operation is conducted on one

edge at each time step. More precisely, let �8 denote the graph

topology at the time step 8 . Then �8 can be derived after 8 subse-

quent edge operations (i.e. {�E4=C1, . . . , �E4=C8 }) from�0. A DTDG

is a sequence of static graph snapshots taken at the time intervals,

represented as ( = {�0, . . . ,� |( |}. A graph snapshot�8 in a DTDG

can be treated as the graph captured at time 8 of a CTDG, while

the detailed evolving process (e.g. {�E4=C1, . . . , �E4=C8 }) is omitted.

Therefore, CTDGs are more general than DTDGs [17], and we aim

to design GNN algorithms for CTDGs.

Dynamic Attributes. We note that for real-world graphs, both

graph topologies and node attributes change over time. For ex-

ample, consider the paper collaboration networks with authors as

graph nodes and the community each author belongs to as the

node attribute. The changes of authors’ research interests result in

dynamic node attributes. Thus, in Section 4.3 and 4.4, we consider

the CTDG with dynamic node attributes (DA-CTDG). Specifically,

we useX8 to denote the node feature matrix at the time step 8 . And

X8 (B) corresponds to the attribute vector of node B .

Problem Definition. We consider a CTDG, a dynamic attribute

graph with a fixed node set + , a dynamic edge set, and a dynamic

2



feature matrix. Let Z8 denote the graph representation matrix of

the graph�8 , Z8+1 is the matrix after operating �E4=C8+1 or updat-

ing node features to X8+1. The problem of InstantGNN is to calcu-

late the representation matrix Z8+1 incrementally and instantly.

2.2 Personalized PageRank (PPR) based GNNs

Themainstreammethods of propagation inGNNs are implemented

based on Personalized PageRank (PPR). PageRank (PR) [24] is a

web ranking algorithm used by Google, and PPR is its personalized

version. PPR measures the importance of nodes from the point of

view of a given node, and it has been widely used in web search

engines [16, 24] and social recommendations [13]. Given a graph

� and a starting node B , the PPR score reflects the relative impor-

tance of node C ∈ + with respect to node B . Formally, the PPR is

calculated as follows:

0B = UeB + (1 − U)AD
−10B , (2)

where U is the teleport probability and U ∈ (0, 1), eB is a one-hot vec-

tor with eB (B) = 1. By solving Equation 2 and using a power series

expansion, an equivalent form is given by
∑∞

ℓ=0 U (1−U)
ℓ (AD−1)ℓ eB .

Efficient methods for calculating PPRhave been extensively stud-

ied. A commonly used approximate version is known as Forward

Push [3], which focuses on the region close to the source nodes

and avoids traversing the entire graph. Based on the significant

performance of PPR in applications such as recommendations, re-

searchers found that PPR is incredibly beneficial for understanding

and improving graph neural networks [19] recently. Many meth-

ods, including PPRGo [4], GBP [7], andAGP [35], provide enhanced

propagation strategies based on approximation PPR, in order to ac-

celerate the propagation process and achieve efficient computing

of GNNs. Similarly, the method proposed in this paper adopts and

extends the approximate dynamic PPR [42] to solve the GNN prop-

agation problem in dynamic graphs.

3 RELATED WORK

3.1 Scalable GNNs

Due to the high complexity of traditional full-batchGNNapproaches,

they have difficulty supporting large-scale graphs with millions

of nodes. Numerous methods have been introduced to tackle this

problem, which can be summarized into two categories: sampling-

based methods and linear models.

Sampling-based methods divide a large graph into smaller seg-

ments by sampling subsets of neighbors or sub-graphs of the orig-

inal graph. GraphSage [14] is the first to consider the scalability

of graph neural networks, in which each node only aggregates

the information from its sampled neighbors. Another node sam-

pling approach, VR-GCN [5], further reduces the sampling size

but still does not solve the problem of exponential growth in the

number of neighboring nodes. Layer sampling approaches, such as

FastGCN [6] and ASGCN [41], successfully expand to large-scale

graphs by sampling a fixed number of nodes at each layer of the

GCN. However, overlapping nodes in different batches introduce

significant computational redundancy, reducing the method’s effi-

ciency. Graph sampling methods represented by ClusterGCN [8]

and GraphSAINT [40] obtain a series of subgraphs of the original

graph by exploiting the graph clustering structure or subgraphs

sampler. The problem of exponential growth of neighbors can be

remedied by restricting the size of subgraphs.

Linear models eliminate the nonlinearity between layers in the

forward propagation, allowing us to combine different neighbor-

ing aggregators in a single layer and design scalable models with-

out relying on samplings. SGC [36] and PPNP [19] discover that

the propagation and neural network (activations) can be separated

in GNNs and therefore open the door for simpler or approximate

methods. GDC [20] and GBP [7] capture information about multi-

hop neighborhoods using PPR and heat kernel PageRank and con-

vert the initial feature matrix to a representation matrix for sub-

sequent tasks. PPRGo [4] calculates the approximate PPR matrix

by precomputation and then applies the PPR matrix to the feature

matrix, deriving the final propagation matrix. The precomputation

deals with all message passing operations on the graph topology.

3.2 Dynamic Graph Representation Learning

The straightforward way to handle dynamic graphs is to apply the

traditional static GNN models, for example, GCN [18], GAT [33]

and GraphSage [14], to learn the node representation on every

graph snapshot. However, generating new representation at each

time step is computationally costly, since most traditional graph

neural network methods learn node representation by retraining

the whole model. Some researchers proposed to combine temporal

modeling with node representation learning. DySAT [28] learns

node representations on each graph snapshot and employs atten-

tionmechanisms to learn structural and temporal attention to inte-

grate useful information into node representations adaptively. To

this end, a common solution is to use graph learning algorithms

to collect structural information and utilize sequence models, such

as Recurrent Neural Networks (RNNs), to capture temporal depen-

dencies and add consistency constraints between adjacent time

steps [10, 11, 22, 26, 30]. These methods view a dynamic graph as a

discrete evolution process. The graph is sampled with an interval

into snapshots which consist of a large number of graph changes

instead of a continuous stream of atomic graph events that consis-

tently change the graph.

Nguyen et al. [23] suggest modeling the spatio-temporal net-

work as a continuous model. They add a temporal constraint to

random walk so that both the structural and temporal patterns of

the nodes can be captured. Similarly, HTNE [46] introduces the

neighborhood formation to describe the evolutionary process of

nodes and applies the Hawkes process to capture the influence of

historical neighbors on nodes. Through an attention mechanism,

DyRep [32] creates an RNN-like structure, embedding structural

information about temporal evolution into node representations.

And JODIE [21] proposes a coupled recurrent neural network ar-

chitecture and applies two independent RNNs to update the em-

beddings of users and items.

Limitation. To the best of our knowledge, the problem defined in

Section 2.1 has not been addressed in the existing literature. Exist-

ing scalable graph neural networks are unfortunately inefficient

for our problem as they are optimized for static graphs [4, 35].

They assume static graphs and compute representation matrixes

from scratch whenever a graph is updated. Since the graph is up-

dated frequently in dynamic environments, it is computationally

expensive or even unviable to employ such techniques. On the

3



other hand, temporal GNNs focus on modeling evolution rather

than enhancing the efficiency of generating node representations,

and they are challenging to scale to large graphs.

4 INSTANT GRAPH NEURAL NETWORK

In real-world graph-like structures, the relations between nodes

may change at any time, which means that graphs evolve contin-

uously and, in certain cases, are never-ending. It is sub-optimal to

model these changes with discretely sampled graph snapshots, as

firstly changes will not be reflected in the representations in time,

and secondly the full model needs to be retrained from the entire

graph at each time step, raising efficiency and scalability issues. To

address this problem, we use incremental, approximate learning

for GNN, which effectively handles the continuous graph changes

and make predictions with instantly updated representations. Our

approach is essentially a scalable and online graph neural network.

Scalability is achieved by decoupling the propagation from the pre-

diction progress, allowing the model to be trained in small batches

and scaled to large graphs. Then we update graph representation

vectors for necessary nodes only to attain real-time.

In this section, we present an instant propagationmethod,which

can be recognized as an extension for dynamic graphs based on the

static method. For ease of understanding, we first introduce the ba-

sic propagationmethod. In Section 4.2, we describe details of the in-

stant propagation method, especially how to calculate increments

for CTDGs. Later Section 4.3 introduces the extension of our algo-

rithm to DA-CTDGs. A theoretical guarantee of the running time

is provided in Section 4.4. Finally, we propose an adaptive training

strategy based on InstantGNN in Section 4.5.

4.1 Basic Propagation Method

Although our method is naturally applicable to general circum-

stances, for the sake of simplicity, we restrict 0+1 =1 in Equation 1

and set V =0, 1−V =1 in this paper. Treating X ∈R(=×3) as 3 inde-

pendent information vectors x, Z can be split into3 segments, with

each segment denoted by 0 . Therefore, we can write Equation 1 in

a vector form: 0 =

∑∞
ℓ=0 U (1 − U)

ℓPℓx. Theoretically, 0 has the

effect of aggregating the information of all nodes on the graph us-

ing infinite hops (GNN layers), but computation time and training

parameters are reduced. However, the summation goes to infinity,

making it computationally infeasible to calculate the result exactly

on large graphs. Following [4, 35], we consider an approximate ver-

sion of 0 as vector 0̂ , which is the approximate solution under a

given error limit Y . Meanwhile, we maintain a vector r with each

element indicating the accumulated mass of information the node

has received but not yet propagated. This enables us to design an

approximate propagation process that achieves a speed-accuracy

trade-off by adjusting r . Algorithm 1 describes the pseudo-code of

the basic propagation progress. The algorithm takes the initial 0̂

and r as input. Then, we iteratively select the node B that exceeds

the allowed error. Its U-fraction of the residual mass is converted

into the estimated mass, and the remaining ((1−U) · r (B)) is dis-

tributed evenly among its neighbors using the transition matrix P.

For instance, let 0̂ = 0 and r = x be the initial parameters, where

0 is a zero vector, Algorithm 1 outputs the propagation result cor-

responding to the current graph structure. As a result, we obtain

Algorithm 1: Basic Propagation Algorithm.

Input :Graph� , error threshold Y , teleport probability U ,

convolutional coefficient V , initial estimated

propagation vector 0̂ , initial residual vector r

Output :Updated estimated propagation vector 0̂ and

residual vector r

1 while exist B ∈ + with |r (B) | > Y · 3 (B)1−V do

2 0̂ (B) ← 0̂ (B) + U · r (B);

3 for each C ∈ # (B) do

4 r (C) ← r (C) +
(1−U ) ·r (B)

3 (B)V3 (C)1−V
;

5 r (B) ← 0;

6 return 0̂ , r ;

0̂ as an estimator for the graph propagation vector 0 which satis-

fies the condition |0̂ (B) − 0 (B) | ≤ Y ·3 (B)1−V for each node B ∈ + .

We add self-loops for all nodes, following the setting in GCN [18],

which guarantees that the degree of node B ∈ + is at least 1. There-

fore, if node B is a dangling node, it only propagates and aggregates

information of its own, such that |0̂ (B) −0 (B) | ≤ Y ·3 (B)1−V holds.

Therefore, the relationship between x, 0 , 0̂ and r can be de-

scribed as Lemma 1, which is the basic premise for calculating the

increment when the graph changes, and we shall discuss it later.

Due to the space limit, we only present the conclusion and defer

detailed proof to the technical report [1].
Lemma 1. For every graph signal vector x, let 0 be the true prop-

agation vector, the estimated vector 0̂ and residual vector r satisfy

the following invariant property during the propagation process:

0̂ + Ur = Ux + (1 − U)P0̂ . (3)

4.2 Instant Propagation Method

Given a continuous-time dynamic graph (�,") with the static

graph signal x, we first apply Algorithm 1 to obtain 0̂0 and r0 for

the graph at time 8 = 0. The approximate dynamic propagation al-

gorithm aims to maintain a pair of 0̂ and r while keeping errors

within a limited range, i.e. r (B) ≤ Y · 3 (B)1−V for any node B ∈ + .

The key to solving the challenge is to maintain Equation 3 in the

dynamic graph setting. By locally adjusting the affected nodes (by

each graph event) to keep the equation holding, we can obtain fea-

sible estimates and residuals corresponding to the updated graph.

We start from the invariant equation of Lemma 1 and rewrite it as

an equivalent formulation that for each node B ∈ + , we have:

0̂ (B) + Ur (B) = Ux (B) +
∑

C ∈# (B)

W (B, C) (4)

where W (B, C) =
(1−U )0̂ (C)

3 (B)V3 (C)1−V
refers to the element related to node C

in the equation of node B .

Without loss of generality, let us suppose that we add a new

edge to graph � in the next time step. Considering the new edge

as (D, E), we found that only nodes D , E , F∈# (D), and ~∈# (E) do

not satisfy Equation 4, since no other variables change except the

degrees of nodeD and E . By substituting the B in Equation 4 with D ,

it is easy to obtain 0̂ (D) +Ur (D) = Ux (D) +
∑

C ∈# (D) W (D, C), which

is failed after inserting edge (D, E). This is caused by two changes

on the right-hand side of the equation:

4



• In denominator of the summation term, 3 (D) changes to 3 (D) +1.

An intuitive explanation is that the mass D pushed out would al-

ways be divided into several equal proportions for all neighbors

ofD . Since E is added to be a new neighbor, the proportion should

change to 1
(3 (D)+1)V

accordingly.

• A new term, which refers to W (D ′, E ′) =
(1−U )0̂ (E)

(3 (D)+1)V (3 (E)+1)1−V
, is

added,whereD ′ and E ′ are the updatednodesD and E with degree

3 (D) + 1 and 3 (E) + 1, respectively.

The updated equation of node D implies: 0̂ (D) + Ur ′(D) =Ux (D) +
∑

C ∈# (D) W (D
′, C) + W (D ′, E ′), where r ′(D) is the adjusted residual,

also known as r (D) + Δr (D). Such that we can obtain an accurate

increment for residual of node D by subtracting r (D) from r ′(D).

Furthermore, we can use 0̂ (D) + Ur (D) − Ux (D) to equivalently

substitute
∑

C ∈#(D)W (D, C). Then we finally obtain the result:

Δr (D)= (0̂ (D)+Ur (D)−Ux (D)) ·
3 (D)V−(3 (D)+1)V

U · (3 (D)+1)V
+
W (D ′, E ′)

U
. (5)

Note that we only update D’s residual here, and its estimate 0̂ (D)

will be adjusted in the next step.

For each node F ∈ # (D), we observe that the equation 0̂ (F) +

Ur (F) = Ux (F) +
∑

C ∈# (F) W (F, C) turns to be invalid. It is also

caused by the fact that the degree of node D has changed. Specifi-

cally, the element containing node D has changed to W (F,D ′). And

we obtain the precise increment of nodeF by altering its residual

r (F) in a same fashion.

Updates to the affected nodes E and ~ ∈ # (E) are almost the

same as above. As a result, we have made adjustments for all af-

fected nodes to keep Equation 4 holding to these nodes. However,

the residuals of a few nodes may be outside of the error range af-

ter the correction, i.e., above (Y ·3 (B)1−V) or below (−Y ·3 (B)1−V).

We then invoke Algorithm 1 to help guarantee that the error of

results is within the error tolerance. Due to the fact that majority

of nodes already have residuals that meet the requirements of the

given error, the running time is significantly less than the initial-

ization time.

According to the procedure described above, the situation of re-

moving an edge can be solved in a similar process. The incremental

update procedure differs from the insertion case only in the update

of the degree, i.e. it should be 3 (D) − 1 instead of 3 (D) +1. Let�8 be

the graph updated from �0 with {�E4=C1, . . . , �E4=C8 }, 8 = 1, . . . , :

indicates the time that �E4=C8 arrives. Algorithm 2 describes the

pseudo-code of generating the estimated propagation vector 0̂ and

residual vector r for a CTDG in the case that graph events arrive

one by one in order. Each step in the outer loop of Algorithm 2

proceeds as follows, where 48 = (D, E) denotes the edge arrived at

the current time step and 0̂ denotes the node representation of a

dimension at this step. First, each affected node (D , E , F ∈#8−1(D)

and ~ ∈#8−1(E)) updates the residual to maintain its own equation,

line 5-6 in Algorithm 2. Note that this update step may cause the

error on some nodes to surpass the bounded range. Then, starting

with the affected nodes, we invoke Algorithm 1 to reduce the error

and propagate the effect of edge 48 = (D, E) to the other nodes in

the graph, line 7 in Algorithm 2.

Batch update. To extend Algorithm 2 to the batch update setting,

given a set of graph events, we first update the graph and then

calculate increments of residuals for the affected nodes. However,

Algorithm 2: Dynamic Propagation Algorithm.

Input :Dynamic graph {�0, " = {�E4=C1, . . . , �E4=C: }},

graph signal vector x, error threshold Y , teleport

probability U , convolutional coefficient V

Output :estimated propagation vector 0̂ ,

residual vector r

1 0̂ ← 0, r ← x;

2 0̂, r ← �0B82%A>?060C8>=(�0, Y, U, V, 0̂, r);

3 for �E4=C8 = (48 = (D, E), C~?48) ∈ " and 8 = {1, . . . , :} do

4 Generate �8 from updating�8−1 by �E4=C8 ;

5 UPDATE(D , E , 8 , C~?48 );

6 UPDATE(E , D , 8 , C~?48 );

7 0̂ , r ← �0B82%A>?060C8>=(�8, Y, U, V, 0̂ , r);

8 return 0̂ , r ;

9 Function UPDATE(node D , node E , time 8 , C~?4):

10 Δr (D) ← (0̂ (D) + Ur (D) − Ux (D)) ·
38−1 (D)

V−38 (D)
V

38 (D)V
;

11 if C~?4 is InsertEdge then

12 Δr (D) ← Δr (D) +
(1−U )0̂ (E)

38 (D)V38 (E)1−V
;

13 else if C~?4 is DeleteEdge then

14 Δr (D) ← Δr (D) −
(1−U )0̂ (E)

38 (D)V38 (E)1−V
;

15 Δr (D) ← Δr (D)/U ;

16 r (D) ← r (D) + Δr (D);

17 for eachF ∈ #8−1(D) do

18 Δr (F) ←
(1−U )0̂ (D)

U ·38 (F)V
·
(

1
38 (D)1−V

− 1
38−1 (D)1−V

)

;

19 r (F) ← r (F) + Δr (F);

instead of iterating over all graph events, we compute only the final

increments that are caused by the occurrence of : graph events on

each affected node. Parallel processing of the affected nodes can

further improve the efficiency of the algorithm. Appendix contains

the complete pseudo-code.

4.3 Extension to Dynamic-attribute Graphs

This section discusses the extension of the proposed algorithm to

handle DA-CTDGs, which are defined in Section 2.1. The challenge

is that the structure and attribute of the graph are both chang-

ing over time. For ease of implementation, we first deal with the

dynamic attributes, then employ Algorithm 2 to treat structural

changes and obtain final results at each time step. The basic idea

is to make local adjustments to ensure Equation 4 still holds for

every node, which is similar to Section 4.2. The main difference is

that every node could be an influenced node, since each element

of the graph signal vector x may have changed.

We presume that the underlying graph structure is static while

dealing with dynamic attributes. Let �8 be the graph at time 8 ,

where 0 ≤ 8 ≤ : and : is the number of graph events. We have

A0 = A1 = . . . = A: , where A8 is the adjacent matrix of �8 . For

each node B ∈+ , let 38 (B) be the degree of node B at time 8 . Recall

the definition, it is easy to observe that 30 (B) = . . . = 3: (B). Let x8
be the graph signal vector of �8 , an intuition is to add the incre-

ment of the graph signal Δx8 =x8−x8−1 to the residual vector r8−1,

i.e. Δr8 = Δx8 . From Equation 4, for each node B ∈ + , the updated

5



equation implies:

0̂ (B) + U (r (B) + Δr (B)) = U (x (B) + Δx (B)) +
∑

C ∈# (B)

(1 − U)0̂ (C)

3 (B)V3 (C)1−V
.

As a result, setting Δr8 (B) = Δx8 (B) is efficient to ensure that the

equation holds for the graph �8 . After updating residuals for all

impacted nodes, we can use the basic propagation algorithm to

eliminate residuals exceeding the threshold until the desired error

tolerance is reached. Following that, we can easily use Algorithm 2

by temporarily keeping the graph signal static.

4.4 Analysis

In this section, we provide a theoretical analysis of the computa-

tional complexity of the proposed method. All the proofs are de-

ferred to the technical report [1] due to space constraints. We be-

gin by providing an expected upper bound on the running time

of CTDGs based on the method discussed in Section 4.2. Follow-

ing that, we examine the time required to manage dynamic at-

tributes. Therefore, the total running time for DA-CTDGs can be

easily calculated by adding these two components. For illustration

purposes, we define a vector �8 = 1⊤ · (D
V
8 Q8), where 1 is a vec-

tor with all elements set to 1, and D8 is the degree matrix of �8 .

Q8 = U [I − (1−U)D
−V
8 A8D

V−1
8 ]−1 is a matrix in which (B, C)-th

element is equal to 38 (B)
1−V · 0B8 (C) · 38 (C)

V−1.

Cost for CTDGs. The total time cost is calculated by adding the

initialization and the update time. We first present a theorem to

bound the running time of step 2 of Algorithm 2.

Theorem 1 (Cost of Initialization). Given an error threshold

Y , the time of generating an estimate vector 0̂0 for the initial graph

�0, such that |0̂0 (B) − 00 (B) | ≤ Y · 30 (B)
1−V , for any B ∈+ , using

Algorithm 1, is at most )8=8C =
1
UY ·

(

‖D
V
0 · 00‖1 − ‖�

⊤
0 · r0‖1

)

.

Next, we will show that the time to maintain a pair of estimated

propagation and residual vector meeting the error tolerance in the

evolution is only related to the increment.

Theorem 2 (Cost of Updates). Let�8 denote the updated graph

from �8−1 guided by �E4=C8 . The time for updating 0̂8−1 and r8−1,

such that |0̂8 (B) −08 (B) | ≤ Y ·38 (B)
1−V , for any node B∈+ , is at most

)8 =
1
UY ·

(

2Y + ‖�⊤8 · Δr8 ‖1 + ‖�
⊤
8−1 · r8−1‖1 − ‖�

⊤
8 · r8 ‖1

)

.

Note that Δr8 is a vector with each element Δr8 (B), B ∈+ , corre-

sponding to the precise increment of node B’s residual. We only ad-

just the residuals of the affected nodes, such that Δr8 is sparse with

values only at D , E , F ∈ # (D), ~ ∈ # (E) when 48 = (D, E). With the

assumption that the edges arrive randomly and each node has an

equal probability of being the endpoint, we have � [‖�⊤8 ·Δr8 ‖1] =
(6−4U ) ‖08−1 ‖1

U= + 6Y
U −2Y , and details can be found in the technical re-

port [1]. Now we consider the expected time required for running

Algorithm 2.

Theorem 3 (Total Cost). Let " = {�E4=C1, . . . , �E4=C: } be the

graph event sequence. Given an error threshold Y , the time of gener-

ating an estimated vector 0̂: for the graph �: , such that |0̂: (B) −

0: (B) | ≤ Y · 3: (B)
1−V , for any node B ∈ + , is at most ) = )8=8C +

∑:
8=1)8 =

‖D
V
0 ·00 ‖1
UY + 6:

U 2 + (6−4U)
∑:
8=1
‖08−1 ‖1
U 2=Y

.

Thus, for the special case of V = 0, x = eB , the worst-case ex-

pected running time is $ ( 1Y + : +
:
=Y ). Typically Y = Ω( 1= ), we can

achieve$ ( 1Y +:), where$ (
1
Y ) is the expected time for initialization.

Therefore, we can maintain estimates using $ (1) time per update.

Cost of handling dynamic attributes. Time complex analysis in

this case is almost the same, the main difference is that the graph

structure is static. Such that we have ‖(�⊤8 − �
⊤
8−1) · r8−1‖1 =

Y ·
∑

B∈+ (38 (B) − 38−1(B)) = 0. Note that Δr8 may not be a sparse

vector here. Applying the increment mentioned above, we have

‖�8Δr8 ‖1 =

∑

B∈+ |�8 (B)Δx8 (B) | =
∑

B∈+ |38 (B)
V
Δx8 (B) |. There-

fore, we have Theorem 4 to bound the time cost of the proposed

method at the dynamic setting that the graph signal is changing

over time. It is clear that the expected time required to update es-

timates is proportional to the signal increment.

Theorem 4 (TotalCost forHandlingDynamic Attributes).

Let Δx8 be the increment of graph �8 updated from �8−1. Given an

error threshold Y , the time of generating an estimated vector 0̂: for

the graph�: , such that |0̂: (B) −0: (B) | ≤ Y ·3: (B)
1−V , for any node

B ∈ + , is at most ) =

‖D
V
0 ·00 ‖1
UY +

∑:
8=1
‖D

V
8 Δx8 ‖1
UY .

Since the propagation process on each dimension is indepen-

dent, we perform the dynamic propagation on multiple features in

parallel, which further accelerates the execution of algorithm.

4.5 Adaptive Training

Typically, we retrain models at fixed intervals on continuous-time

dynamic graphs, which is known as Periodic training and has been

used in experiments of Sections 5.2 and 5.3. Let : and |( | be the

total number of graph events and times allowed retraining, respec-

tively. Periodic training retrains the model |( | times with an inter-

val of (:/|( |) during evolution, resulting in resource waste and

sub-optimal results from retraining. Once a series of graph events

have been evaluated, ourmethod can detect instantly the degree of

influence they have on the graph. Defining ΔZ= ‖Z8 − Z8−1‖� , 1 ≤

8 ≤ : , we can track the degree of change for the current feature

matrix compared to the previous one. Therefore, we propose an

Adaptive training strategy based on InstantGNN to control the in-

terval width and obtain better performance in budget-constrained

model retraining. Specifically, we consider that we should retrain

the model only when a significant accumulative change is present,

in other words, when the combined impact of numerous events

surpasses a certain threshold, denoted as \ .

For graphs that satisfy specific graph change patterns, we

can easily predict when to retrain models next time by fitting their

curves. Specifically, for a graph that exhibits changes that follow

a certain distribution, after finding the first A times for retraining

under the guidance of \ , we can fit the curve to predict remaining

( |( | −A ) times when the model should be retrained. As a result, we

can retrain the model frequently when the graph changes dramat-

ically and often, while increasing the interval between retraining

when the graph changes gently. For generic graphs, since there

is no prior knowledge of the graph change patterns, the problem

turns into choosing the appropriate \ . In the real-world, graph evo-

lution is a long-term process. A feasible solution is to compute the

average ΔZ over the first few small intervals (e.g., first ten intervals

of 10,000 graph events) and use it as the threshold \ to determine

when the model needs to be retrained in the future.
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Table 2: Statistics of experimental datasets.

Dataset n m d |I | |Y |

Arxiv 169,343 1,157,799 128 40 17

Products 2,449,029 61,859,012 100 47 16

Papers100M 111,059,956 1,615,685,872 128 172 21

Aminer 1,252,095 4,025,865 773 9 31

SBM-500 500,000 6,821,393 256 50 10

SBM-1" 1,000,000 13,645,722 256 50 10

SBM-5" 5,000,000 68,228,223 1024 100 10

SBM-10" 10,000,000 136,469,493 1024 100 10
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Figure 1: Comparison of different methods on Arxiv.

5 EXPERIMENTS

In this section, we conduct experiments on both real-world and

synthetic datasets to verify the effectiveness and efficiency of In-

stantGNN. First, we compare the accuracy and efficiency of Instant-

GNNwith the state-of-the-art methods on graphs with static labels

and dynamic labels, respectively. Then, we conduct an experiment

to demonstrate that InstantGNN is capable of adaptive training and

achieving superior results while maintaining the same budget with

periodic training.

5.1 Datasets and Baselines

Datasets.We use three public datasets in different sizes, provided

by [15], for our experiments: a citation network Arxiv, a prod-

ucts co-purchasing network Products and a large-scale citation net-

work Papers100M. To imitate the graphs’ dynamic nature, we re-

move a certain number of edges from the original graphs and re-

place them later. Due to the scarcity of publicly available datasets

for dynamic graph node classification, particularly those with dy-

namic labels, we construct a real-world dataset and four synthetic

datasets with dynamic labels, to better evaluate the effectiveness of

our method and facilitate the evolution of dynamic GNNs. Details

of data pre-processing are deferred to the appendix.

• Aminer.Following [44], we derive a co-authorship network from

the academic social networks of Aminer [31]. It consists of 1,252,095

authors as vertices, and the coauthor relationships are consid-

ered as edges. The information about authors’ communities is de-

rived from Australian CORE Conference and Journal Ranking [2]

and used as labels in this dataset.

• SBM datasets. We generate graphs with community structure

using stochastic block model (SBM) [29]. Based on a similar dy-

namic strategy with [38], we inherit nodes from the graph at

the previous time step and change their connectivity to simulate

the evolution of communities in the real world. The features of

nodes are generated from sparse random vectors.

Table 2 summarizes the properties and scales of the datasets

used in the paper. For the number of edges of these datasets, we
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Figure 2: Comparison of different methods on Product.
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Figure 3: Comparison of different methods on Papers100M.
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Figure 5: Comparison on Aminer.

report the value at the last snapshot. Note that 3 denotes the di-

mension of node features, |� | is the number of categories, and |( |

represents the number of snapshots. All graphs in those datasets

are transformed into unweighted and undirected graphs.

We compare the proposed method with several state-of-the-art

methods, including static graph learning methods and dynamic

graph learning methods. Static methods include GCN [18] and two

scalable GNN models, PPRGo [4] and AGP [35], and we train these

models at each snapshot. In particular, we adopt GraphSAINT [40]

to sample subgraphs so that GCN can be trained on sampled sub-

graphs and scale to large graphs. We also compare InstantGNN

with two temporal graph neural networks, including T-GCN [43]

and MPNNLSTM [25]. More details and parameter settings of base-

line methods can be found in the appendix. For a fair comparison,

we preserve representation matrices of AGP, PPRGo and Instant-

GNN at the same approximation level, unless specifically stated.

5.2 Evaluation on CTDGs with Static Labels

On Arxiv, Products, and Papers100M, we run experiments using

the basic experimental configuration of OGB [15] and the dynamic

setting mentioned in Section 5.1. Particularly, nodes in these three

datasets have static labels that would not change over time. We

compare the accuracy and running time of different methods on
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Figure 6: Comparison of accuracy on SBM datasets.
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Figure 7: Comparison of propagation time on SBM datasets.

each dataset. The time of InstantGNN, AGP and PPRGo can be di-

vided into two parts: the time to obtain the propagation matrix

(also known as preprocessing) and the time to train the neural

network. Since we focus on reducing the propagation time on dy-

namic graphs, Figure 1-3 show the comparison results of accuracy

and propagation time on Arxiv, Products and Papers100M, respec-

tively. Overall, InstantGNN achieves orders-of-magnitude acceler-

ation without compromising training accuracy, and advantages be-

come even more apparent on large graphs. The results suggest that

InstantGNN needs drastically less time to obtain the propagation

matrix for graph at the current time, based on the empirical re-

sults. For instance, after obtaining the initialized propagation ma-

trix, InstantGNN only spends about 60 seconds updating the prop-

agation matrix for the next snapshot on Papers100M. In compari-

son, AGP has to calculate the result from scratch and needs more

than an hour. We also observe that it is challenging for T-GCN and

MPNNLSTM to scale to large-scale graphs such as Products and Pa-

pers100M. To be more specific, they cannot complete one training

epoch within 48 hours on Products and run out of 768GB memory

on Papers100M. Figure 4 shows the average total running time on

three datasets, and we can come to a similar conclusion as above.

5.3 Evaluation on CTDGs with Dynamic Labels

In this section, we conduct experiments on Aminer and four syn-

thetic datasets. The label of each node in these datasets at time

8 is heavily influenced by its present attributes, which are con-

tained in the current graph�8 . As a result, labels evolve over time,

more closely resembling the situation in real-world applications.

We split nodes into training, validation, test sets in a 70:20:10 ratio.

Results on Aminer. Figure 5 shows the comparison in accuracy

and propagation time of different methods on Aminer. We observe

that InstantGNN can significantly reduce propagation time while

achieving better performance. InstantGNNgenerates updatedprop-

agation matrices based on previous computation results, allowing

for a 10× speedup over static approaches that require starting from

scratch for graph signal propagation and neural network training.

We also note that there is an upward trend of propagation time. Un-

derstandably, the raw statistical data is collected from 1984, when

authors began to collaborate with each other. As the amount of

collaboration grows over time, the number of edges grows as well,

resulting in an increase in propagation time.
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Figure 8: Periodic training vs. Adaptive training.

Results on SBM datasets.We also evaluate InstantGNN on four

SBM datasets with 500 , 1" , 5" , and 10" nodes (1 = 103, 1" =

106), respectively. The graph events, which include insertions and

deletions of edges, occur at random in these datasets, and the la-

bels of nodes change correspondingly, as discussed in Section 5.1.

Figure 6 compares the accuracy of different methods. We observe

that InstantGNN, AGP, PPRGo, GCN and MPNNLSTM can capture

structural information of graphs even from random features, while

T-GCN fails to convergence. Figure 7 plots propagation time on ev-

ery snapshot. A critical observation is that InstantGNN can achieve

comparable accuracy to the strongest baseline AGP while requir-

ing significantly less propagation time. More specifically, on the

SBM-10" dataset and snapshot C > 1, InstantGNN reduces the

propagation time by more than 50 times over AGP without sacri-

ficing accuracy. Due to the excessive running time of PPRGo and

GCN, on both SBM-5" and SBM-10" datasets, we tune their pa-

rameters to optimize the performance and ensure that propagation

and training processes could be completed within 48 hours.

5.4 Evaluation of Adaptive Training

We conduct experiments to demonstrate the effectiveness ofAdap-

tive training mentioned in Section 4.5, details of the experimen-

tal setup can be found in the appendix. Setting the number of re-

training times |( | = 16, Figure 8 (left) shows the performance of

Adaptive training compared with Periodic training on Arxiv, which

has only insertion during the whole graph evolution and has been

used in Section 5.2. It is evident that from the results, our method

effectively identifies when it should retrain the model to obtain

overall better results. As a result, quantitatively, we achieve a 1.5%

higher Area Under Curve (AUC) than Periodic training over the en-

tire course of the graph evolution. We also evaluate Adaptive train-

ing on SBM-500 with both inserted and deleted edges during the
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evolution, which better simulates real networks. Setting |( | = 3,

Figure 8 (right) plots the accuracy curves of Periodic training and

Adaptive training, where hollow markers denote the moment of

retraining. We observe that Adaptive training significantly outper-

forms Periodic training with a 4.1% higher AUC.

6 CONCLUSION

This paper presents an instant graph neural network for dynamic

graphs, which enables the incremental computation of the graph

feature matrix, based on that from the previous step and a graph

event. Compared with existing methods, InstantGNN avoids re-

peated and redundant computations when the graph is updated

and enables instant prediction of node properties at the current mo-

ment. Furthermore, InstantGNN achieves adaptive training tomax-

imize the model’s performance gains with a given training budget.

It also deals with bothCTDGs andDA-CTDGs. Extensive empirical

evaluation demonstrates that InstantGNN is efficient for training

on dynamic graphs while providing better performance. It truly

enables online or instant graph neural networks for large-scale dy-

namic graphs with frequent updates.
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A BATCH UPDATE

We show how to construct estimated vectors for dynamic graphs

with one-by-one updated edges in Algorithm 2. We adapt our ap-

proach in this section to support parallel processing and batch up-

date settings. We begin with an equivalent approach of updating a

single node. That is, we can modify the estimate of a node and so

avoid repeatedly updating residuals on its neighbors. Taking the in-

sertion of edge 4 = (D, E) as an example, as described in Section 4.2,

changes in the degrees of nodes D and E have an effect on their

neighbors to maintain their equations hold. The primary cause is

the transition of
0̂ (D)

3 (D)1−V
to

0̂ (D)

(3 (D)+1)1−V
. As stated in line 5-6 and

9-19 of Algorithm 2, we add the increment 0̂ (D) · ( 1
(3 (D)+1)1−V

−

1
3 (D)1−V

) and 0̂ (E) · ( 1
(3 (E)+1)1−V

− 1
3 (E)1−V

) to the residuals of each

node F ∈ # (D) and ~ ∈ # (E). To avoid modifying all neigh-

bors of nodes D and E , we let 0̂ ′(D) = 0̂ (D) ·
(3 (D)+1)1−V

3 (D)1−V
, where

0̂ ′ (D) denotes the updated estimate of node D . As a result, we

have
0̂
′ (D)

(3 (D)+1)1−V
=

0̂ (D)

3 (D)1−V
, and the equation for node F ∈ # (D)

remains valid. Additionally, the residual of node D needs to be ad-

justed to account for the change in 0̂ (D), i.e., Δr (D) = −
0̂
′ (D)−0̂ (D)

U =

0̂ ′ (D) ·
3 (D)1−V−(3 (D)+1)1−V

U · (3 (D)+1)1−V
. Let P(F,D) be the element of the F-

th row and D-th column of transition matrix P. Note that Δr (D) ·

(1−U)P(F,D) = Δr (F) (Equation 6), indicating that Δr (D) can be

transformed into Δr (F) following another push operation. This

demonstrates the equivalent nature of these two operations from

another perspective. We omit details about updating node E since

it is handled similarly. The advantage of modifying 0̂ is that we

need only update the nodes D and E when edge 4 = (D, E) arrives,

simplifying subsequent parallel processing.

Here we focus on the dynamic propagation algorithm under

batch update setting, and Algorithm 3 gives the pseudo-code. The

main idea is to simultaneously calculate the increments caused by

multiple edges. Given a set of graph events" = {�E4=C1, . . . , �E4=C: },

line 3 corresponds to the graph updating stage, where the graph

in time step : ,�: , is generated from the initial graph guided by" ,

Algorithm 3: Parallel Dynamic Propagation Algorithm

for Batch Update.

Input :Dynamic graph {�0, " = {�E4=C1, . . . , �E4=C: }},

graph signal vector x, error threshold Y , teleport

probability U , convolutional coefficient V

Output :estimated propagation vector 0̂ ,

residual vector r

1 0̂ ← 0, r ← x;

2 0̂, r ← �0B82%A>?060C8>=(�0, Y, U, V, 0̂, r);

3 Generate �: from updating�0 by" ;

4 +05 5 42C43 ← {D | the degree of node D has changed};

5 parallel for each D ∈ +05 5 42C43 do

6 Δ3 (D) ← the degree to which node D has changed ;

7 0̂ (D) ← 0̂ (D) ·
3 (D)1−V

(3 (D)−Δ3 (D))1−V
;

8 Δr1 (D) ← 0̂ (D) ·
(3 (D)−Δ3 (D))1−V−3 (D)1−V

U ·3 (D)1−V
;

9 r (D) ← r (D) + Δr1 (D) ;

10 parallel for each D ∈ +05 5 42C43 do

11 Δr2 (D) ← (0̂ (D)+Ur (D)−Ux (D)) ·
(3 (D)−Δ3 (D))V−3 (D)V

3 (D)V
;

12 for each E ∈ {the added neighbors of node D} do

13 Δr2 (D) ← Δr2 (D) +
(1−U )0̂ (E)

3 (D)V3 (E)1−V
;

14 for each E ∈ {the deleted neighbors of node D} do

15 Δr2 (D) ← Δr2 (D) −
(1−U )0̂ (E)

3 (D)V3 (E)1−V
;

16 Δr2 (D) ← Δr2 (D)/U ;

17 r (D) ← r (D) + Δr2 (D) ;

18 0̂, r ← �0B82%A>?060C8>=(�:, Y, U, V, 0̂ , r);

19 return 0̂ , r ;

and : denotes the batch size. Lines 5-9 represent the first step of

updating the affected nodes, in which we update the estimates and

residuals of these nodes in the way aforementioned. Recall that a

portion of an affected node’s increment is caused by its added or

deleted neighbors. Therefore, we compute the increment by iterat-

ing over all new and vanishing neighbors of each affected node, as

in lines 10-17. Line 18 invokes the basic propagation algorithm to

reduce the error, which is the same as line 7 in Algorithm 2.
Example. The following toy example with k=2 demonstrates that
the increment in Algorithm 3 is equivalent to the cumulative in-
crease calculated one by one. Let" = {(41 = (D, E), �=B4AC�364), (42 =
(D,~), �=B4AC�364)}, we first compute the increments on nodeD us-
ing Algorithm 2 step by step. Themain difference is that we update
the estimate of node D rather than iteratively updating its neigh-
bors. Inserting 41 = (D, E), the update at node D is:

0̂
(D,E) (D) = 0̂ (D) ·

(3 (D) + 1)1−V

3 (D)1−V
,

Δr
(D,E)
1 (D) = 0̂

(D,E) (D) ·
3 (D)1−V − (3 (D) + 1)1−V

U · (3 (D) + 1)1−V
,

r
(D,E)
temp (D) = r (D) + Δr

(D,E)
1 (D), (6)

Δr
(D,E)
2 (D) =

1

U

(

(

0̂
(D,E) (D) + Ur

(D,E)
temp (D) − Ux (D)

)

·

(

3 (D)V

(3 (D) + 1)V
− 1

)
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+
(1 − U)0̂ (E)

(3 (D) + 1)V3 (E)1−V

)

,

r
(D,E) (D) = r

(D,E)
temp (D) + Δr

(D,E)
2
(D),

where 0̂ (D,E) (D) and r (D,E) (D) denote the estimate and residual of
nodeD after inserting edge 41 = (D, E). For notational convenience,

we denote the residual caused by updating estimates as Δr
(D,E)
1 (D),

r
(D,E)
temp (D) is an intermediate result, and Δr

(D,E)
2 (D) represents the

mass that triggered by the new neighbors. Then, the edge 42 =

(D,~) arrives, and the node D is updated as follows.

0̂
(D,~) (D) = 0̂

(D,E) (D) ·
(3 (D) + 2)1−V

(3 (D) + 1)1−V
,

Δr
(D,~)
1 (D) = 0̂

(D,~) (D) ·
(3 (D) + 1)1−V − (3 (D) + 2)1−V

U · (3 (D) + 2)1−V
,

r
(D,~)
temp (D) = r

(D,E) (D) + Δr
(D,~)
1 (D), (7)

Δr
(D,~)
2 (D) =

1

U

(

(

0̂
(D,~) (D) + Ur

(D,~)
temp (D) − Ux (D)

)

·

(

(3 (D) + 1)V

(3 (D) + 2)V
− 1

)

+
(1 − U)0̂ (~)

(3 (D) + 2)V3 (~)1−V

)

,

r
(D,~) (D) = r

(D,~)
temp (D) + Δr

(D,~)
2 (D) .

Algorithm 3 simultaneously calculates the increment induced
by the insertion of edge 41 = (D, E) and edge 42 = (D,~) for node
D:

0̂
′ (D) = 0̂ (D) ·

(3 (D) + 2)1−V

3 (D)1−V
,

Δr1 (D) = 0̂
′ (D) ·

3 (D)1−V − (3 (D) + 2)1−V

U · (3 (D) + 2)1−V
,

rtemp (D) = r (D) + Δr1 (D), (8)

Δr2 (D) =
1

U

(

(

0̂
′(D) + Urtemp (D) − Ux (D)

)

·

(

3 (D)V

(3 (D) + 2)V
− 1

)

+
(1 − U)0̂ (E)

(3 (D) + 2)V3 (E)1−V
+

(1 − U)0̂ (~)

(3 (D) + 2)V3 (~)1−V

)

,

r
′ (D) = rtemp (D) + Δr2 (D),

where 0̂ ′(D) and r ′(D) denote the estimate and residual of nodeD

after updating, and rtemp (D) is the intermediate result. Substitut-

ing Equation 6 and 7, we found that 0̂ ′ (D) = 0̂ (D,~) (D), Δr1(D) =

Δr
(D,E)
1 (D) + Δr

(D,~)
1 (D), and Δr2(D) = Δr

(D,E)
2 (D) + Δr

(D,~)
2 (D). It

is easy to obtain r ′(D) = r (D,~) (D). Therefore, the final results of

computations performed together and separately are identical.

B ERROR ANALYSIS

To analyze the error bound, we first note that Algorithm 1 is ap-

plied to obtain the estimate vector 0̂8 and residual vector r8 cor-

responding to �8 after computing increments, as line 7 in Algo-

rithm 2. This means that the error adjustment of 0̂8 is actually

performed by Algorithm 1. Therefore, the dynamic propagation

method can preserve the result with the same error for each time

step. Given the error threshold Y , we use the following theorem to

derive the error bound of our method.

Theorem 5 (Error Analysis). Let 08 (B) be the propagation vec-

tor of the graph �8 , and 38 (B) is the degree of node B at time 8 . For
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Figure 9: Fit ΔZ follows a power-law distribution on various

datasets.

each node B ∈ + , Algorithm 2 computes estimators 0̂8 (B) such that

|0̂8 (B) − 08 (B) | ≤ Y · 38 (B)
1−V holds for ∀8 ∈ {0, 1, 2, . . . , :}.

C EXPERIMENTAL DETAILS

C.1 Details of data pre-processing

OGB datasets.According to [34], the absence of edges has a detri-

mental effect on the performance of GNNs, such as decreasing clas-

sification accuracy. In contrast, we suppose that accuracy would

grow proportionatelywhen these missing edges are gradually rein-

stated.We use threeOGBdatasets in different sizes: (1)Papers100M

is the largest publicly available dataset by far. To imitate the graph’s

dynamic nature, we eliminated 40 million edges from the original

dataset and reinserted them line by line later. (2) Arxiv is also a

citation network. It is constructed similarly to Papers100M, except

that we remove about 950 thousand edges at the start. (3)Products

is a graph generated from the Amazon product co-purchasing net-

work.We construct the dynamic graph in the sameway except that

the number of deleting edges is set to 30 million. We utilized the

node features and labels provided by OGB [15].

Aminer. In this dataset, time steps are defined as consecutive non-

overlapping one-year periods. At each time step 8 , if an author had

published papers collaborating with another, we create an edge

between them in�8 , whose weight is ignored. With this definition,

we obtain 1,267,755 – 4,025,865 edges, evolving from 1984 to 2014.

Furthermore, we say an author belongs to a particular community

if over half of his or her papers were published in corresponding

journals this year. Recall that the community the author belongs to

is used as the label. Therefore, if an author publishes in a different

field each year, the label will change accordingly with the time

step. In addition, we generate node features by utilizing the BERT-

as-service1 to extract word vectors from the authors’ descriptions.

SBMdatasets.Wepropose a study on synthetic graphs using a dy-

namical SBM. The SBMmodelwill decide the relationship between

nodes stochastically using probabilities based on the given commu-

nity memberships. Given a graph �8−1 with the label set �8−1 at

time step 8 − 1, we generate the graph�8 by migrating some of the

nodes. Specifically, we randomly select : nodes to form a subset

of + , denoted as + . For each node B ∈ + , we assume it belongs to

the community ~ ∈ �8−1 at time step 8 − 1. Then it turns to be a

member of community ~′ ∈ {�8 − ~} by removing the edges con-

nected to the community ~ and adding the connection to nodes of

community~′. Table 3 provides detailed parameters for generating

the four SBM datasets we used in Section 5.3.
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Table 3: Parameters of generating SBM datasets.

Dataset #nodes #classes #intra-block edges #inter-block edges #snapshots #nodes changed per snapshot

SBM-500 500,000 50 20 1 10 2500

SBM-1" 1,000,000 50 20 1 10 2500

SBM-5" 5,000,000 100 20 1 10 2500

SBM-10" 10,000,000 100 20 1 10 2500

Table 4: Parameters of InstantGNN.

Dataset # " 9 learning rate batch size dropout hidden size

Arxiv 0.5 0.1 14 − 7 0.0001 10000 0.3 1024

Products 0.5 0.1 14 − 7 0.0001 10000 0.2 1024

Papers100M 0.5 0.2 14 − 9 0.0001 10000 0.3 2048

Aminer 0.5 0.1 14 − 7 0.0001 1024 0.1 256

SBM-500 0.5 0.001 14 − 7 0.01 1024 0.1 1024

SBM-1" 0.5 0.001 14 − 8 0.001 4096 0.1 1024

SBM-5" 0.5 0.001 14 − 8 0.001 8192 0.3 2048

SBM-10" 0.5 0.001 54 − 9 0.001 8192 0.3 2048
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Figure 10: Adaptive training onArxiv setting |( |=4 and |( |=50.

C.2 More details of adaptive training

Firstly, we perform an empirical evaluation on Arxiv. Setting |( | =

16, we can retrain the model 16 times, while the model is forced to

retrain after :-th graph event, where : is the total number of graph

events. For Periodic training, we retrain the model in a fixed inter-

val, e.g. every :/|( | graph events, and the accuracy curve is shown

as the red line in Figure 8 (left). ForAdaptive training,we found that

ΔZ of Arxiv follows a power-law curve during the evolution. An

intuitive explanation is that the graph becomes dense after a series

of edges have been inserted. The changes triggered by continued

insertion become smaller and smaller. Products, another insertion

only dataset used in Section 5.2 also shows a similar property, as

shown in Figure 9. We set \ = ΔZ
‖ZC−Z0 ‖�

to determine the first A = 3

times to retrain the model, and the remaining ( |( | − A = 13) re-

training time is determined by fitting the power-law curve. Adap-

tive training achieves a better retraining gain based on the qualita-

tive and quantitative results, as shown in Figure 8 (left). Figure 10

shows the comparison results of setting |( | = 4 and |( | = 50, and

we can reach similar conclusions. Setting A = 3, we set \ = 0.05 for

|( | = 16, 50 and \ = 0.3 for |( | = 4.

We also evaluate Adaptive training on SBM-500 with both in-

serted and deleted edges during the evolution, which better simu-

lates real networks.We consider a special case where several nodes

change their communities and recover immediately, and only a

fraction of the changes are permanent. Figure 8 (right) shows the

accuracy curves of setting |( | = 3 and \ = ΔZ = 1.73. Note that

we set \ empirically here, to maintain the fixed budget for a fair

1https://github.com/jina-ai/clip-as-service

comparison, we make the model stop training after reaching the

budget constraint.

C.3 Implementation details

We implement InstantGNN in PyTorch and C++. Each layer is acti-

vated using the ReLU non-linear function. Additionally, a dropout

function is used behind each layer. Table 4 summarizes parame-

ters settings of InstantGNN. For baselinemethods, we employ their

published codes or the codes implemented with Pytorch Geomet-

ric Temporal. All experiments are completed on a machine with an

NVIDIA RTX A6000 GPU (48GB memory), Intel Xeon CPU (2.20

GHz) with 40 cores, and 768GB of RAM.

C.4 Baselines

The baseline methods and parameter settings are as follows. We

employ their published codes or the codes implemented with Py-

torch Geometric Temporal [27].

• GCN[18], one of the representative works that extend convolu-

tional neural networks (CNNs) based on grid image data to non-

Euclidean space. For Arxiv dataset, we train a full-batch GCN

at each snapshot. However, it is difficult to train a full-batch

GCN on Products and Papers100M, due to the memory limita-

tion. Therefore, we use GraphSAINT[40] to sample subgraphs

and then train GCN on the sampled subgraphs to achieve mini-

batch at each snapshot.

• PPRGo[4], a state-of-the-art scalable GNN that adopts PPR ma-

trix to instead of multi-layer convolution to transfer and aggre-

gate node information on the graph. There are three main pa-

rameters for feature propagation of PPRGo: A<0G , ! and : , where

A<0G is the residue threshold, ! is the number of hops, and : de-

notes the number of non-zero PPR value for each training node.

We vary A<0G from 10−5 to 10−7, ! from 2 to 10, and tune : for

the best performance.

• AGP[35], a general-purpose graph propagation algorithm with

near-optimal time complexity. AGP decouples the feature prop-

agation and prediction to achieve high scalability. For feature

propagation, AGP has five parameters: Lapalacian parameters 0

and 1, weight for 8-th layer F8 , error threshold \ and number
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of layers !. We set 0 = 1 = 1/2 and F8 = U (1 − U)8 and vary

parameters (\ , U , !) from (10−5, 0.1, 10) to (10−10, 0.5, 20).

• T-GCN[43], a state-of-the-art temporal GNNmethod. It consists

of gate recurrent unit (GRU) and GCN, which is applied to cap-

ture the temporal and structural information, respectively.

• MPNNLSTM[25], a state-of-the-art temporalGNNmethod.MPNNL-

STM uses long short-term memory (LSTM)[12] to capture the

temporal information of the graph at different timesteps, and

GCN is adopted to learn the graph structural information.

C.5 More discussion of results

There are two likely interpretations for the growing trend of accu-

racy curves in Figure 1-3, depending on the type of approach. For

InstantGNN and three static methods, each node receives more in-

formation from its neighbors as the number of edges increases over

time, which is beneficial in classifying. For T-GCN and MPNNL-

STM, the prediction result for graph�C is based on the information

learned from �1 to �C . Therefore, the accuracy is low at the first

several snapshots for lack of information.

D PROOFS

Let’s first go over two important properties of PPR and two identi-

cal equations.

Proposition 1. For any graph, given a source node B ∈ + , let

0B (C) be the personalized pagerank value from node B to C , then
∑

C ∈+ 0B (C) = 1.

Proposition 2. For an undirected graph, let B and C be two nodes

of the graph, then 3 (B)0B (C) = 3 (C)0C (B).

Invariant 1. Assume x is the graph signal vector, 0̂ and r are

the estimate vector and residual vector, respectively, we have 0̂ =

(1 − U)P0̂ + U (x − r).

Invariant 2. Let � be an identity matrix and 0 is the exact ver-

sion of propagation vector, then 0 = 0̂ + U [� − (1 − U)P]−1 r .

D.1 Proof of Lemma 1 & Invariant 1

The propagation progress is set to begin with 0̂ = 0, r = x, as men-

tioned in Section 4.1. And so we plug this into Equation 3, we ob-

tain the initial equation as Ux = Ux. Therefore, Equation 3 is obvi-

ously true at the beginning of propagation progress. Assuming that

the equation holds after the ℓ-th propagation, e.g. 0̂ (ℓ) + Ur (ℓ) =

Ux+(1−U)P0̂ (ℓ) . Let~ = r (ℓ) (D) be the residual of nodeD after the

ℓ-th propagation. Following Steps 2-4 in Algorithm 1, the (ℓ+1)-th

propagation can be represented as:

r (ℓ+1) = r (ℓ) − ~eD + (1 − U)P~eD

0̂ (ℓ+1) = 0̂ (ℓ) + U~eD

where eD is a one-hot vector with only the D-th element being 1

and the others being 0. Therefore, we have

Ux + (1−U)P0̂ (ℓ+1) − Ur (ℓ+1)

=Ux + (1−U)P(0̂ (ℓ) + U~eD ) − U
[

r (ℓ) − ~eD + (1−U)P~eD

]

=Ux + (1−U)P0̂ (ℓ) − Ur (ℓ) + ~eD .

We substitute Ux + (1−U)P0̂ (ℓ) − Ur (ℓ) with 0̂ (ℓ) and obtain a

solution of the above equation as 0̂ (ℓ+1) . So Equation 3 also holds

at the (ℓ+1)-th propagation. And the proof is completed.

D.2 Proof of Invariant 2

From the definition and Invariant 1, we have
{

0 = (1 − U)P0 + Ux

0̂ = (1 − U)P0̂ + U (x − r)

Then we subtract the two equations above:

0 − 0̂ = (1 − U)P(0 − 0̂) + Ur

⇔ [� − (1 − U)P] (0 − 0̂) = Ur

It is known that eigenvalues of P ∈ (−1, 1]. Therefore, eigenvalues

of [�−(1−U)P] ∈ [U, 2−U), and [�−(1−U)P]−1 is meaningful since

that U ∈ (0, 1). Then we can express the relationship between 0

and 0̂ as follows:

0 = 0̂ + U [� − (1 − U)P]−1 r .

D.3 Proof of Theorem 5

Recall that P = D−VADV−1 is the propagation matrix. Let Q =

U [� − (1 − U)P]−1, we can rewrite it as

Q = D1−V ·

∞
∑

ℓ=0

U (1 − U)ℓ
(

D−1A
) ℓ
· DV−1.

According to the definition, the (B, C)-th entity of matrix
∑∞
;=0

U (1−

U); (�−1�)ℓ is the personalized PageRank from B to C . Therefore,

(B, C)-th entity of Q, denoted as @(B, C), is equals to 3 (B)1−V · 0B (C) ·

3 (C)V−1. Let 38 (B) be the degree of node B at time 8 , 0B8 (C) is the

personalized pagerank from B to C at time 8 , and @8 (B, C) is equals to

38 (B)
1−V ·0B8 (C) · 38 (C)

V−1. As a result, for each node C ∈+ , we can

rewrite Invariant 2 using @(B, C) as:

0 (B) = 0̂ (B) +
∑

C ∈+

@(B, C) · r (C). (9)

According to line 7 in Algorithm 2, we invoke Algorithm 1 to

refresh the estimate vector and residual vector at each time step,

after computing the increments caused by �E4=C8 . Recall that Al-

gorithm 1 ends with ∀B ∈ + , |r (B) | ≤ Y · 38 (B)
1−V . Therefore, we

have

|0̂8 (B) − 08 (B) | =
∑

C ∈+

@8 (B, C) · |r8 (C) |

≤
∑

C ∈+

38 (B)
1−V · 0B8 (C) · 38 (C)

V−1 ·
(

Y · 38 (C)
1−V

)

=

∑

C ∈+

38 (B)
1−V · 0B8 (C) · Y

= Y · 38 (B)
1−V

In the last equality, we apply the property mentioned in Proposi-

tion 1 that
∑

C ∈+ 0B8 (C) = 1, and the theorem follows.

D.4 Proof of Theorem 1

Let�0 be the graph at time C = 0," = {�E4=C1, . . . , �E4=C: } denotes

the event sequence. Recall that = = |+ | is the number of nodes,

which is assumed to be constant. Let �8 (C) =
∑

B∈+ 38 (B)
V@8 (B, C),
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�8 is its vector form, and 0̂0 and r0 denote the estimated propa-

gation vector and residual vector for initial graph�0, obtained by

running Step 1-2 of Algorithm 2. Recall that the estimates of node

B increases no more than UY3 (B)1−V at every time node B ∈ + push.

Therefore, the total time for generating 0̂0 and r0 is:

∑

B∈+

0̂0 (B) · 30 (B)

UY3 (B)1−V

=

∑

B∈+

30 (B)
V · (00 (B) −

∑

C ∈+ @0(B, C) · r0 (C))

UY

=

∑

B∈+

30 (B)
V · 0̂0 (B)

UY
−

∑

B∈+

30 (B)
V ·

∑

C ∈+ @0(B, C) · r0 (C)

UY

=

‖D
V
0 · 00‖1

UY
−
‖�⊤0 · r0‖1

UY

where we substitute 0̂0 (B) with 00 (B) −
∑

C ∈+ @0(B, C) · r0 (C) using

Invariant 2, to express the time cost in terms of 00 and r0. And we

will eliminate r0 naturally in the dynamic process.

D.5 Proof of Theorem 2

Note that the push process is monotonous. Hence we can control

the direction of updating estimates by pushing only non-negative

residuals or only negative residuals. And we decompose the time

cost )8 = )
+ + )−, where ) + only contains time cost for pushing

non-negative residuals,)− only contains time cost for pushing neg-

ative residuals. As a result, the whole procedure for getting 0̂8 can

be summarized in three steps. First, the exact increment was calcu-

lated and updated to 0̂8−1, with 0̂ ′ being the result. Second, only

non-negative estimations are pushed out, resulting in 0̂ ′′. Finally,

we push negative estimates and eventually reach 0̂8 and maintain

the residual vector r8 at the same time. Let r ′ and r ′′ be the interme-

diate results corresponding to 0̂ ′ and 0̂ ′′, respectively. According

to Equation 9, we have

0̂ ′(B) = 0 (B) −
∑

C ∈+

@(B, C) · r ′(C),

0̂ ′′ (B) = 0 (B) −
∑

C ∈+

@(B, C) · r ′′(C).

We start with ) +. It is easy to observed that 0̂ ′′ (B) ≥ 0̂ ′(B), since

only non-negative residuals are pushed out. Then we have:

0̂ ′′ (B) − 0̂ ′ (B) =
∑

C ∈+

@(B, C) · (r ′(C) − r ′′ (C)).

As described in [42], the difference between the amount of residu-

als that has been pushed out and the one that are new generated

is actually equal to the amount of mass that has been received into

the estimates. Then the time cost for pushing non-negative esti-

mates is

) + =
∑

C ∈+

38 (B) · (0̂
′′ (B) − 0̂ ′ (B))

UY3 (D)1−V

=

∑

C ∈+

38 (B)
V ·

∑

C ∈+
@8 (B, C)(r

′(C) − r ′′(C))

UY

=

∑

C ∈+

Φ8 (C) · (r
′(C) − r ′′ (C))

UY

≤
‖�⊤8 · r

′‖1

UY
−
‖�⊤8 · r

′′‖1

UY

Since that only negative residuals are pushed out in the final

step, we have 0̂ ′′ (B) ≥ 0̂8 (B). Then,

)− =

∑

C ∈+

38 (B) · (0̂
′′ (B) − 0̂8 (B))

UY3 (D)1−V

=

∑

C ∈+

Φ8 (C) · (r8 (C) − r
′′ (C))

UY

≤
‖�⊤8 · r

′′‖1

UY
−
‖�⊤8 · r8 ‖1

UY

Therefore, the total time for updating 0̂8−1(C) and r8−1(C) to

0̂8 (C) and r8 (C) is at most

)8 = )
+ +)−≤

‖�⊤8 · r
′‖1

UY
−
‖�⊤8 · r8 ‖1

UY
.

Recall that r ′ is the residual vector that obtained by updating

the increment. Specifically, r ′ = r8−1 + Δr8 , where Δr8 is a sparse

vector and we will consider it later. Since �8 (C) ≥ 0 for each node

C ∈ + , we have

‖�⊤8 · r
′‖1 ≤ ‖�

⊤
8 · r8−1‖1 + ‖�

⊤
8 · �r8 ‖1.

where

‖�⊤8 · r8−1‖1 = ‖(�
⊤
8 − �

⊤
8−1) · r8−1‖1 + ‖�

⊤
8−1 · r8−1‖1.

By the definition of r and the guarantee that residuals before have

met the given error tolerance, for any node C ∈ + , we have r8−1(C) ≤

Y38−1(C)
1−V . Then we have

‖(�⊤8 − �
⊤
8−1) · r8−1‖1

≤
∑

C ∈+

Y38−1(C)
1−V · [�8 (C) − �8−1(C)]

=Y ·
∑

C ∈+

38 (C)
1−V

∑

B∈+

38 (B)
V38 (B)

1−V0B8 (C)38 (C)
V−1−

Y
∑

C ∈+

38−1(C)
1−V

∑

B∈+

38−1(B)
V38−1(B)

1−V0B (8−1) (C)38−1(C)
V−1

=Y ·
∑

C ∈+

∑

B∈+

38 (B)0B8 (C) − Y ·
∑

C ∈+

∑

B∈+

38−1(B)0B (8−1) (C)

Then, we reverse the order of the summing symbols and substitute

Proposition 1 to simplify
∑

C ∈+ 0B8 (C) and
∑

C ∈+ 0B (8−1) (C) to 1,

providing the solution to the preceding equation for Y ·
∑

B∈+ (38 (B)−

38−1(B)). Note that only the degrees of node D and E have changed

after inserting the edge 48 = (D, E). Therefore, we have
{

38 (B) − 38−1(B) = 1, if B = D or E

38 (B) − 38−1(B) = 0, otherwise
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Therefore,
∑

B∈+ (38 (B) − 38−1(B)) = 2, and we have

‖(�⊤8 − �
⊤
8−1) · r8−1‖1 ≤ 2Y.

Based on above analysis, we get an upper bound of )8 :

)8 ≤
‖�⊤8 · r

′‖1

UY
−
‖�⊤8 · r8 ‖1

UY

≤
‖(�⊤8 − �

⊤
8−1) · r8−1‖1

UY
+
‖�⊤8−1 · r8−1‖1

UY
+

‖�⊤8 · �r8 ‖1

UY
−
‖�⊤8 · r8 ‖1

UY

≤
2

U
+
‖�⊤8 · Δr8 ‖1

UY
+
‖�⊤8−1 · r8−1‖1

UY
−
‖�⊤8 · r8 ‖1

UY
.

D.6 Proof of Theorem 3

Now, we consider the expected time complexity of Algorithm 2,

which is calculated as the sum of the Initialization and k update

times. Combining Theorem 1 and 2, we write the total time ) in

the form as:

) =)8=8C +

:
∑

8=1

)8

≤
‖D

V
0 · 00‖1

UY
−
‖�⊤0 · r0‖1

UY
+
2:

U
+

:
∑

8=1

‖�⊤8 · �r8 ‖1

UY

+

:
∑

8=1

(

‖�⊤8−1 · r8−1‖1

UY
−
‖�⊤8 · r8 ‖1

UY

)

≤
‖D

V
0 · 00‖1

UY
+
2:

U
+

:
∑

8=1

‖�⊤8 · Δr8 ‖1

UY
.

where each term of Δr8 is the precise increment of this node that

induced by inserting the edge 48 = (D, E). As mentioned in Sec-

tion 4.2, in Δr8 , only the locations of affected nodes have meaning

(e.g, D , E ,F ∈ #8−1(D) and ~ ∈ #8−1), and we have

‖�⊤8 · Δr8 ‖1 = |�8 (D)Δr8 (D) | + |�8 (E)Δr8 (E) |

+
∑

F∈#8−1 (D)

|�8 (F)Δr8 (F) | +
∑

~∈#8 (E)

|�8 (~)Δr8 (~) |.
(10)

Next, we will provide upper boundaries for each of these four

items to finish the proof. We start with �8 (D)Δr8 (D), using Equa-

tion 5, we have

�8 (D)Δr8 (D) = �8 (D) ·
1 − U

U
·

0̂8−1(E)

38 (D)V38−1(E)1−V
+

�8 (D) ·
0̂8−1(D) + Ur8−1(D) − Ux (D)

U
·
38−1(D)

V − 38 (D)
V

38 (D)V
.

Recalling the definition, we have �8 (D) =
∑

B∈+ 38 (B)
V@8 (B,D).

We substitute 0̂8−1(E) with (08−1(E) −
∑

C ∈+ @(E, C) · r (C)), using

Equation 9, and obtain a bound for the first term of the above equa-

tion as 1−U
U [08−1(E) +Y]. Assuming that each element of the graph

signal x is non-negative, we have

�8 (D) ·
0̂8−1(D) + Ur8−1(D) − Ux (D)

U
·
38−1(D)

V − 38 (D)
V

38 (D)V

≤�8 (D) ·
0̂8−1(D) + Ur8−1(D)

U
·
38−1(D)

V − 38 (D)
V

38 (D)V

Using the fact that
38−1 (D)

V−38 (D)
V

38 (D)V
≤ 1

38 (D)
≤ 1

38 (D)V
and omitting

some minor details, we get an upper bound as 1
U (08−1(D) + Y) + Y .

Therefore, |�8 (D)Δr8 (D) | is at most 1−U
U [08−1 (E)+Y] +

1
U (08−1(D)+

Y) + Y . We deal with |�8 (E)Δr8 (E) | in a similar way and obtain an

upper bound as 1−U
U [08−1 (D) + Y] +

1
U (08−1(E) + Y) + Y .

Now we handle the third term of Equation 10. For each node

F ∈ #8−1(D) we have

|�8 (F)Δr8 (F) | =

�

�

�

�

�

�8 (F) ·
1 − U

U
·
0̂8−1(D)

38 (F)V
·
38−1(D)

1−V − 38 (D)
1−V

38−1(D)1−V38 (D)1−V

�

�

�

�

�

=

1 − U

U
·

1

38−1(D)1−V38 (D)1−V
· |0̂8−1(D) |

≤
1 − U

U · 38 (D)
· |08−1(D) + Y |.

It is easy to see that
∑

F∈#8−1 (D)

|�8 (F)Δr8 (F) | ≤38−1(D) ·
1 − U

U · 38 (D)
· |08−1(D) + Y |

≤
1 − U

U
· |08−1(D) + Y |.

Omitting all the minor details, we obtain an bound as 1−U
U ·

|08−1(E) +Y | for the fourth item of Equation 10. Based on the above

analysis, we have

‖�⊤8 · Δr8 ‖1 ≤
(3 − 2U)08−1 (D) + (3 − 2U)08−1 (E) + 6Y − 2UY

U
.

Weassume that edges are arrived randomly, such that each node

has an equal probability of being the endpoint of a new edge. There-

fore, we have

� [‖�⊤8 · Δr8 ‖1] =
(6 − 4U)‖08−1‖1

U=
+
6Y

U
− 2Y.

Finally, we get the upper bound of ) as

� [) ] ≤
‖D

V
0 · 00‖1

UY
+
2:

U
+

:
∑

8=1

� [‖�⊤8 · Δr8 ‖1]

UY

=

‖D
V
0 · 00‖1

UY
+
6:

U2
+

:
∑

8=1

(6 − 4U)‖08−1‖1

U2=Y
.
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