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ABSTRACT
We consider training a binary classifier under delayed feedback (DF
learning). For example, in the conversion prediction in online ads,

we initially receive negative samples that clicked the ads but did not

buy an item; subsequently, some samples among them buy an item

then change to positive. In the setting of DF learning, we observe

samples over time, then learn a classifier at some point. We initially

receive negative samples; subsequently, some samples among them

change to positive. This problem is conceivable in various real-

world applications such as online advertisements, where the user

action takes place long after the first click. Owing to the delayed

feedback, naive classification of the positive and negative samples

returns a biased classifier. One solution is to use samples that have

been observed for more than a certain time window assuming these

samples are correctly labeled. However, existing studies reported

that simply using a subset of all samples based on the time window

assumption does not perform well, and that using all samples along

with the time window assumption improves empirical performance.

We extend these existing studies and propose a method with the

unbiased and convex empirical risk that is constructed from all

samples under the time window assumption. To demonstrate the

soundness of the proposed method, we provide experimental results

on a synthetic and open dataset that is the real traffic log datasets

in online advertising.
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1 INTRODUCTION
Let us consider the problem of training a classifier under delayed

feedback (DF Learning). For example, we train a classifier for conver-

sion prediction in online advertisements. For conversion prediction,

we need to predict whether a certain ad click will lead to the pur-

chase of some items on the advertiser’s service. If a purchase occurs

after the click, it is treated as a positive sample; if no purchase

occurs, it is treated as a negative sample. There is a certain time

window between the click and the purchase since users need time

to make a decision to purchase. Such a time window can cause

mislabeling in the training data. This is because a user who clicked

on an ad just before the end of data collection may not have decided

to purchase the product until the end of data collection. As a result,

the part of training data, especially recently observed, is mislabeled,

and then the classifier trained in the dataset will be suffered from

the bias and deteriorate its performance. The problem of DF learn-

ing arises in various cases such as medical treatment assignment,

recommendation, and distributed learning [1, 2, 7, 8, 22, 27, 30, 37–

41].

We can classify the methods of DF learning into online and

offline prediction settings. Online DF learning includes sequential

parameter updating [13, 21], online learning [16], and multi-armed

bandit problem [4, 6, 28, 36, 42]. We focus on offline DF learning

and do not update the parameter online. Solutions involving offline

DF learning follow two main approaches. The first is to assume

that a sufficiently long time window reduces the bias between the

observed label and its ground truth [14]. This assumption is due to

the fact that the labels of most samples that have been observed

for a certain amount of time are observed correctly. Based on this

assumption, He et al. [14] proposed a naive logistic regression, and

Yasui et al. [38] proposed an importance weighting (IW) method for

constructing a consistent empirical risk. The second approach is to

specify a probabilistic model of the delayed feedback [7, 39]. Due to

the poor empirical performance of the latter approach and difficulty

in model specification, this study adopts the first approach.

In this paper, we propose a new approach for offline DF learning.

The proposed method approximates the same population risk with

Yasui et al. [38] in an end-to-end manner. In addition, our method is

based on convex optimization and provides theoretical guarantees

regarding the estimation error. Furthermore, to improve the em-

pirical performance, we further provide a non-negative correction

to the empirical risk, following the approaches by Kiryo et al. [20]

and Kato and Teshima [17].

Four main contributions are made: (i) proposing a novel convex

empirical minimization for DF learning with a time window and

stationarity assumption; (ii) providing a non-negative correction to

the original convex empirical risk minimization (ERM) for using a
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flexible model; (iii) demonstrating the effectiveness of the proposed

method using both synthetic data and real-world log data [7]; (iv)

the existing studies are summarized in a unified manner from the

assumptions perspective.

2 PROBLEM SETTING
We consider the problem setting introduced by Chapelle [7]. For a

sample 𝑖 ∈ N with a feature 𝑋𝑖 ∈ X, we consider a binary classifi-

cation problem to classify 𝑋𝑖 into one of the two classes {−1, +1}.
Let a classifier 𝑔 : X → R be a function that assigns a label𝐶𝑖 to an

individual with a feature 𝑋𝑖 such that𝐶𝑖 = sign(𝑔(𝑋𝑖 )). We assume

that there exists a joint distribution 𝑝 (𝑋𝑖 ,𝐶𝑖 ), where 𝐶𝑖 ∈ {−1, +1}
is the class label of 𝑋𝑖 . In DF learning, depending on applications,

two goals are considered. The first goal is to train the Bayes optimal

classifier, which minimizes the population classification risk 𝐽0-1 (𝑔)
defined as

𝐽0-1 (𝑔) = 𝛾E𝐶=+1 [ℓ0-1 (𝑔(𝑋𝑖 ))] + (1 − 𝛾)E𝐶=−1 [ℓ0-1 (−𝑔(𝑋𝑖 ))],

where E𝐶=𝑐 denotes the expectation over 𝑝 (𝑋𝑖 | 𝐶𝑖 = 𝑐), 𝛾 =

𝑝 (𝐶𝑖 = +1), and ℓ0-1 is the zero-one loss ℓ0-1 (𝑧) = 1

2
sign(𝑧) + 1

2
. In

practice, we replace ℓ0-1 with a surrogate loss, such as the logistic

loss. The population is denoted with a surrogate loss function ℓ

as 𝐽 (𝑔). For ease of discussion, the formulation with the surrogate

loss ℓ is mainly considered in the following sections. For a set of

measurable functions F , the optimal classifier 𝑔∗ is defined as

𝑔∗ = argmin

𝑔∈F
𝐽0-1 (𝑔).

The second goal is to estimate the conditional probability 𝑝 (𝐶𝑖 | 𝑋𝑖 ).
When using the zero-one loss or other specific losses such as logistic

loss, the minimizer 𝑔∗ coincides with 𝑝 (𝐶𝑖 | 𝑋𝑖 ). In various appli-

cations, we have more interest on an estimate of 𝑝 (𝐶𝑖 | 𝑋𝑖 ) rather
than the prediction results. For example, in online advertisement,

by using 𝑝 (𝐶𝑖 | 𝑋𝑖 ), we decide the bid price as Eq. (1) of Chapelle

[7]. Let us note that the first and second goals are closely related.

Remark 1. For specific loss functions,𝑔∗ (𝑋𝑖 ) is equal to 𝑝 (𝐶𝑖 | 𝑋𝑖 ).
For example, when using the logistic loss, we obtain 𝑝 (𝐶𝑖 | 𝑋𝑖 ) as
the minimizer of the population risk.

2.1 Data Generating Process
In our setting, in the time series [𝑇 ] = {1, 2, . . . ,𝑇 }, we obtain a

sample 𝑖 ∈ Nwith the feature𝑋𝑖 at an arriving time𝐴𝑖 sequentially,

where 𝑇 is the period we train a classifier. For the sample 𝑖 , instead

of observing the true class 𝐶𝑖 directly, a temporal label 𝑌𝑖 (𝑒) ∈
{−1, +1} reveals at each elapsed time 𝑒 ∈ {1, . . . ,𝑇 − 𝐴𝑖 } after

arriving time 𝐴𝑖 . In general, 𝑌𝑖 (𝑒) is reproducible if we preserve
the timestamp when the label was observed in addition to 𝐴𝑖 . Once

we observe 𝑌𝑖 (𝑒) = +1, the label 𝑌𝑖 (𝑠) is permanently +1 for all

𝑠 ≥ 𝑒 , i.e., 𝑌𝑖 (𝑠) = 𝐶𝑖 for all 𝑠 ≥ 𝑒 . For example, let us assume a user

clicked the ad at time𝐴𝑖 and the user purchase the item 60 minutes

after the click. This means that when the elapsed time 𝑒 is less than

60 minutes, the temporal label is still negative, i.e., 𝑌𝑖 (𝑒) = −1. On
the other hand, we observe 𝑌𝑖 (𝑒) = +1, when 𝑒 is larger than 60

minutes.

Then, we describe a more formal data-generating process. For

each sample 𝑖 ∈ N, at the 𝑇 -th period, we obtain a dataset{
(𝑋𝑖 , {𝑌𝑖 (𝑒)}𝑇−𝐴𝑖

𝑒=1
, 𝐴𝑖 )

}𝑁
𝑖=1

,

where 𝑌𝑖 (𝑒) is a temporal class label of 𝑖 at elapsed time 𝑒 , and𝐴𝑖 is

the arrival time. We denote the period from 𝐴𝑖 to 𝑡 as 𝐸
𝑡
𝐴𝑖
, which is

the elapsed time after observing a sample 𝑖 at 𝐴𝑖 , i.e., 𝐸
𝑡
𝐴𝑖

= 𝑡 −𝐴𝑖
for 𝐴𝑖 ≤ 𝑡 ≤ 𝑇 . To simplify the notation, 𝐸𝑡

𝐴𝑖
is written as 𝐸𝑡

𝑖
in

the rest of the paper. We assume that the triple

(
𝑋𝑖 , 𝐸

𝑡
𝑖
, 𝑌𝑖 (𝐸𝑡𝑖 )

)
is

generated as follows:

(𝑋𝑖 , 𝐸𝑡𝑖 , 𝑌𝑖 (𝐸
𝑡
𝑖 ))

i.i.d.∼ 𝑝
(
𝑋𝑖 , 𝐸

𝑡
𝑖 , 𝑌𝑖 (𝐸

𝑡
𝑖 )

)
= 𝑝

(
𝑋𝑖 , 𝐸

𝑡
𝑖

)
𝑝
(
𝑌𝑖 (𝐸𝑡𝑖 ) | 𝑋𝑖 , 𝐸

𝑡
𝑖

)
= 𝑝

(
𝑋𝑖

)
𝑝
(
𝐸𝑡𝑖

)
𝑝
(
𝑌𝑖 (𝐸𝑡𝑖 ) | 𝑋𝑖 , 𝐸

𝑡
𝑖

)
,

where 𝑝 (𝑋𝑖 , 𝐸𝑡𝑖 ), 𝑝
(
𝐸𝑡
𝑖

)
, and 𝑝 (𝑋𝑖 ) are the probability densities of

(𝑋𝑖 , 𝐸𝑡𝑖 ), 𝐸
𝑡
𝑖
, and 𝑋𝑖 , respectively, and 𝑝

(
𝑌𝑖 (𝐸𝑡𝑖 ) | 𝑋𝑖 , 𝐸

𝑡
𝑖

)
is the con-

ditional probability density of 𝑌𝑖 (𝐸𝑡𝑖 ) given 𝑋𝑖 and 𝐸
𝑡
𝑖
. Here, we

assume that 𝑝
(
𝑋𝑖 |𝐸𝑡𝑖

)
= 𝑝 (𝑋𝑖 ) for all 𝑡 > 𝐴𝑖 , that is, a sample

feature is not dependent on the period. We denote the dataset{(
𝑋𝑖 , 𝑌𝑖 (𝐸𝑡𝑖 ), 𝐸

𝑡
𝑖

)}𝑁
𝑖=1

by D.

2.2 Time Window and Stationarity
Assumptions and Oracle Datasets

As well as Yasui et al. [38], we introduce a deadline 𝜏 ∈ [𝑇 ]. For this
deadline, we assume that a sample after spending 𝜏 period from

the first observation 𝐴𝑖 has the correct label𝐶𝑖 , i.e., 𝑌𝑖 (𝐸𝑡𝑖 ) = 𝐶𝑖 for
𝐸𝑡
𝑖
≥ 𝜏 . Let us also define a label 𝑆𝑖 (𝐸𝑡𝑖 ) ∈ {−1, +1}, which indicates

whether a temporal label 𝑌𝑖 (𝐸𝑡𝑖 ) observed at 𝑡-th period is equal to

𝐶𝑖 , i.e., 𝑆𝑖 (𝐸𝑡𝑖 ) = +1 if 𝑌𝑖 (𝐸𝑡𝑖 ) = 𝐶𝑖 ; 𝑆𝑖 (𝐸
𝑡
𝑖
) = −1 if 𝑌𝑖 (𝐸𝑡𝑖 ) ≠ 𝐶𝑖 .

Assumption 1 (Time Window Assumption). 𝑌𝑖 (𝐸𝑡𝑖 ) = 𝐶𝑖 for 𝐸
𝑡
𝑖
≥

𝜏 ⇔ 𝐴𝑖 ≤ 𝑡 − 𝜏 .
We also assume that the conditional probability of the temporal

labels is the same between different periods.

Assumption 2 (Stationarity Assumption). For all 𝑖, 𝑗 ∈ [𝑁 ], 𝑠 ∈
[𝑇 ], 𝑋 ∈ X, and 𝑡 ′ ∈ [𝑇 ],

𝑝
(
𝑌𝑖

(
𝐸𝑡𝑖

)
| 𝑋𝑖 = 𝑋, 𝐸𝑡𝑖 = 𝑠

)
= 𝑝

(
𝑌𝑗

(
𝐸𝑡

′
𝑗

)
| 𝑋 𝑗 = 𝑋, 𝐸𝑡

′
𝑗 = 𝑠

)
.

Under the timewindow assumption, we reconstruct oracle datasets

from the original dataset D. Assume that 𝜏 ≤ ⌊𝑇 /2⌋. Under the
time window assumption, we construct the oracle dataset E ={(
𝑋 𝑗 ,𝐶 𝑗 , 𝑆 𝑗 (𝐸𝑇−𝜏𝑗

)
)}𝑀
𝑗=1

from samples that are observed over 𝜏 pe-

riods, i.e.,

𝜏 < 𝐸𝑡𝑗 ≤ 𝑇 ⇔ 0 ≤ 𝐴 𝑗 ≤ 𝑇 − 𝜏,
where 𝑆 𝑗 (𝐸𝑇−𝜏𝑗

) ∈ {−1, +1} is assigned +1 if 𝑌𝑗 (𝐸𝑇−𝜏𝑗
) = 𝑌𝑗 (𝐸𝑡𝑗 ) =

𝐶 𝑗 .

3 UNBIASED FORMULATION OF DF
LEARNING USING THE TIMEWINDOW
ASSUMPTION

In this section, we first organize the relationships among random

variables in DF learning. Then we define the unbiased risk in DF



learning under the time window and the stationary assumption. At

last, we introduce our proposed methods.

3.1 Relationship among Random Variables
To construct a risk estimator, we investigate the relationship among

random variables 𝑋𝑖 , 𝑌𝑖 (𝐸𝑡𝑖 ), 𝐶𝑖 , 𝐸
𝑡
𝑖
, and 𝑆𝑖 (𝐸𝑡𝑖 ). Yasui et al. [38]

found the following relationship. The samples labeled as 𝑌𝑖 (𝐸𝑡𝑖 ) =
+1 in the biased dataset D are true positive (𝐶𝑖 = +1). Therefore,
𝑌𝑖 (𝐸𝑡𝑖 ) = +1 ⇔ 𝑆𝑖 (𝐸𝑡𝑖 ) = +1,𝐶𝑖 = +1. Under delayed feedback,

however, some positive samples (𝐶𝑖 = +1) are mislabeled (𝑆𝑖 (𝐸𝑡𝑖 ) =
−1). Hence, the negative samples in biased dataset D consist of

false and true ones. Formally,

𝑌𝑖 (𝐸𝑡𝑖 ) = −1 ⇔ 𝐶𝑖 = −1 or 𝑆𝑖 (𝐸𝑡𝑖 ) = −1.
Based on these observations, the relationships between the condi-

tional distributions of 𝑌𝑖 (𝐸𝑡𝑖 ) and 𝐶𝑖 are given as:

𝑝 (𝑌𝑖 (𝐸𝑡𝑖 ) = +1 | 𝑍𝑇𝑖 ) =𝑝 (𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = +1 | 𝑍𝑇𝑖 ),

𝑝 (𝑌𝑖 (𝐸𝑡𝑖 ) = −1 | 𝑍𝑇𝑖 ) =𝑝 (𝐶𝑖 = −1 | 𝑍𝑇𝑖 )

+ 𝑝 (𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = −1 | 𝑍𝑇𝑖 ),

where we denote (𝑋𝑖 , 𝐸𝑡𝑖 ) as 𝑍
𝑇
𝑖
. Since the true positive samples

contain both correctly and incorrectly observed samples, we can

obtain

𝑝 (𝑍𝑇𝑖 ,𝐶𝑖 = +1)

= 𝑝 (𝑍𝑇𝑖 ,𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = +1)

+ 𝑝 (𝑍𝑇𝑖 ,𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = −1)

⇔𝑝 (𝐶𝑖 = +1)𝑝 (𝑍𝑇𝑖 | 𝐶𝑖 = +1)

= 𝜋𝑝 (𝑍𝑇𝑖 | 𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = +1)

+ 𝜁𝑝 (𝑍𝑇𝑖 | 𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = −1), (1)

where

𝜋 = 𝑝 (𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = +1) = 𝑝 (𝑌𝑖 (𝐸𝑡𝑖 ) = +1)
and

𝜁 = 𝑝 (𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = −1) .
By using Eq (1), we can obtain the gap between the density in a

positive biased dataset and the positive ideal dataset as follows:

𝛾𝑝 (𝑍𝑇𝑖 | 𝐶𝑖 = +1) =𝜋𝑝 (𝑍𝑇𝑖 | 𝑌𝑖 (𝐸𝑡𝑖 ) = +1)

+ 𝜁𝑝 (𝑍𝑇𝑖 | 𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = −1) . (2)

Similarly we can obtain the gap in the negative data as follows:

(1 − 𝛾)𝑝 (𝑍𝑇𝑖 | 𝐶𝑖 = −1) =(1 − 𝜋)𝑝 (𝑍𝑇𝑖 | 𝑌𝑖 (𝐸𝑡𝑖 ) = −1)

− 𝜁𝑝 (𝑍𝑇𝑖 | 𝐶𝑖 = +1, 𝑆𝑖 (𝐸𝑡𝑖 ) = −1) . (3)

3.2 Construction of Unbiased Risk Estimator
Let us consider directly using D for the binary classification loss.

The population risk of D is defined as

𝐽BL (𝑔) = E
[
ℓ
(
𝑌𝑖 (𝐸𝑡𝑖 )𝑔(𝑋 )

) ]
,

and we denote its empirical version as 𝐽̂BL (𝑔), where BL represents

Biased Logistic regression. Note that because the true label 𝐶𝑖 is

independent of 𝐸𝑡
𝑖
, we can construct a classifier using only𝑋𝑖 . Since

the BL uses biased data set D, the risk used in BL 𝐽BL (𝑔) is not
equivalent to 𝐽 (𝑔) and biased.

We can correct the bias of 𝐽BL (𝑔) by using the relationships

shown in Eq. (2) and Eq. (3) as follows:

𝐽 (𝑔) =𝛾E
[
ℓ
(
𝑔(𝑋𝑖 )

) ]
+ (1 − 𝛾)E

[
ℓ
(
− 𝑔(𝑋𝑖 )

) ]
=𝐽BL (𝑔) + 𝜁E𝑆=−1,𝐶=+1 [ℓ (𝑔(𝑋𝑖 ))]
− 𝜁E𝑆=−1,𝐶=+1 [ℓ (−𝑔(𝑋𝑖 ))],

where E𝑆=−1,𝐶=+1 denotes the expectation over 𝑝 (𝑍𝑇
𝑖

| 𝑆𝑖 (𝐸𝑡𝑖 ) =
−1,𝐶𝑖 = +1). Intuitively, adding 𝜁E𝑆=−1,𝐶=+1 [ℓ (𝑔(𝑋𝑖 ))] to 𝐽BL (𝑔)
corrects for the positive loss in data where 𝐶 = 1 and 𝑆 = −1,
and similarly subtracting 𝜁E𝑆=−1,𝐶=+1 [ℓ (−𝑔(𝑋𝑖 ))] corrects for the
negative loss. Here, we used E𝑍 |𝑊 [𝑔(𝑋𝑖 )] = E𝑋 |𝑊 [𝑔(𝑋𝑖 )], where
E𝑍 |𝑊 and E𝑋 |𝑊 denote the expectations over 𝑝 (𝑍𝑇

𝑖
| 𝑊𝑖 ) and

𝑝 (𝑋𝑖 |𝑊𝑖 = 𝑤) for a random variable𝑊𝑖 , respectively. Under this

equivalent transformation, we can then obtain the empirical risk

estimator using both D and E:

𝐽̂ (𝑔) = 1

𝑁

∑︁
𝑖∈D

ℓ

(
𝑌𝑖

(
𝐸𝑡𝑖

)
𝑔(𝑋𝑖 )

)
(4)

+ 1

𝑀

∑︁
𝑗 ∈E

1

[(
𝑆 𝑗 (𝐸𝑇−𝜏𝑗 ) = −1

)
∧

(
𝐶 𝑗 = +1

)]
ℓ̃

(
𝑔(𝑋 𝑗 )

)
,

where ℓ̃ (𝑔(𝑥)) = ℓ
(
𝑔(𝑥)

)
−ℓ

(
−𝑔(𝑥)

)
, and we call it a composite loss.

By using𝑇 −𝜏 ≥ 𝜏 and the stationarity assumption, the second term

on the right hand side(RHS) converges to E𝑆=−1,𝐶=+1 [ℓ (−𝑔(𝑋𝑖 ))],
where we used 𝑝

(
𝑋 𝑗 , 𝑆 𝑗 (𝑢) = −1,𝐶 𝑗 = +1

)
= 0 for 𝑢 ≥ 𝜏 from the

time window assumption. This empirical risk is unbiased for 𝐽 (𝑔).
Note that to approximate the expectation, the support of 𝐸𝑇

𝑗
− 𝜏

should be larger than that of 𝐸𝑡
𝑖
for D.

3.3 Proposed Estimators
Here, we introduce our proposedmethods convDF and nnDF. Firstly,

we proposed convex DF learning (convDF) that minimize the unbi-

ased loss 𝐽̂ (𝑔) proposed in section 3.2 by the ERM. However, when

the hypothesis class is large, the ERM of 𝐽̂ (𝑔) causes overfitting, as
reported by [20] due to the form of the empirical risk. Therefore,

we propose to use a non-negative modification of the loss. Denote

the positive and negative parts of the empirical risk as 𝐽̂ (+) (𝑔) and
𝐽̂ (−) (𝑔), respectively. Then, Eq. (4) yield the following relationship:

𝐽̂ (+) (𝑔) = 1

𝑁

∑︁
𝑖∈D

1
[
𝑌𝑖

(
𝐸𝑡𝑖

)
= +1

]
ℓ

(
𝑔(𝑋𝑖 )

)
︸                                      ︷︷                                      ︸

𝐽̂
(+)
D (𝑔)

+ 1

𝑀

∑︁
𝑗 ∈E

1

[(
𝑆 𝑗 (𝐸𝑇−𝜏𝑗 ) = −1

)
∧

(
𝐶 𝑗 = +1

)]
ℓ

(
𝑔(𝑋 𝑗 )

)
︸                                                               ︷︷                                                               ︸

𝐽̂
(+)
E (𝑔)

𝐽̂ (−) (𝑔) = 1

𝑁

∑︁
𝑖∈D

1
[
𝑌𝑖

(
𝐸𝑡𝑖

)
= −1

]
ℓ

(
− 𝑔(𝑋𝑖 )

)
︸                                          ︷︷                                          ︸

𝐽̂
(−)
D (𝑔)



− 1

𝑀

∑︁
𝑗 ∈E

1

[(
𝑆 𝑗 (𝐸𝑇−𝜏𝑗 ) = −1

)
∧

(
𝐶 𝑗 = +1

)]
ℓ

(
− 𝑔(𝑋 𝑗 )

)
︸                                                                   ︷︷                                                                   ︸

𝐽̂
(−)
E (𝑔)

In 𝐽̂ (−) (𝑔), the empirical minimization leads − 𝐽̂ (−)E (𝑔) to −∞ to

minimize the overall empirical risk using Positive-Unlabeled Learn-

ing (PU Learning) [20] and density ratio estimation [17]. Therefore,

we similarly propose using an alternative empirical risk with non-

negative correction to the negative risk part as

𝐽̃ (𝑔) = 𝐽̂ (+)D (𝑔) + 𝐽̂ (+)E (𝑔) +min

{
𝐽̂
(−)
D (𝑔) − 𝐽̂ (−)E (𝑔), 0

}
,

then minimize to learn a classifier. We call this non-negative correc-

tion approach as non-negative DF learning (nnDF). For a function

classH , the classifiers of convDF and nnDF are𝑔 = argmin𝑔∈H 𝐽̂ (𝑔)
and 𝑔 = argmin𝑔∈H 𝐽̃ (𝑔) accordingly.

3.4 Proposed Algorithm
Herein, we introduce the algorithms for convDF and nnDF. Firstly,

we explain the convexity of the empirical loss. Secondly, we in-

troduce the learning algorithm. Since the surrogate loss function

ℓ (𝑔(𝑥)) is convex, the empirical loss becomes convex if the compos-

ite loss ℓ̃ (𝑔(𝑥)) is convex. For the composite loss ℓ̃ (𝑧), Theorem 1

of du Plessis et al. [9] states that if the composite loss ℓ̃ (𝑔(𝑥)) is
convex and 𝑔(𝑥) is a linear model, then ℓ̃ (𝑔(𝑥)) is linear, that is,
ℓ̃ (𝑧) = −𝑔(𝑥). When model 𝑔(𝑥) is linear, the composite loss is con-

vex and the entire empirical loss is convex. In Table 1 of du Plessis

et al. [9], they summarize the surrogate loss functions. For example,

when using the logistic loss, the empirical risk can be written as

follows:

𝐽̂
logistic

(𝑔) = 1

𝑁

∑︁
𝑖∈D

log

(
1 + exp

(
− 𝑌𝑖

(
𝐸𝑡𝑖

)
𝑔(𝑋𝑖 )

))
− 1

𝑀

∑︁
𝑗 ∈E

1

[(
𝑆 𝑗 (𝐸𝑇−𝜏𝑗 ) = −1

)
∧

(
𝐶 𝑗 = +1

)]
𝑔(𝑋 𝑗 ) .

Based on this result, we show the gradient of 𝐽̂
logistic

(𝑔), which
is useful when training the classifier using a gradient-based opti-

mization method in the Appendix A. We also show the gradient of

𝐽̃
logistic

(𝑔) of nnDF in the same appendix. These gradients are used

in the learning algorithm we will introduce next.

Secondly, we explain the learning algorithm. In ERM, we jointly

minimize the empirical risk and the regularization term denoted

by R(𝑔). We then train a model using gradient descent with a

learning rate 𝜉 and regularization parameter 𝜆. We can choose 𝜆

based on cross-validation. When conducting gradient descent, we

heuristically introduce the gradient descent/ascent algorithm as

in Kiryo et al. [20]. We show the pseudo-algorithms for convDF

and nnDF with and without the gradient descent/ascent algorithm

in Algorithm 1. Although the theoretical details of the gradient

descent/ascent algorithm are not discussed, the technique is known

to improve performance when using flexible models such as neural

networks. Note that the proposed algorithms are agnostic to the

optimization procedure.

Algorithm 1 convDF and nnDF

Input. The biased dataset D, oracle dataset E, learning rate 𝜉 ,

and the regularization coefficient 𝜆.

Output. An estimator of 𝑝 (𝐶𝑖 | 𝑋𝑖 ).
while No stopping criterion has been met. do

if convDF then
Set gradient ∇

{
𝐽̂ (𝑔) + 𝜆R(𝑔)

}
.

else
if 𝐽̂ (−)D (𝑔) ≥ 0. then

Set gradient ∇
{
𝐽̂ (𝑔) + 𝜆R(𝑔)

}
else

if Gradient ascent then
Set gradient ∇

{
− 𝐽̂ (−) (𝑔) + 𝜆R(𝑔)

}
.

else
Set gradient ∇

{
𝐽̂ (+) (𝑔) + 𝜆R(𝑔)

}
.

end if
end if
Update 𝑔 with the gradient and the learning rate 𝜉 .

end if
end while

4 THEORETICAL ANALYSIS
In this section, we introduce the theoretical analysis of our proposed

methods. At first, we explain the bias and consistency of nnDF. Then

we introduce the error bounds.

4.1 Bias and Consistency of nnDF
Since convDF directly minimize the unbiased risk 𝐽̂ (𝑔), convDF
is unbiased. On the other hand, the empirical risk 𝐽̃ (𝑔) of nnDF
is biased because for a fixed 𝑔 ∈ F , we can show that 𝐽̃ (𝑔) ≥
𝐽̂ (𝑔) for any (D, E). A remaining question is whether 𝐽̃ (𝑔) is con-
sistent. Following Kiryo et al. [20], we prove its consistency in

here. First, partition all possible realizations (D, E) into A(𝑔) =
{(D, E) | 𝐽̂ (−) (𝑔) ≥ 0} and B(𝑔) = {(D, E) | 𝐽̂ (−) (𝑔) < 0}. As-
sume that 𝐶𝑔 > 0 and 𝐶ℓ > 0 such that sup𝑔∈G ∥𝑔∥∞ ≤ 𝐶𝑔 and

sup |𝑡 | ≤𝐶𝑔
max𝑥 ℓ (𝑡) ≤ 𝐶ℓ .

Lemma 1. The following three conditions are equivalent: (A) the
probability measure of B(𝑔) is non-zero; (B) 𝐽̃ (𝑔) differs from 𝐽̂ (𝑔)
with a non-zero probability over repeated sampling of (D, E); (C) the
bias of 𝐽̃ (𝑔) is positive. In addition, by assuming that there is 𝛼 > 0

such that 𝐽̂ (−) (𝑔) ≥ 𝛼 , the probability measure of B(𝑔), which is
Pr (B(𝑔)), can be bounded by

Pr (B(𝑔)) ≤ exp

(
−2(𝛼2/𝐶ℓ )2/(3/𝑁 + 1/𝑀)

)
. (5)

Based on Lemma 1, we can show the exponential decay of both

the bias and consistency. For convenience, let 𝜒𝑁,𝑀 =
√︁
3/𝑁 +√︁

1/𝑀 .

Theorem 1 (Bias and Consistency). Assume that and denote by
Δ𝑔 the RHS of Eq. (5). As 𝑁,𝑀 → ∞, the bias of 𝐽̃ (𝑔) decays expo-
nentially: 0 ≤ E

[
𝐽̃ (𝑔)

]
− 𝐽 (𝑔) ≤ 𝐶ℓΔ𝑔 . Moreover, for any 𝛿 > 0, let



𝐶𝛿 = 𝐶ℓ

√︃
2 log

(
2/𝛿

)
, then we have with probability at least 1 − 𝛿 ,��� 𝐽̃ (𝑔) − 𝐽 (𝑔)��� ≤ 𝐶𝛿 · 𝜒𝑁,𝑀 +𝐶ℓΔ𝑔, (6)

and with probability at least 1 − 𝛿 − Δ𝑔 ,��� 𝐽̃ (𝑔) − 𝐽 (𝑔)��� ≤ 𝐶𝛿 · 𝜒𝑁,𝑀 . (7)

Theorem 1 implies that for a fixed 𝑔, 𝐽̃ (𝑔)
p

−→ 𝐽 (𝑔) in O𝑝 (
√︁
3/𝑁 +√︁

1/𝑀). Further note that 𝑀 ≤ 𝑁 . Thus, the empirical risk has√
𝑀-consistency, as does the central limit theorem.

4.2 Estimation Error Bounds
Assume that 𝐶𝑔 > 0 and 𝐶ℓ > 0 such that sup𝑔∈H ∥𝑔∥∞ ≤ 𝐶𝑔

and sup |𝑥 | ≤𝐶𝑔
ℓ (𝑥) ≤ 𝐶ℓ . For any function class H , given sets

of samples D and E, we define the empirical Rademacher com-

plexities as RD (H) := 1

𝑁
E𝜎

[
sup𝑔∈H

∑𝑁
𝑖=1 𝑔(𝑋𝑖 )

]
and RE (H) :=

1

𝑀
E𝜎

[
sup𝑔∈H

∑𝑀
𝑗=1 𝑔(𝑋 𝑗 )

]
. Then, the estimation errors of convDF

and nnDF are given from the following theorem.

Theorem 2 (Estimation Error Bound of convDF). Assume that
H is closed under negation, i.e., 𝑔 ∈ H if and only if −𝑔 ∈ H .
Then, for any 𝛿 > 0, with probability at least 1 − 𝛿 , 𝐽̂ (𝑔) − 𝐽 (𝑔∗) ≤
8𝐶ℓRD (H) + 8𝐶ℓRE (H) + 2𝐶𝛿 · 𝜒𝑁,𝑀 .

Theorem 3 (Estimation Error Bound of nnDF). Assume that (a)
inf𝑔∈F (𝑔) ≥ 𝛼 > 0 and denote by Δ the RHS of Eq. (5); (b)H is closed
under negation, i.e., 𝑔 ∈ H if and only if −𝑔 ∈ H . Then, for any
𝛿 > 0, with probability at least 1− 𝛿 , 𝐽̃ (𝑔) − 𝐽 (𝑔∗) ≤ 16𝐶ℓRD (H) +
16𝐶ℓRE (H) + 2𝐶𝛿 · 𝜒𝑁,𝑀 + 2𝐶ℓΔ.

5 RELATEDWORK
In this section, we review related work regarding DF learning in

the problem setting we introduced. Each study defined DF learning

independently, and relations are not clear. Therefore, we explain

each study based on a unified manner. Firstly, we can naively apply

a logistic regression to the biased dataset D, wherein the empirical

risk is written as 𝐽̂BL (𝑔) = 1

𝑁

∑
𝑖∈D ℓ

(
𝑌𝑖 (𝐸𝑡𝑖 )𝑔(𝑋𝑖 )

)
. The minimizer

of E
[
𝐽̂BL (𝑔)

]
is equal to 𝑝 (𝑌𝑖 (𝐸𝑡𝑖 ) | 𝑋𝑖 ), which is biased from 𝑝 (𝐶𝑖 |

𝑋𝑖 ). We call this method biased logistic regression (BL).

Secondly, we introduce methods using the time window assump-

tion. To mitigate the bias, He et al. [14] proposed using a time

window that is sufficiently long to reduce the bias between the

label 𝑌𝑖 (𝐸𝑡𝑖 ) and the ground truth 𝐶𝑖 . They proposed Time Window
regression (TW) that minimizes an empirical risk defined as

𝐽̂TW (𝑔) = 1

𝑀

∑︁
𝑗 ∈E

ℓ
(
𝐶 𝑗𝑔(𝑋 𝑗 )

)
in the oracle dataset E.

Under the time window assumption, it is also possible to formal-

ize the problem of DF learning as PU learning. We can regard the

positive data in the dataset E as the true positive data. Then, by

considering all data in D as the unlabeled data, we can construct

an empirical risk using convex PU learning as

𝐽̂PUTW (𝑔) = 1

𝑀

∑︁
𝑗 ∈E

1
[
𝐶 𝑗 = +1

]
ℓ
(
− 𝑔(𝑋 𝑗 )

)
− 1

𝑀

∑︁
𝑗 ∈E

1
[
𝐶 𝑗 = +1

]
ℓ
(
− 𝑔(𝑋 𝑗 )

)
+ 1

𝑁

∑︁
𝑖∈D

ℓ
(
− 𝑔(𝑋𝑖 )

)
.

We call this PU learning approach as PUTW. In addition, because

true negative data also exist in E, we can consider the follow-

ing PNU formulation [31] using a weight 0 ≤ 𝜔 ≤ 1 such that

𝐽̂PNUTW (𝑔) = 𝜔 𝐽̂PUTW (𝑔) + (1 −𝜔) 𝐽̂TW (𝑔). We call this approach

as PNUTW. Ktena et al. [21] also proposed PU Learning for DF

learning, but their formulation is different from ours. As we ex-

plain in Appendix B, their formulation provides an estimator of the

biased conditional probability defined as
𝛾

𝜁
𝑝

(
𝑌𝑖 (𝐸𝑇 ) | 𝑋𝑖

)
.

Yasui et al. [38] proposed an Importance Weighting (IW) based

method called FSIW using the stationarity assumption and a similar

variation as section 3.1, they obtain

𝑝 (𝐶𝑖 = +1 | 𝑋𝑖 , 𝐸𝑡𝑖 )
𝑝 (𝑌𝑖 (𝐸𝑡𝑖 ) = +1 | 𝑋𝑖 , 𝐸𝑡𝑖 )

= 𝑝 (𝑆𝑖 (𝐸𝑡𝑖 ) = +1 | 𝐶𝑖 = +1, 𝑋𝑖 , 𝐸𝑡𝑖 )
−1

and

𝑝 (𝐶𝑖 = −1 | 𝑋𝑖 , 𝐸𝑡𝑖 )
𝑝 (𝑌𝑖 (𝐸𝑡𝑖 ) = −1 | 𝑋𝑖 , 𝐸𝑡𝑖 )

= 1 −
𝑝 (𝑆𝑖 (𝐸𝑡𝑖 ) = −1,𝐶𝑖 = +1 | 𝑋𝑖 , 𝐸𝑡𝑖 )

𝑝 (𝑌𝑖 (𝐸𝑡𝑖 ) = +1 | 𝑋𝑖 , 𝐸𝑡𝑖 )
.

Then, they define an empirical risk with IW as

𝐽̂ FSIW (𝑔) = 1

𝑁

∑︁
𝑖∈D

ℓ

(
𝑌𝑖 (𝐸𝑡𝑖 )𝑔(𝑋𝑖 )

)
𝑟

(
𝑌𝑖 (𝐸𝑡𝑖 ), 𝑋𝑖 , 𝐸

𝑡
𝑖

)
,

where 𝑟 (𝑦, 𝑥, 𝑒) is an estimator of

𝑟 (𝑦, 𝑥, 𝑒) =
𝑝 (𝐶𝑖 = 𝑦 | 𝑋𝑖 = 𝑥, 𝐸𝑡𝑖 = 𝑒)
𝑝 (𝑌𝑖 (𝑒) = 𝑦 | 𝑋𝑖 = 𝑥, 𝐸𝑡𝑖 = 𝑒)

.

Note that the empirical risk of the FSIW is not unbiased, but is

consistent with 𝐽 (𝑔). Compared with FSIW, our proposed method

approximates the same risk under the same assumptions but has two

preferable features: the variance of FSIW tends to be larger owing to

the density ratio estimation; that is, convDF allows us to minimize

the loss directly while FSIW requires a two-step procedure.

Finally, we introduce the delayed feedbackmodel (DFM). Chapelle

[7] specified the models of 𝑝 (𝐶𝑖 | 𝑋𝑖 ) and 𝑝 (𝐷𝑖 | 𝑋𝑖 ,𝐶𝑖 = +1)
as 𝑝 (𝐶𝑖 | 𝑋𝑖 ) = 1

1+exp(−𝑔 (𝑋𝑖 )) and 𝑝 (𝐷𝑖 = 𝑑 | 𝑋𝑖 ,𝐶𝑖 = +1) =

𝜆(𝑋𝑖 ) exp(−𝜆(𝑋𝑖 )𝑑), where 𝐷𝑖 denotes the periods after observing
the sample until observing the positive label and the function 𝜆(𝑋𝑖 )
is called the hazard function in survival analysis. Chapelle [7] used

𝜆(𝑥) = exp(ℎ(𝑥)) by using a function ℎ : X → R. Regarding the

models 𝑔(𝑥) and ℎ(𝑥), Chapelle [7] proposed linear models, and

only 𝑔(𝑥) is used to predict. We summarise the comparison of these

methods in this section in Table 1.

6 EXPERIMENTS
In this section, we compared our proposedmethods to other existing

methods in two types of experiments. In the first experiment, we

used a synthetic dataset to show that the performance of the model

corresponding to the DF learning varies with the stationarity of



Table 1: Comparison of Methods for DF learning.

Method Use of D Use of E Time Window Stationarity Model Specification Unbiasedness Consistency

convDF Use Use Assume Assume ⃝ ⃝
nnDF Use Use Assume Assume ⃝
BL Use

TW Use Assume ⃝ ⃝
PUTW Use Use Assume ⃝ ⃝
FSIW Use Use Assume Assume ⃝
DFM Use Specify ⃝ ⃝

Table 2: Negative log loss (nLL), accuracy (ACC), and area under the precision-recall curve (AUC). The best performingmethods,
except for OracleLogistic, are in bold.

Day 54 Day 55 Day 56 Day 57

nLL ACC AUC nLL ACC AUC nLL ACC AUC nLL ACC AUC

nnDF 0.265 0.935 0.817 0.269 0.929 0.829 0.283 0.917 0.842 0.326 0.888 0.815

BL 0.290 0.936 0.864 0.314 0.929 0.859 0.355 0.917 0.838 0.440 0.888 0.797

TW 0.260 0.936 0.883 0.284 0.929 0.878 0.324 0.917 0.858 0.416 0.888 0.822

PUTW 0.320 0.889 0.889 0.368 0.928 0.874 0.335 0.917 0.856 0.441 0.888 0.809

FSIW 0.274 0.936 0.869 0.300 0.929 0.862 0.340 0.917 0.840 0.374 0.908 0.827
DFM 0.280 0.936 0.867 0.320 0.929 0.860 0.356 0.917 0.839 0.444 0.888 0.794

Oracle 0.070 0.998 1.000 0.068 0.999 1.000 0.069 0.999 1.000 0.078 0.999 0.999

Day 58 Day 59 Day 60 Average

nLL ACC AUC nLL ACC AUC nLL ACC AUC nLL ACC AUC

nnDF 0.653 0.763 0.484 0.421 0.781 0.904 0.233 0.983 0.994 0.347 0.888 0.810

BL 0.589 0.763 0.681 0.340 0.800 0.975 0.281 0.826 0.990 0.371 0.867 0.859

TW 0.603 0.763 0.668 0.518 0.763 0.847 0.472 0.753 0.923 0.408 0.852 0.846

PUTW 0.570 0.762 0.617 0.662 0.763 0.607 0.735 0.753 0.611 0.487 0.845 0.802

FSIW 0.582 0.763 0.688 0.208 0.958 0.995 0.142 0.995 0.993 0.312 0.916 0.868
DFM 0.589 0.763 0.684 0.315 0.821 0.979 0.256 0.840 0.992 0.365 0.872 0.858

Oracle 0.144 0.998 0.997 0.118 0.996 0.995 0.110 0.995 0.994 0.093 0.998 0.998

the data. For the second experiment, we used a dataset provided by

Chapelle [7]
12

to compare the methods in real-world data.

6.1 Synthetic Data
In this experiment, we generate a dataset that mimics the setting

in online advertising. We assume the label is a CV which is the

purchase of some items after clicking the ad. The length of the

generated data is eight days, and we use the first seven days as

the training data and the rest as test data. The number of samples

per day is 4800, and each sample is assigned a timestamp. To see

the impact of the stationary assumption, we add data that the

stationarity assumption is not met as the days go on. This often

happens in advertising platforms, such as when a new campaign

is launched. Since there are fewer data of the new campaigns, the

test data has some shift from the training data, so the stationarity

assumption does not hold in this setting.

For the experiment, we need to generate data containing 𝐶 ,

𝑋 , and 𝑌 (𝐸𝑇 ). We generate 𝐶𝑖 with the probability 𝑃 (𝐶 | 𝑋 ) =
1

1+exp(−𝑋𝛼) , where 𝛼 is the parameter we randomly decide. We

1
https://labs.criteo.com/2013/12/conversion-logs-dataset

2
The same dataset is available in the following GitHub repository: https://github.com/

ThyrixYang/es_dfm.

draw delay time from the one-sided normal distribution with stan-

dard deviation 𝜎 = 𝑋𝛽 , where 𝛽 is the parameter we randomly

generate. If the sum of randomly assigned arriving time and delay

time exceeds the duration of training data, then we set 𝑆 = 1 for

such a sample. By using randomly assigned arriving time, delay

time, and 𝐶 , we set 𝑌 (𝐸𝑇 ). For 𝑋 , there are 20 of binary features

and 7 of campaign binary features. The binary features are drawn

from the binomial distribution. For five features, the expected value

is determined by the uniform distribution whose range is 0.1 to 0.3,

and the remaining 15 features are also randomly determined from

0.3 to 0.7. The true parameters for CVR and Delay of these binary

features, which are 𝛼 and 𝛽 , are sampled from the uniform distri-

bution from −0.5 to 0.5 and 0 to 10 accordingly. For the campaign

feature, we decide its value as follows. From day 1 to day 7, a new

campaign is added every day. The true CVR of the campaigns is set

to be larger the later they are added. This is expected to degrade the

performance of TW since the training data of TW may miss some

data for the campaign, which is added after the time window. By

contrast, the methods for DF learning can use the data of the new

campaign, so we expect these methods to perform better than TW.

To show the influence of the stationarity, we introduce the shift

parameter 𝜂 and then define the parameter of campaigns added at

https://labs.criteo.com/2013/12/conversion-logs-dataset
https://github.com/ThyrixYang/es_dfm
https://github.com/ThyrixYang/es_dfm
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Figure 1: The average relative log loss (rll) of 20 iterations
of synthetic data experiment. The error bar shows the 95%

confidence interval. The result of nnDF is omitted because
the results are the almost the same with convDF.

day 𝑑 for CVR as 𝛼𝑐𝑎𝑚𝑝𝑑 = 𝑑
7
𝜂. If we set 𝜂 = 0, TW will be the best

model since there is no data shift and the stationarity assumption

is satisfied. Note that the campaign has no effect on the delay in

this dataset.

We compare the proposedmethod (convDF) with BL, TW, PUTW,

FSIW, and DFM. For all methods except DFM, we use logistic loss.

We also train a logistic regression model with ground truth label𝐶𝑖
and call this model as Oracle. Note that Oracle method is ideal and

unrealizable sincewe do not have access to𝐶𝑖 . To train nnDF, we use

a plain gradient descent algorithm, not the descent/ascent algorithm.

For each model, we use a linear model with the 𝐷 = 28 dimensional

feature and 𝐿2 regularization defined as 𝑅(𝑔) := 1

𝐷

∑𝐷
𝑑=1

∥𝜃𝑑 ∥22,
where 𝜃𝑑 is the 𝑑-th parameter of the linear model and ∥ · ∥2 is

the 𝐿2 norm. For each method, we used Optuna
3
software to tune

the hyper-parameter. Its search range is 10𝑒−6 to 10𝑒−1. Since the
average values of 𝑌 and 𝐶 change by each trial, we measure the

performance by relative log loss as 𝑟𝑙𝑙 =
𝑙𝑜𝑔𝑙𝑜𝑠𝑠−𝑙𝑜𝑔𝑙𝑜𝑠𝑠𝑂𝑟𝑎𝑐𝑙𝑒

𝑙𝑜𝑔𝑙𝑜𝑠𝑠𝑂𝑟𝑎𝑐𝑙𝑒
, where

𝑙𝑜𝑔𝑙𝑜𝑠𝑠𝑂𝑟𝑎𝑐𝑙𝑒 is the logistic loss of Oracle.

The average result of 20 trials is shown in Figure 1. In general,

the performance of FSIW, DFM, and convDF improves, and the

performance of BL, TW, and PUTW deteriorates as the 𝜂 increases.

Note that if 𝜂 is high, the rll is negative since the methods of DF

learning can use the most recent data to improve performance. The

best-performing model changes by the value of 𝜂. For instance,

TW performs the best when 𝜂 is lower. This is mainly because the

stationary assumption is satisfied, so campaigns not included in

the training data of TW have similar CVR to other campaigns. On

the other hand, when 𝜂 is large, the performance of either convDF,

FSIW, or DFM is the best. Here, convDF performs the best in the

middle and well in most values of 𝜂. This result shows the practical

3
https://optuna.readthedocs.io/en/stable/

advantage of the proposed method since it is not possible to know

the strength of the stationarity before the model training in practice.

6.2 Criteo Dataset
In the second experiment, we used the real-world dataset provided

by Criteo as Chapelle [7]. This dataset contains the click and conver-

sion log data of multiple campaigns. We followed the experimental

setting and feature engineering of Chapelle [7] to provide a fair

comparison. We separate the original dataset into seven datasets

as follows. There are 7 days of test data, and for each test day, a

model is trained using the previous 3 weeks of data. Each train-

ing set contains slightly less than 6𝑀 examples. All features are

mapped into a 2
24

sparse binary feature vector via the hashing

trick [35]. As in the first experiment, we use a linear model and 𝐿2
regularization, but the dimension of the feature is 2

24
. Regarding

metrics, we used the negative log loss (nLL), accuracy (ACC), and

the area under the precision-recall curve (AUC). In online ads, the

estimated probability of 𝑝 (𝐶𝑖 | 𝑋𝑖 ) is essential for deciding the

bidding price. Therefore, the nLL is the most important metric in

such an application.

We compare nnDF with the same methods used in the first ex-

periment. Note that we do not report the result of convDF, since it

diverged. For each method, we choose a regularization parameter 𝜆

from the set {0.1, 0.05, 0.01, 0.005} using two-fold cross-validation.

We present the experimental results in Table 2. The results of each

day and an average of 7 days using the test data over 7 days are

presented. As in the first experiment, the assumption of stationarity

is not met in the Criteo Dataset, as campaigns are added as the days

go by. Especially, CVR for campaigns added after Day58 tends to be

higher than those added before that date. As a result, the strength of

the non-stationarity varies each day, so the best-performing meth-

ods are different for these 7 days. While nnDF performs the best

for days 55 to 57, FSIW performs the best for days 59 and 60 and

also on the average of 7 days. Note that the average result depends

on how much highly non-stationary data is included.

7 CONCLUSION
In this paper, we propose novel methods for DF learning under

time window and stationarity assumptions. The basic formulation

of the proposed methods employs a convex unbiased empirical

risk estimator. We also determine the estimation error bounds of

the proposed methods. Finally, we demonstrate that our proposed

method performs well for any strength of stationarity, but other

methods performwell for certain strengths while performing poorly

for others.

A promising extension of the proposed methods involves on-

line and continuous learning. Herein, we only discuss a general

formulation for DF learning and do not develop a method involving

online learning. However, because our formulation is simple, con-

vex, and easy to optimize, we consider that it should not be difficult

to develop an online learning method with theoretical guarantees.
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Appendix A GRADIENTS OF CONVDF AND
NNDFWITH LOGISTIC LOSS

Here, we show the gradients of 𝐽̂
logistic

(𝑔) and 𝐽̃
logistic

(𝑔). For sim-

plicity, we assume a linear model for the model 𝑔(𝑋𝑖 ); that is, for
a 𝐷-dimensional 𝑋𝑖 = (𝑋𝑖,1, 𝑋𝑖,2 . . . , 𝑋𝑖,𝐷 )⊤, the model is given as

𝑔(𝑋𝑖 ) =
∑𝐷
𝑑=1

𝜃𝑑𝑋𝑖,𝑑
4
, where 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝐷 )⊤ is a parameter

of the linear model and 𝜃𝑑 ∈ R. Let us redefine the convDF and

nnDF risks as 𝐽̂
logistic

(𝑔, 𝜃 ) and 𝐽̃
logistic

(𝑔, 𝜃 ), respectively. Then, the
gradients of 𝐽̂

logistic
(𝑔, 𝜃 ) is given as follows:

𝜕𝐽̂
logistic

(𝑔, 𝜃 )
𝜕𝜃

=
1

𝑁

∑︁
𝑖∈D

(
1[𝑌𝑖 = +1] −𝜓 (𝑋𝑖 )

)
𝑋𝑖

− 1

𝑀

∑︁
𝑗 ∈E

1

[(
𝑆 𝑗 (𝐸𝑇−𝜏𝑗 ) = −1

)
∧

(
𝐶 𝑗 = +1

)]
𝑋 𝑗 ,

where 𝜓 (𝑋𝑖 ) = 1

1+exp(𝑔 (𝑋𝑖 )) . The gradients of 𝐽̃
logistic

(𝑔, 𝜃 ) with

a plain gradient/descent method is

𝜕𝐽̂
logistic

(𝑔,𝜃 )
𝜕𝜃

when 𝐽̂
(−)
D (𝑔) −

𝐽̂
(−)
E (𝑔) > 0. Otherwise, the gradient of 𝐽̃

logistic
(𝑔, 𝜃 ) is:

𝜕𝐽̃
logistic

(𝑔, 𝜃 )
𝜕𝜃

=
1[𝑌𝑖 = +1]

𝑁

∑︁
𝑖∈D

(1 −𝜓 (𝑋𝑖 ))𝑋𝑖

+ 1

𝑀
1

[
(𝑆 𝑗 (𝐸𝑇−𝜏𝑗 ) = −1) ∧ (𝐶 𝑗 = +1)

] ∑︁
𝑗 ∈E

(1 −𝜓 (𝑋 𝑗 ))𝑋 𝑗 .

Appendix B BIASED PU LEARNING
This problem arises in various practical situations, such as infor-

mation retrieval and outlier detection [5, 12, 23, 26, 33, 34]. In PU

learning, there are censoring and case-control scenarios [12]. The

convex PU learning du Plessis et al. [9], du Plessis and Sugiyama [11]

is a method for case-control scenario, which constructs unbiased
and convex estimator of the true classification risk. By using the

methods proposed by du Plessis et al. [9] and Kiryo et al. [20], Ktena

et al. [21] proposed minimizing 𝐽̂PU (𝑔) = 1

𝑁

∑
𝑖∈D ℓ

(
− 𝑔(𝑋𝑖 )

)
+

𝛾

∑
𝑖∈E 1[𝑌𝑖 (𝐸𝑡𝑖 )=+1]

(
ℓ
(
𝑔 (𝑋 𝑗 )

)
−ℓ

(
−𝑔 (𝑋 𝑗 )

) )∑𝑁
𝑖=1 1[𝑌𝑖 (𝐸𝑡𝑖 )=+1]

, where 𝛾 is a parameter es-

timated by the class-prior estimation [10, 15, 19, 29]. However, as

Kato et al. [19] and Kato et al. [18] showed, the minimizer of the

population version of the empirical risk matches the biased proba-

bility
𝛾

𝜁
𝑝

(
𝑌𝑖 (𝐸𝑇 ) | 𝑋𝑖

)
, i.e., the empirical minimization is the same

as the naive logistic regression.

Appendix C PROOFS OF THEORETICAL
ANALYSIS

Firstly, we introduce the McDiarmid’s inequality [25].

Proposition 1 (McDiarmid’s Inequality [25, 32]). Suppose 𝑓 :

X𝑛 → R satisfies the bounded differences property. That is, for all

𝑖 = 1, . . . , 𝑛, there is a 𝑐𝑖 ≥ 0 such that, for all 𝑥1, . . . , 𝑥𝑛, 𝑥
′ ∈

X,

��𝑓 (𝑥1, . . . , 𝑥𝑛) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥 ′, 𝑥𝑖+1, . . . , 𝑥𝑛)
�� ≤ 𝑐𝑖 . If 𝑋 =

(𝑋1, . . . , 𝑋𝑛) ∈ X𝑛 is a random variable drawn according to 𝑃𝑛

4
Suppose that the bias term is included in 𝑋𝑖 .

and 𝜇 = E𝑃𝑛 [𝑓 (𝑋 )], then, for all 𝜖 > 0, 𝑃𝑛
(
𝑓 (𝑋 ) − 𝜇 ≥ 𝜖

)
≤

exp

(
2𝜖2∑𝑛
𝑖=1 𝑐

2

𝑖

)
.

For dealing with the non-negative correction, we define the

following consistent correction function, which includes the non-

negative correction as a special case. Then, following Kiryo et al.

[20] and Kato and Teshima [17], we define the following alternative

version of Rademacher complexity [3] for bounding the estimation

error.

Definition 1 (Consistent correction function [24]). A function

𝜌 : R→ R is called a consistent correction function if it is Lipschitz

continuous, non-negative and 𝜌 (𝑥) = 𝑥 for all 𝑥 ≥ 0.

Definition 2 (Rademacher complexity). Given 𝑛 ∈ N and a dis-

tribution 𝑝 , define the Rademacher complexity R𝑝𝑛 (F ) of a func-
tion class F as R𝑝𝑛 (H) := E𝑝E𝜎

[
sup𝑓 ∈F

�� 1
𝑛

∑𝑛
𝑖=1 𝜎𝑖 𝑓 (𝑋𝑖 )

��]
, where

{𝜎𝑖 }𝑛𝑖=1 are Rademacher variables (i.e., independent variables fol-

lowing the uniform distribution over {−1, +1}) and {𝑋𝑖 }𝑛𝑖=1
i.i.d.∼ 𝑝 .

Secondly, we introduce a useful proposition on symmetrization

with consistent correction function from Kato and Teshima [17].

Proposition 2 (Symmetrization under Lipschitz-continuous modi-

fication, [17]). Let 0 ≤ 𝑎 < 𝑏, 𝐽 ∈ N, and {𝐾𝑗 }𝐽𝑗=1 ⊂ N. Given i.i.d.

samples D( 𝑗,𝑘) := {𝑋𝑖 }
𝑛 ( 𝑗,𝑘 )
𝑖=1

each from a distribution 𝑝 ( 𝑗,𝑘) over
X, consider a stochastic process 𝑆 indexed by F ⊂ (𝑎, 𝑏)X of the

form 𝑆 (𝑓 ) = ∑𝐽
𝑗=1

𝜌 𝑗

(∑𝐾𝑗

𝑘=1
ˆE(𝑖, 𝑗) [ℓ( 𝑗,𝑘) (𝑓 (𝑋 ))]

)
, where each 𝜌 𝑗 is

a 𝐿𝜌 𝑗 -Lipschitz function onR, ℓ( 𝑗,𝑘) is a 𝐿ℓ( 𝑗,𝑘 ) -Lipschitz function on

(𝑎, 𝑏), and ˆE(𝑖, 𝑗) denotes the expectation with respect to the empir-

ical measure ofD( 𝑗,𝑘) . Denote 𝑆 (𝑓 ) := E𝑆 (𝑓 ) where E is the expec-
tation with respect to the product measure of {D( 𝑗,𝑘) } ( 𝑗,𝑘) . Here,
the index 𝑗 denotes the grouping of terms due to 𝜌 𝑗 , and 𝑘 denotes

each sample average term. Then we have E sup𝑓 ∈F |𝑆 (𝑓 ) −𝑆 (𝑓 ) | ≤
4

∑𝐽
𝑗=1

∑𝐾𝑗

𝑘=1
𝐿𝜌 𝑗 𝐿ℓ( 𝑗,𝑘 )R

𝑝 ( 𝑗,𝑘 )
𝑛 ( 𝑗,𝑘 ) (F ).

Appendix C.1 Proof of Lemma 1
The procedure of the proof mainly follows Kiryo et al. [20]. Let

𝐹 (D, E) be the cumulative distribution function of (D, E). Given
the above definitions, themeasure ofB(𝑔) is defined by Pr (B(𝑔)) =∫
(D,E) ∈B(𝑔) 𝑑𝐹 (D, E). Since 𝐽̃ (𝑔) is identical to 𝐽̂ (𝑔) on A(𝑔) and

different from 𝐽̂ (𝑔) on B(𝑔), we have Pr (B(𝑔)) = Pr

(
𝐽̃ (𝑔) ≠ 𝐽̂ (𝑔)

)
.

This result means that the measure of B(𝑔) is non-zero if and only

if 𝐽̃ (𝑔) differs from 𝐽̂ (𝑔) with a non-zero probability.

Based on the facts that 𝐽̂ (𝑔) is unbiased and 𝐽̃ (𝑔) − 𝐽̂ (𝑔) = 0 on

A(𝑔), we haveE
[
𝐽̃ (𝑔)

]
−𝐽 (𝑔) = E

[
𝐽̃ (𝑔) − 𝐽̂ (𝑔)

]
=

∫
(D,E) ∈A(𝑔) 𝐽̃ (𝑔)−

𝐽̂ (𝑔)d𝐹 (D, E)+
∫
(D,E) ∈B(𝑔) 𝐽̃ (𝑔)− 𝐽̂ (𝑔)d𝐹 (D, E) =

∫
(D,E) ∈B(𝑔) 𝐽̃ (𝑔)−

𝐽̂ (𝑔)𝑑𝐹 (D, E). As a result, E
[
𝐽̃ (𝑔)

]
− 𝐽 (𝑔) > 0 if and only if∫

(D,E) ∈B (−) (𝑔) 𝑑𝐹 (D, E) > 0 due to the fact 𝐽̃ (𝑔) − 𝐽̂ (𝑔 > 0 on

B(𝑔). That is, the bias of 𝐽̃ (𝑔) is positive if and only if the measure

of B(𝑔) is non-zero.



We prove Eq. (5) by the method of bounded difference, for that

E
[
𝐽̂
(−)
D (𝑔) − 𝐽̂ (−)E (𝑔)

]
= 𝐽 (−) (𝑔) ≥ 𝛼 . We have assumed that 0 ≤

ℓ (·) ≤ 𝐶ℓ , and thus the change of 𝐽̂ (−) (𝑔) will be no more than

𝐶ℓ/𝑁 if some 𝑋𝑖 ∈ XD/E is replaced, or the change of 𝐽̂ (−) (𝑔)
will be no more than 𝐶ℓ/𝑁 + 𝐶ℓ/𝑀 if some 𝑋𝑖 ∈ XE is replaced.

Subsequently, McDiarmid’s inequality [25] implies

Pr

(
𝐽 (−) (𝑔) −

(
𝐽̂
(−)
D (𝑔) − 𝐽̂ (−)E (𝑔)

)
≥ 𝛼

)
≤ exp

(
− 2𝛼2(
𝑁 −𝑀

)
(𝐶ℓ/𝑁 )2 +𝑀 (𝐶ℓ/𝑁 +𝐶ℓ/𝑀)2

)
= exp

(
−

2𝛼2/𝐶2

ℓ

3/𝑁 + 1/𝑀

)
.

Taking into account that

Pr (B(𝑔)) = Pr

(
𝐽̂
(−)
D (𝑔) − 𝐽̂ (−)E (𝑔) < 0

)
≤ Pr

(
𝐽̂
(−)
D (𝑔) − 𝐽̂ (−)E (𝑔) ≤ 𝐽 (−) (𝑔) − 𝛼

)
= Pr

(
𝐽 (−) (𝑔) −

(
𝐽̂
(−)
D (𝑔) − 𝐽̂ (−)E (𝑔)

)
≥ 𝛼

)
,

we complete the proof.

Appendix C.2 Proof of Theorem 1
It has been proven in Lemma 1 thatE

[
𝐽̃ (𝑔)

]
−𝐽 (𝑔) =

∫
X∈B (−) (𝑔) 𝐽̃ (𝑔)−

𝐽̂ (𝑔)𝑑𝐹 (X), thus the exponential decay of the bias is obtained via

E
[
𝐽̃ (𝑔)

]
− 𝐽 (𝑔)

≤ sup

(D,E) ∈B (−) (𝑔)

(
𝐽̃ (𝑔) − 𝐽 (𝑔)

)
·
∫
X∈B (−) (𝑔)

𝑑𝐹 (X)

≤ sup

(D,E) ∈B (−) (𝑔)

(
𝐽̂
(−)
E (𝑔) − 𝐽̂ (−)D (𝑔)

)
· Pr

(
B (−) (𝑔)

)
≤ 𝐶ℓΔ𝑔 .

The deviation bound Eq. (6) is due to��� 𝐽̃ (𝑔) − 𝐽 (𝑔)��� ≤ ��� 𝐽̃ (𝑔) − E [
𝐽̃ (𝑔)

] ��� + ���E [
𝐽̃ (𝑔)

]
− 𝐽 (𝑔)

���
≤

��� 𝐽̃ (𝑔) − E [
𝐽̃ (𝑔)

] ��� +𝐶ℓΔ𝑔 .
The change of 𝐽̃ (𝑔) will be no more than 2𝐶ℓ/𝑁 if some 𝑋𝑖 ∈

XD/E is replaced, or it will be no more than 2𝐶ℓ/𝑁 + 2𝐶ℓ/𝑀 if

some 𝑋𝑖 ∈ XD/E is replaced. Therefore, McDiarmid’s inequality

gives us

Pr

{��� 𝐽̃ (𝑔) − E [
𝐽̃ (𝑔)

] ��� ≥ 𝜖}
≤ 2 exp

(
− 2𝜖2(
𝑁 −𝑀

)
(2𝐶ℓ/𝑁 )2 +𝑀 (2𝐶ℓ/𝑁 + 2𝐶ℓ/𝑀)2

)
= 2 exp

(
−

𝜖2/𝐶2

ℓ

6/𝑁 + 2/𝑀

)
or equivalently, with probability at least 1 − 𝛿 ,��� 𝐽̃ (𝑔) − E [

𝐽̃ (𝑔)
] ��� ≤ℓ √︃(

6/𝑁 + 2/𝑀
)
log

(
2/𝛿

)
= 𝐶ℓ

√︃
2 log

(
2/𝛿

)√︃(
3/𝑁 + 1/𝑀

)
≤ 𝐶ℓ

√︃
2 log

(
2/𝛿

) (√︁
3/𝑁 +

√︁
1/𝑀

)
.

On the other hand, the deviation bound Eq. (7) is obtained from��� 𝐽̃ (𝑔) − 𝐽 (𝑔)��� ≤
��� 𝐽̃ (𝑔) − 𝐽̂ (𝑔)��� + ��� 𝐽̂ (𝑔) − 𝐽 (𝑔)���, where ��� 𝐽̃ (𝑔) − 𝐽̂ (𝑔)���

with probability at most Δ𝑔 , and
��� 𝐽̂ (𝑔) − 𝐽 (𝑔)��� has the same bound

with

��� 𝐽̃ (𝑔) − E [
𝐽̃ (𝑔)

] ���.
Appendix C.3 Proof of Theorem 2
Since 𝑔 minimizes 𝐽̂𝜔 (𝑔), we have

𝐽 (𝑔) − 𝐽 (𝑔∗) = 𝐽 (𝑔) − 𝐽̂ (𝑔) + 𝐽̂ (𝑔) − 𝐽 (𝑔∗) ≤ 𝐽 (𝑔) − 𝐽̂ (𝑔) + 𝐽̂ (𝑔∗) − 𝐽 (𝑔∗)

≤ 2 sup

𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)��� .
By applying McDiarmid’s inequality to sup𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)���,
Pr

(
sup

𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)��� − E [
sup

𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)���] ≥ 𝜖
)
≤ exp

(
−

𝜀2/𝐶2

ℓ

6/𝑁 + 2/𝑀

)
or equivalently, the following bound holds with probability at least

1 − 𝛿 :

sup

𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)��� ≤ E [
sup

𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)���]︸                      ︷︷                      ︸
Expected maximal deviation

+𝐶ℓ
√︃(

6/𝑁 + 2/𝑀
)
log

(
1/𝛿

)
.

By using Proposition 2 for 𝜌 (𝑥) = 𝑥 ,

E

[
sup

𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)���] ≤ 4𝐶ℓRD (H) + 4𝐶ℓRE (H).

Appendix C.4 Proof of Theorem 3
Proof. Since 𝑔 minimizes 𝐽̂𝜔 (𝑔), we have

𝐽 (𝑔) − 𝐽 (𝑔∗) = 𝐽 (𝑔) − 𝐽̃ (𝑔) + 𝐽̃ (𝑔) − 𝐽 (𝑔∗)

≤ 𝐽 (𝑔) − 𝐽̃ (𝑔) + 𝐽̃ (𝑔∗) − 𝐽 (𝑔∗) ≤ 2 sup

𝑔∈H

��� 𝐽̃ (𝑔) − 𝐽 (𝑔)���
= 2 sup

𝑔∈H

��� 𝐽̃ (𝑔) − E [
𝐽̃ (𝑔)

] ���︸                        ︷︷                        ︸
Maximal deviation

+ 2 sup

𝑔∈H

���E [
𝐽̃ (𝑔)

]
− 𝐽 (𝑔)

���︸                        ︷︷                        ︸
Bias

.

For applying McDiarmid’s inequality to sup𝑔∈H
��� 𝐽̂ (𝑔) − 𝐽 (𝑔)���,

Pr

(
sup

𝑔∈H

��� 𝐽̃ (𝑔) − E [
𝐽̃ (𝑔)

] ��� − E [
sup

𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)���] ≥ 𝜖
)
= exp

(
−

𝜀2/𝐶2

ℓ

6/𝑁 + 2/𝑀

)
or equivalently, the following bound holds with probability at least

1 − 𝛿 :

sup

𝑔∈H

��� 𝐽̃ (𝑔) − E [
𝐽̃ (𝑔)

] ���
≤ E

[
sup

𝑔∈H

��� 𝐽̃ (𝑔) − E [
𝐽̃ (𝑔)

] ���]︸                           ︷︷                           ︸
Expected maximal deviation

+𝐶ℓ
√︃(

6/𝑁 + 2/𝑀
)
log

(
1/𝛿

)
.

By using Proposition 2 for 𝜌 (𝑥) = 𝑥 , we haveE
[
sup𝑔∈H

��� 𝐽̂ (𝑔) − 𝐽 (𝑔)���] ≤
8𝐶ℓRD (H) + 8𝐶ℓRE (H).



The bias term can be bounded as

��� 𝐽̃ (𝑔) − 𝐽 (𝑔)��� ≤ 𝐶ℓΔ. □
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