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ABSTRACT
With the advancement of data collection techniques, end users are
interested in how different types of data can collaborate to improve
our life experiences. Multimodal Federated Learning (MFL) is an
emerging area allowing many distributed clients, each of which
can collect data from multiple types of sensors, to participate in the
training of some multimodal data-related models without sharing
their data. In this paper, we address a novel challenging issue in
MFL, the modality incongruity, where clients may have heteroge-
neous setups of sensors and their local data consists of different
combinations of modalities. With the modality incongruity, clients
may solve different tasks on different parameter spaces, which es-
calates the difficulties in dealing with the statistical heterogeneity
problem of federated learning; also, it would be hard to perform
accurate model aggregation across different types of clients. To
tackle these challenges, in this work, we propose the FedMSplit
framework, which allows federated training over multimodal dis-
tributed data without assuming similar active sensors in all clients.
The key idea of FedMSplit is to employ a dynamic and multi-view
graph structure to adaptively capture the correlations amongst mul-
timodal client models. More specifically, we split client models into
smaller shareable blocks and allow each type of blocks to provide
a specific view on client relationships. With the graph representa-
tion, the underlying correlations between clients can be captured
as the edge features in the multi-view graph, and then be utilized
to promote local model relations through the neighborhood mes-
sage passing in the graph. Our experimental results demonstrate
the effectiveness of our method under different sensor setups with
statistical heterogeneity.

CCS CONCEPTS
• Computing methodologies→ Learning paradigms;Multi-
task learning; Supervised learning by classification; Distributed
artificial intelligence.
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1 INTRODUCTION
Federated learning (FL) is currently the dominant framework for
distributed training of machine learning models under communi-
cation and privacy constraints [6, 9, 13, 14, 17, 18, 23, 28, 31]. An
FL paradigm typically involves multiple clients collecting data and
jointly training ML models or Deep Neural Networks without re-
leasing their local data. Recently, with the advancement of sensory
techniques and the dramatically increasing multimodal data, Mul-
timodal Federated Learning (MFL) has attracted much research
attention [19, 36, 39]. MFL focuses on how massive distributed
clients, each of which can collect multimodal data from multiple
types of sensors (e.g., image, video, audio, texts, time-series data,
and etc.), can collaborate to train multimodal tasks-related mod-
els (e.g., multimodal fusion, cross-modal translation, multimodal
knowledge bases, etc.) [25, 29, 37] without sharing their data.

While a majority of previous FL and MFL frameworks focus
on the statistical heterogeneity problem in the federated training
system (i.e., non-IID data over clients) [6, 9, 17, 28], a potential
limitation of these methods is that they still assume the modality
congruity among client models, i.e., all clients have the same setup
of input modalities and client models share the same parameter
space. However, in real-world MFL scenarios where there are mul-
tiple types of sensors, the assumption may not be true. It should
be aware that different clients may not have the same type or the
same set of working sensors due to the differences of their environ-
ments, network connections, and sensor affordability. For example,
healthcare centers in remote areas usually lack advanced medical
equipment so that their models relies on data collected by other
available sensors; in dynamic systems or online learning applica-
tions, sensor availability may be not stable over time, thus several
modalities can be missing frequently. Therefore, real-world MFL
systems usually observe the modality incongruity problem–that is,
clients may have heterogeneous setups of sensors and their local
data consists of different combinations of modalities.

In this paper, we study multimodal FL and focus on not only
statistical heterogeneity but also the novel modality incongruity
problem in MFL. The modality incongruity across clients, which
has been neglected by existing FL works, can be a significant issue
that will potentially impact the performance and robustness of FL
systems. Specifically, it escalates the heterogeneity among clients.
Since clients collect data from different sets of sensors, they actually
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solve different tasks using different model architectures. Then, it
could be difficult for clients to collaborate to find a common model
for different tasks, and it is hard to perform model aggregation
across the clients having different parameter sets.

To approach MFL with both modality incongruity and statistical
heterogeneity challenges, we first choose to build our framework
based on the federated multi-task learning (FMTL) paradigm, which
deals with statistical heterogeneity by learning separate but related
models for each clients through a global regularization term that
captures client relationships [28]. Inspired by this, regarding the
modality incongruity problem, our goal is to build a novel multi-
modal FMTL framework, which can adaptively explore the relation-
ships between different types of clients and finally learn person-
alized but globally correlated multimodal client models. However,
there are two challenges in the multimodal FMTL due to modality
incongruity. (1) First, it is challenging to measure the relationships
between the clients which solve different tasks in different parame-
ter spaces. As a result, how to perform accurate model aggregation
across different types of tasks (clients) remains challenging. Al-
though one can simply unify client models by imputing missing
modalities and padding the model parameters related to the miss-
ing sensors for each client, the extra neurons participating in the
federated training will introduce a lot of noise during the model
aggregation process, as well as not efficient as extra modalities
and model parameters participate in each communication round.
Therefore, we aim to directly learn the individual client models
in different parameter spaces. (2) Second, due to communication
limitation in the real-world FL environments [17], only a subset
of clients can participate in the correlated training at each round.
Since different clients focus on solving different tasks using dif-
ferent model architectures, it would be hard to guarantee precise
model correlations using partial clients. Existing FMTL approaches
either perform random client selection or just select nearly all
clients (tasks) to participate in each round, which is not efficient
with modality incongruity settings. To achieve faster convergence,
it is of importance to select different types of clients in a balanced
manner at each round.

To tackle the aforementioned challenges, in this work, we for-
mulate a new fundamental structure that facilitates the adaptive
correlations amongst different types of multimodal client models.
We propose the FedMSplit framework, which allows federated
training over multimodal client models without assuming the con-
sistency of sensor setups of clients. The key idea of FedMSplit is
to employ a dynamic and multi-view graph structure, where each
vertex corresponds to a client solving the subproblem (local ob-
jective) on its local dataset, to automatically capture and utilize
the relationships among clients to achieve correlated local model
updates. In particular, we propose to split client models into smaller
blocks–some blocks are shared by all clients while some are shared
amongst a subset of clients, and allow each type of blocks to pro-
vide a specific view on client relationships. Then, given the graph
representation of multimodal clients, the underlying statistical cor-
relations between clients can be captured as the edge features in
the multi-view graph, and then be used to promote local model
relations through the neighborhood message passing in graph.

Our contributions are summarized as follows: (1) First, we pro-
pose a novel multimodal federated learning framework, which

allows federated training over clients that have heterogeneous
setups of sensors. To the best of knowledge, this is the first work
studying the modality incongruity problem using FMTL. (2) Second,
we propose FedMSplit, which employs a dynamic graph structure
to adaptively capture the relationships among different types of
clients and then achieve correlated model training. We adopt the
multi-armed bandit algorithm over the graph, to perform efficient
client selection amongst different client architectures. (3) Finally,
we evaluate FedMSplit on two multimodal federated datasets with
different setups of modality incongruity. The empirical results show
the effectiveness of our method.

2 RELATEDWORKS AND BACKGROUND
Federated Learning. A federated learning framework typically
involves multiple clients collecting data and a central server co-
ordinating the learning objective. Given that there are 𝑁 clients,
where client 𝑘 has a local dataset D𝑘 containing 𝑛𝑘 = |D𝑘 | data
samples, and suppose 𝑓𝑘 (w, x𝑖 , 𝑦𝑖 ) is the composite loss function
for sample (x𝑖 , 𝑦𝑖 ) and parameter vector w at client 𝑘 , the general
FL framework [17, 22] aims to find a single global model w ∈ R𝑑
across the local data:

min
w

{
𝐹 (w) =

𝑁∑︁
𝑘=1

𝑝𝑘𝐹𝑘 (w) =
1∑
𝑘 𝑛𝑘

𝑁∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑓𝑘 (w, x𝑖 , 𝑦𝑖 )
}
, (1)

where 𝑝𝑘 =
𝑛𝑘∑
𝑘 𝑛𝑘

is the fraction of data at the 𝑘-th client. The
term 𝐹𝑘 (w) = 1

𝑛𝑘

∑𝑛𝑘
𝑖=1 𝑓𝑘 (w, x𝑖 , 𝑦𝑖 ) is the local objective function

of client 𝑘 , given by the average empirical risks over local samples.
Due to computation and communication limitations, the train-

ing of Eq.(1) only runs on a subset of clients S(𝑡) performing
local gradient descent at each round 𝑡 , i.e., w(𝑡 + 1) = w(𝑡) −
[
∑
𝑘∈S(𝑡 ) 𝑝

′
𝑘
∇𝐹𝑘 (w(𝑡)) until convergence. Previous works have

investigated the convergence properties of FL in congruent IID
and non-IID scenarios. One of the earliest work of FL is FedAvg
[23], which builds the global model based on averaging the local
Stochastic Gradient Descent (SGD) [12, 30] updates. It is noticeable
that when the statistical heterogeneity between local datasets in-
creases (non-IID), the differences between functions 𝐹1, 𝐹2, ..., 𝐹𝑁
increase. Various methods [13, 14, 17, 18] are introduced to improve
the robustness of the global model under non-IID settings. For ex-
ample, FedProx [17] adds a proximal term to the local objective.
Personalized FL [6, 9, 31] has been proposed as an alternative to
deal with non-IID data, where the global model plays the role of
a meta-model to be used as initialization for few-shot adaptation
at each client. For example, pFedMe [6] used Moreau envelopes,
while PerFedAvg [9] took advances of meta learning approaches:
Model-agnostic Meta-learning (MAML) [11]. A common theme of
conventional and personalized FL is that they learn a single global
model w. However, the limitation is that if local distributions are far
from the average distribution [21], a relevant global generalization
model does not exist and every client will learn only on its own
local data [9]. These methods ignore the correlation amongst clients
and thus cannot take the knowledge of other clients having similar
local distributions. Moreover, in the sense of multimodal FL where
client models are different due to not only local distributions as
well as parameter spaces, it is hard to train a single global model
that performs well to all types of clients.
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Federated Multi-Task Learning. Federated Multi-Task Learn-
ing (FMTL) is an alternative approach to deal with the non-IID data
in FL setting. In comparison to the FL frameworks learning a single
global model w, FMTL [28] aims to fit separate but related models
w1,w2, ...,w𝑁 ∈ R𝑑 for each clients:

min
w1,...,w𝑁 ,Ω

{ 𝑁∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑓𝑘 (w𝑘 , x𝑖 , 𝑦𝑖 ) + R(W,Ω)
}

(2)

where W = [w1,w2, ...w𝑁 ] ∈ R𝑑×𝑁 is a matrix collecting weight
vectors for all clients and Ω ∈ R𝑁×𝑁 represents the relationships
amongst clients. The regularization termR(W,Ω) = _1tr(WΩW⊤)+
_2 | |W| |2𝐹 is used to enforce some suitable model similarities among
clients that have similar local distributions.

MOCHA [28] first shows that multi-task learning [2] is well-
suited to handle the statistical challenges of the federated setting.
VIRTUAL [5] treats the FL network as a star-shaped Bayesian net-
work and performs learning using approximated variational infer-
ence. OFMTL [16] focused on online applications. Recent works
[7, 26] have explored empirical graphs to explicitly leverage the
relationships among the clients’ model to enforce the clients having
similar datasets to have similar predictors. FMTL approaches can
directly capture relationships amongst non-IID and unbalanced
data, which is well-suited for the statistical challenge of FL. How-
ever, existing methods either rely on the complete set of clients
participating in each round or a full-sized precomputed relation-
ship measurements to guarantee precise model correlation, which
is hard to scale to massive client populations where only a small
portion of local models participate at each round. Furthermore,
previous works have not discussed the multimodal scenarios that
contain heterogeneous model architectures over different types
of unimodal/multimodal clients, which can lead to more complex
client relationships as well as unbalanced client selection, making
the convergence difficult.

Multimodal Federated Learning. Multimodal Federated Learn-
ing (MFL) is an emerging area in FL focusing on learning multi-
modal task-related models on the multi-sensory data distribued
over clients. At the first glance, we can simply apply existing FL
methods on multi-view tasks [17, 21, 23, 28]. However, most of the
existing FL methods assume that all clients have each sensor cor-
rectly working at all times, thus they are not robust to the situations
where most of the clients have unavailable or dropped sensors (e.g.,
unimodal clients). [19] applies FL on data from two modalities (i.e.,
images and texts) where representations of local data need to be
uploaded to the server. This yet breaks the privacy guarantee of
FL because the server could recover the raw data if it has those
representations. A recent study [39] learns the correlated alignment
information from multiple modalities in the unsupervised manner,
which allows the global model to be trained and used on unimodal
as well as multimodal data. [36] uses the co-attention mechanism in
personalized FL to fuse the complementary information of different
modalities. These methods learn a single global model without the
consideration of client relationships, whereas we learn separate
but correlated models for each clients and take into account the
relationships between non-IID and modality-discrepant clients.

3 PROBLEM FORMULATION
In this section, we introduce the proposed multimodal FL setup and
the problem formulation.

MFL Setup with Modality Incongruity. We focus on the MFL
problem with modality incongruity, where clients have heteroge-
neous setups of sensors. Formally, given 𝑀 modalities in total,
client-𝑘’s local datasets is D𝑘 = {(X𝑖 , 𝑦𝑖 )}𝑛𝑘𝑖=1, where

X𝑖 = {x( 𝑗)𝑖
|∀𝑗 ∈ B𝑘 } (3)

is the input modalities of each sample 𝑖 and B𝑘 ⊆ B = {1, 2, ..., 𝑀}
is the set of active sensors at client 𝑘 . Note that since the number of
non-empty subsets of B is (2 |B | − 1), there can be at most (2𝑀 − 1)
types of clients in the network–each type of clients have a certain
combination of sensors. In Figure 1(a), we show a trimodal federated
dataset, where the cylinders in different colors (yellow, green, and
red) illustrate the data collected from different types of sensors and
there can be at most seven types of clients.

Multimodal Split Networks. In most of existing federated
learning frameworks, at each client the model weights are in the
same vector space w𝑘 ∈ R𝑑 for 𝑘 = 1, ..., 𝑁 . In contrast, given
the modality incongruity amongst clients, clients having different
sensor setups do not share the same model architecture w𝑘 ∈ R𝑑𝑘
where 𝑑1 ≠ 𝑑2 ≠ ... ≠ 𝑑𝑁 , as shown in the middle of Figure 1(a).
This will lead to difficulties in server-client and cross-client commu-
nication as different client models cannot be copied or aggregated
directly. One may consider a heuristic strategy unifying all client
models into the largest one by inserting missing blocks on the input
layers, or deleting some blocks for under-predominant modalities.
Yet this will introduce bias to model aggregation as well as not effi-
cient. One may also argue that the clients having different sensors
should be totally separated from each other during modal aggre-
gation; however, this is not true as the different modalities across
clients may still have common knowledge to learn–for example,
the sound data and visual appearance of the same object can exists
in different but statistically closer clients.

Therefore, instead of totally unifying or separating clients, we
aim to directly learn the original client models. Inspired by the idea
of split learning [27, 32] we split each client models into blocks
such that there are two types of model blocks among all client mod-
els: 1) blocks shared globally by all clients and can be aggregated
amongst the entire network; 2) blocks shared locally by the clients
having the same corresponding sensors and can be aggregated
across partial clients. For example, as for multimodal integration
tasks [3, 20, 25, 37], which learn predictive models that integrate the
information of given modalities to make decisions, we can split any
client model into one or more modality-specific feature extractors
and a classifier that takes the cross-modal aligned features as input.
Figure 1 illustrates the multimodal split networks, i.e., the diverse
model architectures of different types of integration tasks. Formally,
suppose 𝑓𝑘 (w𝑘 ,X𝑖 , 𝑦𝑖 ;B𝑘 ) is the loss function for the multimodal
sample (X𝑖 , 𝑦𝑖 ) and parameter vector w𝑘 ∈ R𝑑𝑘 at client 𝑘 whose
sensor set is B𝑘 . We can split by

w𝑘 = {w𝑘 𝑗 |∀𝑗 ∈ B𝑘 } ∪ {w𝑘 }, (4)

where w𝑘 𝑗 ∈ R
𝑑′𝑗 is the weight vector of the feature extractor for

sensor- 𝑗 and w𝑘 ∈ R𝑑
′
is the weight vector of the classifier. That
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Figure 1: (a) Multimodal federated learning setup with modality incongruity, where a total of 𝑀 = 3 types of sensors are
involved. The models shown here intend for multimodal fusion tasks, yet can be replaced by other models. Any type of client
models can be split into at most four different blocks. (b) An illustration of the relationships between different types of clients.

is, we break the weight vector of dimension as 𝑑𝑘 = 𝑑 ′ +∑𝑗 ∈B𝑘 𝑑
′
𝑗
.

Then, we can rewrite the loss function as

𝑓𝑘 (w𝑘 ,X𝑖 , 𝑦𝑖 ;B𝑘 ) = 𝑔𝑘

(
w𝑘 , ⊕𝑗 ∈B𝑘 h( 𝑗)

𝑖
, 𝑦𝑖

)
, (5)

where the modality-specific hidden feature h( 𝑗)
𝑖

= ℎ𝑘 𝑗 (w𝑘 𝑗 , x
( 𝑗)
𝑖
) is

obtained through the sensor 𝑗 ’s specific feature encoder ℎ𝑘 𝑗 . Then,
⊕ denotes the sum of the hidden representations of individual
modalities, which combines their complementary information, and
𝑔𝑘 is the loss function given the combined representation.

Federated Multi-task Learning amongst Multimodal Split
Networks. Regarding the modality incongruity between clients
together with the statistical and systematic challenges of FL prob-
lem, we formulate our problem based on the FMTL framework. The
idea is that FMTL naturally explores the client relationships which
can also help to find relationships between the split blocks of client
models and is suitable for multimodal FL. Formally, we aim to learn
a set of implicitly correlated models w1, ...,w𝑁 having different
parameter spaces by minimizing the objective:

min
w1,...,w𝑁 ,Ω1,...,Ω𝑀 ,Ω

{ 𝑁∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑓𝑘 (w𝑘 ,X𝑖 , 𝑦𝑖 ;B𝑘 ) + R̃(Φ,Λ)
}

(6)

where Φ = {w𝑘 ∈ R𝑑𝑘 }𝑁𝑘=1 represents a collection of the multi-
modal models and Λ = [Ω1, ...,Ω𝑀 ,Ω] ∈ R𝑁×𝑁×(𝑀+1) is a tensor
representing multi-view relationships amongst client models. Each
view of the relationships Λ·,·,𝑚 ∈ R𝑁×𝑁 is a matrix corresponding
to the relationships amongst certain type of blocks of all client
models. If client 𝑘 and client 𝑙 do not have the common block- 𝑗 ,
Λ𝑘,𝑙, 𝑗 = 0. Basically, the first term of Eq.(6) allows clients to learn
on its own local data, while the second term encourages them to
take advantages of related models from other clients’.

It is noticeable that, for any pair of client-𝑘 and client-𝑙 : (1)
Observation 1: their models w𝑘 ,w𝑙 ∈ Φ may be not comparable
as they may belong to different parameter spaces, i.e., 𝑑𝑘 ≠ 𝑑𝑙 ; (2)
Observation 2: the relationship between𝑤𝑘 and w𝑙 is measured by a

non-scalar but multi-dimensional vector Λ𝑘,𝑙,· ∈ R𝑀+1. As a result,
directly optimizing R̃ (Φ,Λ) to enforce nuanced model relations
can be intractable.

4 METHODOLOGY
In this section, we will introduce a federated training algorithm to
solve the objective Eq.(6). We will focus on the following issues dur-
ing the federated training with modality incongruity. (1) Adaptive
model correlation with local dynamics. The correlation tensor
Λ is a measurement of statistical similarity between local datasets.
With the privacy requirements in FL, we cannot calculate it in ad-
vance. Further, while we can arbitrarily provide Λ as priori [7, 26],
in real-world applications, the relationships of clients may not be
fixed all the time. For example, the statistics of local data can change
through time such as given time-series data or continual learning
tasks. Therefore, adaptively learning Λ with models is necessary.
However, it is difficult to simultaneously optimize the multi-space
parameters Φ = {w𝑘 ∈ R

𝑑′+∑𝑗∈B𝑘 𝑑′𝑗 }𝑁
𝑘=1 and the tensor Λ. We

adopt the alternative optimization approach following [28]. At each
round 𝑡 , while fixing the structure Λ(𝑡), we optimize local model
parameters Φ(𝑡) based on local datasets D𝑘 , 𝑘 = 1, ..., 𝑁 and the
penalized term given Λ(𝑡); then, while fixing Φ(𝑡), we optimize the
model correlation tensor Λ(𝑡 + 1) based on current local models
Φ(𝑡). The model correlation is dynamically updated along with the
convergence of local models. (2) Correlated model update con-
strained by multi-view relationships: The individual models of
different clients may be not comparable if they belong to different
parameter spaces. In this sense, how to measure model relation-
ships, and how to leverage relational local model training according
to multiple views of relations, remain unexplored. (3) Client se-
lection among multiple types of clients: Vanilla FTML relies on
the complete adjacency for all the clients and update all the client
models at each round. Although a complete relationship structure
could benefit the correctness of correlated local updates, in practi-
cal scenarios where massive clients participate in the training, the
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Figure 2: A graph view for training separate but related clients having different model architectures. Each vertex solves separate
but related subproblems. Node features (model parameters) changes over time based on local data as well as related clients.

computation time and cost of storage at each round would huge.
Regarding the systematic challenge and communication limitation
[19], instead of computing all clients at each round, we sample a
subset of clients to participate into training. However, given the
multimodal discrepancy, the difficulty is that how to select clients at
each round such that each model blocks are optimized in a balanced
manner and we efficiently find the optimal for all clients.

We propose the FedMSplit framework to allow federated train-
ing over multimodal clients without assuming the congruity of
sensor types over clients. Details of the framework are as follows.

4.1 Correlation-adaptive Model Update
According to the alternative optimization process, at each round 𝑡 ,
while fixing the structure Λ(𝑡), we optimize local model parameters
Φ(𝑡) based on local datasets {D𝑘 }𝑁𝑘=1 and the penalized term given
Λ(𝑡). In other words, the local model w𝑘 (𝑡) of each client 𝑘 updates
depends on not only the local datasetD𝑘 but also its related clients’
datasets D𝑙 , which is not seen but can be reflected by w𝑙 (𝑡). Then,
any pair of Λ𝑘,𝑙,· (𝑡) can update based on w𝑘 (𝑡) and w𝑙 (𝑡). Through
this process, Λ(𝑡),Φ(𝑡) are dynamically updated until convergence.

Given the heterogeneity of parameter space over clients, “up-
dating Φ(𝑡) fixing Λ(𝑡)” would be difficult as the calculation of
∇Φ(𝑡 ) R̃ (Φ(𝑡),Λ(𝑡)) relies on the Φ(𝑡) having multiple parameter
spaces, and the multi-view relationships Λ(𝑡). The idea is that we
can allow the two sets of parameters Λ(𝑡),Φ(𝑡) to be embedded in
a dynamic graph and then solve them as a node-edge alternative
updating problem.

4.1.1 Dynamic Multi-view Graph of Subproblems. We define
a dynamic multi-view graph structure G(𝑡) = (V,Φ(𝑡), E,Λ(𝑡), 𝑞)
which consists of the following components and properties:
• V = {𝑣𝑘 }𝑁𝑘=1 is the vertex set, where each vertex 𝑣𝑘 is asso-
ciated with a client 𝑘 containing a local multimodal dataset
D𝑘 = {(X𝑖 , 𝑦𝑖 )}𝑛𝑘𝑖=1. Each vertex represents a subproblem: the
client 𝑘 aims to fit a model w𝑘 ∈ R𝑑𝑘 to its local data 𝐷𝑘 .
• Φ(𝑡) = {w𝑘 (𝑡) ∈ R𝑑𝑘 }𝑁𝑘=1 is the content of vertices, repre-
senting themodel parameters of each clients at round 𝑡 . In this
way, the model parameters of clients can be treated as client
embeddings in the graph. Client model updating implies the
changing of client embeddings through time, so we say the
graph is dynamic. Recall that the client models has different

parameter spaces w𝑘 (𝑡) = {w𝑘 𝑗 (𝑡) |∀𝑗 ∈ B𝑘 } ∪ {w𝑘 (𝑡)}
so that the vertices are multimodal and message cannot be
directly transferred across vertices.
• E = {𝑒𝑘𝑙 }𝑁𝑘,𝑙=1 is the edge set. Edges are undirected and fully
connected, and each edge refers to the similarity between a
pair of clients.
• Λ(𝑡) = [Ω1 (𝑡), ...,Ω𝑀 (𝑡),Ω(𝑡)] ∈ R𝑁×𝑁×(𝑀+1) represents
the edge features. An edge feature Λ(𝑡)𝑘,𝑙,· indicates the
model weight similarities between two clients and consists
of multiple dimensions (multi-view) of Euclidean distances;
each dimension is corresponding to a type of blocks in client
models. If client 𝑘 and client 𝑙 do not have the common block-
𝑗 , Λ𝑘,𝑙, 𝑗 (𝑡) = 0. The edge features of a fully connected graph
with massive clients can be huge. Fortunately, in practice,
the server does not need to calculate or store them until the
end of each round, and only the edges between participated
clients at each round will be calculated (see Section 4.2.2.).
• 𝑞 : R𝑀+1 → R is a function to measure the similarity be-
tween any of the two clients (𝑘, 𝑙) based on the multi-view
correlation vector Λ𝑘𝑙 · ∈ R𝑀+1.

Figure 2 illustrates the defined dynamic graph structure, where we
use different shapes to indicate individual clients having different
types of parameter spaces. The embeddings of clients (model pa-
rameters) change over time. For simplicity, we only show eight
clients, three modalities, and four types of clients here. Note that
in real-world applications we would have more client types in a
large-scale graph containing massive number of clients.

Giving the graph of local problems, then the intractable term
R̃ (Φ,Λ) can be rewritten as the linear combination of multiple
views of regularization terms (each view is corresponding to a type
of blocks):

R̃ (Φ,Λ) = _R(W,Λ,Ω) +∑𝑀
𝑗=1 _ 𝑗R 𝑗 (W𝑗 ,Λ,Ω𝑗 ) (7)

whereW = [w1, ...,w𝑁 ] ∈ R𝑑
′×𝑁 andW𝑗 = [w𝑘,𝑗 ;∀𝑘 if 𝑗 ∈ B𝑘 ] ∈

R
𝑑′𝑗×𝑁 𝑗 are matrices. Each matrix is a collection of a specific block

in all clients, over one parameter space.

4.1.2 Correlation-adaptive Model Optimization via Node-
Edge Alternative Update. Updating correlation Λ(𝑡) fixing Φ(𝑡)
is treated as updating edge features based on current node features
(client embeddings). Formally, for each pair of clients (𝑘, 𝑙) and
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Figure 3: Overview of FedMSplit training procedure at each server-client communication round.

each split block 𝑗 , their relationship can be measured as Ω𝑗,𝑘𝑙 =

𝐴𝑡𝑡 (w𝑘 𝑗 ,w𝑙 𝑗 ) using any metric or attention function 𝐴𝑡𝑡 (·, ·), such
as additive attention, dot product, multiplicative attention [33]. In
the experiments, we use dot product for all simulations.

Then, updating models Φ(𝑡) fixing the structure Λ(𝑡) is viewed
as updating node features (client models) based on local datasets
as well as current edge features (client-client relationships). The
idea is to take into consideration the current overall client-to-client
relationships Λ(𝑡) to the local training of each client w𝑘 . More
specifically, we take two steps to incorporate such heterogeneous
and multi-space complex relationships. First, for each client, we
approximate its complex neighborhood information, by aggregating
other client models through a multi-view, attentive, and graph-
based message passing process.

w𝑎𝑔𝑔

𝑘
←− ∑𝑁

𝑙=1
𝑞 (Λ𝑘𝑙 ·)Ω𝑘𝑙∑𝑁

𝑝=1 𝑞 (Λ𝑘𝑝 ·)Ω𝑘𝑝

w𝑙 ,

w𝑎𝑔𝑔

𝑘 𝑗
←− ∑𝑁

𝑙=1
𝑞 (Λ𝑘𝑙 ·)Ω𝑗,𝑘𝑙∑𝑁

𝑝=1 𝑞 (Λ𝑘𝑝 ·)Ω𝑗,𝑘𝑝

w𝑙 𝑗 for ∀𝑗 ∈ B𝑘 ∩ B𝑙 .
(8)

After that, each client 𝑘 independently performs local SGD on D𝑘

by 𝜏 steps, meanwhile, it considers extra relational information:

w𝑘 ←− w𝑘 − [
1
𝑛𝑘

𝑛𝑘∑︁
𝑖=1
(∇w𝑘

𝑓𝑘 (w𝑘 ,X𝑖 , 𝑦𝑖 ;B𝑘 ) + ∇w𝑘
_𝑅𝑘 (w𝑘 )), (9)

where the multi-view relational information is incorporated by
minimizing the Mean Squared Error (MSE) loss between the model
and the approximate neighborhood information 𝑅𝑘 (w𝑘 ) = | |w𝑘 −
w𝑎𝑔𝑔

𝑘
| |22 +

∑
𝑗 | |w𝑘 𝑗 −w𝑎𝑔𝑔

𝑘 𝑗
| |22. And _ is a hyperparameter to balance

the local personalization and global correlation.

In this way, the model parameters w𝑘 is updated based on D𝑘

(Eq.(9)) as well as other models parameters w𝑙 which is related to
w𝑘 (Eq.(8)). The dynamic graph becomes stable once all the client
models converge and correlated.

4.2 Federated Training
In this section, we present the training procedure of FedMSplit. We
show that the federatedmultitask learning over themultimodal split
networks of clients can be done in a way like learning the client em-
beddings in G(𝑡) = (V,Φ(𝑡), E,Λ(𝑡), 𝑞) through multiple rounds
(𝑡 = 1, 2, ...,𝑇 ) of client-server interactions until convergence.
4.2.1 Alternative Optimization on Subgraphs via Client-
Server Communication. The convergence of Φ is achieved by
multiple rounds of alternative optimization. However, due to com-
munication cost and the systematic challenge [19], it is consuming
as well as impossible to calculate the complete correlation ten-
sor Λ(𝑡) for all the clients and update all the client models Φ(𝑡)–
in each round we would have 𝑂 (𝑁 2) time and space complexity.
Therefore, instead of computing all clients, we sample a subset of
clients S(𝑡) ⊂ V to participate at each round 𝑡 . In other words,
at each round 𝑡 , we select a subgraph G𝑠 (𝑡) of G(𝑡) to perform
alternative optimization. In particular, we consider a subgraph of
clients and their relationships G𝑠 (𝑡) = (S(𝑡),Φ𝑠 (𝑡), E𝑠 ,Λ𝑠 (𝑡), 𝑞)
where Φ𝑠 (𝑡) = {w𝑘 (𝑡)}𝑘∈S(𝑡 ) and Λ𝑠 (𝑡) ∈ R |S (𝑡 ) |× |S (𝑡 ) |×(𝑀+1) .
Instead of optimizing on the entire graph at each round, our method
is more practical in real operation–complexity is 𝑂 (𝐶2) where
𝐶 = |S(𝑡) | << 𝑁 , but note that we somewhat tradeoff the conver-
gence speed because only partial clients and their relationships are
considered while neglecting other related clients.
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At each round, we perform one-step alternative optimization
on subgraph G𝑠 (𝑡) through the following client-server communi-
cation. (1) On the server, we update Λ𝑠 (𝑡) fixing Φ𝑠 (𝑡) and then
propagate among the separate client models over subgraph S(𝑡)
as in Eq.(8). Note that in practice, the two steps can be replaced by
applying a multi-head attention mechanism to node propagation
among a subgraph–treating Λ𝑠 (𝑡) as the attention coefficients (see
the next section for details). (2) The server then sends the aggre-
gated relational information to each client. (3) On each client, we
improve Φ𝑠 (𝑡) on local datasets while considering potential client
relationship Λ𝑠 (𝑡). Each client 𝑘 ∈ S(𝑡) perform local update by
local SGD and multi-relational regularization (Eq.(9)), and, finally,
all participants send their new models Φ𝑠 (𝑡 + 1) back to the server.
Figure 3 shows the overview of FedMSplit training at each round,
and the pseudocode of FedMSplit is summarized in the Algorithm
1 in Appendix A.1.

4.2.2 Neighborhood-attentive Model Aggregation. Once the
server receives new client models Φ𝑠 (𝑡 + 1) = {w𝑘 }𝑘∈S(𝑡 ) (the
models after performing 𝜏 steps of local updates), it adapts current
model correlation to be able to promotemore relational local models
in future rounds. Since we use the normalized relationships among
all the neighbors of client 𝑘 in Eq.(8), this model aggregation can
be treated as 1-hop attentive message passing [3, 24, 38] among a
subgraph. That is, for ∀𝑘 ∈ S(𝑡),

w𝑎𝑔𝑔

𝑘
←− ∑

𝑙 ∈S(𝑡 )
𝑞 (Λ𝑘𝑙 ·)𝐴𝑡𝑡 (w𝑘 ,w𝑗 )∑

𝑝∈S(𝑡 ) 𝑞 (Λ𝑘𝑝 ·)𝐴𝑡𝑡 (w𝑘 ,w𝑙 )w𝑙 ,

w𝑎𝑔𝑔

𝑘 𝑗
←− ∑

𝑙 ∈S(𝑡 )
𝑞 (Λ𝑘𝑙 ·)𝐴𝑡𝑡 (w𝑘 𝑗 ,w𝑙 𝑗 )∑

𝑝∈S(𝑡 ) 𝑞 (Λ𝑘𝑝 ·)𝐴𝑡𝑡 (w𝑘 𝑗 ,w𝑝 𝑗 )w𝑙 𝑗 for ∀𝑗 ∈ B𝑘 ∩ B𝑙 ,
(10)

where clients having similar statistics will become more related
through the weighted model aggregation.

4.2.3 Client Sampling via Multi-armed Bandit. To reduce
communication cost of FMTL, we operate on a subset of client at
each round. Yet the random sampling strategy (i.e., unbiased client
selection) of typical FL frameworks may significantly suffer from
non-IID local distributions as well as the multimodal discrepancy
of MFL. The problem is that the clients selected at each round (i.e,
a subset of vertices in the large-scale graph and perform message
passing) may not contain balanced numbers of each type blocks,
thus we may not efficiently find the accurate correlations between
different types of clients and modalities.

In order to achieve faster convergence, we aim to select clients
having larger local loss (i.e., exploitation) [4, 35] as well as hav-
ing blocks that were less frequently seen before (i.e., exploration).
Following [4], to balance the exploration-exploitation trade-off in
the multimodal client selection problem. we employ Multi-Armed
Bandit (MAB) algorithms [15] for the problem of client selection
in Multimodal FL. Regarding the local loss of individual clients are
non-stationary during training, wemake use of the discountedMAB
algorithms as in [4]. The clients are viewed as arms in theMAB prob-
lem. The discounted cumulative local loss of each client is 𝐿𝑘 (𝑡) =∑𝑡
𝑡 ′=1 𝛾

𝑡−𝑡 ′𝐹𝑘 (𝑡 ′); the discounted number of times each client has
been selected over the previous rounds is 𝐼𝑘 (𝑡) =

∑𝑡
𝑡 ′=1 𝛾

𝑡−𝑡 ′1𝑘∈S(𝑡 ′) ;
and, the discounted number of times each type of block 𝑗 has been
sampled over previous rounds is, 𝑃 𝑗 (𝑡) =

∑𝑡
𝑡 ′=1 𝛾

𝑡−𝑡 ′1𝑗 ∈B𝑘 ∀𝑘∈S(𝑡 ′) .
Here, 0 ≤ 𝛾 ≤ 1 is the discount rate.

Then, we define the estimated UCB reward of client 𝑘 up to
round 𝑡 as

𝐴𝑘 (𝑡) = 𝐿𝑘 (𝑡)/𝐼𝑘 (𝑡) +𝑈𝑘 (𝑡) (11)

where 𝑈𝑘 (𝑡) =

√︃∑𝑡
𝑟=1 𝛾

𝑡−𝑟 /(𝐼𝑘 (𝑡) +
∑

𝑗 ∈B𝑘 𝑃 𝑗 (𝑡)) is the explo-
ration term for client 𝑘 . At communication round 𝑡 , we select the
top 𝐶 clients with largest discounted UCB rewards. The first term
of Eq.(11) enforces selecting clients with estimated larger local loss
(exploitation) [4]. However, if certain client has not been selected
recently, or any type of model block of the client has not been
selected recently, 𝑈𝑘 (𝑡) will get larger. This forces the server to
select them regardless of their local loss values (exploration).

5 EXPERIMENTS
We perform empirical study on multimodal federated datasets with
the aim of answering two research questions: 1) How does FedM-
Split perform for multimodal clients compared with baselines under
different settings of statistical and modality incongruity? 2) How
does each component of FedMSplit impact the performance?

5.1 Multimodal Federated Datasets
We choose three multimodal integration datasets to create our simu-
lation environments. (1) Vehicle Sensor [8] for classifying vehicles
driving by a segment of road. It contains 23 instances. Each instance
is a separate client described by 50 acoustic and 50 seismic features
and we predict between AAV-type and DW-type vehicles. (2) Mod-
elNet40 [34] dataset for multi-view 3D object recognition tasks. It
contains 12,311 3D shapes covering 40 common categories, includ-
ing airplane, bathtub, bed, bookshelf, chair, cone, cup, and so on.
Each 3D CAD object has𝑀 = 2modalities as two views of its shapes
[10]. (3) IEMOCAP [1] for emotion recognition tasks. It consists of
a collection of 4,453 video segments of recorded dialogues. Each
segment is annotated for the presence of 9 emotions (happy, angry,
excited, fear, etc.), from which we use only the “happy" tag for bi-
nary classification. We adopted the same feature extraction scheme
[37] for language, visual and acoustic modalities. The feature sizes
of the modalities are summarized in Table 1.

5.1.1 Simulation of Statistical Heterogeneity among Clients.
We study the effectiveness of FedMSplit on non-IID data. We sim-
ulate the non-IID scenarios following [28]. The size of training
samples at each clien 𝑘 is sampled from a Gaussian distribution
whose mean and standard deviation is pre-defined as in Table 1.

5.1.2 Simulation of Modality Incongruity among Clients.
We impose no restrictions on the modality or combinations of
modalities used in the local clients. We simulate this real-world
scenario as follows. First, we assume the availability of each sen-
sor 𝑗 follows a Bernoulli distribution Bernoulli(𝜌 𝑗 ) and different
sensors are independent. Here, we use a missing rate 𝜌 𝑗 to indi-
cate the probability a client does not have the modality- 𝑗 . We set
equal missing rates for each modalities 𝜌1 = ... = 𝜌𝑀 = 𝜌 in all
experiments. After that, we shuffle the clients and for each possible
sensor set B′ ⊂ {1...𝑀} we separately pick 𝑁 (B′, 𝜌) clients and as-
sign the sensor set B′ to each of them. For example, for IEMOCAP
dataset (𝑀 = 3), there will be 7 types of clients focusing on different
tasks: audio-only, text-only, video-only, audio-text, audio-visual,
text-video, and audio-text-visual tasks.
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Table 1: Statistics of Multimodal Federated Datasets for Simulation.

Dataset Clients (𝑁 ) Sensors (𝑀) Feature Sizes ({modality 𝑗 : 𝐷 𝑗 }) |B𝑘 | (range) 𝑛𝑘 (mean, std) Classes
Vehicle Sensor 23 2 {Acoustic: (50) , Seismic: (50)} [1, 2] N (255, 50) 2
ModelNet40 12 2 {View 1: (4096), View 2: (2048)} [1, 2] N (1026, 200) 40
IEMOCAP 15 3 {Acoustic: (74) , Text: (300) , Visual: (35)} [1, 3] N (297, 80) 2

Table 2: Average Testing Accuracy (%) on Client Local Testing Data at global round 𝑇=10 (Non-IID, C=0.3N).

Method
Vehicle Sensor (1 or 2 sensors) ModelNet40 (1 or 2 sensors) IEMOCAP (1, 2, or 3 sensors)
𝜌 =0.5 𝜌 =0.7 𝜌 =0.8 𝜌 =0.3 𝜌 =0.5 𝜌 =0.7 𝜌 =0.5 𝜌 =0.7 𝜌 =0.9

FedAvg [23] 75.26 74.42 68.48 87.48 86.79 83.48 80.48 79.71 -
Multi-FedAvg [23] 76.98 73.61 75.59 85.75 75.46 74.60 70.86 - 60.48
Multi-FedProx [17] 76.92 74.69 72.52 93.48 74.57 - 79.62 79.33 79.14
Local 74.84 73.56 69.29 91.56 90.20 83.18 73.24 73.71 54.48
MOCHA [28] 80.28 76.65 73.28 90.03 95.88 88.54 82.38 82.10 82.86
Multi-MOCHA [28] 78.35 76.61 75.73 98.25 96.06 90.70 80.95 80.19 80.86
FedMSplit 81.92 78.85 77.68 98.34 98.54 98.38 85.24 84.16 84.95

5.2 Baselines
We compare FedMSplit with three categories of baselines: (1) Fully
global and multimodal FL frameworks: FedAvg, Multi-FedAvg,
andMulti-FedProx, where we apply the vanilla FedAvg [23] and
FedProx [17] to our multimodal federated datasets. (2) Fully local
training on multimodal federated datasets: namely Local. We sepa-
rately train local models that have different building blocks, without
considering their potential relationships. (3) Local but globally re-
lated multimodal FL methods: MOCHA and Multi-MOCHA. The
details of baseline implementations can be found in Appendix A.2.

5.3 Empirical Results
5.3.1 Impact of Modality Incongruity. Table 2 reports the av-
erage local testing accuracy of FedMSplit compared with baselines,
under different levels of modality incongruity and non-IID sce-
narios. We report the performance of the global model (FedAvg,
Multi-FedAvg, and Multi-FedProx) or the globally stored separate
models (Local, MOCHA, Multi-MOCHA, and FedMSplit) on all the
clients’ local testing data. From Table 2, we can observe that, in
general, the increasing modality incongruity between clients results
in performance drops of all methods. It is because as 𝜌 increases,
models receive less information used for fitting parameters. Overall,
FedMSplit gained more advantages over baselines as more clients
have missing modalities and more local models have inactive neu-
rons. On ModelNet40, FedMSplit maintains its performance as 𝜌
increases. It is because FedMSplit does not train inactive neurons
as well as did not aggregate parameters as FedAvgs, FedProxs and
FedMTLs. In FedMSpit, inactive neurons or blocks are not uploaded
to the server and do not influence future models of other clients.
Moreover, FedMSplit outperforms Local as well, even though Local
train the same local architectures as ours. It is because in compari-
son to Local, the client models in FedMSplit can obtain knowledge
about the task from other clients’ data.

5.3.2 Ablation Study. In Table 3, we evaluate the influence of
each component in our model. (1) Adaptive Correlation v.s. Non-
adaptive Correlation. First, we test a variant of FedMSplit, namely

Table 3: Ablation study of FedMSplit at global round T=10.

Method Vehicle Sensor ModelNet
𝜌 =0.5 𝜌 =0.7 𝜌 =0.5 𝜌 =0.7

FedMSplit-nAC 80.12 75.32 98.43 97.63
FedMSplit-rightAC 79.88 76.82 96.20 97.67
FedMSplit-leftAC 78.32 77.48 97.79 96.37
FedMSplit-𝜋rand (C=0.3N) 80.47 77.36 96.62 94.33
FedMSplit-𝜋UCB (C=0.3N) 81.92 78.85 98.54 98.38

FedMSplit-nAC, such that we do not learn an adaptive correlation
tensor between clients; instead, we assume that the relationships
between clients is given (i.e., identity matrix). That is, at each round,
all the participants having the same block contribute equally to
each other. We can observe that FedMSplit-nAC still outperform
baselines since we split each model into blocks and avoid transfer-
ring inactive neurons that are corresponding to missing sensors. In
addition, arbitrarily fixing the relationship (FedMSplit-nAC) leads
to slightly performance drop rather than adapting the relation-
ships. (2) Impact of Multi-view Relationship Measurement.
Second, since in our model the clients relationships are measured
as the linear combination of each block’s relationships, we are in-
terested in whether each block in the model contributes equally
to such measurement or not. In general, we use the measurement
function 𝑞(Λ𝑘,𝑙,·) = | |Λ𝑘,𝑙,· | |1/(1 + |B𝑘 ∩ B𝑙 |), where the classi-
fier and modality-specific feature extractors have similar impor-
tance. We then tested other types of measurements: FedMSplit-
rightAC, which measures two models based only on their classifier
weights 𝑞(Λ𝑘,𝑙,·) = Λ𝑘,𝑙,(𝑀+1) , and FedMSplit-leftAC, which mea-
sures two models based only on their common feature extractors
𝑞(Λ𝑘,𝑙,·) =

∑
𝑗 ∈B𝑘∩B𝑙 Ω𝑗,𝑘𝑙/|B𝑘 ∩ B𝑙 |. It can be observed that the

equally weighed measurement achieved the best performance, as
the local data may have not only different classes but also low-level
appearance nuances. (3) Impact of Client Selection Strategy.
We finally tested our bandit-based client sampling strategy that
encourages the server to explore clients who have blocks that are
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less selected. We propose a variant FedMSplit-𝜋rand, which replaces
MAB with the random client selection strategy, and observed that
random selection converged slower than the bandit-based counter-
part, especially with a high level of modality incongruity.

6 CONCLUSION
In this paper, we addressed a novel multimodal FL problem with
modality incongruity among clients. We introduced the FedMSplit
framework, which allows federated training over multimodal dis-
tributed data without assuming similar active sensors in all clients.
We employed a dynamic graph structure to capture the adaptive
correlations amongst multimodal client models that have been split
into smaller shareable blocks. The underlying statistical correlations
between the different types of clients are captured as multi-view fea-
tures and then are used to promote model relations. Our empirical
results demonstrated the effectiveness of our method.
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A APPENDIX
A.1 Pseudocode of FedMSplit

Algorithm 1 Federated Training Algorithm of FedMSplit

1: Input: clients 𝑘 ∈ [𝑁 ], modalities 𝑗 ∈ [𝑀], multimodal
datasets D1, ...,D𝑁 and active sensor sets B1, ...,B𝑁 of clients

2: Hyper-parameters: [,𝑇 ,𝜏 , 𝐶 , 𝛾
3: For each client 𝑘 in parallel, initialize w𝑘 and split the model

into |B𝑘 | + 1 blocks as Eq.(4).
4: Initialize 𝐼𝑘 (0) = 𝑃𝑘 (0) = 𝐿𝑘 (0) = 0
5: Initialize w𝑎𝑔𝑔

𝑘
= w𝑘

6: for each round 𝑡 = 1, ...,𝑇 do
7: Sampling a subset of 𝐶 clients S(𝑡) ⊂ [𝑁 ] using Eq.(11)
8: // local SGD independently
9: for each participant client 𝑘 ∈ S(𝑡) do
10: for each step 𝑟 = 1, ..., 𝜏 do
11: update w𝑘 as Eq.(9)
12: end for
13: end for
14: Send {w𝑘 }𝑘∈S(𝑡 ) to the server
15: // adapt model correlation via attentive aggregation
16: for each participant client 𝑘 ∈ S(𝑡) do
17: Split w𝑘 into blocks
18: for each related client 𝑙 ∈ S(𝑡) do
19: Calculate attention weight for each pairs of blocks be-

tween w𝑘 and w𝑙 .
20: end for
21: Obtain aggregated model w𝑎𝑔𝑔

𝑘
using Eq.(10)

22: end for
23: Server sends {w𝑎𝑔𝑔

𝑘
}𝑘∈S(𝑡 ) to clients.

24: Update 𝐼𝑘 (𝑡), 𝑃𝑘 (𝑡), 𝐿𝑘 (𝑡) using the selected clients in S(𝑡)
and counting each type of blocks in S(𝑡).

25: end for
26: return: Each client will store its final model w𝑘 .

A.2 Reproducibility
The local objective of all models we used in the experiments is the
cross entropy loss, i.e., min 𝐹𝑘 (w𝑘 ) =

∑
𝑖 𝑦𝑖 log 𝑓𝑘 (X𝑖 ;w𝑘 ).

In all experiments, we fix𝛾 = 0.9, 𝜏 = 4, and [ = 0.005 for Vehicle
Sensor and ModelNet40; and fix 𝜏 = 1, [ = 0.00002 for IEMOCAP.

Model configurations are as follows. In the following, the en-
coded modality’s hidden dimension is 𝑃 = 32 for vehicle sensor
dataset, 𝑃 = 128 for ModelNet , 𝑃 = 64 for IEMOCAP.

A.2.1 Fully global multimodal FL baselines. We train a global
model having all blocks and the missing modalities on local sites
are imputed as zero.
• FedAvg [23]: The global model consists of 2 layers:
{
∑

𝑗 ∈𝑀 in_dim𝑗 × P, P × num_class}. For local model train-
ing, we replace the missing sensor data by zeros and then
directly concatenate the input modalities into one feature.
For example, for IEMOCAP dataset and a client that only
has audio features, the input features would be:
((0.34, 0.43, ..., 0.98), 𝑁𝑎𝑁, 𝑁𝑎𝑁 ) →

((0.34, 0.43, ..., 0.98), (0, 0, ...., 0), (0, 0, ..., 0)) →
(0.34, 0.43, ..., 0.98, 0, 0, ...., 0, 0, 0, ..., 0)
• Multi-FedAvg [23]: we use individual feature extractors
for each modality (i.e., in_dim𝑗 × 𝑃 ) followed by a classifier
(a fully connected layer of size 𝑃 × num_class followed by
Softmax). The output of feature extractors (modality-specific
hidden representations) are combined using sum operation.
Different from FedAvg, the input features of IEMOCAP is
formed as:
((0.34, 0.43, ..., 0.98), 𝑁𝑎𝑁, 𝑁𝑎𝑁 ) →
((0.34, 0.43, ..., 0.98), (0, 0, ...., 0), (0, 0, ..., 0))
• Multi-FedProx [17]: Model architecture is the same as
Multi-FedAvg. The difference is that, for local training, we
add a regularization term | |w𝑘 −w𝑘 (𝑡) | |22.

A.2.2 Fully local training on multimodal federated datasets.
We separately train local models that have different building blocks,
without considering their potential relationships.
• Local: The model is the partial architecture of Multi-FedAvg
or Multi-FedProx, including the feature extractors for only
available modalities (i.e., in_dim𝑗 × P) followed by a classifier
(a fully connected layer of size 𝑃 × num_class followed by
Softmax). Note that there is no feature extractor block in
the clients having missing modalities. For IEMOCAP dataset
and a client that only has audio features, in comparison to
the above example of FedAvg, the input feature of the model
would be formed as:
((0.34, 0.43, ..., 0.98), 𝑁𝑎𝑁, 𝑁𝑎𝑁 ) →
(0.34, 0.43, ..., 0.98).

A.2.3 Local but globally related multimodal FL framework.
• MOCHA [28]: although we learn models for each client, in
this baseline, the local model architectures are still the same.
We define the architecture similar to FedAvg, and the input
features look like:
((0.34, 0.43, ..., 0.98), 𝑁𝑎𝑁, 𝑁𝑎𝑁 ) →
((0.34, 0.43, ..., 0.98), (0, 0, ...., 0), (0, 0, ..., 0)) →
(0.34, 0.43, ..., 0.98, 0, 0, ...., 0, 0, 0, ..., 0)
• Multi-MOCHA [28]: model architecture is similar to Multi-
FedAvg. We use individual feature extractors but let the
inactive weights of local models be transferred among clients.
The input features of IEMOCAP is formed as:
((0.34, 0.43, ..., 0.98), 𝑁𝑎𝑁, 𝑁𝑎𝑁 ) →
((0.34, 0.43, ..., 0.98), (0, 0, ...., 0), (0, 0, ..., 0))

A.2.4 FedMSplit Reproducibility. The model architectures are
the same as the Local, which are partial architectures of the com-
plete model architecture of other methods. For IEMOCAP dataset
and a client that only has audio features, similar to Local, the input
feature of the model would be look like:
((0.34, 0.43, ..., 0.98), 𝑁𝑎𝑁, 𝑁𝑎𝑁 ) →
(0.34, 0.43, ..., 0.98).
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