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ABSTRACT

We study the problem of few-shot Fine-grained Entity Typing (FET),
where only a few annotated entity mentions with contexts are given
for each entity type. Recently, prompt-based tuning has demon-
strated superior performance to standard fine-tuning in few-shot
scenarios by formulating the entity type classification task as a
“fill-in-the-blank” problem. This allows effective utilization of the
strong language modeling capability of Pre-trained Language Mod-
els (PLMs). Despite the success of current prompt-based tuning
approaches, two major challenges remain: (1) the verbalizer in
prompts is either manually designed or constructed from exter-
nal knowledge bases, without considering the target corpus and
label hierarchy information, and (2) current approaches mainly
utilize the representation power of PLMs, but have not explored
their generation power acquired through extensive general-domain
pre-training. In this work, we propose a novel framework for few-
shot FET consisting of two modules: (1) an entity type label inter-
pretation module automatically learns to relate type labels to the
vocabulary by jointly leveraging few-shot instances and the label
hierarchy, and (2) a type-based contextualized instance generator
produces new instances based on given instances to enlarge the
training set for better generalization. On three benchmark datasets,
our model outperforms existing methods by significant margins.!
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1 INTRODUCTION

Fine-grained entity typing (FET) aims to infer types of named
entity mentions in specific contexts, which serves as the essen-
tial component for many downstream text mining applications,
such as entity linking [2], knowledge completion [14], text clas-
sification [21], named entity recognition [23], question answer-
ing [15, 30], etc. FET typically comes with a label hierarchy includ-
ing both coarse-grained and fine-grained types, thus it is labor-
intensive and time-consuming to annotate a large corpus for train-
ing fully-supervised models. To mitigate the annotation burden for
FET, some studies [3, 8, 26, 44] explore distantly-supervised FET
that denoises the pseudo labels automatically inferred from external
knowledge bases; others [6, 35] explore zero-shot FET that com-
bines information from label hierarchy [55] and Wikipedia label
descriptions [40, 57]. Our work focuses on the few-shot learning
scenario, where a few annotated mentions within a particular con-
text are given for each entity type in the label hierarchy, without
requiring manual descriptions for labels.

With the rapid development of pre-trained language models
(PLMs) such as BERT [11] and RoBERTa [33] which are pre-trained
on extremely large corpora with the masked language modeling
(MLM) objective, PLMs have demonstrated remarkable text repre-
sentation power and have been widely used as the backbone model
for many downstream tasks, including entity typing.

The standard deployment of PLMs for entity typing is to fine-
tune a PLM encoder together with a linear classifying layer which
maps the PLM contextualized representations to the output entity
types. Such an approach is effective for fully supervised applications,
but can easily lead to overfitting in few-shot scenarios [12] due to
the random initialization of the linear layer—when the number of
training samples is significantly smaller than the newly-introduced
parameters, as is the typical scenario in the few-shot setting, train-
ing neural models becomes inherently unstable.

Recently, some studies [41] show that without any further train-
ing of PLMs, factual knowledge can be probed from PLMs via
natural language prompts that query the PLM’s MLM head for
masked word prediction. GPT-3 [1] also found that prompts can
guide the model to generate answers for specific tasks, which is es-
pecially effective on few-shot tasks. Inspired by these observations,
prompt-based tuning has been widely developed for many text ap-
plications [4, 5, 19] and has generally surpassed vanilla fine-tuning


https://github.com/teapot123/Fine-Grained-Entity-Typing
https://doi.org/10.1145/3534678.3539443
https://doi.org/10.1145/3534678.3539443

in low-data regimes. There have also been explorations on auto-
matic prompt searching [25, 47] that aims to discover the optimal
prompt templates for specific tasks.

Prompt-based tuning for few-shot FET has been explored very
recently [12]: A prompt template is concatenated with the origi-
nal context containing the entity mention, and a PLM is used to
predict the masked token in the template. Then a verbalizer maps
the probability distribution over the vocabulary to a distribution
over the entire label set. The verbalizer is typically constructed by
extracting semantically relevant words to each label name from
external knowledge bases.

Despite the effectiveness of the proposed prompt-based tuning
pipeline in [12], there are several notable limitations: (1) The ver-
balizer construction method is only effective when the type label
names have concrete and unambiguous meanings (e.g., “Person” or
“Organization/Company”), but cannot be applied to label names that
have composite semantics (e.g., “Location/GPE” refers to geopolit-
ical locations including countries, states/provinces and cities) or
label names that share similar semantics (e.g., “Organization/Sports
Team” and “Organization/Sports League). (2) The current prompt-
based tuning approach has utilized the representation power of PLMs
to predict entity types based on instance representations, but have
not fully explored the generation power of PLMs acquired through
extensive general-domain pre-training.

In this paper, we propose a novel framework for few-shot FET
consisting of two modules: (1) An entity type label interpretation
module automatically learns to relate the type labels to tokens in
the vocabulary by jointly leveraging the given few-shot instances
and the label hierarchy; (2) A type-based contextualized instance
generator produces new instances based on few-shot samples and
their types. The newly generated instances are added back to the
training set with smoothed labels so that the model can be trained
with more instances for better generalization. We demonstrate
the effectiveness of our method by conducting experiments on
three benchmark datasets where our model outperforms previous
methods by large margins. Our method is named ALIGNIE, which
stands for Automatic Label Interpretation and Generating New
Instance for Entity typing.

The contribution of this paper are as follows:

e We propose an entity type label interpretation module to capture
the relation between type labels and tokens in the vocabulary
leveraging both few-shot instances and the label hierarchy.

e We propose a type-based contextualized instance generator to
generate new instances based on few-shot instances and their
types, which enlarges the training set for better generalization.

e On three benchmark datasets, our method outperforms existing
methods by large margins.

2 PRELIMINARIES

In this section, we first provide the definition of the few-shot en-
tity typing task, and then briefly introduce vanilla fine-tuning and
prompt-based tuning for entity typing which are illustrated in Fig. 1.
Problem Formulation. Few-shot entity typing aims to determine
the type of an entity based on its context. The input is a text se-
quence of length T, x = {tl, to,...m, ..., tT}, where m = {tl—, tj}
is an entity mention consisting of (j — i+ 1) tokens, and the output

is an entity type label y € Y indicating the entity type of m from
a pre-defined set of entity types. The label set Y typically forms
a hierarchical structure with both coarse and fine-grained types.
The entity typing dataset is denoted with parallel triplets of con-

text, mention, and type, as D = {(x;, m;, y,-)}l.ilXK where K is the
number of example instances per type. In the few-shot learning
setting, K is typically small (e.g., K = 5).

Vanilla Fine-Tuning. Using a PLM such as BERT [11] as the en-
coder 6, the vanilla fine-tuning approach extracts the contextual-
ized representation of each token h = fg, (x) . A linear classifier
(i.e., a linear layer with parameter 81 = {W1,b1} followed by a
Softmax layer) is used to project the contextualized representation
h into the label space fp, (h) = Softmax(W1h + b1). Typically, the
first token in the entity mention m = {ti, ot j} is used to compute
the final prediction probability over the label space:

p(ylx) = Softmax(W1y - fo, (hi) +b1)

The end-to-end learning objective for vanilla fine-tuning based
entity typing can be formulated via function composition fg, ©
foo (x). The trainable parameters 6 = {6, 81} are optimized by
minimizing the cross-entropy loss:

N

Lee == log plyilxi), (1)
i=1

where y; is the gold label of x;.

Prompt-Based Tuning,. In vanilla fine-tuning, the parameters of
the linear classifier 81 = {W1, b1} are randomly initialized. Under
the few-shot setting, the number of these newly-introduced parame-
ters may far surpass the number of training samples, easily resulting
in overfitting to the small training set. Prompt-based tuning, on the
other hand, converts the entity type classification problem into a
masked token prediction problem to reuse the extensively trained
Masked Language Model (MLM) head in the pre-training stage
without introducing any new parameters. The MLM head is used
to predict what words can replace the randomly masked tokens
in a text sequence. For a [MASK] token in the sequence, the MLM
head takes its contextualized representation h and outputs a prob-
ability distribution over the entire vocabulary V, which indicates
the likelihood of a word w appearing at the masked position:

p(wlh) = Softmax(Ea(Wah + b2)) (2)

where E € RIVI*A ig the embedding matrix; o(-) is the activation
function; Wy € RP*h and bo € R” are all pre-trained with the
MLM objective. Since the parameters in both the MLM head 62 =
{E, W2,bs} and the encoder 0 have been pretrained, prompt-
based tuning effectively transfer the prior pretraining knowledge
to the entity typing task for more stable and better performance.
Template and Verbalizer for Prompt-Based Tuning. A prompt
is composed of two critical components: A template T that forms
a cloze-style “fill-in-the-blank” sentence to perform MLM head
prediction and a verbalizer ‘V that relates predicted words to entity
labels. The use of prompt-based tuning on the entity typing task
was first explored by [12]. For a sentence x with an entity mention
m, a valid template can be as follows:

Te(x,m) = x. m is a [MASK].
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Figure 1: (Left): Vanilla fine-tuning on entity typing task uses a linear classifier randomly initialized to project the contextu-
alized representation into the label space. Under few-shot setting, the number of parameters in the linear classifier may far
surpass the number of training samples, easily resulting in overfitting. (Right): Prompt-based tuning on entity typing task
converts the entity type classification into a masked token prediction problem to reuse the extensively trained Masked Lan-
guage Model (MLM) head in the pre-training stage without introducing new parameters, thus effectively transfers the prior
pre-training knowledge into entity typing task. A verbalizer is then used to map the MLM output prediction over vocabulary

to the final prediction over labels.

The MLM head will output the likelihood of each word w in the
vocabulary V appearing at the [MASK] position. Then the verbal-
izer associates output words with each label. For instance, words
like {business, corporation, subsidiary, firm, ...} may be associated
with the entity label “Organization/Company”, so that the output
probability for these words will be added up as the prediction for
their associated type label. Suppose the verbalizer for category y is
Vy = {w1, .., wn }, then the final label prediction probability of x
is calculated as follows:

1
POl = D mp(wilh)

y W[E(Vy

where 7; is a weight indicating the importance of word w; and the
final training objective is the same as Eq. (1). The quality of verbal-
izer is critical to the final performance, and previous prompt-based
tuning methods either manually select type-related words [45] or
leverage external knowledge graph [5, 12] to automatically extract
related nouns to the label names.

3 METHOD

Despite the effectiveness of current prompt-based tuning pipeline,
there are two notable limitations: (1) Current automatic verbal-
izer construction methods extract type representative words to be
mapped to the label set based on general knowledge (e.g., knowledge
bases), but they are only effective when the type label names have
concrete and unambiguous meanings (e.g., “Organization/Company”).
When the label names are too abstract or have composite meanings
(e.g., “Location/GPE” refers to geopolitical locations including coun-
tries and cities), however, suitable type indicative words cannot
be easily generated only via external knowledge. Meanwhile, it

is challenging to distinguish semantically similar types (e.g., “Or-
ganization/Sports Team” and “Organization/Sports League”) well
for robust fine-grained type classification. (2) The current prompt-
based fine-tuning approaches have not fully utilized the power of
PLMs: PLMs are commonly used as the representation models that
predict entity types based on entity instance representations. On
the other hand, the generation power of PLMs acquired through
extensive general-domain pretraining can be exploited to gener-
ate new entity instances that do not exist in the few-shot training
samples so that the entity typing model can be trained with more
instances for better generalization.

To address the above limitations, we propose two modules for
prompt-based few-shot entity typing: (1) An entity type label in-
terpretation module automatically learns to relate the hierarchical
entity type labels to tokens in the vocabulary by jointly leveraging
the given few-shot instances and the label hierarchy; (2) A type-
based contextualized instance generator generates new instances
based on few-shot instances and their types, providing the type
classifier with more training samples. Our overall framework is
illustrated in Fig. 2.

3.1 Hierarchical Entity Label Interpretation

Interpreting label semantics with type-indicative words is crucial
for prompt-based tuning in entity typing, as the final predictions are
obtained by mapping PLMs’ output words to entity labels. A recent
study [12] proposes to use external knowledge bases (e.g., Related
Words?) to find type-related words for constructing the verbalizers.
For example, the related words retrieved for label “Company” are
business, corporation, subsidiary, firm, etc. While such an approach
works well for common entity types, it suffers from two notable

Zhttps://relatedwords.org
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Figure 2: Overall framework of ALIGNIE. (Left): With a given type label hierarchy, an entity type interpretation module relates
all the words in the vocabulary with the label hierarchy by a correlation matrix, so that the top-related words of “/Organiza-

» «

tion/Media” are “newspaper”, “radio” and “magazine”. (Middle): With an entity mention and its context from the training set,
an entity typing classifier uses a template and an MLM head to predict word probability at the [MASK] position, and then maps
the word distribution to type probability using the correlation matrix. The word “newspaper” has a high relevance with the
label “/Organization/Media”. (Right): After the entity typing classifier predicts a type for an entity mention in the few-shot
samples, a type-based contextualized instance generator uses that entity mention and the predicted type to construct a tem-
plate for new instance generation. The newly generated instances for “New York Times” are: “The Washington Post”, “China
Daily”, etc. They are added back to the training set to improve the generalization of the entity typing classifier.

limitations: (1) It merely relies on external knowledge without
considering the specific target corpus information which is essential
for interpreting complicated or abstract labels. (2) It does not utilize
the label correlations in the type hierarchy which may help the
distinction and interpretation of fine-grained label semantics. In the
following, we introduce how to jointly leverage few-shot samples
and the entity label hierarchy to learn a label interpretation module.
Learning Word-Type Correlation Matrix. We consider a cor-
relation matrix U € RIYIXIVI that characterizes the correlation
between each word w € V and each type label y € Y. Specifically,
each element uy,y (the y-th row and w-th column) in U represents
a learnable correlation score between w and y. The correlation ma-
trix maps the token predictions of PLMs (i.e., p(w|h) in Eq. (2)) to
the final entity label predictions p(y|h):

pyl) = ) plylwip(wih), (3)
wev
where
_ exp(uy,w)
p(ylw) = —Zy, oxplity )’

When Eq. (3) is trained via cross entropy loss on few-shot samples,
the correlation matrix U will be updated to automatically reflect
the corpus-specific word-to-type correlation. For example, consider
an input text with “Ukraine” as a “GPE”-type entity, the output
of the MLM head at the [MASK] position is very likely to give
high probability to words like “country” or “nation”, therefore the
corresponding elements uy ,, with y being “GPE” and w being
“country” or “nation” will increase during training.

To further grant U a good initialization, we assign a higher initial
value to those words that are one of the label names of an entity

type. Specifically, the elements in U are initialized to be:

1__a+
ly

(S
vi-lyl WEY

wey' 4)

8 —

Uy =

=
T
€

where y denotes the label name set of label y; « is a hyperparameter
controlling the initial bias to label name match (e.g., when a is close
to 0, words that do not match the label names will have a near-zero
initialization).
Regularization with Hierarchical Information. Apart from the
information from few-shot examples, the labels of an FET dataset
typically forms a hierarchy that specifies the inclusive relationship
between parent-child labels and the exclusive relationship between
sibling labels. Therefore, we can further regularize the correlation
matrix U with the hierarchical information. Following [38] that
learns a spherical tree embedding given a hierarchical structure,
we learn the correlation matrix by considering the relationship of
nodes on the hierarchy.

To model the semantic inclusiveness between parent-child label
pairs, we impose an inclusive loss to relate the parent label with its
child labels by minimizing their cosine distance:

Linc = Z (1 - cos (uy, uParent(y)))s (5)
yey

where uy refers to the y-th row in U, and Parent(y) means the
parent node of y in the label hierarchy. Eq. (5) encourages each
label to have a similar correlation score distribution to all its chil-
dren labels (e.g., the “Organization” label is the broader type of its
children labels “Company”, “Sports Team”, and “Sports League”;
“Organization” will be thus regularized to share all the relevant

words to any of its children labels).



Meanwhile, we also aim to distinguish sibling type categories
like “Sports Team” and “Sports League” for better distinctive power
at finer-grained levels. Therefore, we apply an exclusive loss that
minimizes the cosine similarity between each pair of sibling labels
sharing the same parent node in the hierarchy:

Lexe = Z cos(uy;, uy;), Parent(y;) = Parent(y;). (6)
Yy €Y
Yi#yj
Finally, the overall learning objective for the label interpretation
module is:

L= Lce + A-Lexc + A-Cinc: (7)
where L. is the cross entropy loss in Eq. (1); A is the weight for

regularization.

3.2 Type-Based Contextualized Instance
Generator

Previous prompt-based methods mainly utilize the representation
power of PLMs: By learning contextualized representations of the
input texts, PLMs are able to accurately predict the [MASK] tokens
which are then mapped to the final entity typing predictions. In fact,
in a token-level task like FET, not only can PLMs infer the type of an
entity mention, but it also may generate new instances of specific
entity types based on pretraining knowledge. In text classification
studies [37], topic-related words are generated through pre-trained
MLM for self-training. Similarly, we explore the generation power
of PLMs to construct new instances using existing instances and
their types as examples. For example, given an entity “Buffalo”
and a sentence “At both Delaware State and Buffalo, ..., as both
schools transitioned from lower levels of NCAA hierarchy”, the
MLM head in the typing classifier predicts the entity “Buffalo” as
a university. Based on the predicted type, our goal is to generate
new instances of the same type, such as other universities like
“Duke” and “Dartmouth”. These newly found instances can then
be added back to the training set for better generalization of the
typing classifier.

To fulfill the goal of generating same-type instances from an
example entity m, we need to first use the typing classifier to predict
the fine-grained type of m, denoted as ¢, and then create a generative
template T, (m, t) to generate new instances:

T (m,t) = m, as well as [MASK], is a .

Using the above template, the MLM head will try to predict the
instances with the same type t as entity mention m.

Multi-Token Instance Generation. The above proposed tem-
plate can already generate single-token instances effectively, but
will obviously miss a large amount of multi-token instances. For
example, when we want to generate new instances for New York
Times, the above method will only generate single-token news-
paper names like “Reuters”, “CNN”, etc. Therefore, to generate
multiple-token instances, we inject a sequence of [MASK] tokens
into the template Ty (m, t).

Ty (m,t) = m, as well as [MASK] ...[MASK],is a t. 8)

Such a multiple-token instance generation process is necessary
even for single-word entities, since they can be potentially sliced
into multiple subwords by PLM tokenization (e.g., , “Chanel” will

be sliced into “Chan” and “##el” in BERT tokenization), and using
multiple [MASK] positions for prediction will give chance to the
generation of less frequent words that consist of multiple subwords.
Multi-token decoding is commonly carried out in autoregressive
language models [42] as sequential left-to-right steps. However, it
becomes less straightforward for autoencoder models like BERT
that uses bidirectional contexts for prediction: While BERT can
predict multiple [MASK] tokens in a sequence simultaneously by
greedily picking the most likely token at each individual [MASK]
position, these predictions are made independently from each other
and the final results may not make sense as a whole. Therefore,
we propose to fill in one blank at each step by selecting the word
with the highest score at that position, and recursively predict the
other blanks conditioned on the already filled blanks. Later we will
score the multiple combinations of words and select the top-M
combinations as the new instances. For example, using T,(m, t) and
decoding the masked tokens from left to right, we can generate a
new instance that has the same type with New York Times in the
following steps:

New York Times, as well as the; [MASK] [MASK]is a newspaper.
New York Times, as well as the; Washington, [MASK]is a newspaper.
New York Times, as well as the; Washingtons Postsis a newspaper.

Since there is no ground truth for the length of the new instances,
we iterate from 1 to [ [MASK] tokens, where [ is the length of the
example entity. We then rank all generated new instances m with
pseudo log likelihood [24] to select top new instances:

|m|
Score(m) = Z log(s;),
i=1

where s; is the conditional probability of predicting the i-th sub-
word based on previous i — 1 generated sub-words.

Contextualized Instance Generation. Apart from probing the
knowledge in PLMs to generate new instances, sometimes entity
instances of the same type may appear in parallel. For example, the
context .., while Dan Oster, Anjelah Johnson, and Daheli Hall were
hired as feature players” include multiple players/actors such as
“Dan Oster”, “Anjelah Johnson” and “Daheli Hall”. In the few-shot
learning setting where a limited number of training examples at
instance-level are provided, it is likely that the above sentence, if
appearing in the training set, only contains one annotated entity,
and other entities in the same sentence will not appear in the train-
ing set. To find potential parallel entity instances in the sentence,
we extend the template in Eq. (8) by adding the original context x
to form our final instance generation template:

Tg(x, m,t) = x. m, as well as [MASK] ... [MASK], is a ¢.

Using the above template, both in-context parallel instances and
out-of-context new instances based on pre-training knowledge can
be generated through the instance generator.

Adding New Instances for Training. For each given entity men-
tion m, we can generate M new instances after the training finishes
half of the total epochs when the type words output by the MLM
head become stable. The type-based new instances are then added
back to augment the training set by applying the same classification



template. Since there could be noise in generating new instances,
we do not impose a hard label on a new instance m to train the
model. Instead, to improve robustness to label noise [34], we use
a soft distribution over Y as its pseudo label y by smoothing the
label y; of the original entity m:

__|l-e+737 y=ui
Yy=3 ¢ ,
Xl Yy #Yyi
where € is the smoothing parameter.

We use the KL divergence loss to train the model on newly
generated instances:

©

N M
Lnew = ), > KL lIp (gl 1)), (10)
i=1 k=1
where m; i is the k-th instance generated from the i-th entity men-
tion, and g; ;. is its corresponding label.

3.3 Overall Training Objective

The overall training objective is the combination of training the
label interpretation module and using new generated instances as
the augmentations:

Liotal = Lee + ALexc + ALine + fAnLnew (11)

During the first half of training epochs, f is set to 0 to avoid gen-
erating false types for existing entities. After half of the training
epochs finish, the model becomes more stable on predicting types,
and we gradually increase f as the epoch grows: = ZtT_ T where
T is the total number of epochs and t is the current epoch number.

4 EXPERIMENT

In this section, we conduct experiments to demonstrate the effec-
tiveness of our method. We introduce the three benchmark datasets
on FET in Sec 4.1 and details of experiment settings in Sec 4.2. Then
we report the main quantitative results in Sec 4.3 and analyze some
case studies in Sec 4.4.

4.1 Datasets
We use three fine-grained entity typing benchmark datasets.

e OntoNotes. The OntoNotes dataset is derived from the OntoNotes
corpus [49] and 12,017 manual annotations were done by [17]
with 3 hierarchical layers of 89 fine-grained types. We follow
the dataset split by [46] that retains 8,963 non-pronominal anno-
tations, where the training set is automatically extracted from
Freebase API by [44]. Since our paper focus on few-shot learning,
we apply extra preprocessing by filtering out classes with less
than 5 annotations in training, validation, and test set, resulting
in a total of 21 classes left.

o BBN Pronoun Coreference and Entity Type Corpus (BBN).
This dataset uses 2,311 Wall Street Journal articles and is anno-
tated by [48] with 2 hierarchical layer of 46 types. We follow the
split by [44] and also filter out classes with less than 5 annota-
tions in training, validation and test set, leading to a total of 25
classes.

o Few-NERD. The Few-NERD [13] dataset is a recently proposed
large-scale manually annotated dataset with 2 hierarchical layers
of 66 types. We follow [12] and uses the supervised setting of the

dataset, FEW-NERD (SUP), as well as the official split for few-shot
example sampling. All 66 classes have more than 5 annotations
in each of the dataset splits.

4.2 Experiment Settings

Few-Shot Sampling. We conduct 5-shot learning on three datasets
by sampling 5 instances for training and 5 instances for dev set in
each run of experiment. We repeat experiments for each dataset for
5 times with different sampled sets and report the average result.

Compared Methods and Ablations. We include the results of
vanilla fine-tuning, prompt-based MLM using hard templates in [12],
and the current state-of-the-art method PLET [12] on few-shot en-
tity typing, which uses multiple hard and soft templates for prompt-
based tuning, and automatically constructs verbalizers through ex-
ternal knowledge graph. We conduct ablation studies by removing
the following two parts one at a time: (1) not using the hierarchical
regularization in Eq. (6) and Eq. (5) (- hierarchical reg.); (2) not
using the type-based contextual instance generator to generate
new instances for training in Eq. (10) (- new instances). We also
compare with vanilla fine-tuning and prompt-based tuning in a
fully supervised setting.

Hyperparameter Settings. We use the pre-trained RoBERTa-base
model as the backbone transformer model (for ALIGNIE and all
baselines). For all three datasets: the max sequence length is set to
be 128; the batch size is 8; the training epoch number is 30; the
hyperparameters « and € are set to 0.1; the instance generating
number M is set to 5 per type; the training weights A and A, are set
to 1.0. We use a learning rate of 1e — 2 for the correlation matrix U
and a gradient multiplication layer of 1e — 7 is applied to the bottom
Transformer backbone so that the pre-trained weights stay very
stable during the training. We use Adam [27] as the optimizer with
linear decaying schedule. The model is run on NVIDIA GeForce
GTX 1080 Ti GPU.

Evaluation Metrics. We apply the widely-used metrics from [32]
consisting of strict accuracy (Acc.), loose micro-F1 score (micro-F1),
and loose macro-F1 score (macro-F1). The loose F1 scores tolerate
partial correctness for type labels within the same branch but of
different granularities.

4.3 Quantitative Evaluation

Table 1 presents the performance of all methods on three bench-
mark datasets. Overall, prompt-based results have higher perfor-
mance than vanilla fine-tuning in few-shot settings, showing the
prompts are better at inducing factual knowledge from PLMs. In
fully supervised settings, however, fine-tuning performs a little
better than prompt-based MLM, which is also suggested by pre-
vious studies [18], because vanilla fine-tuning has an extra linear
layer to learn more features from the full training set. Specifically,
ALIGNIE achieves the best among all prompt-based methods on all
three datasets, and is mostly better than the two ablations, demon-
strating that the two proposed modules can effectively find related
words and generate new instances for each label. We also notice
that ALIGNIE can perform on par with fully supervised setting
on OntoNotes and BBN, but cannot on Few-NERD. This is be-
cause the training set of OntoNotes and BBN are automatically



Table 1: Results on three entity typing benchmark datasets. For 5-shot setting, we report the average performance over 5
different sets of randomly-sampled few-shot examples.

Method OntoNotes BBN Few-NERD

(Acc.) (Micro-F1) (Macro-F1) (Acc.) (Micro-F1) (Macro-F1) (Acc.) (Micro-F1) (Macro-F1)
5-Shot Setting
Fine-tuning 28.60 50.70 51.60 51.03 60.03 58.22 36.09 48.56 48.56
Prompt-based MLM 32.62 60.97 61.82 67.00 75.23 73.55 44.69 59.24 59.24
PLET 48.57 70.63 75.43 71.23 79.22 78.93 56.94 68.81 68.81
ALIGNIE (- hierarchical reg.) 52.74 77.55 79.72 72.15 80.35 80.40 59.01 70.91 70.91
ALIGNIE (- new instances) 51.10 72.91 76.88 73.50 81.62 81.31 57.41 69.47 69.47
ALIGNIE 53.37 77.21 80.68 75.44 82.20 82.30 59.72 71.90 71.90
Fully Supervised Setting
Fine-tuning 56.70 75.21 78.86 78.06 82.39 82.60 79.75 85.74 85.74
Prompt-based MLM 55.18 74.57 77.47 77.10 81.77 82.05 77.38 85.22 85.22

inferred from external knowledge bases, and can contain much
noise, while the training set of Few-NERD is totally labeled by
human. Details of hyperparameter studies and templates can be
found in Appendix A and B.

4.4 Case Study

We further showcase some new instances generated based on few-
shot examples in Few-NERD in Table 2. Four single-token in-
stances and seven multiple-token instances are shown respectively.
The generated results are of reasonable correctness and rich variety,
thus ensuring the quality of the newly added training data. We can
also found that the generator is able to capture in-context instances
like “Zeus”, “Hades” in the first example and “3DS” in the last exam-
ple, which are also important to improve the context-based entity
typing model.

5 RELATED WORK

This work focuses on few-shot entity typing using prompt-based
methods, thus we will introduce two directions of work, prompt-
based tuning and fine-grained entity typing.

Prompt-Based Tuning. PLMs [7, 11, 33] have shown remarkable
performance through fine-tuning on downstream tasks [20], thanks
to their learned generic linguistic features [41] via pre-training.
Some studies also show that PLMs are able to capture factual
knowledge [41] by making predictions on manually curated “fill-in-
the-blank” cloze-style prompts. Researchers use manually created
prompts as task descriptions on GPT-3 [1] and found that prompts
can guide the model to generate answers for specific tasks, espe-
cially effective on few-shot tasks. Inspired by these observations,
studies on prompt engineering [25, 47] aim to automatically search
for optimal templates on specific tasks. In few-shot settings where
training data is very limited, prompt-based tuning has surpassed
standard model fine-tuning in a wide range of applications includ-
ing text classification [19, 22], relation extraction [5], named entity
recognition [4, 28], and fine-grained entity typing [12].

Fine-Grained Entity Typing. The goal of fine-grained entity typ-
ing (FET) is to determine the type of entity given a particular context

and a label hierarchy [32, 52]. Several early studies [9, 17, 32] gen-
erate large training data by automatically labeling entity mentions
using external knowledge bases, which was followed by a line of
research known as distantly-supervised FET with the goal of denois-
ing the automatically generated labels [44]. Some studies focus on
leveraging type hierarchy and type inter-dependency [3, 31, 39, 43]
for noise reduction, while other studies [8, 26, 29, 36, 50, 54] com-
bine external entity information provided in knowledge bases and
self-training techniques to automatically relabel the data. Recently,
joint training with relation extraction [51] and searching for optimal
templates under prompt-based framework [10] are also proposed
in the distantly-supervised setting.

Zero-shot FET has also been explored to mitigate human anno-
tation burden by transferring the knowledge learned from seen
types to unseen ones. Multiple sources of information are used for
zero-shot FET: [53] maps mention embedding to type embedding
space by training a neural model to combine entity and context in-
formation. [55] captures hierarchical relationship between unseen
types and seen types in order to generate unseen label representa-
tions. [35] further enhances label representations by incorporating
hierarchical and prototypical information derived from around 40
manually selected context-free entities as prototypes for each type.
[40, 57] define unseen types by generating type embeddings from
Wikipedia descriptions. [6] fuses three distinct types of sources:
contexutal, pre-defined hierarchy and label-knowledge (label pro-
totype and descriptions), by training three independent modules to
combine their results. Nonetheless, these zero-shot learning algo-
rithms require extensive annotations on source domain or manually
selected high-quality representative mentions.

Our work focuses on the few-shot learning scenario, where each
entity type is given a few annotated entity mention within a context,
and no manual descriptions for type labels are provided. [12] is a
recent work that first explores prompt-based tuning on FET, and
their setup is mostly similar to ours.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of few-shot fine-grained entity
typing, where only a few contexutalized entity mentions are given
for each type. We design two modules to empower prompt-based



Table 2: Top generated instances based on predicted types of example entities.

Generation from single-token entities

Context & entity mention MLM predicted type Generated new instances
From Coeus.and Phoebe came Leto and Asteria, who marrled. Zeus, Hermes, Hades, Apollo, Athena,
Perses, producing Hekate, and from Cronus and Rhea came Hestia, god Hera. Pluto. Prometheus
Demeter, Hera, Poseidon, Hades, and Zeus. ’ ? >
Orsonwelles malus is a species of spider endemic to Kauai . Hawaii, Fiji, Samoa, Guam, Taiwan,
. .. island
in the Hawaiian Islands. Honolulu, Japan, ...
At both Delaware State and Buffalo, Townsend was responsible for Delaware, Wilmington, Syracuse,
leading the athletic department to achieve full NCAA Division I status, university Albany, Rutgers,
as both schools transitioned from lower levels of NCAA hierarchy. Dartmouth, DuKke, ...
A well-known philanthropist, Shaw donated billions of yuan, euros,
Hong Kong dollars to educational institutions in Hong Kong currency sterling, yen,

and mainland China.

bitcoin, pounds, ...

Generation from multi-token entities

Context & entity mention MLM predicted type Generated new instances
“xri s » B , ifer L ,
The album also included the song “Vivir Lo Nuestro, . cyonce Jennifer OP N
a duet with Marc Anthony singer Rihanna, Taylor Swift,
’ Lady Gaga, Michael Jackson, ...
Warner Brothers, Paramount Pictures ,
The film was released on August 9, 1925, by Universal Pictures. company Columbia Pictures, Lucasfilm,
Hollywood Pictures, ...
E\./erlar.ld hos.ted 7.5 million guests.m 2006, ranking it fourth Lotte World, Universal Studios Japan,
in Asia behind the two Tokyo Disney Resort parks and ark Shanehai Disnev World
Universal Studios Japan, while Lotte World attracted 5.5 million P ghat- 4 L
. Orlando Universal Studios, ...
guests to land in fifth place.
Their daughter, Caroline Montgomery Marriott, was killed by the . Yellow Fever, bird flu,
. . . disease typhus, small pox,
Spanish Flu epidemic in 1918. .
polio, ...
The disappearance of the Norse settlements probably resulted climate change, Ice Age,
from a combination of the Little Ice Age ’s cooling temperatures, disaster global warming, Norman Conquest,

abandonment after the Black Plague and political turmoils.

cannibalism, natural disasters, ...

The site of Drake’s landing as officially
recognised by the U.S. Department of the Interior
and other agencies is Drake’s Cove.

the Department of Homeland Security,
the Bureau of Land Management,
the Federal Bureau of Investigation,
the United States Forest Service,
the National Institutes of Health, ...

government agency

Pikmin also make a cameo during the process
of transferring downloadable content from a Nintendo DSi
to a 3DS, with various types of Pikmin carrying the data over.

3DS, 2DS,
Wii U, Nintendo Switch,
the PSP, PlayStation Vita, ...

handheld

tuning approaches for this task. An entity label interpretation mod-
ule is proposed to close the gap between the MLM head output
space and the type label space by automatically learning word-type
correlations from few-shot samples and the label hierarchy. To fur-
ther utilize the generation power of PLMs, we propose a type-based
contextualized generator to generate new instances based on the
few-shot instances and their types, and use the new instances to
generalize the initial training set. Our method outperforms previous
baselines by large margins on three benchmark datasets.

There are several interesting directions for future studies: The
type-based instance generator can benefit other entity-related tasks
such as relation extraction; the label interpretation can improve
other few-shot NLP tasks with prompt-based approaches. Moreover,

one may also considers exploring generating new instances by
ensembling from multiple large-scale language models.
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A HYPERPARAMETER STUDY.

We study the effect of several hyperparameters in ALIGNIE. We conduct all the hyperparameter study and case studies on Few-NERD
dataset. We first separately vary the initialization bias « in Eq. (4) and the label smoothing parameter € in Eq. (9) in range [0.0, 0.5], while
keeping the other’s value as default (0.1 for both default values). We report the accuracy on Few-NERD in Fig. 3(a). Overall, the performance
is insensitive to & since the values in correlation matrix U are trainable. The accuracy also does not change much when € is reasonably
close to 0, and can degrade a little when too much weight is given away from the original label. We then vary the number of new instances
M generated added to training, and run experiments over M = [1, 3, 5, 8, 10]. We present the results in Fig. 3(b) and found that the model
performance increases as more new instances are generated. However, the increasing trend slows down at M = 5. Since generating more
new instances cost extra time, it is already sufficient for us to generate 5 instances per type during training.
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Figure 3: Hyperparameter study and testing curve analysis.

B EFFECTS OF TEMPLATES.

Previous studies [16, 56] point out that the quality of prompt templates play an important role in the performance of prompt-based methods.
To study the impact of different template choices, we replace our template with two more templates and show their performance in Table 3.
The results indicate that the choice of templates can impact the final performance, and the result is better when the typing template T,
matches more with the generating template T,.

Table 3: Performance with different templates on the Few-NERD dataset.

Typing template T (x, m) ‘ Instance generating template Ty (x, m, t) ‘ Acc. ‘ Micro-F1 | Macro-F1
x. mis a [MASK]. x. m, as well as [MASK], is a ¢. 59.72 71.90 71.90
x. In this sentence, m is a [MASK]. x.m, as well as [MASK], is a f. 58.57 71.69 71.69

x. m is a type of [MASK]. x. m, as well as [MASK], is a type of t. | 58.86 72.05 72.05
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