
ar
X

iv
:2

20
6.

02
11

5v
1

 [
cs

.I
R

]
 5

 J
un

 2
02

2

Learning Binarized Graph Representations with Multi-faceted
�antization Reinforcement for Top-K Recommendation

Yankai Chen1, Huifeng Guo2, Yingxue Zhang2, Chen Ma3, Ruiming Tang2, Jingjie Li2, Irwin King1
1The Chinese University of Hong Kong, 2Huawei Noah’s Ark Lab, 3City University of Hong Kong

{ykchen,king}@cse.cuhk.edu.hk;chenma@cityu.edu.hk;{huifeng.guo,yingxue.zhang,tangruiming,lijingjie1}@huawei.com

Abstract

Learning vectorized embeddings is at the core of various recom-

mender systems for user-item matching. To perform efficient on-

line inference, representation quantization, aiming to embed the la-

tent features by a compact sequence of discrete numbers, recently

shows the promising potentiality in optimizing both memory and

computation overheads. However, existing work merely focuses

on numerical quantization whilst ignoring the concomitant infor-

mation loss issue, which, consequently, leads to conspicuous per-

formance degradation. In this paper, we propose a novel quantiza-

tion framework to learn Binarized Graph Representations for Top-K

Recommendation (BiGeaR). BiGeaR introduces multi-faceted quan-

tization reinforcement at the pre-,mid-, and post-stage of binarized

representation learning, which substantially retains the represen-

tation informativeness against embedding binarization. In addition

to saving the memory footprint, BiGeaR further develops solid on-

line inference accelerationwith bitwise operations, providing alter-

native flexibility for the realistic deployment. The empirical results

over five large real-world benchmarks show that BiGeaR achieves

about 22%∼40% performance improvement over the state-of-the-

art quantization-based recommender system, and recovers about

95%∼102% of the performance capability of the best full-precision

counterpart with over 8× time and space reduction.

CCS Concepts

• Information systems→ Recommender systems.

Keywords

Recommender system; Quantization-based; Binarization; GraphCon-

volutional Network; Graph Representation

ACM Reference Format:

Yankai Chen1, Huifeng Guo2 , Yingxue Zhang2, ChenMa3, Ruiming Tang2,

Jingjie Li2, Irwin King1 . 2022. Learning Binarized Graph Representations

with Multi-faceted Quantization Reinforcement for Top-K Recommenda-

tion. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-

covery and Data Mining (KDD ’22), August 14–18, 2022, Washington, DC,

USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3534678.

3539452

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA.

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539452

{……}

{……}

{……} {……}

{……}

BiGeaRBi

BiGeaRFp

Gradient approximation

with δ function

Layer-wise feature

 quantization

Inference

distillation

Backpropagation

Input! Low resource consumption

High model performance

1

1

0

1

0

1

0

01

0

1 0

Binary embedding table

of hashing-based models

x1

Binarized graph

representations

(a) Key stages of BiGeaR quantization learning"

Output!

x2

x3

0.7

0.3

0.8

+

-

+

-

+-

-

+ -

Binarized embedding

table of BiGeaR

x1

x2

x3

0.9

0.2

0.9

0.8

-0.1

0.1

-0.2

0.4-0.2

-0.5

-0.3 0.4

Embedding table of

full-precision models

x1

x2

x3

(b) Target embedding tables"

Forward prop. Backward prop.

+

+

-

Figure 1: Illustration of BiGeaR.

1 Introduction

Recommender systems, aiming to perform personalized infor-

mation filtering [65], are versatile to many Internet applications.

Learning vectorized user-item representations (i.e., embeddings),

as the core of various recommender models, is the prerequisite for

online inference of user-item interactions [21, 56]. With the ex-

plosive data expansion (e.g., Amazon owns over 150M users and

350Mproducts [42, 52]), onemajor existing challenge however is to

perform inference efficiently. This usually requires large memory

and computation consumption (e.g., for Amazon 500M-scaled full-

precision1 embedding table) on certain data centers [49], and there-

fore hinders the deployment to devices with limited resources [49].

To tackle this issue, representation quantization recently provides

the promising feasibility. Generally, it learns to quantize latent fea-

tures of users and items via converting the continuous full-precision

representations into discrete low-bit ones. The quantized repre-

sentations thus are conducive to model size reduction and infer-

ence speed-up with low-bit arithmetic on devices where CPUs are

typically more affordable than expensive GPUs [2, 3]. Technically,

quantization can be categorized into multi-bit, 2-bit (i.e., ternar-

ized), and 1-bit (i.e., binarized) quantization. With only one bit-

width, representation binarization for recommendation takes the

most advantage of representation quantization and therefore draws

the growing attention recently [28, 50].

Despite the promising potentiality, it is still challenging to de-

velop realistic deployment mainly because of the large performance

degradation in Top-K recommendation [28, 50]. The crux of the

matter is the threefold information loss:

• Limited expressivity of latent features. Because of the dis-

crete constraints, mapping full-precision embeddings into com-

pact binary codes with equal expressivity is NP-hard [19]. Thus,

instead of proposing complex and deep neural structures for

quantization [13, 70], sign(·) function is widely adopted to achieve
$ (1) embedding binarization [37, 50, 55]. However, this only

guarantees the sign (+/-) correlation for each embedding entry.

1It could be single-precision or double-precision; we use float32 as the default for
explanation and conducting experiments throughout this paper.

http://arxiv.org/abs/2206.02115v1
https://doi.org/10.1145/3534678.3539452
https://doi.org/10.1145/3534678.3539452
https://doi.org/10.1145/3534678.3539452

Compared to the original full-precision embeddings, binarized

targets produced from sign(·) are naturally less informative.

• Degradedranking capability.Ranking capability, as the essen-

tial measurement of Top-K recommendation, is the main objec-

tive to work on. Apart from the inevitable feature loss in numer-

ical quantization, previous work further ignores the discrepancy

of hidden knowledge that is inferred by full-precision and bina-

rized embeddings [28, 50]. However, such hidden knowledge is

vital to reveal users’ preference towards different items, losing

of which may thus draw degraded ranking capability and sub-

optimal model learning accordingly.

• Inaccurate gradient estimation.Due to the non-differentiability

of quantization function sign(·), Straight-Through Estimator (STE)

[4] is widely adopted to assume all propagated gradients as 1

in backpropagation [37, 43, 50]. Intuitively, the integral of 1 is

a certain linear function other than sign(·), whereas this may

lead to inaccurate gradient estimation and produce inconsistent

optimization directions in the model training.

To address aforementioned problems, we propose a novel quan-

tization framework, namely BiGeaR, to learn the Binarized Graph

Representations for Top-K Recommendation. Based on the natural

bipartite graph topology of user-item interactions, we implement

BiGeaR with the inspiration from graph-based models, i.e., Graph

Convolutional Networks (GCNs) [18, 30]. With the emphasis on

deepening the exploration of multi-hop subgraph structures, GCN-

based recommender models capture the high-order interactive re-

lations and well simulate Collaborative Filtering for recommenda-

tion [21, 56, 65]. Specifically, BiGeaR sketches graph nodes (i.e.,

users and items) with binarized representations, which facilitates

nearly one bit-width representation compression. Furthermore, our

model BiGeaR decomposes the prediction formula (i.e., inner prod-

uct) into bitwise operations (i.e., Popcount and XNOR). This dra-

matically reduces the number of floating-point operations (#FLOP)

and thus introduces theoretically solid acceleration for online in-

ference. To avoid large information loss, as shown in Figure 1(a),

BiGeaR technically consists ofmulti-faceted quantization reinforce-

ment at the pre-, mid-, and post-stage of binarized representation

learning:

(1) At the pre-stage ofmodel learning, we propose the graph layer-

wise quantization (from low- to high-order interactions) to

consecutively binarize the user-item features with different se-

mantics. Our analysis indicates that such layer-wise quanti-

zation can actually achieve the magnification effect of feature

uniqueness, which significantly compensates for the limited ex-

pressivity of embeddings binarization. The empirical study also

justifies that, this is more effective to enrich the quantization

informativeness, rather than simply increasing the embedding

sizes in the conventional manner [37, 43, 44, 50].

(2) During the mid-stage of embedding quantization, BiGeaR in-

troduces the self-supervised inference distillation to de-

velop the low-loss ranking capability inheritance. Technically,

it firstly extracts several pseudo-positive training samples that

are inferred by full-precision embeddings of BiGeaR. Then these

samples serve as the direct regularization target to the quan-

tized embeddings, such that they can distill the ranking knowl-

edge from full-precision ones to have similar inference results.

Different from the conventional knowledge distillation, our ap-

proach is tailored specifically for Top-K recommendation and

therefore boosts the performancewith acceptable training costs.

(3) As for the post-stage backpropagation of quantization optimiza-

tion, we propose to utilize the approximation of Dirac delta

function (i.e., X function) [6] for more accurate gradient es-

timation. In contrast to STE, our gradient estimator provides

the consistent optimization direction with sign(·) in both for-

ward and backward propagation. The empirical study demon-

strates its superiority over other gradient estimators.

EmpiricalResults.The extensive experiments over five real-world

benchmarks show that, BiGeaR significantly outperforms the state-

of-the-art quantization-based recommender model by 25.77%∼40.12%
and 22.08%∼39.52% w.r.t. Recall and NDCG metrics. Furthermore,

it attains 95.29%∼100.32% and 95.32%∼101.94% recommendation

capability compared to the best-performing full-precision model,

with over 8× inference acceleration and space compression.

Discussion. It is worthwhile mentioning that BiGeaR is related to

hashing-based models (i.e., learning to hash) [27, 28], as, conceptu-

ally, binary hashing can be viewed as 1-bit quantization. However,

as shown in Figure 1(b), they have different motivations. Hashing-

based models are usually designed for fast candidate generation,

followed by full-precision re-ranking algorithms for accurate pre-

diction. Meanwhile, BiGeaR is end-to-end that aims tomake predic-

tions within the proposed architecture. Hence, we believe BiGeaR

is technically related but motivationally orthogonal to them.

Organization. We present BiGeaR methodology and model anal-

ysis in § 2 and § 3. Then we report the experiments and review the

related work in § 4 and § 5 with the conclusion in § 6.

2 BiGeaR Methodology

In this section, we formally introduce: (1) graph layer-wise quan-

tization for feature magnification; (2) inference distillation for rank-

ing capability inheritance; (3) gradient estimation for better model

optimization. BiGeaR framework is illustrated in Figure 2(a). The

notation table and pseudo-codes are attached in Appendix A and B.
Preliminaries: graph convolution. Its general idea is to learn

node representations by iteratively propagating and aggregating
latent features of neighbors via the graph topology [21, 30, 58]. We
adopt the graph convolution paradigm working on the continuous
space from LightGCN [21] that recently shows good recommenda-

tion performance. Let v (;)D , v
(;)
8 ∈ R3 denote the continuous feature

embeddings of user D and item 8 computed after ; layers of infor-
mation propagation. N(G) represents G’s neighbor set. They can be
iteratively updated by utilizing information from the (;-1)-th layer:

v
(;)
D =

∑

8∈N(D)

1√
|N(D) | · |N(8) |

v
(;−1)
8 , v

(;)
8 =

∑

D∈N(8)

1√
|N(8) | · |N(D) |

v
(;−1)
D . (1)

2.1 Graph Layer-wise Quantization

We propose the graph layer-wise quantization mainly by com-
putingquantizedembeddingsand embedding scalers: (1) these
quantized embeddings sketch the full-precision embeddings with

3-dimensional binarized codes (i.e., {−1, 1}3); and (2) each embed-
ding scaler reveals the value range of original embedding entries.
Specifically, during the graph convolution at each layer, we track

the intermediate information (e.g., v (;)D) and perform the layer-wise

0.4

0.5

0.5 0.3-0.1

0.8

0.9

0.7 0.3

0.3

-0.8

0.4

-0.2-0.1

0.5

-0.1 -0.70.7

+ -+

+

+

+

0.375

0.575 +

+

+

+

-+

-

+ -0.475

+

-

-

-0.3

0.6

-0.5 0.50.9

0.4

0.6

0.9 -0.4

0.3

-0.1

-0.4

-0.30.4

-0.2

0.5 -0.1-0.3

- +-

+

+

+

0.400

0.400 -

+

+

-

++

-

- +0.325

-

-

-

0.6

0.7

0.7 0.2-0.1

0.5

0.4

0.3 0.2

0.5

-0.1

-0.2

-0.30.3

-0.8

0.3 0.7-0.4

+ -+

+

+

+

0.375

0.350 -

+

+

-

++

-

- +0.400

+

-

+

!!

||

||

Ltch

BPR

Lstd

BPR

LID

+

u1

u2

u3

u1

u2

u3

u1

u2

u3

u1

u2

u3

u1

u2

u3

u1

u2

u3

+ + - + -

+ - - + -

wl

wl

α
(l)
u

α
(l)
i

q
(l)
u

q
(l)
i

1 1 0 1 0

1 0 0 1 0q̈
(l)
i

q̈
(l)
u

XNOR

1 0 1 1 1

w
2
l

α
(l)
u α

(l)
i

Popcount

4 ×2− d

3w
2
l
α
(l)
u α

(l)
i

w
2
l

α
(l)
u α

(l)
i

Inner Product

wl

wl

α
(l)
u

α
(l)
i

Top-R

inference
Top-R

inference

Top-R

inference

Input!

l = 1 l = Ll = 0

(a) Forward propagation of BiGeaR.

!!

(b) Prediction acceleration.

(c)Backward propagation of BiGeaR.

L
sign(φ)φ

sign(·)
∂L
∂φ

∂L
∂sign(φ)

∂sign(φ)
∂φ

=
2γ
√

π
exp(−(γφ)2)

Quantization! Quantization! Quantization!

|| Concatenation

+ Summation

Embedding

scalers

Figure 2: BiGeaR first pre-trains the full-precision embeddings and then triggers the (1) graph layer-wise quantization, (2)

inference distillation, and (3) accurate gradient estimation to learn the binarized representations (Best view in color).

1-bit quantization in parallel as:

q
(;)
D = sign

(
v
(;)
D

)
, q

(;)
8 = sign

(
v
(;)
8

)
, (2)

where embedding segments q (;)D , q
(;)
8 ∈ {−1, 1}3 retain the node la-

tent features directly from v
(;)
D and v

(;)
8 . To equip with the layer-

wise quantized embeddings, we further include a layer-wise posi-

tive embedding scaler for each node (e.g., U (;)D ∈ R+), such that v (;)D

� U
(;)
D q

(;)
D . Then for each entry in U

(;)
D q

(;)
D , it is still binarized by

{−U (;)D , U (;)D }. In this work, we compute the mean of L1-norm as:

U
(;)
D =

1

3
· | |v (;)D | |1, U

(;)
8 =

1

3
· | |v (;)8 | |1. (3)

Instead of setting U (;)D and U
(;)
8 as learnable, such deterministic com-

putation is simple yet effective to provide the scaling functionality

whilst substantially pruning the parameter search space. The ex-

perimental demonstration is in Appendix F.2.
After ! layers of quantization and scaling, we have built the

following binarized embedding table for each graph node G as:

AG = {U (0)G , U
(1)
G , · · · , U (!)G }, QG = {q (0)G , q

(1)
G , · · · , q (!)G }. (4)

From the technical perspective, BiGeaR binarizes the intermediate

semantics at different layers of the receptive field [53, 59] for each

node. This, essentially, achieves themagnification effect of fea-

ture uniqueness to enrich user-item representations via the in-

teraction graph exploration. We leave the analysis in § 3.1.

2.2 Prediction Acceleration

Model Prediction. Based on the learned embedding table, we
predict the matching scores by adopting the inner product:

~̂D,8 =
〈
5 (AD , QD), 5 (A8 , Q8)

〉
, (5)

where function 5 (·, ·) in this work is implemented as:

5 (AD , QD) =
���
���
!

;=0
F;U

(;)
D q

(;)
D , 5 (A8 , Q8) =

���
���
!

;=0
F;U

(;)
8 q

(;)
8 . (6)

Here
���� represents concatenation of binarized embedding segments,

in which weightF; measures the contribution of each segment in

prediction. F; can be defined as a hyper-parameter or a learnable

variable (e.g., with attention mechanism [53]). In this work, we set

F; ∝ ; to linearly increase F; for segments from lower-layers to

higher-layers, mainly for its computational simplicity and stability.
Computation Acceleration. Notice that for each segment of

5 (AD , QD), e.g., F;U
(;)
D q

(;)
D , entries are binarized by two values (i.e.,

−F;U
(;)
D or F;U

(;)
D). Thus, we can achieve the prediction acceler-

ation by decomposing Equation (5) with bitwise operations. Con-

cretely, in practice, q (;)D and q
(;)
8 will be firstly encoded into basic

3-bits binary codes, denoted by ¥q
(;)
D , ¥q

(;)
8 ∈ {0, 1}3 . Thenwe replace

Equation (5) by introducing the following formula:

~̂D,8 =

!∑

;=0

F2
; U
(;)
D U

(;)
8 ·

(
2Popcount

(
XNOR(¥q (;)D , ¥q

(;)
8)

)
− 3

)
. (7)

Compared to the original computation approach in Equation (5),

our bitwise-operation-supportedprediction in Equation (7) reduces

the number of floating-point operations (#FLOP) with Popcount

and XNOR. We illustrate an example in Figure 2(b).

2.3 Self-supervised Inference Distillation

To alleviate the asymmetric inference capability issue between
full-precision representations and binarized ones, we introduce the
self-supervised inference distillation such that binarized embeddings
can well inherit the inference knowledge from full-precision ones.
Generally, we treat our full-precision intermediate embeddings (e.g.,

v
(;)
D) as the teacher embeddings and the quantized segments as the
student embeddings. Given both teacher and student embeddings,
we can obtain their prediction scores as ~̂C2ℎD,8 and ~̂BC3D,8 . For Top-K
recommendation, then our target is to reduce their discrepancy as:

argminD(~̂C2ℎD,8 , ~̂BC3D,8) . (8)

A straightforward implementation of functionD from the conven-

tional knowledge distillation [1, 25] is to minimize their Kullback-

Leibler divergence (KLD) or mean squared error (MSE). Despite

their effectiveness in classification tasks (e.g., visual recognition [1,

60]), they may not be appropriate for Top-K recommendation as:

• Firstly, both KLD and MSE in D encourage the student logits

(e.g., ~̂BC3D,8) to be similarly distributed with the teacher logits in a

macro view. But for ranking tasks, they may not well learn the

relative order of user preferences towards items, which, how-

ever, is the key to improving Top-K recommendation capability.

• Secondly, they both develop the distillation over the whole item

corpus,whichmay be computational excessive for realistic model

training. As the item popularity usually follows the Long-tail dis-

tribution [41, 51], learning the relative order of those frequently

interacted items located at the tops of ranking lists actually con-

tributes more to the Top-K recommendation performance.

To develop effective inference distillation, we propose to extract
additional pseudo-positive training samples from teacher embed-
dings to regularize the targeted embeddings on each convolutional
layer. Concretely, let f represent the activation function (e.g., Sig-
moid). We first pre-train the teacher embeddings to minimize the
Bayesian Personalized Ranking (BPR) loss [46]:

LC2ℎ
�%' = −

∑

D∈U

∑

8∈N(D)
9∉N(D)

lnf (~̂ C2ℎ
D,8 − ~̂ C2ℎ

D,9), (9)

where LC2ℎ
�%'

forces the prediction of an observed interaction to
be higher than its unobserved counterparts, and the teacher score

~̂ C2ℎ
D,8 is computed as ~̂ C2ℎ

D,8 =
〈����!

;=0F;v
(;)
D ,

����!
;=0F;v

(;)
8

〉
. Please notice

that we only disable binarization and its associated gradient esti-
mation in pre-training. After it is well-trained, for each user D , we
retrieve the layer-wise teacher inference towards all items I:

~̂
C2ℎ,(;)
D =

〈
F; v̂

(;)
D , F; v̂

(;)
8

〉
8∈I . (10)

Based on the segment scores ~̂ C2ℎ,(;)
D at the ;-th layer, we first sort

out Top-R itemswith the highest matching scores, denoted by ((;)
C2ℎ
(D).

And hyper-parameter R ≪ I. Inspired by [51], then we propose
our layer-wise inference distillation as follows:

L�� (D) =
!∑

;=0

L (;)
��
(~̂ BC3,(;)

D , (
(;)
C2ℎ
(D)) = − 1

'

!∑

;=0

'∑

:=1

F: · lnf (~̂ BC3,(;)
D,(
(;)
C2ℎ
(D,:)
), (11)

where student scores ~̂ BC3,(;)
D is computed similarly to Equation (10)

and (
(;)
C2ℎ
(D, :) returns the :-th high-scored item from the pseudo-

positive samples. F: is the ranking-aware weight presenting two

major effects: (1) since samples in (
(;)
C2ℎ
(D) are not necessarily all

ground-truth positive, F: thus balances their contribution to the
overall loss; (2) it dynamically adjusts the weight importance for

different ranking positions in (
(;)
C2ℎ
(D). To achieve these,F: can be

developed by following the parameterized geometric distribution
for approximating the tailed item popularity [45]:

F: = _1 exp(−_2 · :), (12)

where _1 and _2 control the loss contribution level and sharpness of

the distribution. Intuitively, L�� encourages highly-recommended

items from full-precision embeddings to more frequently appear

in the student’s inference list. Moreover, our distillation approach

regularizes the embedding quantization in a layer-wise manner as

well; this will effectively narrow their inference discrepancy for a

more correlated recommendation capability.
Objective Function. Combining LBC3

�%'
that calculates BPR loss

(similar to Equation (9)) with the student predictions from Equa-
tion (5) and L�� for all training samples, our final objective func-
tion for learning embedding binarization is defined as:

L = LBC3
�%' + L�� + _ | |Θ | |22, (13)

where | |Θ | |22 is the !2-regularizer of node embeddings parameter-

ized by hyper-parameter _ to avoid over-fitting.

2.4 Gradient Estimation

Although Straight-Through Estimator (STE) [4] enables an exe-

cutable gradient flow for backpropagation, it however may cause

the issue of inconsistent optimization direction in forward and

backward propagation: as the integral of the constant 1 in STE is

a linear function, other than sign(·) function. To furnish more ac-

curate gradient estimation, in this paper, we utilize the approxima-

tion of Dirac delta function [6] for gradient estimation.
Concretely, let D (q) denote the unit-step function, a.k.a., Heavi-

side step function [14], where D (q) = 1 for q > 0 and D (q) = 0 oth-
erwise. Obviously, we can take a translation from step function

(a) Dirac delta function. (b) Gradient estimation! (c) Cumulative distribution!

Figure 3: Gradient estimation.

to sign(·) by sign(q) = 2D (q) - 1, and thus theoretically m sign(q)
mq =

2
mD (q)
mq . As for mD (q)

mq , it has been proved [6] that, mD (q)
mq = 0 if q ≠

0, and mD (q)
mq = ∞ otherwise, which exactly is the Dirac delta func-

tion, a.k.a., the unit impulse function X (·) [6] shown in Figure 3(a).
However, it is still intractable to directly use X (·) for gradient esti-
mation. A feasible solution is to approximate X (·) by introducing
zero-centered Gaussian probability density as follows:

X (q) = lim
V→∞

|V |
√
c
exp(−(Vq)2), (14)

which imlies that:
m sign(q)

mq
�

2W
√
c
exp(−(Wq)2) . (15)

As shown in Figure 3(b)-(c), hyper-parameterW determines the sharp-

ness of the derivative curve for approximation to sign(·).
Intuitively, our proposed gradient estimator follows the main

direction of factual gradients with sign(·) in model optimization.

This will produce a coordinated value quantization from contin-

uous embeddings to quantized ones, and thus a series of evolving

gradients can be estimated for the inputs with diverse value ranges.

As we will show in § 4.6 of experiments, our gradient estimator can

work better than other recent estimators [12, 17, 38, 43, 62].

3 Model Analysis

3.1 Magnification of Feature Uniqueness

We take user D as an example for illustration and the following
analysis can be popularized to other nodes without loss of gener-
ality. Similar to sensitivity analysis in statistics [31] and influence
diffusion in social networks [61], we measure how the latent fea-
ture of a distant node G finally affects D’s representation segments

before binarization (e.g., v (;)D), supposing G is a multi-hop neigh-

bor of D . We denote the feature enrichment ratio E(;)G→D as the

L1-norm of Jacobian matrix
[
mv
(;)
D / mv

(0)
GD

]
, by detecting the abso-

lute influence of all fluctuation in entries of v (0)G to v
(;)
D , i.e., E(;)G→D

=
���
���
[
mv
(;)
D / mv

(0)
G

] ���
���
1
. Focusing on a ;-length path ℎ connected by the

node sequence: G;
ℎ
, G;−1

ℎ
, · · · , G1

ℎ
, G0

ℎ
, where G;

ℎ
= D and G0

ℎ
= G , we

follow the chain rule to develop the derivative decomposition as:

mv
(;)
D

mv
(0)
G

=

�∑

ℎ=1



mv
(;)
G;
ℎ

mv
(0)
G0
ℎ

ℎ
=

�∑

ℎ=1

1∏

:=;

1√
|N (G:

ℎ
) |
· 1√
|N (G:−1

ℎ
) |
· O

=

√
|N (D) |
|N (G) |

�∑

ℎ=1

;∏

:=1

1

|N (G:
ℎ
) |
· O ,

(16)

where � is the number of paths between D and G in total. Since all
factors in the computation chain are positive, then:

E
(;)
G→D =

����
����
[
mv
(;)
D

mv
(0)
G

] ����
����
1

= 3 ·
√
|N (D) |
|N (G) | ·

�∑

ℎ=1

;∏

:=1

1

|N (G:
ℎ
) | . (17)

Note that here the term
∑�

ℎ=1

∏;
:=1 1/ |N(G

:
ℎ
) | is exactly the proba-

bility of the ;-length random walk starting at D that finally arrives
at G , which can be interpreted as:

E
(;)
G→D ∝

1√
|N(G) |

·%A>1 (;-step random walk from D arrives at G) . (18)

Magnification Effect of Feature Uniqueness. Equation (18)

implies that, with the equal probability to visit adjacent neighbors,

distant nodes with fewer degrees (i.e., |N(G) |) will contribute more

feature influence to userD . But most importantly, in practice, these

;-hop neighbors of user D usually represent certain esoteric and

unique objects with less popularity. By collecting the intermediate

information in different depth of the graph convolution, we can

achieve the feature magnification effect for all unique nodes

that live within ! hops of graph exploration, which finally enrich

D’s semantics in all embedding segments for quantization.

3.2 Complexity Analysis

To discuss the feasibility for realistic deployment, we compare

BiGeaR with the best full-precision model LightGCN [21], as they

are end-to-end with offline model training and online prediction.

Training Time Complexity. ", # , and � represent the num-

ber of users, items, and edges; (and � are the epoch number and

batch size. We use BiGeaRC2ℎ and BiGeaRBC3 to denote the pre-

training version and binarized one, respectively. As we can ob-

serve from Table 1, (1) both BiGeaRC2ℎ and BiGeaRBC3 takes asymp-

totically similar complexity of graph convolution with LightGCN

(where BiGeaRBC3 takes additional$ (2(3 (!+1)�) complexity for bi-

narization). (2) For L�%' computation, to prevent over-smoothing

issue [33, 35], usually ! ≤ 4; compare to the convolution opera-

tion, the complexity of L�%' is acceptable. (3) For L�� prepara-

tion, after the training of BiGeaRC2ℎ , we firstly obtain the layer-

wise prediction scores with $ ("#3 (! + 1)) time complexity and

then sort out the Top-R pseudo-positive samples for each user with

$ (# +' ln'). For BiGeaRBC3 , it takes a layer-wise inference distilla-
tion from BiGeaRC2ℎ with$

(
('3 (!+1)�

)
. (4) To estimate the gradi-

ents for BiGeaRBC3 , it takes $ (2(3 (! + 1)�) for all training samples.

Table 1: Traing time complexity.

LightGCN BiGeaRC2ℎ BiGeaRBC3

Graph Normalization $
(
2�

)
$
(
2�

)
-

Conv. and Quant. $
(2(3�2!

�

)
$
(2(3�2!

�

)
$
(
2(3 (�2!� + (! + 1)�)

)

L�%' Loss $
(
2(3�

)
$
(
2(3 (! + 1)�

)
$
(
2(3 (! + 1)�

)

L�� Loss - $
(
"#3 (! + 1) (# + ' ln')

)
$
(
('3 (! + 1)�

)

Gradient Estimation - - $
(
2(3 (! + 1)�

)

Memory overhead and Prediction Acceleration. We mea-

sure the memory footprint of embedding tables for online predic-

tion. As we can observe from the results in Table 2: (1) Theoret-

ically, the embedding size ratio of our model over LightGCN is
323

(!+1) (32+3) . Normally, ! ≤ 4 and 3 ≥ 64, thus our model achieves at

least 4× space cost compression. (2) As for the prediction time cost,

we compare the number of binary operations (#BOP) and floating-

point operations (#FLOP) between our model and LightGCN. We

find that BiGeaR replaces most of floating-point arithmetics (e.g.,

multiplication) with bitwise operations.

Table 2: Complexity of space cost and online prediction.

Embedding size #FLOP #BOP

LightGCN $
(
32(" + #)3

)
$
(
2"#3

)
-

BiGeaR $
(
(" + #) (! + 1) (32 + 3)

)
$
(
4"# (! + 1)

)
$
(
2"# (! + 1)3

)

4 Experimental Results

We evaluate ourmodel on Top-K recommendation task with the

aim of answering the following research questions:

• RQ1. How does BiGeaR perform compared to state-of-the-art

full-precision and quantization-based models?

• RQ2. How is the practical resource consumption of BiGeaR?

• RQ3. How do proposed components affect the performance?

4.1 Experiment Setup

Datasets. To guarantee the fair comparison, we directly use five

widely evaluated datasets (including the training/test splits) from:

MovieLens2 [9, 10, 24, 50], Gowalla3 [21, 50, 56, 57], Pinterest4 [15,

50], Yelp20185 [21, 56, 57], Amazon-Book6 [21, 56, 57]. Dataset sta-

tistics and descriptions are reported in Table 3 and Appendix C.

Table 3: The statistics of datasets.

MovieLens Gowalla Pinterest Yelp2018 Amazon-Book

#Users 6,040 29,858 55,186 31,668 52,643

#Items 3,952 40,981 9,916 38,048 91,599

#Interactions 1,000,209 1,027,370 1,463,556 1,561,406 2,984,108

EvaluationMetric. In Top-K recommendation evaluation, we se-

lect twowidely-used evaluation protocols Recall@K andNDCG@K

to evaluate Top-K recommendation capability.

CompetingMethods.We include the following recommendermod-

els: (1) 1-bit quantization-based methods including graph-based

(GumbelRec [26, 40, 68], HashGNN [50]) and general model-based

(LSH [16], HashNet [7], CIGAR [28]), and (2) full-precision models

including neural-network-based (NeurCF [23]) and graph-based

(NGCF [56], DGCF [57], LightGCN [21]). Detailed introduction of

these methods are attached in Appendix D.

We exclude early quantization-based recommendation baselines,

e.g., CH [39], DiscreteCF [66], DPR [67], and full-precision solu-

tions, e.g., GC-MC [5], PinSage [65], mainly because the above

competing models [21, 23, 28, 56] have validated the superiority.

Experiment Settings. Our model is implemented by Python 3.7

and PyTorch 1.14.0 with non-distributed training. The experiments

are run on a Linux machine with 1 NVIDIA V100 GPU, 4 Intel Core

i7-8700 CPUs, 32 GB of RAM with 3.20GHz. For all the baselines,

we follow the official reported hyper-parameter settings, and for

methods lacking recommended settings, we apply a grid search

for hyper-parameters. The embedding dimension is searched in

{32, 64, 128, 256, 512, 1024}. The learning rate[is tunedwithin {10−4, 10−3, 10−2}
and the coefficient of!2 normalization_ is tuned among {10−6, 10−5, 10−4, 10−3}.

2https://grouplens.org/datasets/movielens/1m/
3https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/gowalla
4https://sites.google.com/site/xueatalphabeta/dataset-1/pinterest_iccv
5https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/yelp2018
6https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/amazon-book

https://grouplens.org/datasets/movielens/1m/
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/gowalla
https://sites.google.com/site/xueatalphabeta/dataset-1/pinterest_iccv
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/yelp2018
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/amazon-book

Table 4: Performance comparison (waveline and underline represent the best performing full-precision and quantization-based models).

Model
MovieLens (%) Gowalla (%) Pinterest (%) Yelp2018 (%) Amazon-Book (%)

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

NeurCF 21.40 ± 1.51 37.91 ± 1.14 14.64 ± 1.75 23.17 ± 1.52 12.28 ± 1.88 13.41 ± 1.13 4.28 ± 0.71 7.24 ± 0.53 3.49 ± 0.75 6.71 ± 0.72

NGCF 24.69 ± 1.67 39.56 ± 1.26 16.22 ± 0.90 24.18 ± 1.23 14.67 ± 0.56 13.92 ± 0.44 5.89 ± 0.35 9.38 ± 0.52 3.65 ± 0.73 6.90 ± 0.65

DGCF 25.28 ± 0.39 45.98 ± 0.58 18.64 ± 0.30 25.20 ± 0.41
✿✿✿

15.52 ± 0.42
✿✿✿

16.51 ± 0.56 6.37 ± 0.55 11.08 ± 0.48 4.32 ± 0.34 7.73 ± 0.27

LightGCN
✿✿✿

26.28 ± 0.20
✿✿✿

46.04 ± 0.18
✿✿✿

19.02 ± 0.19
✿✿✿

25.71 ± 0.25 15.33 ± 0.28 16.29 ± 0.24
✿✿✿

6.79 ± 0.31
✿✿✿

12.17 ± 0.27
✿✿✿

4.84 ± 0.09
✿✿✿

8.11 ± 0.11

BiGeaR 25.57 ± 0.33 45.56 ± 0.31 18.36 ± 0.14 24.96 ± 0.17 15.57 ± 0.22 16.83 ± 0.46 6.47 ± 0.14 11.60 ± 0.18 4.68 ± 0.11 8.12 ± 0.12

Capability 97.30% 98.96% 96.53% 97.08% 100.32% 101.94% 95.29% 95.32% 96.69% 100.12%

LSH 11.38 ± 1.23 14.87 ± 0.76 8.14 ± 0.98 12.19 ± 0.86 7.88 ± 1.21 9.84 ± 0.90 2.91 ± 0.51 5.06 ± 0.67 2.41 ± 0.95 4.39 ± 1.16

HashNet 15.43 ± 1.73 24.78 ± 1.50 11.38 ± 1.25 16.50 ± 1.42 10.27 ± 1.48 11.64 ± 0.91 3.37 ± 0.78 7.31 ± 1.16 2.86 ± 1.51 4.75 ± 1.33

CIGAR 14.84 ± 1.44 24.63 ± 1.77 11.57 ± 1.01 16.77 ± 1.29 10.34 ± 0.97 11.87 ± 1.20 3.65 ± 0.90 7.87 ± 1.03 3.05 ± 1.32 4.98 ± 1.24

GumbelRec 16.62 ± 2.17 29.36 ± 2.53 12.26 ± 1.58 17.49 ± 1.08 10.53 ± 0.79 11.86 ± 0.86 3.85 ± 1.39 7.97 ± 1.59 2.69 ± 0.55 4.32 ± 0.47

HashGNNℎ 14.21 ± 1.67 24.39 ± 1.87 11.63 ± 1.47 16.82 ± 1.35 10.15 ± 1.43 11.96 ± 1.58 3.77 ± 1.02 7.75 ± 1.39 3.09 ± 1.29 5.19 ± 1.03

HashGNNB 19.87 ± 0.93 37.32 ± 0.81 13.45 ± 0.65 19.12 ± 0.68 12.38 ± 0.86 13.63 ± 0.75 4.86 ± 0.36 8.83 ± 0.27 3.34 ± 0.25 5.82 ± 0.24

BiGeaR 25.57 ± 0.33 45.56 ± 0.31 18.36 ± 0.14 24.96 ± 0.17 15.57 ± 0.22 16.83 ± 0.46 6.47 ± 0.14 11.60 ± 0.18 4.68 ± 0.11 8.12 ± 0.12

Gain 28.69% 22.08% 36.51% 30.54% 25.77% 23.48% 33.13% 31.37% 40.12% 39.52%

?-value 5.57e-7 2.64e-8 2.21e-7 7.69e-8 2.5e-5 3.51e-5 3.27e-6 5.30e-8 3.49e-6 7.14e-8

We initialize and optimize all models with default normal initial-

izer and Adam optimizer [29]. We report all hyper-parameters in

Appendix E for reproducibility.

4.2 Performance Analysis (RQ1)

We evaluate Top-K recommendation by varying K in {20, 40, 60,

80, 100}. We summarize the Top@20 results in Table 4 for detailed

comparison and plot the Top-K recommendation curves in Appen-

dix F.1. From Table 4, we have the following observations:

• Our model offers a competitive recommendation capabil-

ity to state-of-the-art full-precision recommendermodels.

(1) BiGeaR generally outperforms most of full-precision recom-

mender models excluding LightGCN over five benchmarks. The

main reason is that our model and LightGCN take similar graph

convolution methodology with network simplification [21], e.g.,

removing self-connection and feature transformation, which is

proved to be effective for Top-K ranking and recommendation.

Moreover, BiGeaR collects the different levels of interactive in-

formation in multi depths of graph exploration, which signifi-

cantly enriches semantics to user-item representations for bi-

narization. (2) Compared to the state-of-the-art method Light-

GCN, our model develops about 95%∼102% of performance ca-

pability w.r.t. Recall@20 and NDCG@20 throughout all datasets.

This shows that our proposed model designs are effective to nar-

row the performance gap with full-precision model LightGCN.

Although the binarized embeddings learned by BiGeaR may not

achieve the exact expressivity parity with the full-precision ones

learned by LightGCN, considering the advantages of space com-

pression and inference acceleration that wewill present later, we

argue that such performance capability is acceptable, especially

for those resource-limited deployment scenarios.

• Compared to all binarization-based recommendermodels,

BiGeaR presents the empirically remarkable and statisti-

cally significant performance improvement. (1) Two con-

ventional methods (LSH, HashNet) for general item retrieval tasks

underperform CIGAR, HashGNN and BiGeaR, showing that a

direct model adaptation may be too trivial for Top-K recommen-

dation. (2) Compared to CIGAR, graph-based models generally

work better. This is mainly because, CIGAR combines general

neural networks with learning to hash techniques for fast candi-

date generation; on the contrary, graph-based models are more

capable of exploring multi-hop interaction subgraphs to directly

simulate the high-order collaborative filtering process for model

learning. (3) Our model further outperformsHashGNN by about

26%∼40% and 22%∼40% w.r.t. Recall@20 and NDCG@20, prov-

ing the effectiveness of our proposedmulti-faceted optimization

components in embedding binarization. (4) Moreover, the signif-

icance test in which ?-value < 0.05 indicates that the improve-

ments over all five benchmarks are statistically significant.

4.3 Resource Consumption Analysis (RQ2)

We analyze the resource consumption in training, online infer-

ence, and memory footprint by comparing to the best two compet-

ing models, i.e., LightGCN and HashGNN. Due to the page limits,

we report the empirical results of MovieLens dataset in Table 5.

(1))CA08=: we set batch size � = 2048 and dimension size 3 = 256

for all models.We find that HashGNN is fairly time-consuming

than LightGCN and BiGeaR. This is because HashGNN adopts

the early GCN framework [18] as the backbone; LightGCN and

BiGeaR utilize more simplified graph convolution architecture

in which operations such as self-connection, feature transfor-

mation, and nonlinear activation are all removed [21]. Further-

more, BiGeaR needs 5.1s and 6.2s per epoch for pretraining and

quantization, both of which take slightly more yet asymptoti-

cally similar time cost with LightGCN, basically following the

complexity analysis in § 3.2.

(2))8=5 4A : we randomly generate 1,000 queries for online predic-

tion and conduct experiments with the vanilla NumPy7 onCPUs.

7https://www.lfd.uci.edu/~gohlke/pythonlibs/

https://www.lfd.uci.edu/~gohlke/pythonlibs/

(a) MovieLens.

(c) Pinterest.

(d) Yelp2018. (e) Amazon-Book.

(b) Gowalla.

Recall@20 BiGeaR Recall@20 BiGeaRw/oFU Recall@20 BiGeaRw/oLW

NDCG@20 BiGeaRw/oLWNDCG@20 BiGeaRw/oFUNDCG@20 BiGeaR

Figure 4: Study of graph layer-wise quantization.

Weobserve thatHashGNNB takes a similar time costwith Light-

GCN. This is because, while HashGNNℎ purely binarizes the

continuous embeddings, its relaxed version HashGNNB adopts

a Bernoulli random variable to provide the probability of re-

placing the quantized digits with original real values [50]. Thus,

althoughHashGNNℎ can use Hamming distance for prediction

acceleration, HashGNNB with the improved recommendation

accuracy can only be computed by floating-point arithmetics.

As for BiGeaR, thanks to its bitwise-operation-supported capa-

bility, it runs about 8× faster than LightGCN whilst maintain-

ing the similar performance on MovieLens dataset.

(3) (�) : we only store the embedding tables that are necessary

for online inference. As we just explain, HashGNNB interprets

embeddings by randomly selected real values, which, however,

leads to the expansion of space consumption. In contrast to

HashGNNB , BiGeaR can separately store the binarized embed-

dings and corresponding scalers, making a balanced trade-off

between recommendation accuracy and space overhead.

Table 5: Resource consumption on MovieLens dataset.

LightGCN HashGNNℎ HashGNNB BiGeaR

)CA08= /#epcoch 4.91s 186.23s 204.53s (5.16+6.22)s

)8=5 4A /#query 32.54ms 2.45ms 31.76ms 3.94ms

(�) 9.79MB 0.34MB 9.78MB 1.08MB

Recall@20 26.28% 14.21% 19.87% 25.57%

4.4 Study of Layer-wise Quantization (RQ3.A)

To verify the magnification of feature uniqueness in layer-wise

quantization, wemodify BiGeaR and propose two variants, denoted

as BiGeaRF/> !, and BiGeaRF/> �* . We report the results in Fig-

ure 4 by denoting Recall@20 and NDCG@20 in red and blue, re-

spectively, and vary color brightness for different variants. From

these results, we have the following explanations.

• Firstly, BiGeaRF/> !, discards the layer-wise quantization and

adopts the conventional manner by quantizing the last outputs

from ! convolution iterations. We fix dimension 3 = 256 and

vary layer number ! for BiGeaR, and only vary dimension 3 for

variant BiGeaRF/> !, with fixed ! = 2. (1) Even by continu-

ously increasing the dimension size from64 to 1024, BiGeaRF/> !,
slowly improves both Recall@20 and NDCG@20 performance.

(2) By contrast, our layer-wise quantization presents a more effi-

cient capability in improving performance by increasing ! from

0 to 3. When ! = 4, BiGeaR usually exhibits a conspicuous per-

formance decay, mainly because of the common over-smoothing

issue in graph-based models [33, 35]. Thus, with a moderate size

3 = 256 and convolution number ! ≤ 3, BiGeaR can attain better

performance with acceptable computational complexity.

• Secondly, BiGeaRF/> �* omits the feature magnification effect

by adopting the way used in HashGNN [18, 50] as:

v
(;)
G =

∑
I∈N(G)

1
|N (I) | v

(;−1)
I . (19)

Similar to the analysis in § 3.1, such modification will finally

disable the “magnification term” in Equation (18) and simplify

it to the vanilla random walk for graph exploration. Although

BiGeaRF/> �* presents similar curve trends with BiGeaR when

! increases, the general performance throughout all five datasets

is unsatisfactory compared to BiGeaR. This validates the effec-

tiveness of BiGeaR’s effort in magnifying unique latent features,

which enriches user-item representations and boosts Top-K rec-

ommendation performance accordingly.

4.5 Study of Inference Distillation (RQ3.B)

4.5.1 Effect of Layer-wise Distillation. We study the effective-

ness of our inference distillation by proposing two ablation vari-

ants, namely noID and endID.While noID totally removes our infor-

mation distillation in model training, endID downgrades the origi-

nal layer-wise distillation to only distill information from the last

layer of graph convolution. As shown in Table 6, both noID and en-

dID draw notable performance degradation. Furthermore, the per-

formance gap between endID and BiGeaR shows that it is effica-

cious to conduct our inference distillation in a layer-wise manner

for further performance enhancement.

Table 6: Learning inference distillation.

Variant
MovieLens Gowalla Pinterest Yelp2018 Amazon-book
R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

noID
24.40 44.06 17.85 24.28 15.23 16.38 6.18 11.22 4.07 7.31
-4.58% -3.29% -2.78% -2.72% -2.18% -2.85% -4.48% -3.28% -13.03% -9.98%

endID
25.02 44.75 18.05 24.73 15.28 16.58 6.29 11.37 4.44 7.78
-2.15% -1.78% -1.69% -0.92% -1.86% -1.49% -2.78% -1.98% -5.13% -4.19%

KLD
24.32 44.38 17.63 24.07 14.78 15.92 5.83 10.36 4.13 7.21
-4.89% -2.59% -3.98% -3.57% -5.07% -5.41% -9.89% -10.69% -11.75% -11.21%

BiGeaR 25.57 45.56 18.36 24.96 15.57 16.83 6.47 11.60 4.68 8.12

4.5.2 Conventional KnowledgeDistillation. To comparewith

the conventional approach, we modify BiGeaR by applying KL di-

vergence for layer-wise teacher and student logits, i.e., ~̂ C2ℎ,(;)
D v.s.

~̂
BC3,(;)
D . We denote this variant as KLD. As we can observe from

Table 6, using conventional knowledge distillation with KL diver-

gence leads to suboptimal performance. This is because KL diver-

gence encourages the teacher and student training objects to have

a similar logit distribution, but users’ relative order of item prefer-

ence can not be well learned from this process. Compared to the

conventional approach, our proposed layer-wise Inference distilla-

tion is thus more effective for ranking information distillation.

4.6 Study of Gradient Estimation (RQ3.C)

We compare our gradient estimation with several recently stud-

ied estimators, such as Tanh-like [17, 43], SSwish [12], Sigmoid [62],

Figure 5: Gradient estimator comparison w.r.t. Recall@20.

and projected-based estimator [38] (denoted as PBE), by implement-

ing them in BiGeaR. We report their Recall@20 in Figure 5 and

compute the performance gain of our approach over these estima-

tors accordingly. We have two main observations:

(1) Our proposed approach shows the consistent superiority over

all other gradient estimators. These estimators usually use vi-

sually similar functions, e.g., tanh(·), to approximate sign(·).
However, these functions are not necessarily theoretically rele-

vant to sign(·). Thismay lead to inaccurate gradient estimation.

On the contrary, as we explain in § 2.4, we transfer the unit-step

function D (·) to sign(·) by sign(·) = 2D (·) - 1. Then we can fur-

ther estimate the gradients of sign(·) with the approximated

derivatives of D (·). In other words, our approach follows the

main optimization direction of factual gradients with sign(·);
and different from previous solutions, this guarantees the co-

ordination in both forward and backward propagation.

(2) Furthermore, compared to the last four datasets, MovieLens

dataset confronts a larger performance disparity between our

approach and others. This is becauseMovieLens dataset is much

denser than the other datasets, i.e., #�=C4A02C8>=B
#*B4AB ·#�C4<B = 0.0419 ≫

{0.00084, 0.00267, 0.0013, 0.00062}, which means that users tend

to have more item interactions and complicated preferences

towards different items. Consequently, this posts a higher re-

quirement for the gradient estimation capability in learning

ranking information. Fortunately, the empirical results in Fig-

ure 5 demonstrate that our solution well fulfills these require-

ments, especially for dense interaction graphs.

5 Related Work

Full-precision recommendermodels. (1)Collaborative Filter-

ing (CF) is a prevalent methodology in modern recommender sys-

tems [11, 64, 65]. Earlier CF methods, e.g., Matrix Factorization [32,

46], reconstruct historical interactions to learn user-item embed-

dings. Recent neural-network-based models, e.g., NeurCF [23] and

attention-based models [8, 22], further boost performance with

neural networks. (2) Graph-based methods focus on studying the

interaction graph topology for recommendation. Graph convolu-

tional networks (GCNs) [18, 30] inspire earlywork, e.g., GC-MC [5],

PinSage [65], and recent models, e.g., NGCF [56], DGCF [57], and

LightGCN [21], mainly because they can well simulate the high-

order CF signals among high-hop neighbors for recommendation.

Learning to hash.Hashing-based methodsmap dense floating-

point embeddings into binary spaces forApproximateNearest Neigh-

bor (ANN) search acceleration. A representative model LSH [16]

has inspired a series of work for various tasks, e.g., fast retrieval of

images [7], documents [34, 69], and categorical information [27].

For Top-K recommendation, models like DCF [66], DPR [67] in-

clude neural network architectures. A recent work CIGAR [28]

proposes adaptive model designs for fast candidate generation. To

investigate the graph structure of user-item interactions, model

HashGNN [50] applies hashing techniques into graph neural net-

works for recommendation. However, onemajor issue is that solely

using learned binary codes for prediction usually draws a large

performance decay. Thus, to alleviate the issue, CIGAR further

equips with additional full-precision recommender models (e.g.,

BPR-MF [46]) for fine-grained re-ranking; HashGNN proposes re-

laxed version bymixing full-precision and binary embedding codes.

Quantization-basedmodels.Quantization-basedmodels share

similar techniques with hashing-based methods, e.g., sign(·) is usu-
ally adoptedmainly because of its simplicity. However, quantization-

based models do not pursue extreme encoding compression, and

thus they develop multi-bit, 2-bit, and 1-bit quantization for perfor-

mance adaptation. Recently, there is growing attention to quantize

graph-based models, such as Bi-GCN [54] and BGCN [2] However,

these two models are mainly designed for geometric classification

tasks, but their capability in product recommendation is unclear.

Thus, in this paper, we propose BiGeaR to learn 1-bit user-item

representation quantization for Top-K recommendation. Different

from binary hashing-based methods, BiGeaR aims to make predic-

tions within its own framework, making a balanced trade-off be-

tween efficiency and performance.

6 Conclusion and Future Work

In this paper, we present BiGeaR to learn binarized graph rep-

resentations for recommendation with multi-faceted binarization

techniques. The extensive experiments not only validate the per-

formance superiority over competing binarization-based recom-

mender systems, but also justify the effectiveness of all proposed

model components. In the future, we plan to investigate two ma-

jor possible problems. (1) It is worth developing binarization tech-

niques formodel-agnostic recommender systemswith diverse learn-

ing settings [47, 48, 63]. (2) Instead of using sign(·) for quanti-

zation, developing compact multi-bit quantization methods with

similarity-preserving is promising to improve ranking accuracy.

Acknowledgments

The work described in this paper was partially supported by the

National Key Research and Development Program of China (No.

2018AAA0100204), the Research Grants Council of the Hong Kong

Special Administrative Region, China (CUHK 2410021, Research

Impact Fund, No. R5034-18), and the CUHKDirect Grant (4055147).

References
[1] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E Dahl,

and Geoffrey E Hinton. 2018. Large scale distributed neural network training
through online distillation. ICLR.

[2] Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. 2021. Binary Graph Neural
Networks. In CVPR. 9492–9501.

[3] Ron Banner, ItayHubara, Elad Hoffer, andDaniel Soudry. 2018. Scalablemethods
for 8-bit training of neural networks. NeurIPS 31.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv.

[5] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263.

[6] Ronald Newbold Bracewell and Ronald N Bracewell. 1986. The Fourier transform
and its applications. Vol. 31999. McGraw-Hill New York.

[7] Zhangjie Cao, Mingsheng Long, JianminWang, and Philip S Yu. 2017. Hashnet:
Deep learning to hash by continuation. In ICCV. 5608–5617.

[8] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In SIGIR. 335–344.

[9] Yankai Chen, Menglin Yang, Yingxue Zhang, Mengchen Zhao, Ziqiao Meng,
Jianye Hao, and Irwin King. 2022. Modeling Scale-free Graphs with Hyperbolic
Geometry for Knowledge-aware Recommendation. WSDM.

[10] Yankai Chen, Yaming Yang, Yujing Wang, Jing Bai, Xiangchen Song, and Irwin
King. 2022. Attentive Knowledge-aware Graph Convolutional Networks with
Collaborative Guidance for Personalized Recommendation. ICDE.

[11] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for
youtube recommendations. In Recsys. 191–198.

[12] Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and Vahid Partovi Nia.
2018. Bnn+: Improved binary network training. arXiv.

[13] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. 2015.
Deep hashing for compact binary codes learning. In CVPR. 2475–2483.

[14] Step function. 2022. https://en.wikipedia.org/wiki/Heaviside_step_function.
[15] Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. 2015. Learning

image and user features for recommendation in social networks. In ICCV.
[16] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in

high dimensions via hashing. In VLDB, Vol. 99. 518–529.
[17] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen

Lin, Fengwei Yu, and Junjie Yan. 2019. Differentiable soft quantization: Bridging
full-precision and low-bit neural networks. In ICCV. 4852–4861.

[18] William LHamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1025–1035.

[19] JohanHåstad. 2001. Some optimal inapproximability results. Journal of the ACM
(JACM) 48, 4, 798–859.

[20] Ruining He and Julian McAuley. 2016. Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In WWW. 507–517.

[21] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network
for recommendation. In SIGIR. 639–648.

[22] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and
Tat-Seng Chua. 2018. Nais: Neural attentive item similarity model for recom-
mendation. TKDE 30, 12, 2354–2366.

[23] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[24] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for recommendation with implicit feedback. In SIGIR.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531.

[26] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparameterization
with gumbel-softmax. In 5th ICLR.

[27] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting
Chen, Lichan Hong, and Ed H Chi. 2021. Learning to embed categorical features
without embedding tables for recommendation. SIGKDD.

[28] Wang-Cheng Kang and JulianMcAuley. 2019. Candidate generation with binary
codes for large-scale top-n recommendation. In CIKM. 1523–1532.

[29] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

[30] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In 5th ICLR.

[31] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. In ICML. PMLR, 1885–1894.

[32] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8, 30–37.

[33] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:
Can gcns go as deep as cnns?. In ICCV. 9267–9276.

[34] Hao Li, Wei Liu, and Heng Ji. 2014. Two-Stage Hashing for Fast Document
Retrieval.. In ACL (2). 495–500.

[35] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI.

[36] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling user exposure in recommendation. In WWW. 951–961.

[37] Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards accurate binary convolu-
tional neural network. In NeurIPS.

[38] Chunlei Liu, Wenrui Ding, Xin Xia, Yuan Hu, Baochang Zhang, Jianzhuang Liu,
Bohan Zhuang, and Guodong Guo. 2019. RBCN: Rectified binary convolutional
networks for enhancing the performance of 1-bit DCNNs. arXiv.

[39] Xianglong Liu, Junfeng He, Cheng Deng, and Bo Lang. 2014. Collaborative hash-
ing. In CVPR. 2139–2146.

[40] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The concrete distri-
bution: A continuous relaxation of discrete random variables. In 5th ICLR.

[41] Yoon-Joo Park and Alexander Tuzhilin. 2008. The long tail of recommender
systems and how to leverage it. In RecSys. 11–18.

[42] Amazon product statistics. 2022. https://www.retailtouchpoints.com/resources/
how-many-products-does-amazon-carry.

[43] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei
Yu, and Jingkuan Song. 2020. Forward and backward information retention for
accurate binary neural networks. In CVPR. 2250–2259.

[44] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In ECCV. Springer, 525–542.

[45] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In WSDM. 273–282.

[46] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2012. BPR: Bayesian personalized ranking from implicit feedback.
arXiv.

[47] Zixing Song, Ziqiao Meng, Yifei Zhang, and Irwin King. 2021. Semi-supervised
Multi-label Learning for Graph-structured Data. In CIKM. ACM, 1723–1733.

[48] Zixing Song, Xiangli Yang, Zenglin Xu, and Irwin King. 2022. Graph-based semi-
supervised learning: A comprehensive review. TNNLS.

[49] Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. 2021. Degree-
quant: Quantization-aware training for graph neural networks. 9th ICLR.

[50] Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu.
2020. Learning to hash with GNNs for recommender systems. In WWW. 1988–
1998.

[51] Jiaxi Tang and Ke Wang. 2018. Learning compact ranking models with high
performance for recommender system. In SIGKDD. 2289–2298.

[52] Amazon user statistics. 2022. https://backlinko.com/amazon-prime-users.
[53] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. ICLR.
[54] Junfu Wang, Yunhong Wang, Zhen Yang, Liang Yang, and Yuanfang Guo. 2021.

Bi-gcn: Binary graph convolutional network. In CVPR. 1561–1570.
[55] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey

on learning to hash. TPAMI 40, 4, 769–790.
[56] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In SIGIR. 165–174.
[57] XiangWang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.

2020. Disentangled graph collaborative filtering. In SIGIR. 1001–1010.
[58] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR.
[59] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
TNNLS 32, 1, 4–24.

[60] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. 2020. Self-training
with noisy student improves imagenet classification. In CVPR. 10687–10698.

[61] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on
graphs with jumping knowledge networks. In ICML. PMLR, 5453–5462.

[62] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang
Huang, and Xian-sheng Hua. 2019. Quantization networks. In CVPR. 7308–
7316.

[63] Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King.
2021. Discrete-time Temporal Network Embedding via Implicit Hierarchical
Learning in Hyperbolic Space. In SIGKDD. 1975–1985.

[64] Menglin Yang, Min Zhou, Jiahong Liu, Defu Lian, and Irwin King. 2022. HRCF:
Enhancing collaborative filtering via hyperbolic geometric regularization. In
WebConf. 2462–2471.

[65] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD. 974–983.

[66] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-
Seng Chua. 2016. Discrete collaborative filtering. In SIGIR. 325–334.

[67] Yan Zhang, Defu Lian, and Guowu Yang. 2017. Discrete personalized ranking
for fast collaborative filtering from implicit feedback. In AAAI, Vol. 31.

[68] Yifei Zhang and Hao Zhu. 2019. Doc2hash: Learning discrete latent variables
for documents retrieval. In ACL. 2235–2240.

[69] Yifei Zhang and Hao Zhu. 2020. Discrete Wasserstein Autoencoders for Docu-
ment Retrieval. In ICASSP. IEEE, 8159–8163.

[70] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. 2016. Deep hashing
network for efficient similarity retrieval. In AAAI, Vol. 30.

https://en.wikipedia.org/wiki/Heaviside_step_function
https://www.retailtouchpoints.com/resources/how-many-products-does-amazon-carry
https://www.retailtouchpoints.com/resources/how-many-products-does-amazon-carry
https://backlinko.com/amazon-prime-users

(c) Pinterest.(b) Gowalla.(a) MovieLens. (d) Yelp2018. (e) Amazon-Book.

Figure 1: Top-K recommendation curve.

Table 1: Notations and meanings.

Notation Explanation

3 , ! Embedding dimensions and graph convolution layers.
U, I Collection of users and items.
N(G) Neighbors of node G .

v
(;)
G Full-precision embedding of node G at ; -th convolution.

q
(;)
G Binarized embedding of of node G at ; -th quantization.

U
(;)
G ; -th embedding scaler of node G .

AG and QG Binarized embedding table of G learned by BiGeaR.
F; ; -th weight in predicting matching score.
~D,8 A scalar indicates the existence of user-item interaction.

~̂C2ℎD,8 Predicted score based on full-precision embeddings.

~̂BC3D,8 Predicted score based on binarized embeddings.

~̂
C2ℎ, (;)
D Predicted scores of D based on ; -th embeddings segments.

~̂
BC3, (;)
D Predicted scores of D based on ; -th quantized segments.

(
(;)
C2ℎ
(D) pseudo-positive training samples of D .

F: :-th weight in inference distillation loss.

LC2ℎ
�%'

, LBC3
�%'

BPR loss based on full-precision and binarized scores.

L�� Inference distillation loss.
L Objective function of BiGeaR.

D (·) , X (·) Unit-step function and Dirac delta function.
_, _1, _2, W , [Hyper-parameters and the learning rate.

A Notation Table

We list key notations in Table 1.

B Pseudo-codes of BiGeaR

The pseudo-codes of BiGeaR are attached in Algorithm 1.

C Datasets

• MovieLens [9, 10, 24, 50] is a widely adopted benchmark for

movie recommendation. Similar to the setting in [9, 24, 50],~D,8 =

1 if user D has an explicit rating score towards item 8 , otherwise

~D,8 = 0. In this paper, we use the MovieLens-1M data split.

• Gowalla [21, 50, 56, 57] is the check-in dataset [36] collected

from Gowalla, where users share their locations by check-in. To

guarantee the quality of the dataset, we extract users and items

with no less than 10 interactions similar to [21, 50, 56, 57].

• Pinterest [15, 50] is an implicit feedback dataset for image rec-

ommendation [15]. Users and images are modeled in a graph.

Algorithm 1: BiGeaR algorithm.

Input: Interaction graph; trainable embeddings v{··· } ; hyper-parameters: !,

[, _, _1 , _2 , W .
Output: Prediction function F(D, 8)

1 AD ← ∅, A8 ← ∅, QD ← ∅, Q8 ← ∅;
2 while BiGeaR not converge do
3 for ; = 1, · · · , ! do

4 v
(;)
D ← ∑

8∈N(D)
1√

|N (D) |·|N (8) |
v
(;−1)
8 ,

5 v
(;)
8 ←

∑
D∈N(8)

1√
|N (8) |·|N (D) |

v
(;−1)
D .

6 if with inference distillation then

7 q
(;)
D ← sign

(
v
(;)
D

)
, q

(;)
8 ← sign

(
v
(;)
8

)
,

8 U
(;)
D ← | |\ (;)D | |1

3 , U
(;)
8 ← | |\ (;)

8
| |1

3 ;

9 Update (AD , QD), (A8 , Q8) with U (;)D q
(;)
D , U

(;)
8 q

(;)
8 ;

10 ~̂ C2ℎ
D,8 ←

〈����!
;=0

F;v
(;)
D ,

����!
;=0

F;v
(;)
8

〉
.

11 if with inference distillation then

12 q
(0)
D ← sign

(
v
(0)
D

)
, q

(0)
8 ← sign

(
v
(0)
8

)
,

13 U
(0)
D ← | |\ (0)D | |1

3 , U
(0)
8 ← | |\ (0)

8
| |1

3 ;

14 Update (AD , QD), (A8 , Q8) with U (0)D q
(0)
D , U

(0)
8 q

(0)
8 ;

~̂ BC3
D,8 =

〈
5 (AD, QD), 5 (A8 , Q8)

〉
;

15 {~̂C2ℎ, (;)D,8 };=0,1,··· ,! ← get score segments from~̂ C2ℎ
D,8 ;

16 {~̂BC3, (;)D,8 };=0,1,··· ,! ← get score segments from~̂ BC3
D,8 ;

17 L�� ← compute loss with {~̂C2ℎ, (;)
D,8

};=0,1,··· ,! , {~̂
BC3, (;)
D,8

};=0,1,··· ,! .
18 L ← compute LBC3

�%'
0=3L�� .

19 else

20 L ← compute LC2ℎ
�%'

.

21 Optimize BiGeaR with regularization;

22 return F.

Edges represent the pins over images initiated by users. In this

dataset, each user has at least 20 edges.

• Yelp2018 [21, 56, 57] is collected from Yelp Challenge 2018 Edi-

tion, where local businesses such as restaurants are treated as

items. We retain users and items with over 10 interactions simi-

lar to [21, 56, 57].

• Amazon-Book [21, 56, 57] is organized from the book collec-

tion of Amazon-review for product recommendation [20]. Simi-

larly to [21, 56, 57], we use the 10-core setting to graph nodes.

D Competing Methods

• LSH [16] is a representative hashing method to approximate the

similarity search for massive high-dimensional data. We follow

the adaptation in [50] to it for Top-K recommendation.

• HashNet [7] is a state-of-the-art deep hashing method that is

originally proposed for multimedia retrieval tasks. We use the

same adaptation strategy in [50] to it for recommendation.

• CIGAR [28] is a hashing-based method for fast item candidate

generation, followed by complex full-precision re-ranking algo-

rithms. We use its quantization part for fair comparison.

• GumbelRec is a variant of our model with the implementa-

tion of Gumbel-softmax for categorical variable quantization [26,

40, 68]. GumbelRec utilizes the Gumbel-softmax trick to replace

sign(·) function for embedding binarization.

• HashGNN [50] is the state-of-the-art end-to-end 1-bit quantiza-

tion recommender system. HashGNNℎ denotes its vanilla hard

encoding version; and HashGNNB is the relaxed version of re-

placing several quantized digits with the full-precision ones.

• NeurCF [23] is a classical neural network model to capture user-

item nonlinear feature interactions for collaborative filtering.

• NGCF [56] is a state-of-the-art graph-based collaborative filter-

ing model that largely follows the standard GCN [30].

• DGCF [57] is one of the latest graph-based model that learns

disentangled user intents for better Top-K recommendation.

• LightGCN [21] is another latest GCN-based recommender sys-

tem that presents a more concise and powerful model structure

with state-of-the-art performance.

E Hyper-parameter Settings

We report all hyper-parameter settings in Table 2.

Table 2: Hyper-parameter settings for the five datasets.

MovieLens Gowalla Pinterest Yelp2018 Amazon-Book

� 2048 2048 2048 2048 2048

3 256 256 256 256 256

[1 × 10−3 1 × 10−3 5 × 10−4 5 × 10−4 5 × 10−4
_ 1 × 10−4 5 × 10−5 1 × 10−4 1 × 10−4 1 × 10−6
_1 1 1 1 1 1

_2 0.1 0.1 0.1 0.1 0.1

W 1 1 1 1 1

! 2 2 2 2 2

F Additional Experimental Results

F.1 Top-K Recommendation Curve

We curve the Top-K recommendation by varying K from 20 to

100 and compare BiGeaR with several selected models. As shown

in Figure 1, BiGeaR consistently presents the performance superi-

ority over HashGNN, and shows the competitive recommendation

accuracy with DGCF and LightGCN.

F.2 Implementation of Embedding Scaler U (;)

We set the embedding scaler to learnable (denoted by LB) and

show the results in Table 3. We observe that, the design of learn-

able embedding scaler does not achieve the expected performance.

This is probably because there is no direct mathematical constraint

to it and thus the parameter search space is too large to find the

optimum by stochastic optimization.

Table 3: Implementation of Embedding Scaler.

MovieLens Gowalla Pinterest Yelp2018 Amazon-book
R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

LB
23.07 41.42 17.01 23.11 14.19 15.29 6.05 10.80 4.52 7.85
-9.78% -9.09% -7.35% -7.41% -8.86% -9.15% -6.49% -6.90% -3.42% -3.33%

BiGeaR 25.57 45.56 18.36 24.96 15.57 16.83 6.47 11.60 4.68 8.12

F.3 Implementation of F; .

We try the following three additional implementation ofF; and

report the results in Tables 4.

(1) F; =
1

!+1 equally contributes for all embedding segments.

(2) F; =
1

!+1−; is positively correlated to the ; value, so as to high-

light higher-order structures of the interaction graph.

(3) F; = 2−(!+1−;) is positively correlated to ; with exponentiation.

The experimental results show that implementation (2) performs

fairly well compared to the others, demonstrating the importance

of highlighting higher-order graph information. This corroborates

the design of our implementation in BiGeaR, i.e., F; ∝ ; , which how-
ever is simpler and effective with better recommendation accuracy.

Table 4: Implementation ofF; .

MovieLens Gowalla Pinterest Yelp2018 Amazon-Book
R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

(1) 22.75 41.13 16.15 21.82 14.16 15.48 5.88 10.32 4.46 7.63
(2) 25.07 44.64 17.81 24.46 15.26 16.57 6.40 11.38 4.58 7.96
(3) 21.23 37.81 15.24 20.71 12.93 14.28 5.24 9.51 3.74 64.98

Best 25.57 45.56 18.36 24.96 15.57 16.83 6.47 11.60 4.68 8.12

F.4 Implementation of F: .

We further evaluate different F: :

(1) F: = '−:
' is negatively correlated to the ranking position : .

(2) F: = 1
: is inversely proportional to position : .

(3) F: = 2−: is exponential to the value of −: .
We observe fromTable 5 that the implementation (3) works slightly

worse than Equation (12) but generally better than the other two

methods. This show that the exponential modeling is more effec-

tive to depict the importance contribution of items for approximat-

ing the tailed item popularity [45]. Moreover, Equation (12) intro-

duces hyper-parameters to provide the flexibility of adjusting the

function properties for different datasets.

Table 5: Implementation ofF: .

MovieLens Gowalla Pinterest Yelp2018 Amazon-Book
R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

(1) 24.97 44.33 17.96 24.87 15.11 16.20 6.28 11.21 4.43 7.78
(2) 25.08 45.19 17.95 24.95 15.18 16.34 6.27 11.25 4.48 7.92
(3) 25.16 44.92 18.32 24.81 15.26 16.65 6.33 11.36 4.53 8.06

Best 25.57 45.56 18.36 24.96 15.57 16.83 6.47 11.60 4.68 8.12

	Abstract
	1 Introduction
	2 BiGeaR Methodology
	2.1 Graph Layer-wise Quantization
	2.2 Prediction Acceleration
	2.3 Self-supervised Inference Distillation
	2.4 Gradient Estimation

	3 Model Analysis
	3.1 Magnification of Feature Uniqueness
	3.2 Complexity Analysis

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Performance Analysis (RQ1)
	4.3 Resource Consumption Analysis (RQ2)
	4.4 Study of Layer-wise Quantization (RQ3.A)
	4.5 Study of Inference Distillation (RQ3.B)
	4.6 Study of Gradient Estimation (RQ3.C)

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References
	A Notation Table
	B Pseudo-codes of BiGeaR
	C Datasets
	D Competing Methods
	E Hyper-parameter Settings
	F Additional Experimental Results
	F.1 Top-K Recommendation Curve
	F.2 Implementation of Embedding Scaler (l)
	F.3 Implementation of wl.
	F.4 Implementation of wk.

