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ABSTRACT
Graph Neural Networks (GNNs) are state-of-the-art models for

performing prediction tasks on graphs. While existing GNNs have

shown great performance on various tasks related to graphs, little

attention has been paid to the scenario where out-of-distribution

(OOD) nodes exist in the graph during training and inference.

Borrowing the concept from CV and NLP, we define OOD nodes

as nodes with labels unseen from the training set. Since a lot of

networks are automatically constructed by programs, real-world

graphs are often noisy and may contain nodes from unknown dis-

tributions. In this work, we define the problem of graph learning
with out-of-distribution nodes. Specifically, we aim to accomplish

two tasks: 1) detect nodes which do not belong to the known distri-

bution and 2) classify the remaining nodes to be one of the known

classes. We demonstrate that the connection patterns in graphs are

informative for outlier detection, and propose Out-of-Distribution

Graph Attention Network (OODGAT), a novel GNN model which

explicitly models the interaction between different kinds of nodes

and separate inliers from outliers during feature propagation. Exten-

sive experiments show that OODGAT outperforms existing outlier

detection methods by a large margin, while being better or compa-

rable in terms of in-distribution classification.
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•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies → Neural networks; Anomaly detection.
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1 INTRODUCTION
Graphs neural networks (GNNs) have become the de facto tool for
performing prediction tasks on graphs. Among various applications,
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one of the most important tasks of GNNs is semi-supervised node

classification (SSNC) [11]. In SSNC, GNNs aggregate information

from adjacent nodes and generate representations that are smooth

within neighborhoods, alleviating the difficulty of classification.

In recent years, many studies have begun to consider graph learn-

ing tasks in realistic settings, such as graphs with label noise [4],

low labeling rates [27] and distribution shifts [2, 33]. However, very

few work has considered the scenario where out-of-distribution

(OOD) nodes exist in the graph on which one performs SSNC. By

using the term ’OOD’, we borrow the notion from CV and NLP,

which means samples with labels not seen in the training set. In

the graph domain, this can be quite common as graphs are usually

constructed in an incremental way where new nodes are added due

to the connectivity with existing ones, and for most cases there is

no guarantee that all nodes must connect to others from the same

distribution. For example, we want to classify papers in a citation

network into AI-related topics, e.g., deep learning, reinforcement

learning and optimization methods. The network is obtained using

a web crawler which adopts a breadth first search (BFS) strategy

and keeps exploring papers referencing existing ones for a number

of iterations. When searching stops, the resulting network is not

guaranteed to contain nodes only from the known categories, as it

is common for a scientific paper to refer to articles in less relevant

research areas, for example, an AI paper might cite papers in neu-

roscience and mathematics. In real-world networks, the proportion

of nodes from irrelevant categories may even be higher than those

from the classes of interest. Given a noisy graph as such, our task is
to predict the label for nodes which correspond to one of the known
classes, and identify nodes that do not belong to any of them.

In CV and NLP, OOD detection has been a hot research area with

a long history. [9] demonstrates that neural networks tend to assign

higher softmax probabilities to in-distribution (ID) samples than to

out-of-distribution (OOD) ones, and proposes to use the maximum

softmax probability (MSP) produced by the neural network as the

score for OOD detection. Other approaches attempt to improve

detection performance by modifying the model structure [30, 34],

employing customized uncertainty measures [14] or exploiting

labeled outliers [10].

Different from the above methods which only focus on identi-

fying OOD samples at inference time, the presence of OOD nodes

in graphs makes the task more challenging. First, in traditional

settings of CV and NLP, outliers only occur in the test set, while in

the graph domain one is usually given the entire graph for training

which consists of both inliers and outliers, transferring the prob-

lem from detecting unknown-unknown to known-unknown. How to

leverage the availability of outliers is the key to success. Second,

the classifier in CV and NLP is usually trained in a fully supervised

manner with abundant labeled data, while for graphs the most com-

mon approach for node classification is to train a GNN with limited
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ID-1 ID-2 ID-3 OOD-1 OOD-2

Figure 1: An illustration of graph learning with out-of-
distribution nodes. In this setting, we aim to accomplish two
tasks: 1) separate ID nodes fromOOD nodes and 2) classify ID
nodes correctly. Colors of nodes indicate their labels, and the
shaded areas represent a possible set of decision boundaries.
Note that the connections exist not only within ID nodes,
but also within OOD nodes, and in between. Unlike tradi-
tional anomaly detection which assumes a small percentage
of anomalies, in the graph domain, the OOD part may con-
tain nodes that are comparable in size to the ID part.

labeled data in a semi-supervised way. Due to the message-passing

framework adopted by GNNs, the latent features of ID and OOD

nodes can be affected by each other. Therefore, it is important to

study how the information flow between inliers and outliers can

affect the performance of in-distribution classification and outlier

detection. A similar question arises in [21], where the authors inves-

tigate the performance of semi-supervised learning (SSL) methods

when labeled and unlabeled data are drawn from different distri-

butions. However, this problem remains unexplored in the field

of graph-based SSNC. Third, since our purpose is to address node

classification and outlier detection in a joint framework, a natural

question is how to combine the two tasks into a unified model, and

how to balance the impact of one task on the other.

In this work, we first analyze the impact of OOD nodes on graph

learning tasks with GNNs. We demonstrate that for graphs with

high homophily, message-passing GNNs are inherently good at

detecting outliers due to the smoothness effect caused by feature

propagation. Furthermore, we find that removing inter-edges be-

tween ID and OOD nodes while preserving intra-edges within each

cluster can lead to the overall best performance. Motivated by these

findings, we propose a novel GNNmodel Out-of-Distribution Graph

Attention Network (OODGAT) which utilizes attention mechanism

and explicitly models the interaction between inliers and outliers.

Experiments show that OODGAT outperforms all baselines in terms

of both detection and classification, and even surpasses post-hoc

detectors which are tuned directly on the test set.

To the best of our knowledge, we are the first to formally define

the problem of graph learning with OOD nodes. [36] considers a
similar setting where the graph also contains OOD nodes. They

developed a Bayesian framework to detect outliers by calculating

multiple uncertainty measures. Our work differs in that we analyze

the fundamental advantages of GNNs from the perspective of net-

work geometry, and exploit the information contained in the graph

structure to solve the problem in an efficient and elegant way.

To summarize, our work makes the following contributions:

• We formalize the problem of graph learning with OOD nodes
and identify its challenges.

• We analyze the problem from the perspective of graph struc-

ture and present the basic design choice to achieve good

performance.

• We propose a novel GNN model called OODGAT which

explicitly distinguishes inliers from outliers during feature

propagation and solves the problem of node classification

and outlier detection in a joint framework.

• We conduct extensive experiments on various graph datasets

to demonstrate the effectiveness of the proposed method.

2 RELATEDWORKS
2.1 Graph Neural Networks
Graph neural networks (GNNs) have shown great performance in

various applications related to graphs. In this work, we focus on

the problem of semi-supervised node classification (SSNC) [11].

In SSNC, GNNs aggregate features from neighboring nodes and

produce a latent space where the similarity between node embed-

dings corresponds to the connection patterns between nodes in the

geometry space. The most commonly used GNNs include graph

convolutional network (GCN) [11], graph attention network (GAT)

[29] and GraphSAGE [7].

2.2 Outlier Detection
Outlier detection, also known as OOD detection, has been a hot

research area in various domains. Based on the availability of OOD

data during training, OOD detectors can be classified into three

types, namely unsupervised, supervised and semi-supervised meth-

ods.

Unsupervised Methods. Unsupervised methods only utilize in-

distribution data to train the outlier detector. Among various tech-

niques, the most commonly used ones include ODIN [16] and

Mahalanobis-distance [14]. These methods are called post-hoc de-
tectors as they assume the classification network is already trained

on in-distribution data, and the detector is built on top of the pre-

trained classifier by calibrating its output probabilities or exploiting

its latent space. Other approaches like [25, 28, 30] require training

an additional model which is designed specifically for OOD detec-

tion, apart from the original classification network. Unsupervised

methods do not utilize the abundant unlabeled data during train-

ing and can only find sub-optimal solutions since they treat the

classification and outlier detection as two independent tasks.

Supervised Methods. Supervised methods assume access to a set

of OOD samples during training [8, 10, 13]. Such methods train the

classifier in an end-to-end fashion using cross-entropy loss on the

ID training data tominimize classification error, together with a con-

fidence penalty loss on the labeled OOD data to maintain low pre-

diction confidence. For example, [13] applies a KL-divergence term

to OOD samples to ensure their predictions are close to uniform dis-

tribution. Supervised detectors generally outperform unsupervised
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ones for they manage to exploit the distributional information pro-

vided by training OOD data. However, the OOD samples are either

from a different but related dataset [10] or generated by GANs [18],

limiting its application in the graph domain where one cannot find

such proxy OOD datasets and cannot easily generate pseudo-OOD

data.

Semi-supervised Methods. Inspired by semi-supervised learning,

recent studies in OOD detection also consider the setting where an

unlabeled set is available during training [1, 34, 37]. [37] defines

a novel task called ’semi-supervised OOD detection’, where one

is given a limited set of labeled inliers and a large mixed set of

both inliers and outliers, whose identities cannot be known during

training. They employ contrastive learning to obtain latent repre-

sentations of unlabeled samples and compute their distance from

the centers of in-distribution data as the OOD score. [1] adopts a

similar setting but solves the problem with ensemble. The draw-

backs of these methods include 1) they are not designed for graphs

and thus cannot utilize the structural information; 2) they usually

require training an additional detection model and cannot handle

classification and detection in the same framework.

2.3 Semi-supervised Learning With
Distribution Mismatch

Another way to understand the proposed task is to consider it as a

semi-supervised learning problem on graphs. SSL assumes access to

only a small set of labeled data and a relatively large set of samples

without label information. Oliver et al. [21] points out that existing

SSLmethods tend to degrade the original classification performance

when there exists a class distribution mismatch between labeled

and unlabeled data. Following their discovery, researchers have

developed SSL methods that are robust against OOD samples, with

their performance being at least as good as fully-supervised learning

[6, 12, 35]. The key idea of such methods is straightforward: they

attempt to detect and remove the OOD part of the unlabeled data

and apply SSL techniques only on the remaining purified set. This

setting resembles ours in that they also treat the problem as two

tasks, i.e., semi-supervised learning on in-distribution data and

outlier detection on the unlabeled set, where each task has its

influence on the other. However, these approaches perform SSL by

adding regularization terms to the original classification loss (e.g.,

cross-entropy), like VAT [20] and minimum entropy regularization

[5], while in the graph domain, SSNC is usually done with GNNs

which achieve semi-supervised learning in an implicit way.

3 LEARNING ON GRAPHS WITH
OUT-OF-DISTRIBUTION NODES

In this section, we define the problem of graph learning with OOD
nodes and discuss the design choice of OODGAT.

3.1 Problem Formulation
Consider a graph G = (V, E), where V denotes the set of nodes

and E denotes the set of edges. The graph structure is represented

by an binary adjacency matrix A ∈ {0, 1} |V |× |V |
. Each node 𝑣

in the graph is associated with a feature vector x𝑣 and a label 𝑦𝑣 ,

and the overall feature matrix and class vector can be represented

by X and y, respectively. In SSNC, the node set can be further

divided into V = V𝑙 ∪ V𝑢 where V𝑙 refers to the set of nodes

whose labels are accessible during training. Similarly, the feature

matrix and class vector can be divided into X =
[
X𝑙⊤,X𝑢⊤

]⊤
and

y = [y𝑙 ∥ y𝑢 ]. The aim of SSNC is to predict the labels for nodes

in V𝑢 using the training set (X𝑙 , y𝑙 ), the unlabeled features X𝑢
and the graph structure A. Different from traditional close-world

SSNCwhich assumes that nodes inV𝑙 andV𝑢 are sampled from the

same distribution, we generalize the problem into a more realistic

setting where nodes in V𝑢 may come from a different distribution

than nodes inV𝑙 . Due to the distribution shift between labeled and

unlabeled data, the class vector y𝑢 may contain labels not seen in

y𝑙 , and the label spaceY is enlarged byY = Y𝑙 ∪Y𝑢 . For simplicity,

we denote nodes with labels from Y𝑙 by ID nodes or inliers and

nodes with labels from Y𝑢 \ Y𝑙 by OOD nodes or outliers. We call

this setting graph learning with OOD nodes and the purpose is to 1)

assign labels from B = {0, 1} to nodes in V𝑢 where 0 stands for ID

and 1 for OOD and 2) for nodes tagged as ID, we further classify

them to be one of the classes in Y𝑙 . Note that for both tasks, we

are presented with the whole graph G during training, leading to a

semi-supervised and transductive setting. In the remaining of the

article, we call the two tasks Semi-Supervised Outlier Detection

(SSOD) and Semi-Supervised Node Classification (SSNC) for the

sake of simplicity.

3.2 Semi-supervised Outlier Detection
Unlike previous outlier detection methods which are designed pri-

marily for CV and NLP tasks and derive the detector using only

in-distribution data, the uniqueness of graphs makes us wonder:

can we leverage the unlabeled data X𝑢 and the graph structure A for
better OOD detection? To answer the question, we first take a brief

review at the most common task on graphs, namely, SSNC. In SSNC,

a GNN is used to propagate information between adjacent nodes

and produce a latent space where features are distributed smoothly

w.r.t. the graph structure [15]. The smoothness is desirable due to

the widely adopted homophily assumption, i.e., connected nodes

tend to share the same label [22]. We argue that, like SSNC, the

connection pattern between nodes can also provide information

for distinguishing ID from OOD. We start by giving the following

proposition:

Proposition. Given a graph G, the set of original labels Y =

Y𝑙 ∪ Y𝑢 , and the set of identity labels B = {0, 1}. Assume that:
(1) There exists a mapping 𝑓 : Y ↦→ B which maps each label in

Y to be ID or OOD;
(2) G is homophilic w.r.t. toY, i.e., edges in G tend to connect nodes

with the same label in Y.
Then, G is also homophilic w.r.t. B.

The proof of the proposition is presented in Appendix A. From

the proposition, we make the following hypothesis: GNNs are a

natural fit for SSOD because they are inherently equipped with a

regularizer that pushes the predicted OOD scores to be close within

densely connected communities, which is helpful for graphs with

high homophily. We illustrate this in Figure 2. The left figure shows

the OOD scores obtained without considering the graph structure.

Overall, the scores of OOD nodes are higher than ID nodes, with

an exception in each community due to the weakness of modern

neural networks [8]. By smoothing features according to the graph
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In-distribution

Out-of-distribution   OODID

  intra-smoothing

  inter-smoothing

misclassify

misclassify

(a) Before smoothing (b) After smoothing

Figure 2: Smoothness helps OOD detection. The border of
circles represents the true identity of nodes, while the dark-
ness of the inner color represents the predicted OOD score.
Arrows indicate the smoothing effect of GNNs.

structure (Figure 2b), GNN manages to recover the true scores

of nodes from their neighbors (green arrows). However, we also

notice the edges that connect different kinds of nodes, which lead

to undesirable feature aggregation and compromise the separation

between inliers and outliers (red arrows). Since the number of intra-

edges significantly exceeds that of inter-edges (for graphs with

high homophily), the overall performance should be better than

not utilizing structural information at all.

To verify the hypothesis, we conduct an experiment on Cora

[32] using Multilayer Perceptron (MLP) and GCN [11] as predictors,

and calculate the entropy of the predicted class distribution as the

OOD score as in [17, 23, 36]. The higher the entropy, the more

likely the model considers the node to be OOD. The ROC curves for

both methods are plotted in Figure 3a, from which we can see the

GCN detector outperforms the MLP counterpart by a large margin,

validating that the graph structure is useful for detecting outliers.

To better understand the impact of different kinds of connections,

we test the detection performance on graphs with different sub-

sets of edges, and the results are shown in Figure 3b. As expected,

removing inter-edges from the graph leads to improved detection

performance (green line vs. orange line). However, the performance

drops sharply when we further remove edges within ID (red line) or

OOD (purple line) communities, indicating that smoothness within

the same type of nodes is critical for successful detection.

3.3 Semi-supervised Node Classification
It is known that the distribution mismatch between labeled and un-

labeled data can hurt the performance of semi-supervised learning

[21]. In graph-based SSNC, unlabeled nodes convey their influence

to model parameters through their connections to the labeled ones,

so it is natural to expect the same performance drop observed in

[21] when the graph contains edges connecting inliers and out-

liers. However, the problem here is more sophisticated. On the one

hand, the information exchange between ID and OOD data may

introduce noise to the interested distribution, making the model

prone to overfitting and leading to poor generalization; On the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Random
MLP
GCN

(a) ROC curves of OOD de-
tection usingMLP andGCN
as detectors. GCN uses the
original graph as input.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Random
Original Graph
ID-ID + OOD-OOD
OOD-OOD
ID-ID

(b) ROC curves of GCN detec-
tors. Different lines are trained
on graphs with different sub-
sets of edges.

Figure 3: Effect of feature smoothing on Cora.

Table 1: Effect of Inter-Edge Removal

Dataset Remove=0 Remove=0.5 Remove=1.0

Cora 92.0 92.5 92.7
CoauthorCS 92.8 92.6 93.0

Amazon-Photo 97.0 97.0 97.2
Amazon-Computers 81.2 81.5 83.2

other hand, the addition of inter-connections can enhance the con-

nectivity of the graph and facilitate the propagation of supervision

signals among nodes. Moreover, the connection patterns between

inliers and outliers may provide knowledge about how to classify

ID nodes. Therefore, it is difficult to tell whether the presence of

inter-connections is beneficial or detrimental to SSNC. To find out

the impact of inter-connections, we conducted experiments on

some commonly used graph datasets using GCN as the classifier

and report the mean accuracy across 9 runs in Table 1. For each

graph, we test the classification accuracy in three cases: preserving

all inter-edges (remove=0), randomly dropping half of them (re-

move=0.5), and removing them all (remove=1.0). Empirically, remov-

ing inter-edges can improve the generalization of in-distribution

classification, which is particularly true for certain datasets.

4 OODGAT: END-TO-END MODEL FOR SSOD
AND SSNC

In this section, we first introduce the attention architecture adopted

by OODGAT, and then propose three regularization terms to guide

the learning process of OODGAT.

4.1 Attention Mechanism: From Node to Edge
Since it is important to separate in-distribution nodes from OOD

nodes, it is natural to resort to attention mechanism which adap-

tively computes the weights for aggregating information from

neighbors. The general form of graph convolution with attention

is:

h′𝑖 = 𝜎
©«

∑︁
𝑗∈N(𝑖 )∪{𝑣𝑖 }

𝛼𝑖 𝑗Wh𝑗
ª®¬ (1)
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where 𝛼𝑖 𝑗 is the attention weight for aggregating information from

𝑣 𝑗 to 𝑣𝑖 . The difference between various graph attention networks

lies in the way the attention values are calculated. For example, GAT

[29] proposes to compute the (unnormalized) attention weights

between 𝑣𝑖 and 𝑣 𝑗 by 𝑒𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(
a⊤

[
Wh𝑖 ∥ Wh𝑗

] )
, where

they use a single layer neural network parameterized by a to output
attention weights. However, none of the previous approaches takes

OOD nodes into account, and the attention coefficients obtained

from their methods are not guaranteed to contain knowledge about

how to distinguish inliers from outliers.

In OODGAT, we propose to explicitly model the interaction

between inliers and outliers. Based on the discussion in Section 3,

we summarize three properties the attention mechanism should

possess : 1) allow messages to pass within in-distribution nodes,

2) allow message passing within out-of-distribution nodes and 3)

block information flow between inliers and outliers. Therefore, we

propose the following attention form:

𝑒𝑖 𝑗 = 1 − |𝑤 (𝑖) −𝑤 ( 𝑗) | (2)

where 𝑤 (𝑖) and 𝑤 ( 𝑗) are the attention scores for 𝑣𝑖 and 𝑣 𝑗 , re-

spectively. If we consider 𝑤 (𝑣) as a binary classifier that assigns

different weights to inliers and outliers, we can find that Equation

(2) satisfies all the properties discussed above. We illustrate this in

Figure 4. Without loss of generality, when 𝑤𝑣 and 𝑤𝑐′ are large,

say 𝑤𝑣 = 𝑤𝑐′ = 1, and 𝑤𝑢 and 𝑤𝑐 are small, say 𝑤𝑢 = 𝑤𝑐 = 0, the

attention weights for intra-edges become 𝑒𝑐𝑢 = 𝑒𝑐′𝑣 = 1, while the

weights for inter-edges become 𝑒𝑐𝑣 = 𝑒𝑐′𝑢 = 0. We also note that,

for any node 𝑣𝑖 , the weight with which it attends to itself is fixed

to be 𝑒𝑖𝑖 = 1, i.e., the maximum value possible for all node pairs.

This is desirable since maintaining more self-information can be

helpful when the neighborhood may contain contaminated features.

After obtaining 𝑒𝑖 𝑗 , we normalize them in each neighborhood using

softmax to keep the embedding scale unchanged before and after

aggregation:

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 𝑗 (𝑒𝑖 𝑗 ) =
𝑒𝑥𝑝 (𝑒𝑖 𝑗 )∑

𝑘∈N(𝑖 )∪{𝑣𝑖 } 𝑒𝑥𝑝 (𝑒𝑖𝑘 )
(3)

The binary classifier 𝑤 (𝑣) can be defined in various forms. To

avoid too many parameters and a complex model, we simply imple-

ment it as a logistic regression classifier parameterized by a ∈ R𝑑 ′

over the latent space of a GNN layer, i.e.,𝑤 (𝑣) = 𝜎
(
a⊤Wh𝑣

)
, where

W ∈ R𝑑 ′×𝑑 is the weight matrix of the GNN layer, h𝑣 ∈ R𝑑 is the

input of the layer, and 𝜎 is the sigmoid function. The classifier aims

to find a partition of the latent space such that inliers and outliers

are well separated from each other. To enhance the expressiveness

of the model, we extend the attention computation to a multi-head

variant, similar to [29]:

h′𝑖 =
𝐾n

𝑘=1

𝜎
©«

∑︁
𝑗∈N(𝑖 )∪{𝑣𝑖 }

𝛼𝑘𝑖 𝑗W
𝑘h𝑗

ª®¬ (4)

where 𝐾 is the number of attention heads and

f
means concate-

nation. In the prediction layer, the concatenation is replaced with

averaging to keep the dimension reasonable for classification:

z𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
©« 1𝐾

𝐾∑︁
𝑘=1

∑︁
𝑗∈N(𝑖 )∪{𝑣𝑖 }

𝛼𝑘𝑖 𝑗W
𝑘h𝑗

ª®¬ (5)
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Figure 4: Attention computation of OODGAT. 𝑐 and 𝑐′ indi-
cate central nodes, while 𝑢 and 𝑣 are their neighbors. Arrows
indicates the direction of feature propagation. OODGAT first
computes the node-level OOD scores, and then converts the
scores into edge-level attention weights for feature propaga-
tion.

where z𝑖 is the predicted class distribution of 𝑣𝑖 ,
∑ |Y𝑙 |
𝑘=1

𝑧𝑖𝑘 = 1.

4.2 Regularizer
Of course, the cross-entropy loss alone is not sufficient to make

OODGAT work in the expected way. In particular, we want the

embedded binary classifier to learn knowledge about how to distin-

guish inliers from outliers. Therefore, we propose three regularizers

to guide the learning process of OODGAT, i.e., consistency loss,

entropy loss and discrepancy loss. The architecture of OODGAT is

shown in Figure 5, which we will explain in detail in the following

sections.

Consistency Regularizer. OODGAT integrates a binary classifier

to measure the OOD score for nodes in the graph, and translates

the node-level scores into edge-level attention weights for feature

aggregation. Besides the scores predicted by the classifier, we can

also obtain the output distribution of nodes at the final layer of the

model, from which the entropy can be calculated as another kind of

OODmeasurement. We denote the scores predicted by the classifier

as𝑤 , and the scores given by entropy as 𝑒 . To coordinate the rela-

tionship between𝑤 and 𝑒 , we design the following regularization

term called consistency loss:

L𝑐𝑜𝑛 = − cos (w, e) (6)

where w represents the vector of OOD scores predicted by the

classifier:

w = [𝑤1,𝑤2, · · · ,𝑤 |V | ]⊤

𝑤𝑖 = 𝜎 (a⊤Wh𝑖 )
(7)

and e denotes the vector of OOD scores given by entropy:

e = [𝜎 (𝑒1), 𝜎 (𝑒2), · · · , 𝜎 ( ˜𝑒 |V | )]⊤

𝑒𝑖 =
𝑒𝑖 − 𝜇𝑒
𝜎𝑒

𝑒𝑖 = 𝐻 (z𝑖 ) = −
|Y𝑙 |∑︁
𝑗=1

𝑧𝑖 𝑗 𝑙𝑜𝑔(𝑧𝑖 𝑗 )

(8)

where 𝜇𝑒 and𝜎𝑒 denotes themean and standard deviation of {𝑒𝑖 } |V |
𝑖=1

,

and 𝐻 (z) is the entropy of the predicted class distribution given by

the last layer of OODGAT.
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w/o gradients

Distribution

Entropy

OOD score

Output

Figure 5: Architecture of OODGAT. Arrows of different colors
indicate different information to be extracted from the layer
for loss computation. Yellow and grey rectangles represent
layers w/ and w/o gradients propagation, respectively.

In Equation (6), we use cosine similarity to constrain the differ-

ence between w and e, i.e., the two methods should give similar

predictions across all nodes. The intuition behind the consistency

regularizer is the causal relationship between the attention mecha-

nism and the model’s final output. That is, when the scores given

by the classifier change, the attention weights used for aggregating

features will also change, which in turn affects the final output of

the model. If we regard the change of the classifier as the cause,

then the change of the model’s output can be viewed as the effect.

By aligning cause and effect, the hypothesis space of the model

is reduced and gradient descent is more likely to find solutions

that are closer to ground truth. Imagine an extreme case where

the classifier works perfectly and produces OOD scores close to

ground-truth. In this case, the attention weights of edges also be-

come near perfect and the model becomes extremely powerful in

detecting outliers as it smooths representations for all ID and OOD

clusters and prevents the information exchange between ID and

OOD communities. As a result, the OOD scores computed from

entropy are also close to reality, making the angle between w and e
small. From another perspective, we can interpret the consistency

loss as a kind of supervised learning: the entropy provides super-

vision to the classifier and vice versa. As training progresses, the

classifier not only learns from the final output, but also teaches the

model to produce more reliable predictions by differentiating ID

and OOD better in the latent space. Thus, the two modules play a

chasing game and benefit each other.

For OODGAT with two layers, the consistency loss is computed

for both layers, and in each layer, the score vector w is averaged

across all heads:

L𝑐𝑜𝑛 = −1

2

×
(
cos(w1, e) + cos(w2, e)

)
wl =

[
1

𝐾

𝐾∑︁
𝑘=1

𝑤𝑙𝑘
1
,
1

𝐾

𝐾∑︁
𝑘=1

𝑤𝑙𝑘
2
, · · · , 1

𝐾

𝐾∑︁
𝑘=1

𝑤𝑙𝑘|V |

]⊤ (9)

Entropy Regularizer. In OODGAT, we use entropy as the measure

of predictive uncertainty. As training proceeds, the cross-entropy

loss continuously pulls the outputs of labeled nodes toward one-

hot distribution, pushing their entropy to the lowest level. Due to

the generalization ability of neural networks, nodes outside the

training set may also produce low-entropy predictions, especially

those with attributes similar to or closely connected to the labeled

In-distribution class Out-of-distribution class

(a) Ordinary GNNs (b) OODGAT

Figure 6: Illustration of the latent space of ordinary GNNs
and OODGAT. The proposed regularizers can help the atten-
tion module to control the information flow between ID and
OOD nodes, hence OODGAT is able to produce a clearer gap
between inliers and outliers.

ones, resulting in some low-entropy regions in the graph. In contrast

to the classification loss, we want to keep the uncertainty of outliers

as high as possible to counteract the entropy-reducing effect caused

by cross-entropy. However, the true identities of nodes cannot

be obtained during training, so we take the predictions given by

the binary classifier as pseudo-labels, and make the outputs of

pseudo-OOD nodes close to uniform distribution to enhance the

distinguishability between inliers and outliers. Thus, we get the

following entropy loss:

L𝑒𝑛𝑡 =
∑ |V |
𝑖=1

𝐶𝐸 (u, z𝑖 ) 𝛿
(
𝑤 (𝑖) > 𝜖

)∑ |V |
𝑖=1

𝛿
(
𝑤 (𝑖) > 𝜖

) (10)

where u is uniform distribution, z𝑖 is the predicted class distribution
of 𝑣𝑖 , 𝜖 is the threshold for selecting pseudo-OOD nodes, 𝛿 means

the Kronecker delta.

Discrepancy Regularizer. For OODGAT with two graph convolu-

tional layers, we further constrain the difference between the OOD

scores computed by the two layers by minimizing the following

discrepancy loss:

L𝑑𝑖𝑠 = − cos

(
w1,w2

)
(11)

Final Objective. Overall, the optimal parameters of OODGAT are

obtained by minimizing the following loss:

L𝑂𝑂𝐷𝐺𝐴𝑇 = − 1

|V𝑙 |

|V𝑙 |∑︁
𝑖=1

𝑙𝑜𝑔(𝑧𝑖𝑦𝑖 )

+ 𝑎𝑏×𝑡 (𝛽L𝑐𝑜𝑛 + 𝛾L𝑒𝑛𝑡 + 𝜁L𝑑𝑖𝑠 )

(12)

where 𝛽 , 𝛾 and 𝜁 are the balance parameters of regularizers. In

addition, 𝑎𝑏×𝑡 is used to decay the weights of regularizers gradually
as training progresses so as to control the balance point between

ID classification and OOD detection. 𝑎 is a number between 0 and

1, 𝑏 is a small number and 𝑡 is the iteration step. In the experiments,

we set 𝑎 and 𝑏 to be 0.9 and 0.01, respectively. By combining the

three regularizers with cross-entropy, OODGAT not only learns

to classify in-distribution nodes, but also to separate inliers from

outliers in the latent space, as shown in Figure 6.
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5 EXPERIMENTS
In this section, we test OODGAT on various real-world graph

datasets to demonstrate its effectiveness. Due to space constraints,

some visualizations are presented in Appendix F.

5.1 Experimental Setup
Evaluation Metrics. In the setting of graph learning with OOD
nodes, we aim to accomplish two tasks simultaneously, which are

1) node classification and 2) outlier detection. For the first task,

we adopt classification accuracy as the evaluation metric. For the

second task, we calculate two metrics commonly found in the OOD

detection literature, namely the area under ROC curve (AUROC)

and the false positive rate when the true positive rate achieves

95% (FPR@95). Note that in all experiments we view the outliers

as positive. To comprehensively evaluate the performance of the

two tasks, we consider them together as a multi-class classification

problem with N+1 classes, i.e., N in-distribution classes and one

OOD class. We call this task joint classification, and the performance

can be evaluated by weighted-F1
1
.

Datasets. We test OODGAT on six commonly used graph datasets,

i.e., Cora, AmazonComputers, AmazonPhoto, CoauthorCS, LastF-

MAsia and Wiki-CS [19, 24, 26, 32]. For each dataset, we divide all

classes into in-distribution and out-of-distribution, such that the

ID part contains classes that are relatively balanced in node size,

and the number of ID classes is at least three to avoid too easy

classification
2
. Similar to traditional SSNC, we randomly select 20

nodes per ID class as the training set. Besides, we construct a small

validation set which contains 10 nodes from each ID class, and

the same number of outliers randomly sampled from OOD classes.

Statistics for the datasets are listed in Appendix C.

Methods. We compare the following methods:

• End-to-end Methods, which accomplish SSOD and SSNC

in the same framework. Specifically, we choose MLP, GCN

[11], GraphSAGE [7], GAT [29], and GATv2 [3] as the end-to-

end baselines. MLP is used to test the performance without

considering graph topology, while the other four are rep-

resentative GNN models w/ or w/o graph attention. For all

methods, we use the entropy of the predicted distribution as

the OOD score.

• Post-hoc OOD Detectors, which require training an addi-

tional outlier detector on top of the pretrained classifier. We

employ ODIN [16], Mahalanobis-distance [14], and CaGCN

[31] as the post-hoc detectors. ODIN uses temperature scal-

ing and input preprocessing to calibrate the output distribu-

tion, while Mahalanobis-distance leverages the latent space

of the pretrained classifier to compute the distance between

testing samples and known inliers. For each method, we use

the metric described in the original paper for OOD detection,

i.e., MSP for [16] and Mahalanobis-distance for [14]. CaGCN

is a recently published method for calibrating the output

confidence of GNNs. Intuitively, we can use the calibrated

confidence as the score for outlier detection.

• GKDE [36], the abbreviation for Graph-based Kernel Dirich-

let distribution Estimation, a method specifically designed

1
The details of joint classification are explained in Appendix B.

2
See our Github for more details regarding the choice of ID and OOD classes.

to detect outliers on graphs. It proposes a multi-source un-

certainty framework using various types of predictive un-

certainties from both deep learning and belief theory, and

shows that vacuity is the best metric for OOD detection.

• OODGAT, the method proposed in this paper. It has two

versions: OODGAT-ENT which uses the entropy of the pre-

dicted distribution as the measure of outliers and OODGAT-

ATT which uses the score given by the binary classifier

instead.

Implementation Details. For all graphs, we perform 3 random

splits to obtain training, validation, and test sets. For each split,

we initialize the model with 3 random seeds.
3
As a result, each

experiment was performed 9 times. Unless specially mentioned,

we tune the hyperparameters using grid search and select the best

performing results according to the validation set. Specifically, we

choose the learning rate from [0.01, 0.1], the dropout probability

from [0, 0.5]. For models with multi-head attentions, the number

of attention heads is chosen from [1, 4, 8], and the drop edge prob-

ability is set to 0.6. It is known that weight decay is helpful in

preventing models from giving arbitrary high confidence, so we

also choose the weight decay factor from [0, 5e-5, 5e-4, 5e-3]. We

set the maximum iterations of training to be 1000 and perform

early-stopping when (𝐴𝑈𝑅𝑂𝐶 + 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) stops to increase for

200 epochs. All experiments are done using PyTorch Geometric,

and the source code is made publicly available on Github
4
.

5.2 Main Results
Comparison with End-to-end Methods.We first compare our

method with end-to-end approaches. The results are listed in Table

2. From the table, we make the following observations:

1) On all datasets, GNNs outperform MLP in both SSOD and

SSNC by a large margin, suggesting that the graph structure is

helpful for both tasks, as indicated in Section 3.

2) GraphSAGE surpasses GCN in terms of AUROC on 5 out of

the 6 datasets, which may be attributed to the strategy of separating

self and neighboring representations during feature propagation.

3) Across all baseline models and datasets, GAT and/or GATv2

achieve the best performance in outlier detection. The results show

that even the naive attention mechanism helps to distinguish nodes

from different distributions.

4) For SSOD, OODGAT outperforms all baselines on the six

datasets by a considerable margin. On easy datasets such as Ama-

zonPhoto and CoauthorCS, OODGAT achieves an AUROC of over

0.98, while for difficult tasks like LastFMAsia andWiki-CS, OODGAT

greatly improves the detection ability and achieves decent perfor-

mance, demonstrating the effectiveness of the proposed propaga-

tion strategy.

5) For SSNC, OODGAT achieves better or comparable results

than other approaches. For example, OODGAT outperforms GAT

and/or GATv2 by 3% and 1% in terms of classification accuracy

on AmazonComputers and LastFMAsia. The results show that by

removing the interference brought by OOD data, the classifier is

more likely to converge to points with better generalization ability.

3
In the comparison with GKDE, we use the split given by the original authors in

https://github.com/zxj32/uncertainty-GNN

4
https://github.com/SongYYYY/KDD22-OODGAT

https://github.com/zxj32/uncertainty-GNN
https://github.com/SongYYYY/KDD22-OODGAT
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Table 2: Comparison with End-to-end Methods

Cora AmazonCS AmazonPhoto CoauthorCS LastFMAsia Wiki-CS

Acc ↑ / AUROC ↑ / FPR@95 ↓ / F1 ↑
MLP 74.1/72.4/75.5/63.1 68.4/65.7/84.6/54.6 91.8/80.2/71.9/72.8 88.6/95.0/28.9/84.8 54.5/57.4/87.0/51.2 78.6/71.7/76.4/64.0

GCN [11] 92.1/88.9/46.0/80.5 81.2/83.3/61.9/70.3 97.1/88.3/44.6/80.7 92.7/94.5/32.2/86.4 79.8/72.1/74.7/66.5 80.9/71.7/76.6/63.0

SAGE [7] 90.8/87.7/46.6/79.2 83.2/84.6/54.9/71.7 97.1/93.5/32.0/87.2 92.6/97.0/16.8/89.1 79.3/73.7/68.9/67.0 78.6/73.0/65.3/66.2

GAT [29] 91.6/90.1/40.8/81.5 82.3/88.5/42.9/76.5 96.9/92.5/31.7/86.1 92.0/96.6/16.7/89.0 82.3/81.1/49.6/75.0 79.9/79.8/63.6/70.0

GATv2 [3] 91.5/90.4/40.0/81.9 83.5/88.6/45.7/76.3 95.7/94.4/21.1/88.4 91.7/96.6/19.1/88.7 81.9/79.7/52.3/73.5 81.4/80.9/58.9/70.6
OODGAT-ENT 92.3/92.9/31.4/84.4 86.6/92.2/40.4/81.4 97.6/98.2/8.1/93.4 92.4/98.9/3.7/92.6 83.3/93.4 /22.4/83.5 81.4/88.8/48.5 /76.6
OODGAT-ATT 92.3/93.6/26.1 /85.1 86.6/93.1/45.2/82.2 97.6/98.3/5.8 /93.9 92.4/99.6/1.6 /93.5 83.3/91.9/27.7/81.0 81.4/88.3/51.2/73.7

Table 3: Comparison with Post-hoc OOD Detectors

GAT ODIN Mahalanobis CaGCN OODGAT OODGAT

(base)[29] [16] -Distance[14] [31] -ENT -ATT

AUROC ↑ / FPR@95 ↓
Cora 90.7/36.8 90.7/37.2 87.3/50.3 89.9/45.7 93.4/29.6 94.1/25.0

AmazonCS 84.1/51.9 84.4/51.2 81.8/78.8 83.6/56.2 91.3/47.2 92.3/52.0
AmazonPhoto 94.3/21.7 94.3/26.5 77.1/59.6 94.4/24.1 98.3/7.3 98.4/4.2
CoauthorCS 96.2/19.6 96.1/19.8 94.0/25.3 95.8/22.1 99.1/2.4 99.6/1.4
LastFMAsia 78.5/60.7 81.1/52.9 83.4/51.0 89.6/30.4 91.4/25.4 90.5/26.8

Wiki-CS 80.4/62.5 80.4/62.5 74.0/74.4 82.7/54.7 88.7/50.0 88.6/49.0

Table 4: Ablation Study

loss Acc ↑ AUROC ↑ F1↑
(1) CE 82.1 56.9 50.7

(2) CE+con 86.3 90.0 78.6

(3) CE+ent 82.9 53.5 48.9

(4) CE+dis 79.3 61.2 46.1

(5) CE+con+ent 85.9 92.8 81.3

(6) CE+con+dis 87.0 89.4 78.7

(7) OODGAT 86.6 93.1 82.2

6) From the perspective of joint classification, OODGAT consis-

tently outperforms all competitors, making it the most powerful

method for graph learning with OOD nodes.
Comparison with Post-hoc OOD Detectors.We also compare

OODGAT with ODIN [16], Mahalanobis-distance [14] and CaGCN

[31]. The comparison is unfair as these methods either require

additional data preprocessing or involve multiple training stages,

while OODGAT accomplishes the mission without introducing

additional complexity. For all experiments except OODGAT, we

pretrain a GAT as the base classifier, and employ different post-

hoc detectors for OOD detection. Note that unlike the original

paper, we tune the detectors directly on the test set to eliminate the

possibility of bad hyperparameter configurations. For OODGAT,

we do not utilize the test set for training or tuning. Table 3 reports

the detection performance of all methods. As we can see, only in a

few cases can the post-hoc detectors improve the detection ability

(shaded cells). Apart from that, all methods lose their power due to

the characteristics of graph data such as lack of supervision and non-

continuous input. By inspecting the last two columns, we find that

despite being unfair, OODGAT outperforms all post-hoc detectors

by a large margin. The superiority of OODGAT comes from the

end-to-end optimization strategy which simultaneously handles

feature extraction and OOD detection, whereas other methods use

a two-stage update framework which trains the classifier and the

detector separately and can only find sub-optimal solutions.

Comparisonwith GKDE.We now compare OODGATwith GKDE

[36]. To ensure a fair comparison, we test our method on the same

datasets used in the original paper and adopt the same prepro-

cessing procedures. (See Appendix C for details.) We report the

AUROC and AUPR for outlier detection in Table 5, where the re-

sults for GKDE are obtained from the original paper. As we can

see, although OODGAT is much more efficient than GKDE which

requires multiple forward passes due to the Bayesian framework,

it still outperforms GKDE in both AUROC and AUPR on all three

datasets. The results show that it is not enough to simply embed

existing GNNs into the framework of uncertainty computation.

Instead, making better use of the information implicit in the graph

structure is the key to success.

5.3 Ablation Study
The success of OODGAT comes from the combination of the unique

propagation strategy and the tailored regularizers for guiding the

training process. In this section, we perform ablation analysis in

Table 4 to demonstrate the importance of each module proposed

in Section 4.2. Experiments are done on AmazonComputers using

OODGAT-ATT, and the weight for each loss is the same as the best-

performing result in Table 2. In (1), we train the model with only

cross-entropy loss. The AUROC for outlier detection is around 50%

which is similar to random guessing, indicating the use of cross-

entropy alone is not sufficient to learn the classification of ID and

OOD.We then add one of the proposed regularizers in (2),(3) and (4),

respectively. The results show that consistency loss can effectively

improve the discriminative ability of the binary classifier, while

entropy loss and discrepancy loss contribute little or negatively

when used without the help of consistency regularizer. This is

expected since the other two losses rely on the accurate prediction

of the binary classifier, which is learned through consistency loss.

Comparing (2) and (5), we find that the entropy loss can further

improve the detection ability when used together with consistency

loss. Similarly, the comparison between (2) and (6) indicates that

the addition of discrepancy regularizer can help the classification of

in-distribution samples. The best result is obtained in (7) where we

combine all three regularizers with cross-entropy loss. In summary,

all regularizers contribute to the final performance, among which
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Table 5: Comparison with GKDE

Dataset

AUROC AUPR

GKDE OODGAT GKDE OODGAT

Cora 87.6 91.4 78.4 82.9
Citeseer 84.8 87.7 86.8 89.0
Pubmed 74.6 81.1 69.6 76.0

consistency loss plays the most important role. For information

about the sensitivity of hyperparameters, please see Appendix E.

6 CONCLUSION
In this paper, we propose and study the problem of graph learning
with OOD nodes. We demonstrate that GNNs are inherently suitable

for outlier detection on graphs with high homophily, and propose

an end-to-end model OODGAT to tackle the problem of SSOD and

SSNC. Extensive experiments show that while existing methods

such as input preprocessing and temperature scaling cannot handle

the problem well, OODGAT consistently yields decent performance

in both in-distribution classification and outlier detection. In the

future, we aim to extend OODGAT to more realistic settings such

as few-shot learning and incremental learning.
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A PROOF OF PROPOSITION
We now prove the proposition in Section 3.

Proof. The homophily is the fraction of edges in a graph which

connect nodes that have the same label. In [22], the node homophily

ratio is defined as:

ℎ =
1

|V|
∑︁
𝑣∈V

|{(𝑢, 𝑣) : 𝑢 ∈ N (𝑣) ∧ 𝑦𝑢 = 𝑦𝑣}|
|N (𝑣) |

Assuming a graph G whose node homophily ratio w.r.t. Y is ℎ.

By definition, we can derive the node homophily ratio w.r.t. B as:

ℎ′ =
1

|V|
∑︁
𝑣∈V

|A(𝑣) | +∑
𝑢∈B(𝑣) 𝛿 (𝑓 (𝑦𝑢 ) = 𝑓 (𝑦𝑣))

|N (𝑣) |

where A(𝑣) = {𝑢 : 𝑢 ∈ N (𝑣) ∧ 𝑦𝑢 = 𝑦𝑣}, B(𝑣) = {𝑢 : 𝑢 ∈
N (𝑣) ∧ 𝑦𝑢 ≠ 𝑦𝑣}, and N(𝑣) = A(𝑣) ∪ B(𝑣). 𝑓 is a mapping from

Y to B.

Since for any 𝑣 , we have

|A(𝑣) | = |{(𝑢, 𝑣) : 𝑢 ∈ N (𝑣) ∧ 𝑦𝑢 = 𝑦𝑣}|

and ∑︁
𝑢∈B(𝑣)

𝛿 (𝑓 (𝑦𝑢 ) = 𝑓 (𝑦𝑣)) ≥ 0

we can derive that

ℎ′ ≥ ℎ
Therefore, if a graph G is homophilic w.r.t. Y, it is also homophilic

w.r.t. to B. □

B JOINT CLASSIFICATION
The joint classification includes two stages: first, it classifies nodes

to be inliers or outliers according to the OOD scores predicted by

the model; then, it assigns in-distribution labels for nodes tagged

as ID using their output distributions. An illustration is shown in

Figure 7. Since the first stage is a binary classification task, the

value of weighted-F1 is dependent on the threshold chosen. In

the experiments, we report the best F1 value under all possible

thresholds.

< � < � < � > � < � < � > �

0 1 2 1 0 2 2

0 1 2 3 0 2 3

+

0,  1,  2 : ID class  3 : OOD class  

Figure 7: Illustration of joint classification. First row rep-
resents the predicted OOD scores, where t is the threshold.
Second row represents the predicted labels (3 classes in this
case). Combining the two rows, we derive the final result of
joint classification (3+1 classes in this case).

C DATASET STATISTICS
Statistics for datasets used in the main experiments are listed in

Table 6.

Table 6: Statistics for Main Datasets

Dataset #Nodes #Edges #Features #Classes

Cora 2708 10556 1433 7

Amazon-Computer 13752 491722 767 10

Amazon-Photo 7650 238162 745 8

Coauthor-CS 18333 163788 6805 15

LastFMAsia 7624 55612 128 18

Wiki-CS 11701 297110 300 10

Experimental setup for main datasets is shown in Table 7.

Table 7: Experimental Setup for Main Datasets

Dataset OOD class OOD ratio

Cora [0, 1, 3] 0.51

Amazon-Computer [0, 3, 4, 5, 9] 0.49

Amazon-Photo [1, 6, 7] 0.52

Coauthor-CS [0, 1, 2, 3, 4, 9, 13] 0.51

LastFMAsia [1, 2, 3, 4, 5, 9, 10, 12, 17] 0.53

Wiki-CS [0, 2, 4, 5] 0.50

Statistics for citation datasets are listed in Table 8.

Table 8: Statistics for Citation Datasets

Dataset #Nodes #Edges #Features #Classes

Cora 2708 10556 1433 7

Citeseer 3327 9104 3703 6

Pubmed 19717 88648 500 3

Experimental setup for citation datasets is shown in Table 9.

Table 9: Experimental Setup for Citation Datasets

Dataset OOD classes OOD ratio

Cora [0, 1, 2, 3] 0.38

Citeseer [0, 1, 2] 0.55

Pubmed [0, 1] 0.40

D EXPERIMENT DETAILS
The results from Table 2 are obtained with the following hyperpa-

rameter configurations:



Learning on Graphs with Out-of-Distribution Nodes KDD ’22, August 14–18, 2022, Washington, DC, USA.

0 1 2 3 4 5
β

0.5

0.6

0.7

0.8

0.9

M
et
ric

s

Acc AUC Weighted-F1

(a) 𝛽 : consistency loss

0 5e-5 5e-4 5e-3 5e-2 5e-1
ζ

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Acc AUC Weighted-F1

(b) 𝜁 : discrepancy loss

0.00 0.02 0.04 0.06 0.08
γ

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

M
et
ric

s

Acc AUC Weighted-F1

(c) 𝛾 : entropy loss

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ε

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Acc AUC Weighted-F1
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Figure 8: Hyperparameter analysis on AmazonComputers.

Table 10: Hyperparameter Configurations of Main Results

Data lr dropout 𝛽 𝛾 𝜁 𝜖 heads

Cora 0.01 0.5 2 0.05 0.005 0.6 4

Amazon-Computer 0.01 0.5 2 0.05 0.005 0.4 4

Amazon-Photo 0.01 0.5 3 0.1 0.005 0.4 4

Coauthor-CS 0.01 0.5 4 0.05 0.005 0.6 4

LastFMAsia 0.01 0.5 3 0.3 0.005 0.5 1

Wiki-CS 0.01 0.5 3 0.2 0.005 0.5 4

The results from Table 5 are obtained with hyperparameters in

Table 11.

Table 11: Hyperparameter Configurations of Citation
Datasets

Data lr dropout 𝛽 𝛾 𝜁 𝜖 heads

Cora 0.01 0.5 1 0.01 0.005 0.5 4

Citeseer 0.01 0.5 2 0.01 0.005 0.5 4

Pubmed 0.01 0.5 1 0.1 0.005 0.4 4

E INFLUENCE OF HYPERPARAMETERS
The training of OODGAT involves four hyperparameters: 𝛽 , 𝛾 , 𝜁

and 𝜖 . The former three are the balance parameters of regularizers,

while the last is the threshold to determine the set of nodes for

which the model encourages uniform distribution. Due to the space

limitation, we only present the effect of hyperparameters on Ama-

zonComputers, while similar trends are observed on other datasets.

From Figure 8a, we observe that consistency loss is the key to the

success of OOD detection. In Figure 8b, the performance is slightly

improved when the weight of discrepancy loss reaches around 5e-3.

The results in Figure 8c show that while the addition of entropy

regularizer can improve detection, it also leads to a decrease in the

performance of in-distribution classification. However, by choosing

an appropriate trade-off parameter, OODGAT can achieve better

detection capability without having too much impact on the clas-

sification, thereby improve the overall performance. The effect of

the threshold 𝜖 is shown in Figure 8d. When the threshold is 0,

the entropy loss simply forces all nodes to behave like outliers

by increasing the uncertainty of predictions, regardless of their

true identity. When moving the threshold to an appropriate range,

OODGAT manages to reduce the confidence level of outliers only

while leaving the in-distribution data unaffected, resulting in the

highest overall performance.

F VISUALIZATION
We present some visualizations about GCN and OODGAT in Figure

9.
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Figure 9: Visualization of GCN and OODGAT. Experiments
done onCora. (a) and (b): t-SNE plot of the latent space, (c) and
(d): distribution of nodes’ predictive uncertainties, (e) and (f):
training dynamics of themean entropy of inliers and outliers.
In (a) and (b), OODGAT shows a clearer boundary between ID
andOOD classes. In (c) and (d), OODGATproduces scoreswith
less overlap between ID and OOD. In (e) and (f), OODGAT
maintains a larger gap between the entropy of inliers and
outliers throughout the training phase.
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